1. Technical Field
The present invention relates generally to a micro-electroacoustic device, and more particularly to a diaphragm of a micro-electroacoustic device.
2. Description of Related Art
Sound is one important means by which people communicate with each other; thus, creating new methods for sound transference allows greater communication between people. Electroacoustic transducers are key components in transferring sound. A typical electroacoustic transducer has a magnetic circuit in which a magnetic field generated by a magnet passes through a diaphragm and returns to the magnet again. When an oscillating electric current is supplied to a coil fixed to the diaphragm and wound around the magnet, the corresponding oscillating magnetic field generated by the coil is then superimposed onto the magnetostatic field of the magnetic circuit. Thus, the diaphragm is driven to oscillate. The resulting oscillation of the diaphragm is then transmitted to the air as sound. Generally, a radial movement may occur during oscillation of the diaphragm. Such radial movement affects the quality of the produced sound. Therefore, a rigidity of the diaphragm needs to be increased for decreasing a radial movement during oscillation.
What is needed, therefore, is a diaphragm and a micro-electroacoustic device incorporating the diaphragm which can overcome the described limitations.
Many aspects of the present embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
Referring also to
The base plate 12 is integrally formed with the sidewall 11 as a single monolithic piece. The base plate 12 includes a hollow cylinder-shaped seat 121, a top arm 122 connecting the seat 121 with a top side of the sidewall 11, and a bottom arm 122 opposite to the top arm 122 and connecting the seat 121 with the bottom side of the sidewall 11. A central axis of the seat 121 is coaxial with a central axis of the sidewall 11. Two opposite lateral sides of the seat 121 are attached to the sidewall 11. The seat 121 defines a through hole 123 therein. The top arm 122 extends upwardly from an outer peripheral surface of the seat 121 to the top side of the sidewall 11. The bottom arm 126 extends downwardly from the outer peripheral surface of the seat 121 to the bottom side of the sidewall 11. A printed circuit board 124 is attached to a rear surface of the bottom arm 122.
The cylindrical yoke 20 includes a circular base wall 21 and a side wall 22 extending frontward from an outer edge of the base wall 21. The cylindrical yoke 20 defines a receiving space 23 therein. The cylindrical yoke 20 is received in the through hole 123 of the seat 121. The through hole 123 of the seat 121 communicates with the receiving space 23 of the cylindrical yoke 20.
The magnet 30 and the washer 40 are coaxially received in the receiving space 23 of the cylindrical yoke 20. The magnet 30 is mounted on the base wall 21 of the cylindrical yoke 20. The washer 40 is mounted on the magnet 30. An inner diameter of the side wall 22 of the cylindrical yoke 20 is larger than an outer diameter of the magnet 30 and an outer diameter of the washer 40, whereby an inner peripheral surface of the side wall 22 of the cylindrical yoke 20, an outer peripheral surface of the magnet 30 and an outer peripheral surface of the washer 40 cooperatively define an annular magnetic gap 321 therebetween for accommodating the coil 50. The coil 50 surrounds the magnet 30 and the washer 40 and is movable in the annular magnetic gap 321.
The diaphragm 60 is elongated with arced top and bottom ends. The diaphragm 60 includes a central portion 61 in a central area thereof, an external portion 63 surrounding the central portion 61, and an annular flange 62 extending radially and outwardly from an outer peripheral edge of the external portion 63. The flange 62 of the diaphragm 60 is attached to the step 112 of the sidewall 11 for fixing the diaphragm 60 onto the housing 10.
The external portion 63 has a profile of a stadium track and has a semicircular-shaped cross section. The central portion 61 includes a dome-shaped central section 611 in a center of the central portion 61, a peripheral section 612 at an outer periphery of the central portion 61, and an annular connecting section 613 interconnecting the central section 611 and the peripheral section 612. The central section 611 defines a spherical depression 615 in a center thereof. Thus, the dome-shaped central section 611 and the spherical depression 615 of the central section 611 improve a rigidity of the diaphragm 60, thereby preventing the diaphragm 60 from abrupt and huge deformation during vibration at a center of the diaphragm 60. The connecting section 613 extends radially and outwardly from an outer edge of the central section 611. A front side of the coil 50 is attached to a rear surface of the connecting section 613 of the diaphragm 60.
The peripheral section 612 includes two protrusions 616 opposite to each other. Each protrusion 616 has a ridge 617 located at a frontmost position thereof. Each protrusion 616 has an inner face (not labeled) extending frontward and upwardly from the connecting section 613 to the ridge 617, and an outer face (not labeled) extending frontward and downwardly from the external portion 63 to the ridge 617. The inner face is larger than the outer face. The outer face of each protrusion 616 is more inclined than the inner face of each protrusion 616 relative to the connecting section 613. Thus, a low frequency characteristic of the micro-electroacoustic device is in harmony with a high frequency characteristic thereof.
The two protrusions 616 increase a rigidity of the diaphragm 60, thereby preventing the diaphragm 60 from abrupt deformation during vibration, and decreasing a radial vibration of the diaphragm 60 to improve a sound quality of the micro-electroacoustic device.
Alternatively, in addition to the protrusions 616, the diaphragm 60 can form more structures for further increasing the rigidity thereof. Referring to
It is to be understood, however, that even though numerous characteristics and advantages of the present embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
200910303056.3 | Jun 2009 | CN | national |
The present application is a continuation-in-part (CIP) application of patent application Ser. No. 12/561,225, entitled “DIAPHRAGM AND MICRO-ELECTROACOUSTIC DEVICE INCORPORATING THE SAME,” and filed on Sep. 16, 2009. The disclosure of the parent application is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12561225 | Sep 2009 | US |
Child | 13598642 | US |