The present disclosure relates to bearings that include diamond bearing surfaces engaged with metal bearing surfaces, to apparatus and systems including the same, and to methods of making and using the same.
Bearings are employed in myriad applications including, but not limited to, aircraft, aerospace, transportation, defense, agriculture, mining, construction, and energy (e.g., oil and gas drilling and production tools). Bearings can have many different configurations, such as radial bearings, axial bearings (e.g., thrust bearings), combination radial and axial bearings, linear bearings, and power transmission surface bearings.
When diamond elements are used in moving parts, typically both the engagement surface and the opposing engagement surface of the bearing assembly is composed of polycrystalline diamond. This is, at least in part, because thermally stable polycrystalline diamond (TSP), either supported or unsupported by tungsten carbide, and polycrystalline diamond compact (PDC) have been considered as contraindicated for use in the machining of diamond reactive materials. At certain surface speeds in moving parts, load and attendant temperature generated, such as at a cutting tip, often exceeds the graphitization temperature of diamond (i.e., about 700° C.), which can, in the presence of a diamond reactive material, lead to rapid wear and failure of components. Without being bound by theory, the specific failure mechanism is believed to result from the chemical interaction of the carbon bearing diamond with the carbon attracting material that is being machined. An exemplary reference concerning the contraindication of diamond for diamond reactive material machining is U.S. Pat. No. 3,745,623. The contraindication of diamond for machining diamond reactive material has long caused the avoidance of the use of diamond in all contacting applications with such materials.
Some embodiments of the present disclosure include a split radial journal bearing assembly. The split radial journal bearing assembly includes a first radial journal bearing and a second radial journal bearing, each having a bearing body and a radial bearing surface thereon. The assembly includes a part having a body and an opposing bearing surface thereon. The part is positioned between the first and second radial journal bearings, and the first and second radial journal bearings are spaced apart such that at least one gap is between the first and second radial journal bearings. One of the radial bearing surfaces or the opposing bearing surface includes polycrystalline diamond having a surface finish of 20 μin Ra or less. The other of the radial bearing surfaces and the opposing bearing surface includes a metal that contains at least 2 weight percent of a diamond solvent-catalyst based on a total weight of the metal. The metal is engaged with the polycrystalline diamond.
Some embodiments of the present disclosure include a split radial journal bearing assembly. The split radial journal bearing assembly includes a first radial journal bearing and a second radial journal bearing, each having a bearing body and a radial bearing surface thereon. The assembly includes a part having a body and an opposing bearing surface thereon. The part is positioned between the first and second radial journal bearings, and the first and second radial journal bearings are spaced apart such that at least one gap is between the first and second radial journal bearings. One of the radial bearing surfaces or the opposing bearing surface includes polycrystalline diamond having a surface finish of 20 μin Ra or less. The other of the radial bearing surfaces and the opposing bearing surface includes a metal that contains at least 2 weight percent of iron, cobalt, nickel, titanium, copper, ruthenium, rhodium, palladium, chromium, manganese, or tantalum based on a total weight of the metal. The metal is engaged with the polycrystalline diamond.
Some embodiments of the present disclosure include a method of providing a bearing on a part. The method includes positioning a first radial journal bearing and a second radial journal bearing relative to a part, such that the part is positioned between the first and second radial journal bearings. The first and second radial journal bearings are spaced apart such that at least one gap is between the first and second radial journal bearings. One of the radial bearing surfaces or the opposing bearing surface includes polycrystalline diamond, and the other of the radial bearing surfaces and the opposing bearing surface includes a metal that contains at least 2 weight percent of a diamond solvent-catalyst based on a total weight of the metal. The method includes lapping and/or polishing the polycrystalline diamond bearing surfaces such that the polycrystalline diamond bearing surfaces have a surface finish of 20 μin Ra or less. The method includes engaging the metal with the polycrystalline diamond, and moving the part and the radial journal bearings relative to one another such that the metal slides along the polycrystalline diamond.
Some embodiments of the present disclosure include a bearing assembly having a bearing with a bearing body and a part with a part body. One of the bearing body and the part body has a metal bearing surface thereon, and the other of the bearing body and the part body has a plurality of polycrystalline diamond bearing elements thereon. Each polycrystalline diamond bearing element has a surface finish of 20 μin Ra or less. The metal bearing surface includes a metal that contains at least 2 weight percent of a diamond solvent-catalyst based on a total weight of the metal. The polycrystalline diamond bearing elements are arranged contiguously such that adjacent polycrystalline diamond bearing elements are in contact at boundary edges of the adjacent polycrystalline diamond bearing elements, and such that surfaces of the adjacent polycrystalline diamond bearing elements are flush at the boundary edges. The metal bearing surface is engaged with surfaces of the plurality of polycrystalline diamond bearing elements.
Some embodiments of the present disclosure include a bearing assembly having a bearing with a bearing body and a part with a part body. One of the bearing body and the part body has a metal bearing surface thereon, and the other of the bearing body and the part body has a plurality of polycrystalline diamond bearing elements thereon. Each polycrystalline diamond bearing element has a surface finish of 20 μin Ra or less. The metal bearing surface includes a metal that contains at least 2 weight percent of iron, cobalt, nickel, titanium, copper, ruthenium, rhodium, palladium, chromium, manganese, or tantalum based on a total weight of the metal. The polycrystalline diamond bearing elements are arranged contiguously such that adjacent polycrystalline diamond bearing elements are in contact at boundary edges of the adjacent polycrystalline diamond bearing elements, and such that surfaces of the adjacent polycrystalline diamond bearing elements are flush at the boundary edges. The metal bearing surface is engaged with surfaces of the plurality of polycrystalline diamond bearing elements.
Some embodiments of the present disclosure include a method of providing a bearing on a part. The method includes providing a bearing having a bearing body and a part having a part body. One of the bearing body and the part body has a metal bearing surface thereon, and the other of the bearing body and the part body has a plurality of polycrystalline diamond bearing elements thereon. The metal bearing surface includes a metal that contains at least 2 weight percent of a diamond solvent-catalyst based on a total weight of the metal. The method includes lapping and/or polishing each polycrystalline diamond bearing element such that each polycrystalline diamond bearing element has a surface finish of 20 μin Ra or less. The polycrystalline diamond bearing elements are arranged contiguously such that adjacent polycrystalline diamond bearing elements are in contact at boundary edges of the adjacent polycrystalline diamond bearing elements, and such that surfaces of the adjacent polycrystalline diamond bearing elements are flush at the boundary edges. The method includes coupling the bearing and the part such that the metal bearing surface is engaged with the plurality of polycrystalline diamond bearing elements, and moving the part and the bearing relative to one another such that the metal bearing surface slides along the polycrystalline diamond bearing elements.
Some embodiments of the present disclosure include a valve. The valve includes a valve member having a valve member body and a first engagement surface on the valve member body. The valve includes a valve seat having a valve seat body and a second engagement surface on the valve seat body. One of the first and second engagement surfaces is a polycrystalline diamond engagement surface, and the other of the first and second engagement surfaces is a metal engagement surface including a metal that contains at least 2 weight percent of a diamond solvent-catalyst based on a total weight of the metal. The valve member is coupled with the valve seat and movable relative to the valve seat between an open position and a closed position, such that the metal engagement surface is slidingly engaged with the polycrystalline diamond engagement surface.
Some embodiments of the present disclosure include a valve. The valve includes a valve member having a valve member body and a first engagement surface on the valve member body. The valve includes a valve seat having a valve seat body and a second engagement surface on the valve seat body. One of the first and second engagement surfaces is a polycrystalline diamond engagement surface, and the other of the first and second engagement surfaces is a metal engagement surface including a metal that contains at least 2 weight percent of iron, cobalt, nickel, titanium, copper, ruthenium, rhodium, palladium, chromium, manganese, or tantalum based on a total weight of the metal. The valve member is coupled with the valve seat and movable relative to the valve seat between an open position and a closed position, such that the metal engagement surface is slidingly engaged with the polycrystalline diamond engagement surface.
Some embodiments of the present disclosure include a method of providing and using a valve. The method includes providing a valve member and a valve seat. The method includes providing one of the valve member and the valve seat with a polycrystalline diamond engagement surface, and providing the other of the valve member and the valve seat with a metal engagement surface. The metal engagement surface includes a metal that contains at least 2 weight percent of a diamond solvent-catalyst based on a total weight of the metal. The method includes lapping and/or polishing the polycrystalline diamond engagement surface such that the polycrystalline diamond engagement surface has a surface finish of 20 μin Ra or less. The method includes coupling the valve member with the valve seat such that the metal engagement surface is engaged with the polycrystalline diamond engagement surface. The method includes regulating flow of a fluid through the valve by opening the valve, closing the valve, or combinations thereof. Opening and closing the valve includes moving the valve member relative to the valve seat. Moving the valve member relative to the valve seat includes sliding the metal engagement surface along the polycrystalline diamond engagement surface.
So that the manner in which the features and advantages of the systems, apparatus, and/or methods of the present disclosure may be understood in more detail, a more particular description briefly summarized above may be had by reference to the embodiments thereof which are illustrated in the appended drawings that form a part of this specification. It is to be noted, however, that the drawings illustrate only various exemplary embodiments and are therefore not to be considered limiting of the disclosed concepts as it may include other effective embodiments as well.
Certain embodiments of the present disclosure include bearings that include polycrystalline diamond bearing surfaces engaged with metal bearing surfaces, to apparatus and systems including the same, and to methods of making and using the same.
Diamond Bearing Surfaces
The bearing assemblies disclosed herein include a polycrystalline diamond engagement surface (also referred to as a polycrystalline diamond bearing surface) engaged with an opposing engagement surface (also referred to as an opposing bearing surface). The polycrystalline diamond may be or include thermally stable polycrystalline diamond, either supported or unsupported by a support, such as a tungsten carbide support. The polycrystalline diamond may be or include a polycrystalline diamond compact (PDC). In certain applications, the polycrystalline diamond disclosed herein has increased cobalt content transitions layers between an outer polycrystalline diamond surface and a supporting tungsten carbide slug. The polycrystalline diamond may be non-leached, leached, leached and backfilled, thermally stable, or coated with a material via chemical vapor deposition (CVD). In some embodiments, the polycrystalline diamond is formed via a CVD process. Throughout the descriptions of the embodiments in this disclosure, for the sake of brevity and simplicity, “diamond” is used to refer to “polycrystalline diamond.” That is, the “diamond bearing surfaces” disclosed herein are “polycrystalline diamond bearing surfaces” and the “diamond bearing elements” are “polycrystalline diamond bearing elements.”
In certain applications, the diamond, or at least the engagement surface thereof, is lapped or polished, optionally highly lapped or highly polished. Although highly polished diamond is used in at least some applications, the scope of this disclosure is not limited to highly polished diamond and includes diamond that is highly lapped or polished. As used herein, a surface is defined as “highly lapped” if the surface has a surface roughness of 20 μm Ra or less than about 20 μin Ra, such as a surface roughness ranging from about 18 to about 22 μin Ra. As used herein, a surface is defined as “polished” if the surface has a surface roughness of between 2 to about 10 μm. As used herein, a surface is defined as “highly polished” if the surface has a surface roughness of less than 2 μin Ra. Typical “highly polished” surfaces have a surface roughness of from about 0.5 μm to less than about 2 μin.
In some aspects, the diamond bearing surfaces disclosed herein have a surface roughness ranging from 0.5 μin Ra to 20 μin Ra, or from 2 μin Ra to 18 μin Ra, or from 5 μm Ra to 15 μin Ra, or from 8 μin Ra to 12 μin Ra, or less than 20 μin Ra, or less than 18 μin Ra, or less than 10 μin Ra, or less than 2 μin Ra, or any range or value therebetween. Without being bound by theory, it is believed that diamond that has been polished to a surface roughness of 0.5 μm has a coefficient of friction that is less than (e.g., about half or more than half) of standard lapped diamond that has a surface roughness of 20-40 μm. U.S. Pat. Nos. 5,447,208 and 5,653,300 to Lund et al. provide disclosure relevant to polishing of diamond. As would be understood by one skilled in the art, surface finish, also referred to as surface texture or surface topography, is a characteristic of a surface as defined by lay, surface roughness, and waviness. Surface finish may be determined in accordance with ASME B46.1-2009. Surface finish or roughness may be measured with a profilometer, laser microscope, or with Atomic Force Microscopy, for example.
In some embodiments, the opposing bearing surface includes a diamond reactive material. As used herein, a “diamond reactive material” is a material that contains more than trace amounts of diamond solvent-catalyst (also referred to as a diamond catalyst-solvent). As used herein, a material that contains more than “trace amounts” of diamond solvent-catalyst is a material that contains at least 2 percent by weight (wt. %) diamond solvent-catalyst based on a total weight of the material. Some examples of known diamond solvent-catalysts are disclosed in: U.S. Pat. Nos. 6,655,845; 3,745,623; 7,198,043; 8,627,904; 5,385,715; 8,485,284; 6,814,775; 5,271,749; 5,948,541; 4,906,528; 7,737,377; 5,011,515; 3,650,714; 2,947,609; and 8,764,295. As would be understood by one skilled in the art, diamond solvent-catalysts are chemical elements, compounds, or materials (e.g., metals) that are capable of catalyzing the formation of diamond, such as by promoting intercrystallite diamond-to-diamond bonding between diamond grains to form a polycrystalline diamond. As would be understood by one skilled in the art, diamond solvent-catalysts are chemical elements, compounds, or materials (e.g., metals) that are capable of solubilizing polycrystalline diamond by catalyzing the reaction of the diamond into graphite, such as under load and at a temperature at or exceeding the graphitization temperature of diamond. Diamond solvent-catalysts are capable of catalyzing the graphitization of diamond (e.g., polycrystalline diamond), such as when under load and at a temperature at or exceeding the graphitization temperature of the diamond (i.e., about 700° C.). Diamond reactive materials include, but are not limited to, metals including metal alloys, and composite materials that contain more than trace amounts of diamond solvent-catalysts. Some exemplary diamond solvent-catalysts include iron, cobalt, nickel, ruthenium, rhodium, palladium, chromium, manganese, copper, titanium, and tantalum. Thus, a diamond reactive material can be a metal that includes more than trace amounts of iron, cobalt, nickel, ruthenium, rhodium, palladium, chromium, manganese, copper, titanium, and tantalum, or combinations thereof. One exemplary diamond reactive material is steel.
The diamond reactive material disclosed herein may be a metal or metal alloy (collectively referred to herein as a “metal” or a “metallic material”) having a metal surface. As would be understood by one skilled in the art metals include materials that contain metal atoms that are typically characterized by metallic bonding between the metal atoms. That is, metals can be characterized as having metal atoms that are chemically bonded together, with at least predominantly metallic bonding between the metal atoms (e.g., in a crystalline structure of the metal atoms). The metals disclosed herein are not ceramics (e.g., carbides, oxides, nitrides, natural diamond), plastics, or composites (e.g., ceramic matrix composites or metal matrix composites, such as cermets, cemented carbide cobalt composites, PCD cobalt binder composites, CBN cobalt binder composites). In some embodiments the metal is a metal alloy. In other embodiments the metal is not a metal alloy (i.e., contains a single metal). The metal may be ferrous or a ferrous alloy. For example, the metal may be iron or an iron alloy, such as cast iron or steel, such as stainless steel, carbon steel, tool steel, or alloy steels. The metal may be non-ferrous or a non-ferrous alloy. For example, the metal may be nickel or a nickel alloy, cobalt or a cobalt alloy, copper or a copper alloy, titanium or a titanium alloy, ruthenium or a ruthenium alloy, rhodium or a rhodium alloy, palladium or a palladium alloy, chrome or a chrome alloy, manganese or a manganese alloy, or tantalum or a tantalum alloy.
In embodiments where the diamond reactive material is a metal, the opposing bearing surface is a metal surface. The opposing bearing surface may include a metal that contains at least 2 wt. % of a diamond solvent-catalyst based on a total weight of the metal. In some embodiments, the opposing bearing surface is or includes a metal that contains from 2 to 100 wt. %, or from 5 to 95 wt. %, or from 10 to 90 wt. %, or from 15 to 85 wt. %, or from 20 to 80 wt. %, or from 25 to 75 wt. %, or from 25 to 70 wt. %, or from 30 to 65 wt. %, or from 35 to 60 wt. %, or from 40 to 55 wt. %, or from 45 to 50 wt. % of diamond solvent-catalyst based on a total weight of the metal, or any range or value therebetween. In some embodiments, the opposing bearing surface is or includes a metal that contains at least 3 wt. %, or at least 5 wt. %, or at least 10 wt. %, or at least 15 wt. %, or at least 20 wt. %, or at least 25 wt. %, or at least 30 wt. %, or at least 35 wt. %, or at least 40 wt. %, or at least 45 wt. %, or at least 50 wt. %, or at least 55 wt. %, or at least 60 wt. %, or at least 65 wt. %, or at least 70 wt. %, or at least 75 wt. %, or at least 80 wt. %, or at least 85 wt. %, or at least 90 wt. %, or at least 95 wt. %, or at least 99 wt. %, or 100 wt. % of diamond solvent-catalyst based on a total weight of the metal. In some embodiments, an entirety of the opposing bearing surface is a diamond reactive material.
In some embodiments, the diamond reactive materials disclosed herein contain from 2 to 100 wt. %, or from 5 to 95 wt. %, or from 10 to 90 wt. %, or from 15 to 85 wt. %, or from 20 to 80 wt. %, or from 25 to 75 wt. %, or from 25 to 70 wt. %, or from 30 to 65 wt. %, or from 35 to 60 wt. %, or from 40 to 55 wt. %, or from 45 to 50 wt. % of metal based on a total weight of the diamond reactive material, or any value or range therebetween. In some embodiments, the diamond reactive materials disclosed herein contain at least 3 wt. %, or at least 5 wt. %, or at least 10 wt. %, or at least 15 wt. %, or at least 20 wt. %, or at least 25 wt. %, or at least 30 wt. %, or at least 35 wt. %, or at least 40 wt. %, or at least 45 wt. %, or at least 50 wt. %, or at least 55 wt. %, or at least 60 wt. %, or at least 65 wt. %, or at least 70 wt. %, or at least 75 wt. %, or at least 80 wt. %, or at least 85 wt. %, or at least 90 wt. %, or at least 95 wt. %, or at least 99 wt. %, or 100 wt. % of metal based on a total weight of the diamond reactive material.
In some embodiments, the diamond reactive materials disclosed herein contain from 2 to 100 wt. %, or from 5 to 95 wt. %, or from 10 to 90 wt. %, or from 15 to 85 wt. %, or from 20 to 80 wt. %, or from 25 to 75 wt. %, or from 25 to 70 wt. %, or from 30 to 65 wt. %, or from 35 to 60 wt. %, or from 40 to 55 wt. %, or from 45 to 50 wt. % of diamond solvent-catalyst based on a total weight of the diamond reactive material, or any value or range therebetween. In some embodiments, the diamond reactive materials disclosed herein contain at least 3 wt. %, or at least 5 wt. %, or at least 10 wt. %, or at least 15 wt. %, or at least 20 wt. %, or at least 25 wt. %, or at least 30 wt. %, or at least 35 wt. %, or at least 40 wt. %, or at least 45 wt. %, or at least 50 wt. %, or at least 55 wt. %, or at least 60 wt. %, or at least 65 wt. %, or at least 70 wt. %, or at least 75 wt. %, or at least 80 wt. %, or at least 85 wt. %, or at least 90 wt. %, or at least 95 wt. %, or at least 99 wt. %, or 100 wt. % of diamond solvent-catalyst based on a total weight of the diamond reactive material.
In some embodiments, less than an entirety of the opposing bearing surface includes the diamond reactive material, with the provision that the metal contact area of the opposing bearing surface includes diamond reactive material in at least one position along the contact path between the metal contact area and the diamond contact area. For example, the opposing bearing surface may include a section of diamond reactive material adjacent a section of another material that is not a diamond reactive material.
In some embodiments, the diamond reactive material is a superalloy including, but not limited to, an iron-based superalloy, a cobalt-based superalloy, or a nickel-based superalloy.
In certain embodiments, the diamond reactive material is not and/or does not include (i.e., specifically excludes) so called “superhard materials.” As would be understood by one skilled in the art, “superhard materials” are a category of materials defined by the hardness of the material, which may be determined in accordance with the Brinell, Rockwell, Knoop and/or Vickers scales. Superhard materials are materials with a hardness value exceeding 40 gigapascals (GPa) when measured by the Vickers hardness test. The diamond reactive materials disclosed herein may be softer than a superhard material. For example, the diamond reactive materials disclosed herein may have a hardness value of less than 40 GPa, or less than 35 GPa, or less than 30 GPa, or less than 25 GPa, or less than 20 GPa, or less than 15 GPa, or less than 10 GPa, or less than 8 GPa, or less than 6 GPa, or less than 5 GPa, or less than 4 GPa, or less than 3 GPa, or less than 2 GPa, or less than 1 GPa when measured by the Vickers hardness test. The diamond reactive materials disclosed herein are softer than tungsten carbide (WC), which has a hardness of about 25 GPa. The diamond reactive materials disclosed herein include material that are softer than tungsten carbide tiles, cemented tungsten carbide, and infiltrated tungsten carbide. The diamond reactive materials disclosed herein include materials that are softer than silicon carbide, silicon nitride, cubic boron nitride, and polycrystalline diamond. One skilled in the art would understand that hardness may be determined by different tests, including a Brinell scale test in accordance with ASTM E10-18; the Vickers hardness test in accordance with ASTM E92-17; the Rockwell hardness test in accordance with ASTM E18; and the Knoop hardness test in accordance with ASTM E384-17.
In some embodiments, the diamond reactive materials are in the form of hardfacings, coatings, or platings on another material, such that the diamond reactive material forms the opposing bearing surface. In such embodiments, the hardfacing, coating, or plating includes the diamond reactive material. In some such embodiment, the material underlying the hardfacing, coating, or plating is not a diamond reactive material. In other such embodiments, the material underlying the hardfacing, coating, or plating is a diamond reactive material (the same or different than the overlying hardfacing, coating, or plating).
In some embodiments, the opposing bearing surface has carbon applied thereto. In some such embodiments, the carbon is applied to the opposing bearing surface prior to engagement with the diamond bearing surface. For example, the opposing bearing surface may be saturated with carbon. Without being bound by theory, it is believed that such application of carbon reduces the ability of the diamond solvent-catalyst in the opposing bearing surface to attract carbon through graphitization of the surface of the polycrystalline diamond element. That is, the carbon that is applied to the opposing bearing surface functions as a sacrificial layer of carbon. In such embodiments, the opposing bearing surface that underlies the carbon includes the diamond reactive material.
In some embodiments, the opposing bearing surface is a treated surface in accordance with U.S. patent application Ser. No. 16/425,758. For example, the opposing bearing surface (also referred to as the opposing engagement surface) may be hardened, such as via cold working and work hardening processes including burnishing and shot peening; and/or heat-treating processes including through hardening, case hardening, and subzero, cryogenic, deep-freezing treatments. Also, the opposing bearing surface may be plated and/or coated, such as via electroplating, electroless plating, including chromium plating, phosphating, vapor deposition, including physical vapor deposition (PVD) and chemical vapor deposition (CVD); or anodizing. Also, the opposing bearing surface may be cladded, such as via roll bonding, laser cladding, or explosive welding.
In some embodiments, the opposing bearing surface has a surface roughness of from 0.5 to 2,000 μin Ra, or from 1 to 1,900 μin Ra, or from 5 to 1,500 μin Ra, or from 10 to 1,200 μin Ra, or from 50 to 1,000 μin Ra, or from 100 to 800 μin Ra, or from 200 to 600 μin Ra. In some embodiments, the opposing bearing surface has a surface roughness that is equal to, less than, or greater than the diamond bearing surface.
In some embodiments, the present disclosure provides for interfacing contact between the diamond bearing surface and the opposing bearing surface within a bearing assembly. Interfacing contact between the bearing surfaces may include engaging the diamond bearing surface in sliding contact with the opposing bearing surface. As used herein, “engagement surface” or “bearing surface” refers to the surface of a material or component (e.g., the surface of polycrystalline diamond or the surface of a diamond reactive material) that is positioned and arranged within a bearing assembly such that, in operation of the bearing assembly, the “engagement surface” or “bearing surface” is positioned and/or available to interface the contact between two components to bear load (e.g., radial and/or axial load). In some embodiments, the diamond bearing surface disclosed herein is in direct contact with an opposing bearing surface without a fluid film therebetween (i.e., boundary lubrication). In other embodiments, a fluid film is positioned and/or develops between the diamond bearing surface and the opposing bearing surface such that the surfaces are not directly in contact with one another, but are engaged through the fluid film (i.e., hydrodynamic lubrication). The contact between the diamond bearing surface and opposing bearing surface may be between (or a mixture of) or may vary between direct contact and fluid film (i.e., mixed boundary lubrication).
In some embodiments, the diamond bearings disclosed herein are coupled with or otherwise incorporated into or with a bearing assembly. For example, the diamond bearings may be a portion of an axial bearing assembly, a radial bearing assembly, or a combined axial and radial bearing assembly. In some embodiments, the bearing assembly is a journal bearing or an angular contact bearing (e.g., a conical bearing or spherical bearing). The diamond bearings are not limited to being incorporated into the specific exemplary bearing assemblies shown herein. Some embodiments include a bearing assembly that includes one or more of the diamond bearing surfaces engaged with one or more of the opposing bearing surfaces. In some such embodiments, the diamond bearing surface is in sliding engagement with the opposing bearing surface. Depending on the desired configuration of the bearing assembly, the sliding engagement between the diamond bearing surface and the opposing bearing surface may be a flat surface interface, a curved (e.g., cylindrical) surface interface, or a combination of flat and curved surface interfaces.
In some embodiments, the coefficient of friction (CoF) exhibited by the engagement between the diamond bearing surfaces and the opposing bearing surfaces disclosed herein is less than 0.1, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, 0.05 or less, 0.04 or less, 0.03 or less, 0.02 or less, or 0.01 or less. In some embodiments, the CoF exhibited by the engagement between the diamond bearing surfaces and the opposing bearing surfaces disclosed herein ranges from 0.01 to 0.09, or 0.01 to 0.07, or 0.01 to 0.05, or 0.01 to 0.03, or any range or value therebetween.
In some embodiments, the diamond bearing disclosed herein is a journal bearing (e.g., radial journal bearing) having a diamond bearing surface. With reference to
Each diamond bearing surface 112 is a separate surface from the adjacent diamond bearing surfaces. In some embodiments, each diamond bearing surface is a surface of a discrete diamond bearing element that is discrete from the adjacent diamond bearing elements, such that the adjacent diamond bearing elements and surfaces are not in contact. In some embodiments, the longitudinal boundary edge 107 between two adjacent diamond bearing surfaces is a groove formed into a single diamond bearing element, such that the diamond bearing surface of the single diamond bearing element is modified to have multiple segmented diamond bearing surfaces.
Journal bearing 100 has a cavity 108. In one exemplary application of the journal bearing 100, a shaft (not shown in
With reference to
Bearing assembly 2000 includes shaft 220 slidingly engaged within and between the two concavities 208 of the two radial journal bearings 200. The outer surface of shaft is the opposing bearing surface 204 when assembled with the two radial journal bearings 200, such that opposing bearing surface 204 is slidingly engaged with diamond bearing surfaces 212. In the embodiment shown, opposing bearing surface 204 has a width 223 that is less than a lateral width 211 of diamond bearing surfaces 212, such that opposing bearing surface 204 is engaged with diamond bearing surfaces 212 entirely within the lateral boundary edges 205 of diamond bearing surfaces 212. In some embodiments, the surface area of the opposing bearing surface 204 is smaller than the surface area of the diamond bearing surfaces 212.
With the shaft 220 engaged with the two, discrete radial journal bearings 200, gaps 2005 are formed between the adjacent radial journal bearings 200, wherein the underlying opposing bearing surface 204 of the shaft 220 is exposed. That is, the two radial journal bearings 200 are separated from one another by a distance. In some applications, such a split or gap between the radial journal bearings 200 is useful, such as in applications where known directional loads 2007 are applied to the bearing assembly 2000. That is, where the direction of the load is known, there may be portions of the shaft 220 that do not require the presence of a bearing surface.
In some embodiments, an entirety of the surface area of opposing bearing surface 204 is engaged with less than an entirety of the surface area of each of the diamond bearing surfaces 212. The portion of a diamond bearing surfaces 212 that the opposing bearing surface 204 is engaged with during operation of bearing assembly 2000 is the “diamond contact area” of that diamond bearing surface 212.
In embodiments where shaft 220 rotates within radial journal bearings 200, the opposing bearing surface 204 slides along diamond bearing surfaces 212 and slides past longitudinal boundary edges 207, such that the opposing bearing surface 204 slides over, in contact with, and past boundary edges of the diamond bearing surfaces 212. That is, a particular portion of the surface of opposing bearing surface 204 rotates along rotational line 215 from engagement with one of diamond bearing surfaces 212, into one of gaps 2005, and then into engagement with the other of the diamond bearing surfaces 212. As the opposing bearing surface 204 moves into and out of gaps 2005, the opposing bearing surface 204 slides over the longitudinal boundary edges 207 of the diamond bearing surfaces 212.
In embodiments where shaft 220 moves axially relative to radial journal bearings 200, along axis 213, the opposing bearing surface 204 slides along diamond bearing surfaces 212 and slides past lateral boundary edges 205, such that the opposing bearing surface 204 slides over, in contact with, and past boundary edges of the diamond bearing surfaces 212.
In some embodiments, the shaft 220 moves both axially and rotationally relative to radial journal bearings 200, such that the opposing bearing surface 204 slides over both the lateral and longitudinal boundary edges, 205 and 207, of the diamond bearing surfaces 212.
While the split radial journal bearings of
In embodiments disclosed herein, the opposing engagement surface(s) may be slidingly engaged with the diamond engagement surface(s) of the bearing assembly along a diamond contact area of the diamond engagement surface. As used herein, “diamond contact area” refers to the portion of the surface area of the diamond engagement surface that contacts the opposing engagement surface during operation of the bearing. That is, the diamond engagement surface is the surface area of the diamond bearing element that is available for contact as a bearing surface, and the diamond contact area is the portion of the surface area of the diamond engagement surface that contacts (directly or through a fluid film) the opposing engagement surface during operation of the bearing. In some embodiments, the diamond contact area has a surface area that is less than a surface area of the diamond engagement surface. That is, less than an entirety of the diamond engagement surface forms the diamond contact area of the diamond bearing. In some embodiments, such as in a radial bearing, the diamond contact area is a radial contact area. That is, the sliding movement of the opposing engagement surface along the diamond contact area on the diamond engagement surface is a radial, rotating movement along the diamond contact area. In other embodiments, the diamond contact area is an axial contact area. That is, the sliding movement of the opposing engagement surface on the diamond engagement surface is an axial movement along the diamond contact area. In some embodiments, the diamond contact area is both a radial and axial diamond contact area.
In some embodiments, the diamond bearings disclosed herein have discontinuous diamond bearing surfaces. For example, a bearing component (e.g., a radial journal bearing) having diamond bearing surfaces may be coupled with an opposing bearing component (e.g., a shaft) having an opposing bearing surface such that the opposing bearing is slidingly engaged with the diamond bearing surfaces along a diamond contact area of the diamond bearing surfaces, and such that the diamond bearing surfaces are “discontinuous” along the diamond contact area. As used herein, diamond bearing surfaces are “discontinuous surface” along a diamond contact area when the diamond bearing surfaces are interrupted by at least one boundary edge throughout the diamond contact area. That is, during operation, while the opposing bearing surface slides along the diamond contact area, the opposing bearing surface slides on, along, or in contact with at least one boundary edge of the diamond bearing surfaces. For example, with reference to
While the diamond engagement surfaces disclosed herein include discontinuous diamond bearing surfaces, the diamond engagement surfaces may be treated, prepared, and/or arranged to reduce edge contact between the diamond engagement surfaces and the opposing engagement surfaces. In some embodiments, the boundary edges of the diamond bearing surfaces are beveled edges, radiused edges, or honed edges, such that the opposing bearing surface can slide over the boundary edges without (or with reduced) gouging as a result of edge contact with the boundary edges of the diamond. A performance criterion, in some embodiments, is that the diamond bearing elements are configured and positioned in such a way as to minimize or preclude edge contact with the opposing bearing surface. In some aspects, the diamond bearing elements are subjected to edge radius treatment to facilitate avoidance of edge contact with the opposing bearing surface. In some embodiments, the edge geometry of the diamond bearing element is subjected to a surface roughness reduction process, such as lapping and/or polishing. In other embodiments, the edge geometry of the polycrystalline diamond element is not subjected to a surface roughness reduction process. The diamond bearing surfaces disclosed herein may be planar, convex, or concave.
In some embodiments, adjacent diamond bearing elements are positioned relative to one another such that the diamond bearing elements are contiguous or nearly contiguous, and such that the adjacent diamond bearing surfaces thereof are flush or nearly flush with each other at the adjoining boundary edges thereof. For example, with reference to
In some embodiments, edge treatment (e.g., radiused edges) of the boundary edges of the diamond bearing surfaces, in combination with lapping and/or polishing of the diamond bearing surfaces and relative positioning of the diamond bearing surfaces, may provide an array of multiple diamond bearing surfaces that, together, provide a bearing contact path for engagement with the metal bearing surface. For example, during operation, while the opposing metal bearing surface slides along the diamond contact area, the opposing metal bearing surface slides on, along, or in contact only with boundary edges of the diamond bearing surfaces that have been subjected to edge treatment (e.g., that are beveled, radiused, chamfered). For example,
Some embodiments of the present disclosure include a ball valve having a diamond engagement surface that is engaged with an opposing engagement surface. In some such embodiments, the ball valve includes a ball having the diamond engagement surface that is engaged within a cup having the opposing engagement surface. In other such embodiments, the ball valve includes a ball having an opposing engagement surface that is engaged within a cup having a diamond engagement surface. As the structure of ball valves are well known, the structure will only be briefly described herein. With reference to
Ball valve includes ball 1312 having a diamond engagement surface 1314 thereon. In some embodiments, an entirety of the outer surface of ball 1312 is a diamond surface. Ball 1312 is positioned and slidingly engaged within the cavity of the valve body 1302 and positioned within the flow path 1301 such that the diamond engagement surface 1314 of ball 1312 is slidingly engaged with the opposing engagement surfaces 1304 of the cups 1303.
Ball 1312 includes hole 1313 defining a passageway or flow path 1301 through ball 1312. Ball valve 1300 includes valve handle 1316 coupled with stem 1318. Stem 1318 is coupled with ball 1312 at slot 1320, such that rotation of handle 1316 rotates stem 1318; thereby, rotating ball 1312. As shown in
The diamond engagement surface 1314 is an outer surface of ball 1312, with the exception of hole 1313 which is an interruption (boundary edge) of the outer surface of ball 1312. When the ball 1312 is moved relative to the ball valve body 1302, such as from the open position to the closed position or vice versa, the diamond engagement surface 1314 slides along the opposing engagement surfaces 1304. In some embodiments, the boundary edge(s) 1315 that defines the hole 1313 slides over the opposing engagement surface(s) 1304, such that the diamond engagement surface 1314 is a “discontinuous surface.” The boundary edge(s) 1315 of the hole 1313 may be subjected to edge treatment (e.g., radiused).
While the diamond engagement surface and opposing engagement surfaces are shown as incorporated into a ball valve, these features are not limited to use in a ball valve, and may be incorporated into other valves or other moving components where one surface is in sliding engagement with another surface, including applications where the surfaces are bearing load and/or are transmitting power.
Ball 1312 includes slot 1320. Slot 1320 is configured to receive stem 1318 (shown in
Cup 1303 includes cup body 1305 with opposing bearing surface 1304 and cavity 1307. When assembled, as shown in
With reference to
Ball valve 1500 includes valve body 1502 and cups 1503 having diamond engagement surfaces 1514 thereon. The diamond engagement surfaces 1514 define a valve seat the ball valve 1500. The valve body 1502 includes inlet 1506, outlet 1508, and an internal cavity that defines a flow path 1501 through the ball valve 1500 from the inlet 1506 to the outlet 1508.
Ball valve includes ball 1512. The outer surface of ball 1512 is the opposing engagement surface 1504. In some embodiments, an entirety of the outer surface of ball 1512 is the opposing engagement surface. Ball 1512 is positioned and slidingly engaged within the cavity of the valve body 1502 and positioned within the flow path 1501 such that the diamond engagement surface(s) 1514 of cups 1503 is slidingly engaged with the opposing engagement surfaces 1504 of the ball 1512. The ball 1512 may be a metal ball, and the opposing engagement surface(s) may be a metal surface (e.g., a steel surface). The opposing engagement surface(s) of the valves disclosed herein are surfaces of a diamond reactive material.
Ball 1512 includes hole 1513 defining a passageway or flow path 1501 through ball 1512. Ball valve 1500 includes valve handle 1516 coupled with stem 1518. Stem 1518 is coupled with ball 1512 at slot 1520, such that rotation of handle 1516 rotates stem 1518; thereby, rotating ball 1512. As shown in
The opposing engagement surface 1504 is an outer surface of ball 1512, with the exception of hole 1513 which is an interruption (boundary edge 1515) of the outer surface of ball 1512. The diamond engagement surfaces 1514 are surfaces of the cups 1503. The diamond engagement surfaces 1514 have boundary edges 1517. When the ball 1512 is moved relative to the valve body 1502, such as from the open position to the closed position or vice versa, the opposing engagement surface 1504 slides along the diamond engagement surfaces 1514. In some embodiments, the opposing engagement surface 1504 slides over the diamond engagement surfaces 1514, including over the boundary edges 1517 thereof, such that the diamond engagement surfaces 1514 are “discontinuous surfaces.” The boundary edge(s) 1517 of the diamond on the cup 1503 may be subjected to edge treatment (e.g., radiused).
While the diamond engagement surface and opposing engagement surfaces are shown as incorporated into a ball valve, these features are not limited to use in a ball valve, and may be incorporated into other valves or other moving components where one surface is in sliding engagement with another surface, including applications where the surfaces are bearing load and/or are transmitting power.
Ball 1512 includes slot 1520. Slot 1520 is configured to receive stem 1518 (shown in
Cup 1503 includes cup body 1505 having cavity 1507 therein. When assembled, as shown in
The valves disclosed herein exhibit enhanced valve sealing characteristics, including when under load. In some embodiments, the differential in hardness between the diamond engagement surfaces and the opposing engagement surfaces and/or the relative elasticity of the opposing engagement surfaces facilitate, under sufficient load, the relative compression of the opposing engagement surfaces. The metal of the opposing engagement surface elastically deforms under loads (e.g., up to the yield point of the metal) such that the opposing bearing surface is capable of elastically compressing (also referred to as “elastically deforming”) under such loads (i.e., loads within the elastic zone of the metal and below the plastic deformation zone of the metal). With the diamond engagement surface(s) engaged with and compressing into the opposing engagement surface(s), the interfacial contact between the engagement surfaces is enhanced (e.g., increased), resulting in enhanced sealing between the engagement surfaces. The present disclosure includes the strategic placement of the diamond engagement surfaces at locations within the valve (e.g., at the downstream side of the valve) where relatively higher load interfacial contacts are expected. In some embodiments, the valve is pre-loaded (e.g., via a spring) such that the interfacial contact between the diamond and metal engagement surfaces is enhanced (e.g., increased) whether or not load is provided by a fluid flowing through the valve. For example, a spring may bias the ball of the ball valve into contact with the cup of the ball valve. While the flow paths (e.g., flow paths 1301 and 1501) illustrate flow that is either active when the valve is opened (e.g., as shown in
With reference to
Similarly, with reference to
While the valves shown and described herein include hand operable valve switches (e.g., handle 1316), the valves disclosed herein are not limited to this particular form of actuation, and may include other valve actuators. The valve actuation may be electronically controlled. In some embodiments, the valve may be configured to cycle open and closed at a rate. For example, some applications may require a relatively fast cycling between the open and closed configurations of the valve (e.g., the ball may constantly or continually spin between open and closed). The use of the diamond and metal engagement surfaces disclosed herein provides for a low CoF during the opening and closing of the valves. The CoF exhibited between the diamond engagement surfaces and the opposing engagement surfaces are less than 0.1, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, 0.05 or less, 0.04 or less, 0.03 or less, 0.02 or less, or 0.01 or less. In some embodiments, the CoF exhibited between the diamond engagement surfaces and the opposing engagement surfaces ranges from 0.01 to 0.09, or 0.01 to 0.07, or 0.01 to 0.05, or 0.01 to 0.03, or any range or value therebetween.
In some embodiments, the diamond bearing and engagement surfaces disclosed herein are made by a high-pressure and high-temperature process (HPHT diamonds). In some embodiments, the diamond surfaces disclosed herein are made by chemical vapor deposition (CVD) or physical vapor deposition (PVD) of a diamond layer. The thickness of the diamond layer that has the diamond surfaces may be 0.200″ or less, or 0.150″ or less, or 0.100″ or less, or 0.09″ or less, or 0.08″ or less, or 0.07″ or less, or 0.06″ or less, or 0.05″ or less, or 0.04″ or less, or 0.03″ or less, or 0.02″ or less, 0.010″ or less. The thickness of the diamond layer that has the diamond surface may be from 0.010″ to 0.200″, from 0.02″ to 0.150″, from 0.03″ to 0.100″, from 0.04″ to 0.09″, from 0.05″ to 0.08″, from 0.06″ to 0.07″, or any range or value therebetween. For example, when the diamond layer is made via CVD or PVD, the thickness of the diamond layer that has the diamond surface may be 0.010″ or less, and when the diamond layer is made by a high-pressure and high-temperature process the thickness of the diamond layer that has the diamond surface may be 0.200″ or less. In some embodiments, the diamond is leached, un-leached, or leached and backfilled. As an example, to make a diamond layer using the CVD process, seed diamond particles are attached to a substrate and then placed in a chamber under conditions sufficient to promote the crystalline growth of the seed diamond particles.
While the bearing assemblies disclosed herein are not limited to particular applications, some exemplary applications include as a journal bearings for an airplane propeller, bearings in a planetary gear box, marine bearings, turbo bearings, gas or steam turbine main shaft bearings, downhole pump bearings (such as an electronic submersible pump), bearings in downhole motors, driveline bearings, and roller ball bearings.
While described as applied to particular bearing geometries, the concepts described in the present disclosure are not limited to being applied to these specific bearing geometries. The concepts described in the present disclosure may be applied to axial bearings (e.g., thrust bearings), radial bearings, combined axial and radial bearings, roller ball bearings, cam followers, linear bearings, power transmission surfaces (e.g., gears and drivelines), rod guides, pipe protectors, valves, and other assemblies or machines that have moving parts with surfaces that are in sliding engagement with one another. The concepts described in the present disclosure may be applied to assemblies or machines that include two load-transmitting bearing surfaces that are slidingly engaged with one another, in which one of the load-transmitting bearing surfaces is a diamond surface and the other of the load-transmitting bearing surfaces is a metal alloy surface that contains more than 2 wt. % of a diamond solvent-catalyst.
In some embodiments, the bearing assemblies disclosed herein include hybrid bearing engagement surfaces that have different geometries and surface profiles. For example, the diamond bearing can have a first geometric shape with a first surface profile (e.g., a conical or cylindrical bearing surface) and the opposing component can have a second geometric shape with a second surface profile (e.g., a spherical bearing surface). For example, an axial bearing can include a diamond bearing surface that is planar and an opposing bearing surface that is non-planar (or vice versa).
Although the present embodiments and advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
The present application claims the benefit of U.S. Provisional Patent Application No. 63/111,147, filed on Nov. 9, 2020, and entitled “Diamond Surface Bearings for Sliding Engagement with Metal Surfaces,” the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2693396 | Gondek | Nov 1954 | A |
2947609 | Strong | Aug 1960 | A |
2947610 | Hall et al. | Aug 1960 | A |
3132904 | Kohei et al. | May 1964 | A |
3582161 | Hudson | Jun 1971 | A |
3603652 | Youden | Sep 1971 | A |
3650714 | Farkas | Mar 1972 | A |
3745623 | Wentorf et al. | Jul 1973 | A |
3752541 | Mcvey | Aug 1973 | A |
3866987 | Garner | Feb 1975 | A |
3920290 | Evarts | Nov 1975 | A |
4085634 | Sattler | Apr 1978 | A |
4225322 | Knemeyer | Sep 1980 | A |
4275935 | Thompson et al. | Jun 1981 | A |
4285550 | Blackburn et al. | Aug 1981 | A |
4382637 | Blackburn et al. | May 1983 | A |
4410054 | Nagel et al. | Oct 1983 | A |
4410284 | Herrick | Oct 1983 | A |
4468138 | Nagel | Aug 1984 | A |
4525178 | Hall | Jun 1985 | A |
4554208 | Maclver et al. | Nov 1985 | A |
4560014 | Geczy | Dec 1985 | A |
4620601 | Nagel | Nov 1986 | A |
RE32380 | Wentorf, Jr. et al. | Mar 1987 | E |
4662348 | Hall et al. | May 1987 | A |
4679639 | Barr et al. | Jul 1987 | A |
4689847 | Huber | Sep 1987 | A |
4720199 | Geczy et al. | Jan 1988 | A |
4729440 | Hall | Mar 1988 | A |
4738322 | Hall et al. | Apr 1988 | A |
4764036 | McPherson | Aug 1988 | A |
4797011 | Saeki et al. | Jan 1989 | A |
4906528 | Cerceau et al. | Mar 1990 | A |
5011514 | Cho et al. | Apr 1991 | A |
5011515 | Frushour | Apr 1991 | A |
5030276 | Sung et al. | Jul 1991 | A |
5037212 | Justman et al. | Aug 1991 | A |
5066145 | Sibley et al. | Nov 1991 | A |
5067826 | Lemelson | Nov 1991 | A |
5092687 | Hall | Mar 1992 | A |
5112146 | Stangeland | May 1992 | A |
5151107 | Cho et al. | Sep 1992 | A |
5205188 | Repenning et al. | Apr 1993 | A |
5253939 | Hall | Oct 1993 | A |
5271749 | Rai et al. | Dec 1993 | A |
5351770 | Cawthorne et al. | Oct 1994 | A |
5364192 | Damm et al. | Nov 1994 | A |
5385715 | Fish | Jan 1995 | A |
5447208 | Lund et al. | Sep 1995 | A |
5462362 | Yuhta et al. | Oct 1995 | A |
5514183 | Epstein et al. | May 1996 | A |
5540314 | Coelln | Jul 1996 | A |
5560716 | Tank et al. | Oct 1996 | A |
5645617 | Frushour | Jul 1997 | A |
5653300 | Lund et al. | Aug 1997 | A |
5855996 | Corrigan et al. | Jan 1999 | A |
5948541 | Inspektor | Sep 1999 | A |
6045029 | Scott | Apr 2000 | A |
6164109 | Bartosch | Dec 2000 | A |
6190050 | Campbell | Feb 2001 | B1 |
6209185 | Scott | Apr 2001 | B1 |
6409388 | Lin | Jun 2002 | B1 |
6488103 | Dennis et al. | Dec 2002 | B1 |
6488715 | Pope et al. | Dec 2002 | B1 |
6517583 | Pope et al. | Feb 2003 | B1 |
6652201 | Kunimori et al. | Nov 2003 | B2 |
6655845 | Pope et al. | Dec 2003 | B1 |
6737377 | Sumiya et al. | May 2004 | B1 |
6764219 | Doll et al. | Jul 2004 | B2 |
6814775 | Scurlock et al. | Nov 2004 | B2 |
6951578 | Belnap et al. | Oct 2005 | B1 |
7128173 | Lin | Oct 2006 | B2 |
7198043 | Zhang | Apr 2007 | B1 |
7234541 | Scott et al. | Jun 2007 | B2 |
7311159 | Lin et al. | Dec 2007 | B2 |
7441610 | Belnap et al. | Oct 2008 | B2 |
7475744 | Pope | Jan 2009 | B2 |
7552782 | Sexton et al. | Jun 2009 | B1 |
7703982 | Cooley | Apr 2010 | B2 |
7737377 | Dodal et al. | Jun 2010 | B1 |
7845436 | Cooley et al. | Dec 2010 | B2 |
7861805 | Dick et al. | Jan 2011 | B2 |
7870913 | Sexton et al. | Jan 2011 | B1 |
8069933 | Sexton et al. | Dec 2011 | B2 |
8080071 | Vail | Dec 2011 | B1 |
8109247 | Wakade et al. | Feb 2012 | B2 |
8119240 | Cooper | Feb 2012 | B2 |
8163232 | Fang et al. | Apr 2012 | B2 |
8277124 | Sexton et al. | Oct 2012 | B2 |
8277722 | DiGiovanni | Oct 2012 | B2 |
8365846 | Dourfaye et al. | Feb 2013 | B2 |
8435317 | Burgess et al. | May 2013 | B2 |
8480304 | Cooley et al. | Jul 2013 | B1 |
8485284 | Sithebe | Jul 2013 | B2 |
8613554 | Tessier et al. | Dec 2013 | B2 |
8627904 | Voronin | Jan 2014 | B2 |
8678657 | Knuteson et al. | Mar 2014 | B1 |
8701797 | Baudoin | Apr 2014 | B2 |
8702824 | Sani et al. | Apr 2014 | B1 |
8734550 | Sani | May 2014 | B1 |
8757299 | DiGiovanni et al. | Jun 2014 | B2 |
8763727 | Cooley et al. | Jul 2014 | B1 |
8764295 | Dadson et al. | Jul 2014 | B2 |
8789281 | Sexton et al. | Jul 2014 | B1 |
8833635 | Peterson | Sep 2014 | B1 |
8881849 | Shen et al. | Nov 2014 | B2 |
8911521 | Miess et al. | Dec 2014 | B1 |
8939652 | Peterson et al. | Jan 2015 | B2 |
8974559 | Frushour | Mar 2015 | B2 |
9004198 | Kulkarni | Apr 2015 | B2 |
9022149 | Lyons | May 2015 | B2 |
9045941 | Chustz | Jun 2015 | B2 |
9103172 | Bertagnolli et al. | Aug 2015 | B1 |
9127713 | Lu | Sep 2015 | B1 |
9145743 | Shen et al. | Sep 2015 | B2 |
9151326 | Peterson et al. | Oct 2015 | B1 |
9273381 | Qian et al. | Mar 2016 | B2 |
9284980 | Miess | Mar 2016 | B1 |
9309923 | Lingwall et al. | Apr 2016 | B1 |
9353788 | Tulett et al. | May 2016 | B1 |
9366085 | Panahi | Jun 2016 | B2 |
9404310 | Sani et al. | Aug 2016 | B1 |
9410573 | Lu | Aug 2016 | B1 |
9429188 | Peterson et al. | Aug 2016 | B2 |
9488221 | Gonzalez | Nov 2016 | B2 |
9562562 | Peterson | Feb 2017 | B2 |
9611885 | Cooley et al. | Apr 2017 | B1 |
9643293 | Miess et al. | May 2017 | B1 |
9702198 | Topham | Jul 2017 | B1 |
9702401 | Gonzalez | Jul 2017 | B2 |
9732791 | Gonzalez | Aug 2017 | B1 |
9776917 | Tessitore et al. | Oct 2017 | B2 |
9790749 | Chen | Oct 2017 | B2 |
9822523 | Miess | Nov 2017 | B1 |
10018146 | Azevedo et al. | Jul 2018 | B2 |
10060192 | Miess et al. | Aug 2018 | B1 |
10113362 | Ritchie et al. | Oct 2018 | B2 |
10279454 | DiGiovanni et al. | May 2019 | B2 |
10294986 | Gonzalez | May 2019 | B2 |
10307891 | Daniels et al. | Jun 2019 | B2 |
10408086 | Meier | Sep 2019 | B1 |
10465775 | Miess | Nov 2019 | B1 |
10683895 | Hall et al. | Jun 2020 | B2 |
10711792 | Vidalenc et al. | Jul 2020 | B2 |
10711833 | Manwill et al. | Jul 2020 | B2 |
10738821 | Miess et al. | Aug 2020 | B2 |
10807913 | Hawks et al. | Oct 2020 | B1 |
10968700 | Raymond | Apr 2021 | B1 |
10968703 | Haugvaldstad et al. | Apr 2021 | B2 |
11054000 | Prevost et al. | Jul 2021 | B2 |
11085488 | Gonzalez | Aug 2021 | B2 |
11118408 | Marshall et al. | Sep 2021 | B2 |
11802443 | Peters | Oct 2023 | B2 |
20030019106 | Pope et al. | Jan 2003 | A1 |
20030075363 | Lin et al. | Apr 2003 | A1 |
20030220691 | Songer et al. | Nov 2003 | A1 |
20040031625 | Lin et al. | Feb 2004 | A1 |
20040134687 | Radford et al. | Jul 2004 | A1 |
20040219362 | Wort et al. | Nov 2004 | A1 |
20040223676 | Pope et al. | Nov 2004 | A1 |
20060060392 | Eyre | Mar 2006 | A1 |
20060165973 | Dumm et al. | Jul 2006 | A1 |
20070046119 | Cooley | Mar 2007 | A1 |
20080085407 | Cooley et al. | Apr 2008 | A1 |
20080253706 | Bischof et al. | Oct 2008 | A1 |
20090060408 | Nagasaka et al. | Mar 2009 | A1 |
20090087563 | Voegele et al. | Apr 2009 | A1 |
20090268995 | Ide et al. | Oct 2009 | A1 |
20100061676 | Sugiyama et al. | Mar 2010 | A1 |
20100276200 | Schwefe et al. | Nov 2010 | A1 |
20100307069 | Bertagnolli et al. | Dec 2010 | A1 |
20110174547 | Sexton et al. | Jul 2011 | A1 |
20110203791 | Jin et al. | Aug 2011 | A1 |
20110220415 | Jin et al. | Sep 2011 | A1 |
20110297454 | Shen et al. | Dec 2011 | A1 |
20120037425 | Sexton et al. | Feb 2012 | A1 |
20120057814 | Dadson et al. | Mar 2012 | A1 |
20120225253 | DiGiovanni et al. | Sep 2012 | A1 |
20120281938 | Peterson et al. | Nov 2012 | A1 |
20130004106 | Wenzel | Jan 2013 | A1 |
20130092454 | Scott et al. | Apr 2013 | A1 |
20130140093 | Zhou et al. | Jun 2013 | A1 |
20130146367 | Zhang et al. | Jun 2013 | A1 |
20130170778 | Higginbotham et al. | Jul 2013 | A1 |
20140037232 | Marchand et al. | Feb 2014 | A1 |
20140105739 | Peterson | Apr 2014 | A1 |
20140254967 | Gonzalez | Sep 2014 | A1 |
20140341487 | Cooley et al. | Nov 2014 | A1 |
20140355914 | Cooley et al. | Dec 2014 | A1 |
20150027713 | Penisson | Jan 2015 | A1 |
20150079349 | Russell et al. | Mar 2015 | A1 |
20150132539 | Bailey et al. | May 2015 | A1 |
20150337949 | Ziegler et al. | Nov 2015 | A1 |
20160153243 | Hinz et al. | Jun 2016 | A1 |
20160186363 | Merzaghi et al. | Jun 2016 | A1 |
20160312535 | Ritchie et al. | Oct 2016 | A1 |
20170108039 | Hall et al. | Apr 2017 | A1 |
20170138224 | Henry et al. | May 2017 | A1 |
20170234071 | Spatz et al. | Aug 2017 | A1 |
20170261031 | Gonzalez et al. | Sep 2017 | A1 |
20180087134 | Chang et al. | Mar 2018 | A1 |
20180209476 | Gonzalez | Jul 2018 | A1 |
20180216661 | Gonzalez | Aug 2018 | A1 |
20180264614 | Winkelmann et al. | Sep 2018 | A1 |
20180320740 | Hall et al. | Nov 2018 | A1 |
20190010977 | Shigihara | Jan 2019 | A1 |
20190063495 | Peterson et al. | Feb 2019 | A1 |
20190136628 | Savage et al. | May 2019 | A1 |
20190170186 | Gonzalez et al. | Jun 2019 | A1 |
20200031586 | Miess et al. | Jan 2020 | A1 |
20200032846 | Miess et al. | Jan 2020 | A1 |
20200056659 | Prevost | Feb 2020 | A1 |
20200063498 | Prevost et al. | Feb 2020 | A1 |
20200182290 | Doehring et al. | Jun 2020 | A1 |
20200325933 | Prevost et al. | Oct 2020 | A1 |
20200362956 | Prevost et al. | Nov 2020 | A1 |
20200378440 | Prevost et al. | Dec 2020 | A1 |
20210140277 | Hall et al. | May 2021 | A1 |
20210148406 | Hoyle | May 2021 | A1 |
20210198949 | Haugvaldstad et al. | Jul 2021 | A1 |
20210207437 | Raymond | Jul 2021 | A1 |
20210222734 | Gonzalez et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
1286655 | Jul 1991 | CA |
101273151 | Dec 2011 | CN |
102128214 | Dec 2012 | CN |
103069099 | Aug 2016 | CN |
109072811 | Dec 2018 | CN |
106678189 | Nov 2023 | CN |
4226986 | Feb 1994 | DE |
29705983 | Jun 1997 | DE |
102010052804 | May 2012 | DE |
0595630 | Jan 1998 | EP |
1931852 | Jan 2018 | EP |
2514445 | Jun 2015 | GB |
S401624 | Jan 1965 | JP |
S6061404 | Apr 1985 | JP |
H06241232 | Aug 1994 | JP |
2000002315 | Jan 2000 | JP |
2000211717 | Aug 2000 | JP |
2002070507 | Mar 2002 | JP |
2004002912 | Jan 2004 | JP |
2006275286 | Oct 2006 | JP |
2007153141 | Jun 2007 | JP |
2007155041 | Jun 2007 | JP |
2008056735 | Mar 2008 | JP |
2010174902 | Aug 2010 | JP |
2018141197 | Sep 2018 | JP |
8700080 | Jan 1987 | WO |
2004001238 | Dec 2003 | WO |
2006011028 | Feb 2006 | WO |
2008133197 | Nov 2008 | WO |
2011052231 | May 2011 | WO |
2013043917 | Mar 2013 | WO |
2014014673 | Jan 2014 | WO |
2014189763 | Nov 2014 | WO |
2016089680 | Jun 2016 | WO |
2017034787 | Mar 2017 | WO |
2017105883 | Jun 2017 | WO |
2018041578 | Mar 2018 | WO |
2018226380 | Dec 2018 | WO |
2019096851 | May 2019 | WO |
2020028188 | Feb 2020 | WO |
Entry |
---|
Bovenkerk, Dr. H. P.; Bundy, Dr. F. P.; Hall, Dr. H. T.; Strong, Dr. H. M.; Wentorf, Jun., Dr. R. H.; Preparation of Diamond, Nature, Oct. 10, 1959, pp. 1094-1098, vol. 184. |
Chen, Y.; Nguyen, T; Zhang, L.C.; Polishing of polycrystalline diamond by the technique of dynamic friction—Part 5: Quantitative analysis of material removal, International Journal of Machine Tools & Manufacture, 2009, pp. 515-520, vol. 49, Elsevier. |
Chen, Y.; Zhang, L.C.; Arsecularatne, J.A.; Montross, C.; Polishing of polycrystalline diamond by the technique of dynamic friction, part 1: Prediction of the interface temperature rise, International Journal of Machine Tools & Manufacture, 2006, pp. 580-587, vol. 46, Elsevier. |
Chen, Y.; Zhang, L.C.; Arsecularatne, J.A.; Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2: Material removal mechanism, International Journal of Machine Tools & Manufacture, 2007, pp. 1615-1624, vol. 47, Elsevier. |
Chen, Y.; Zhang, L.C.; Arsecularatne, J.A.; Zarudi, I., Polishing of polycrystalline diamond by the technique of dynamic friction, part 3: Mechanism exploration through debris analysis, International Journal of Machine Tools & Manufacture, 2007, pp. 2282-2289, vol. 47, Elsevier. |
Chen, Y.; Zhang, L.C.; Polishing of polycrystalline diamond by the technique of dynamic friction, part 4: Establishing the polishing map, International Journal of Machine Tools & Manufacture, 2009, pp. 309-314, vol. 49, Elsevier. |
Dobrzhinetskaya, Larissa F.; Green, II, Harry W.; Diamond Synthesis from Graphite in the Presence of Water and SiO2: Implications for Diamond Formation in Quartzites from Kazakhstan, International Geology Review, 2007, pp. 389-400, vol. 49. |
Element six, The Element Six CVD Diamond Handbook, Accessed on Nov. 1, 2019, 28 pages. |
Grossman, David, What the World Needs Now is Superhard Carbon, Popular Mechanics, https://www.popularmechanics.com/science/environment/a28970718/superhard-materials/, Sep. 10, 2019, 7 pages, Hearst Magazine Media, Inc. |
International Search Report and Written Opinion dated Mar. 16, 2022 (received in PCT Application No. PCT/US21/058587). |
Liao, Y.; Marks, L.; In situ single asperity wear at the nanometre scale, International Materials Reviews, 2016, pp. 1-17, Taylor & Francis. |
Linear Rolling Bearings ME EN 7960—Precision Machine Design Topic 8, Presentation, Accessed on Jan. 26, 2020, 23 Pages, University of Utah. |
Machinery's Handbook 30th Edition, Copyright Page and Coefficients of Friction Page, 2016, p. 158 (2 Pages total), Industrial Press, Inc., South Norwalk, U.S.A. |
Machinery's Handbook, 2016, Industrial Press, Inc., 30th edition, pp. 843 and 1055 (6 pages total). |
Mccarthy, J. Michael; Cam and Follower Systems, PowerPoint Presentation, Jul. 25, 2009, pp. 1-14, UCIrvine The Henry Samueli School of Engineering. |
McGill Cam Follower Bearings brochure, 2005, p. 1-19, Back Page, Brochure MCCF-05, Form #8991 (20 Pages total). |
Motion & Control NSK Cam Followers (Stud Type Track Rollers) Roller Followers (Yoke Type Track Rollers) catalog, 1991, Cover Page, pp. 1-18, Back Page, CAT. No. E1421 2004 C-11, Japan. |
Product Catalogue, Asahi Diamond Industrial Australia Pty. Ltd., accessed on Jun. 23, 2018, Cover Page, Blank Page, 2 Notes Pages, Table of Contents, pp. 1-49 (54 Pages total). |
RBC Aerospace Bearings Rolling Element Bearings catalog, 2008, Cover Page, First Page, pp. 1-149, Back Page (152 Pages total). |
RGPBalls Ball Transfer Units catalog, accessed on Jun. 23, 2018, pp. 1-26, 2 Back Pages (28 Pages total). |
Sandvik Coromant Hard part turning with CBN catalog, 2012, pp. 1-42, 2 Back Pages (44 Pages total). |
Sexton, Timothy N.; Cooley, Craig H.; Diamond Bearing Technology for Deep and Geothermal Drilling, PowerPoint Presentation, 2010, 16 Pages. |
SKF Ball transfer units catalog, Dec. 2006, Cover Page, Table of Contents, pp. 1-36, 2 Back Pages (40 Pages total), Publication 940-711. |
Sowers, Jason Michael, Examination of the Material Removal Rate in Lapping Polycrystalline Diamond Compacts, A Thesis, Aug. 2011, 2 Cover Pages, pp. iii-xiv, pp. 1-87 (101 Pages total). |
Sun, Liling; Wu, Qi; Dai, Daoyang; Zhang, Jun; Qin, Zhicheng; Wang, Wenkui; Non-metallic catalysts for diamond synthesis under high pressure and high temperature, Science in China (Series A), Aug. 1999, pp. 834-841, vol. 42 No. 8, China. |
Superhard Material, Wikipedia, https://en.wikipedia.org/wiki/Superhard_material, Retrieved from https://en.wikipedia.org/w/index.php?title=Superhard_material&oldid=928571597, Nov. 30, 2019, 14 pages. |
Surface Finish, Wikipedia, https://en.wikipedia.org/wiki/Surface_finish, Retrieved from https://en.wikipedia.org/w/index.php?title=Surface_finish&oldid=919232937, Oct. 2, 2019, 3 pages. |
United States Defensive Publication No. T102,901, published Apr. 5, 1983, in U.S. Appl. No. 298,271 [2 Pages]. |
USSynthetic Bearings and Waukesha Bearings brochure for Diamond Tilting Pad Thrust Bearings, 2015, 2 Pages. |
USSynthetic Bearings brochure, accessed on Jun. 23, 2018, 12 Pages, Orem, Utah. |
Zeidan, Fouad Y.; Paquette, Donald J., Application of High Speed and High Performance Fluid Film Bearings in Rotating Machinery, 1994, pp. 209-234. |
Zhigadlo, N. D., Spontaneous growth of diamond from MnNi solvent-catalyst using opposed anvil-type high-pressure apparatus, accessed on Jun. 28, 2018, pp. 1-12, Laboratory for Solid State Physics, Switzerland. |
Zou, Lai; Huang, Yun; Zhou, Ming; Xiao, Guijian; Thermochemical Wear of Single Crystal Diamond Catalyzed by Ferrous Materials at Elevated Temperature, Crystals, 2017, pp. 1-10, vol. 7. |
Anonymous: “Chemical vapor deposition—Wikipedia”, Dec. 27, 2023, Retrieved from the Internet on Feb. 9, 2024, https://en.wikipedia.org/wiki/Chemical_vapor_deposition#Diamond (14 pages). |
Anonymous: “CVD Diamond—FAQ”, Feb. 8, 2024, Retrieved from the Internet on Feb. 9, 2024, http://www.cvd-diamond.com/faq_en.htm (4 pages). |
Anonymous: “Diamond-like carbon—Wikipedia”, Jan. 9, 2024, Retrieved from the Internet on Feb. 9, 2024, https://en.wikipedia.org/wiki/Diamond-like_carbon (10 pages). |
Number | Date | Country | |
---|---|---|---|
20220145934 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
63111147 | Nov 2020 | US |