The present invention relates to a diamond-tipped indenting tool which is used to mark the surface of metal parts.
Indenting tools are incorporated within a marking machine and are used to mark parts for identification purposes, or to generate a surface treatment, or a surface condition. In operation, the point of the tool will strike the surface of a part and on impact will create a cold-formed indentation or mark. This is often repeated in various locations to produce a pattern. With continued use, the indenting tool point will eventually wear or break.
Thus, there is a need for an indenting tool that is better able to resist wear or breakage, that can reduce overall tooling costs, improve marking reliability and quality, and support delivery schedules of production parts.
Accordingly, it is an object of the present invention to provide a diamond tipped indenting tool that has improved wear resistance.
It is a further object of the present invention to provide a diamond tipped indenting tool as above which provides economic benefits.
It is yet a further object of the present invention to provide a diamond tipped indenting tool as above which improves marking reliability and quality.
The foregoing objects are attained by the indenting tool of the present invention.
In accordance with the present invention, an indenting tool broadly comprises a shank having a tip end and a diamond affixed to the tip end by a braze material, with the diamond forming a tip for the tool. The diamond preferably comprises a high quality single crystal diamond. The braze material preferably comprises a brazing alloy which wets both the diamond and the material forming the shank.
Other details of the indenting tool of the present invention, as well as other objects and advantages attendant thereto, are set forth in the following detailed description and the accompanying drawings wherein like reference numerals depict like elements.
Referring now to
The shank 12 is formed from at least one material selected from the group consisting of stainless steel, hardenable tool steel, a cemented carbide material, and combinations thereof. The shank 12 may also have a head 20 at a second end opposite the tip end 14. The head 20 may be integrally formed with the shank 12 or may be joined to the shank 12 by a welding or brazing material or by a press fitting operation. The shank 12 and the head 20 can vary dimensionally to meet marking requirements and/or to complement the marking machine in which the tool will operate. Typically, the head 20 is wider than the shank 12. Still further, the head 20 can be made from the same material as or a different material from that forming the shank 12.
The brazing material 18 preferably comprises a brazing alloy which wets the diamond 16 and the material forming the shank 12. A suitable brazing material 18 is any suitable silver copper braze material known in the art. The silver copper braze material may contain a minor addition of a reactive element.
The diamond 16 is preferably a high quality single crystal diamond. The diamond should be free of defects such as inclusions, porosity, or cracks because such defects can cause significant reductions in tool life. However, minor defects may be present in the loose diamond if they can be removed by grinding once mounted, or if they can be relegated to a position far from the working point 22 of the diamond.
The diamond stone size should allow for sufficient length at least greater than the indentation depth when finish ground. Using a larger diamond stone is not detrimental to the operation of the tool 10.
To assemble the tool 10, the diamond 16 is inspected to determine the intrinsic crystallographic directions. Then the diamond 16 is brazed to the shank tip 14 in a particular orientation as provided in the stereographic projection triangle shown in
After brazing, the tool point 22 is final ground and/or lapped to a geometry determined by the desired shape of the part indentation. The tool point 22 may be a 90 degree or 120 degree included angle α conical and can be used in the as-sharp condition or after a small radius is lapped onto the point 22.
If desired, the diamond 16 may be a synthetic single crystal diamond. Benefits associated with using a synthetic diamond include elimination of internal defect concerns normally associated with natural diamonds and possibly greater control over the crystal orientation.
By incorporating diamonds without internal defects, such as inclusions, porosity, or cracks, major reductions in diamond tool life for impact applications can be prevented. This is because the diamond does not have those defects which cause premature fracture during service.
The tool 10 shown in
It is apparent that there has been provided in accordance with the present invention a diamond tipped indenting tool which fully satisfies the objects, means and advantages set forth hereinbefore. While the present invention has been described in the context of specific embodiments thereof, other alternatives, modifications, and variations will become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations as fall within the broad scope of the appended claims.
The present application is a continuation-in-part application of U.S. Ser. No. 10/034,417, filed Dec. 28, 2001, now U.S. Pat. No. 6,671,965 entitled DIAMOND-TIPPED INDENTING TOOL.
Number | Name | Date | Kind |
---|---|---|---|
366308 | Derby | Jul 1887 | A |
1571310 | Wilson | Feb 1926 | A |
2562587 | Swearingen | Jul 1951 | A |
2663185 | Broschke | Dec 1953 | A |
3138875 | Christensen | Jun 1964 | A |
3781020 | Batsch et al. | Dec 1973 | A |
3990190 | Rainer et al. | Nov 1976 | A |
4434651 | Wood | Mar 1984 | A |
4560853 | Ziegel | Dec 1985 | A |
4932582 | Une | Jun 1990 | A |
5046357 | Marston | Sep 1991 | A |
5133332 | Tanaka et al. | Jul 1992 | A |
5785039 | Kobayashi et al. | Jul 1998 | A |
5984391 | Vanderpot et al. | Nov 1999 | A |
6051079 | Andersson et al. | Apr 2000 | A |
6158952 | Roberts | Dec 2000 | A |
6671965 | Clemens et al. | Jan 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040107581 A1 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10034417 | Dec 2001 | US |
Child | 10718086 | US |