G.T. Mearini et al., “Investigation of Diamond Films for Electronic Devices,” Surface and Interface Analysis, vol. 21, 138-143 (1994). |
G.T. Mearini et al., “Fabrication of an electron multiplier utilizing diamond films,” Thin Solid Films 253 (1994) 151-156. |
D.S. Burgess, “Researchers Unlock the Secrets of Diamonds,” Photonics Spectra, Apr. 2000. |
W.J. Zhang et al., “(001)-textured growth of diamond films on polycrystalline diamond sub-strates by bias-assisted chemical vapor deposition,” J. of Crys. Growth 171 (1997) 485-492. |
X. Jiang et al., “Effects of ion bombardment on the nucleation and growth of diamond films,” Physical Review B, vol. 58, vol. 58, No. 11, pp 7064-7075, (Sep. 1998). |
I.P. Csorba, “Modulation transfer function of image tube lenses,” Applied Optics, vol. 16, No. 10, pp 2647-2650 (Oct. 1977). |
G. Vergara et al., “Escape probability for negative electron affinity photocathodes: calculations compared to experiments,” SPIE, vol. 2550, pp. 142-156. |
X. Zhang et al., “Oriented growth of a diamond film on Si(100) by hot filament chemical vapor deposition,” Journal of Crystal Growth 155 (1995) 66-69. |
P. Lerner et al., “Hot electron and quasiballistic transport of nonequilibrium electrons in diamond thin films,” J. Vac. Sci. Technol. B 15(2) pp 398-400 (Mar./Apr. 1997). |
P.H. Cutler et al., “Monte Carlo study of hot electron and ballistic transport in diamond: Low electric field region,” J. Vac. Sci. Technol. B 14(3), pp 2020-2023 (May/Jun. 1996). |
M. Niigaki et al., “Electron diffusion length and escape probabilities for cesiated and hydrogenated polycrystalline diamond photocathodes,” Applied Physics Letters, vol. 75, No. 22, pp 3533-3535 (Nov. 1999). |
S.H. Kim et al., “Effect of the cyclic growth/etching time ratio on the {100}-oriented texture growth of a diamond film,” Thin Solid Films 290-291 (1996) 161-164. |
J.W. Lee et al., “Cyclic technique for the enhancement of highly oriented diamond film growth,” Thin Solid Films 303 (1997) 264-268. |
S.T. Lee et al., “A Nucleation Site Mechanism Leading to Epitaxial Growth of Diamond Films,” Science Magazine, vol. 287, No. 5450, pp 104-106 (Jan. 2000). |
M. Albrecht et al., “Diamond nucleation under bias conditions,” J. Appl. Phys. 83 (1), pp 531-539 (Jan. 1998). |
S.T. Lee et al., “CVD diamond films: nucleation and growth,” Materials Science and Engineering, R25, No. 4, pp 123-154 (Jul. 1999). |
G.R. Brandes, “Work function and affinity changes associated with the structure of hydrogen terminated diamond (100) surfaces,” Physical Rev. B, vol. 58, No. 8, pp 4952-4962 (Aug. 1998). |
V.I. Polyakov et al., “Effects of post-growth treatment and coating with ultrathin metal layers on the band bending and field electron emission of diamond films,” J. Appl. Phys., vol. 84, No. 5, pp 2882-2889 (Sep. 1998). |
M.A. Plano et al., “Polycrystalline CVD Diamond Films With High Electrical Mobility,” Science 260, 1310 (1993). |
“Statistical Theory of Noise in Photomultiplier Tubes,” Photomultiplier Handbook, p 167 (1980). |