This application claims priority to Chinese Patent Application No. 201810402942.0 filed on Apr. 28, 2018, and to Chinese Patent Application No. 201820638191.8 filed Apr. 28, 2018, the contents of which are incorporated herein by reference.
The present application relates to the technical field of electroacoustic products, and more particularly to a diaphragm and a speaker.
In recent years, speakers in the market have been more and more highly required on their functional properties. A diaphragm serves one of the main components for vibration and sound generation in the speaker, the quality of the diaphragm greatly affects the effective frequency range, the distortion, and the sound quality of the speaker and is therefore a key design that controls the sound of the speaker. The performance of the diaphragm depends on the geometry and material thereof. However, the conventional diaphragm is generally made of paper, plastic, or a single material such as aluminum and an aluminum alloy. The diaphragm made of such materials always has insufficient rigidity and damping property or cannot balance the rigidity and the damping property, thus the speaker tends to have segmentation distortion problem at high frequency vibration, thereby affecting the sound of the speaker.
It is an object of the present application to provide a diaphragm and a speaker, which aims at solving the technical problem that the existing speaker tends towards distortion due to insufficient rigidity and damping property of the speaker.
In order to achieve the above purpose, the present application adopts the following technical solution: a diaphragm comprises a metal dome, a non-metallic diaphragm portion, and a flexible rim. The non-metallic diaphragm portion is bonded to an outer periphery of the metal dome, and an outer periphery of the non-metallic diaphragm portion extends corresponding to a convex direction of the metal dome and expands radially away from the metal dome. The flexible rim is bonded to the outer periphery of the non-metallic diaphragm portion.
In one embodiment, the non-metallic diaphragm portion comprises an annular plain section and a horn-like conical section. The annular plain section is formed by extending the outer periphery of the metal dome in a direction perpendicular to the convex direction away from the metal dome. The horn-like conical section is formed by folding an outer periphery of the annular plain section toward the convex direction of the metal dome and expanding the outer periphery of the annular plain section away from the metal dome.
In one embodiment, a maximum height of the outer periphery of the horn-like conical section of the non-metallic diaphragm portion is greater than a maximum height of the metal dome.
In one embodiment, both an upper surface and a lower surface of the annular plain section are regularly flat and in parallel with a horizontal plane.
In one embodiment, a cross section of the metal dome and a cross section of the non-metallic diaphragm portion together form a W shape.
In one embodiment, an intermediate portion of the flexible rim is arched toward the convex direction of the metal dome to form a curved structure.
In one embodiment, the metal dome is made of at least one material selected from the group consisting of magnesium, aluminum, beryllium, and titanium.
In one embodiment, the non-metallic diaphragm portion is made of paper, a mixture of paper and mica, a mixture of paper and a blended fabric material, or a biological diaphragm material.
In one embodiment, the flexible rim is made of a polyurethane (PU) material, a silica gel, a plastic, a resin, a silk, or a cloth.
In one embodiment, a thickness of the metal dome is preferably between 6 micrometers (μm) and 120 μm.
In one embodiment, the metal dome and the non-metallic diaphragm portion are bonded together by a positive bonding process or a reverse bonding process.
The diaphragm provided by the application comprises the metal dome, the non-metallic diaphragm portion, and the flexible rim, which are made of different materials. Among them, the metal dome is made of a metal material with relatively strong rigidity, which enhances the overall rigidity of the diaphragm and reduces segmentation distortion of the diaphragm. The non-metallic diaphragm portion is made of a non-metallic material with a relatively light weight, which reduces the overall weight of the diaphragm, and moreover, the non-metallic material has better damping property, which is capable of improving and adjusting internal damping property of the diaphragm, and effectively extending the high frequency of the diaphragm. The flexible rim is made of a flexible material, the flexibility of which can effectively improve the compliance of the diaphragm, ensure the normal vibration of the diaphragm, and increase the internal damping of the diaphragm. Therefore, based on the combination of the metal dome, the non-metallic diaphragm portion, and the flexible rim, the overall rigidity of the diaphragm is enhanced, and in the meanwhile, the internal damping property of the diaphragm and the compliance of the vibration of the diaphragm can be adjusted, which can effectively reduce segmentation vibration of the diaphragm during high-frequency vibration and reduce the segmentation distortion of the diaphragm at high frequencies, thereby extending the bandwidth of the diaphragm and improving the overall performance of the diaphragm.
Another technical solution provided by the present application is a speaker comprising the above-mentioned diaphragm.
In the electronic product of the present application, because the above diaphragm is adopted, a vibration system of the speaker has enhanced rigidity and internal damping property. The segmentation vibration of the speaker at high frequencies is reduced, the bandwidth of the speaker is effectively extended, and the distortion of the speaker is reduced, thus realizing a full-range frequency type speaker with moderate damping, wide dynamic range, and abundant sound, and improving the users' listening experience.
In order to more clearly illustrate the technical solution in embodiments of the present application, the following drawings, which are to be used in the description of the embodiments or the prior art, will be briefly described. It will be apparent that the drawings described in the following description are merely embodiments of the present application. Other drawings may be obtained by those skilled in the art without paying creative labor.
In the drawings, the following reference numerals are used: 10: Magnetic circuit system, 11: Magnetic member, 12: Magnet, 20: Vibration system, 21: Diaphragm, 22: Voice coil, 30: Speaker holder, 31: U cup, 32: Speaker basket, 40: Damping enhancing system, 41: First damper, 42: Second damper, 50: Circuit board, 111: First magnet gap, 121: Second magnet gap, 211: Metal dome, 212: Non-metallic diaphragm portion, 213: Flexible rim, 311: Through hole, 2121: Annular plain section, and 2122: Horn-like conical section.
The embodiments of the present application are described in detail hereinbelow, and the examples of the embodiments are illustrated in the drawings, where the same or similar reference numerals are used to refer to the same or similar elements or elements of the same or similar functions. The embodiments described hereinbelow with reference to the accompanying
It should be understood that terms “length”, “width”, “upper”, “lower”, “front”, “rear”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inside”, “outside” and the like indicating orientation or positional relationship are based on the orientation or the positional relationship shown in the drawings, and are merely for facilitating and simplifying the description of the present application, rather than indicating or implying that a device or component must have a particular orientation, or be configured or operated in a particular orientation, and thus should not be construed as limiting the application.
Moreover, the terms “first” and “second” are adopted for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. In the description of the present application, the meaning of “a plurality of” or “multiple” is two or more unless otherwise specifically defined.
In the present application, unless otherwise explicitly defined or specified, the terms “installation”, “connected”, “coupled”, “fixed” and the like shall be understood broadly as, for example, either a fixed connection or a detachable connection, or being integrated as a whole, mechanical connection or electrical connection, direct connection or indirect connection via an intermediate medium, or internal communication of two elements or the interaction between two elements. Specific meanings of the above terms in the present application can be understood by those skilled in the art according to specific circumstances.
As shown in
The diaphragm 21 provided by this embodiment of the application comprises the metal dome 211, the non-metallic diaphragm portion 212, and the flexible rim 213, which are made of different materials. Among them, the metal dome 211 is made of a metal material with relatively strong rigidity, which enhances the overall rigidity of the diaphragm 21 and reduces segmentation distortion of the diaphragm 21. The non-metallic diaphragm portion 212 is made of a non-metallic material with a relatively light weight, which reduces the overall weight of the diaphragm 21, and moreover, the non-metallic material has better damping property, which is capable of improving and adjusting internal damping property of the diaphragm 21, and effectively extending the high frequency of the diaphragm 21. The flexible rim 213 is made of a flexible material, the flexibility of which can effectively improve the compliance of the diaphragm 21, ensure the normal vibration of the diaphragm 21, and increase the internal damping of the diaphragm 21. Therefore, based on the combination of the metal dome 211, the non-metallic diaphragm portion 212, and the flexible rim 21, the overall rigidity of the diaphragm 21 is enhanced, and in the meanwhile, the internal damping property of the diaphragm 21 and the compliance of the vibration of the diaphragm 21 can be adjusted, which can effectively reduce segmentation vibration of the diaphragm 21 during high-frequency vibration and reduce the segmentation distortion of the diaphragm 21 at high frequencies, thereby extending the bandwidth of the diaphragm 21, improving the overall performance of the diaphragm 21, and enabling the diaphragm 21 to realize frequency response within a full frequency band (20 hertz (Hz)-20 kilohertz (kHz)).
In the present embodiment, as shown in
Particularly, because the metal dome 211 adopts a semispherical structure with the center thereof convex outward, as the diaphragm 21 vibrates, the metal dome 211 vibrates and produces a first force which is away from the metal dome 211 and applied to the annular plain section 2121 arranged in the middle. In the meanwhile, because the horn-like conical section 2122 is arranged to be convex toward the metal dome 211, when the diaphragm 21 vibrates, the horn-like conical section 2122 exerts a second force facing towards the metal dome 211 on the annular plain section 2121. The first force and the second force are simultaneously applied to the annular plain section 2121, or alternatively, the first force is transmitted to the horn-like conical section 2122 via the annular plain section 2121, and the second force is transmitted to the metal dome 211 via the annular plain section 2121. Moreover, the first force and the second force are opposite in direction. When the first force and the second force are applied to the annular plain section 2121 in the planar structure, both the two forces may be partially or completely offset, thereby fully or partially offsetting the force which is produced in the vibration of the diaphragm 21 and may cause the deformation of the diaphragm 21, and improving the rigidity of the diaphragm 21. In addition, on the premise of keeping a certain rigidity, the thickness of the diaphragm 21 is reduced, the internal damping property of the diaphragm 21 is increased, thereby weakening the segmentation distortion of the diaphragm 21 at high frequencies and ensuring the normal vibration of the diaphragm 21.
In the present embodiment, as shown in
In the present embodiment, as shown in
In the present embodiment, as shown in
In the present embodiment, as shown in
In the present embodiment, the metal dome 211 is preferably made of at least one metal selected from the group consisting of magnesium, aluminum, beryllium, and titanium, that is, the metal dome 211 is preferably made of magnesium, aluminum, beryllium, titanium, a magnesium alloy, an aluminum alloy, a beryllium alloy, or a titanium alloy. The above metal materials feature strong rigidity and light weight, and the diaphragm 21 made of these metal materials functions in improving the rigidity of the diaphragm 21, reducing the segmentation distortion of the diaphragm 21, and extending the bandwidth of the diaphragm 21.
In the present embodiment, the non-metallic diaphragm portion 212 is preferably made of paper, a mixture of paper and mica, a mixture of paper and a blended fabric material, or a biological diaphragm material. Because the non-metallic material has relatively good damping property, when combined with the metal dome 211, the non-metallic diaphragm portion 212 is capable of improving the internal damping of the metal dome 211, thus functioning in improving the overall rigidity of the diaphragm 21, adjusting the internal damping, and decreasing the distortion of the diaphragm 21.
In the present embodiment, the flexible rim 213 is preferably made of a PU material, a silica gel, a plastic, a resin, a silk, or a cloth. When the flexible rim 213 is combined with the metal dome 211 and the non-metallic diaphragm portion 212 to form the diaphragm 21, due that the flexible material has weaker rigidity, softer texture, and better compliant than the metal materials and other non-metal materials, it is more apt to generate vibration when being exerted with a force, thus more easily causing the diaphragm 21 to vibrate and generate the sound. In addition, because the flexible material has stronger damping property than metal materials and other non-metallic materials, it can also effectively increase the overall damping property of the diaphragm 21, thus reducing the harmonic distortion of the diaphragm 21 of the present embodiment at high frequencies, extending the bandwidth of the diaphragm 21, and improving the overall performance of the diaphragm 21. Particularly, the above plastic material may be one selected from the group consisting of PET, PEN, PEEK, PEI, PAR, and PEI.
In the present embodiment, a thickness of the metal dome 211 is preferably between 6 μm and 120 μm, and the metal dome 211 of different thicknesses has different rigidities. As the thickness of the metal dome 211 increases, the rigidity increases correspondingly. Therefore, in designing the diaphragm 21, the thickness of the metal dome 211 can be selected according to the rigidity required by the diaphragm 21, and the thickness thereof is not particularly limited herein. It may be 6 μm, 10 μm, 30 μm, 50 μm, 40 μm, 60 μm, 80 μm, 100 μm, and 120 μm, etc.
In the present embodiment, the metal dome 211 and the non-metallic diaphragm portion 212 in the above are preferably bonded by a positive bonding process or a reverse bonding process. That is, when the non-metallic diaphragm portion 212 is in bonding connection with the outer periphery of the metal dome 211, it may be that the lower surface of the non-metallic diaphragm portion 212 is bonded to the upper surface of the metal dome 211, it may also be that the upper surface of the non-metallic diaphragm portion 212 is bonded to the lower surface of the metal dome 211.
As shown in
In the speaker of the present embodiment, because the above diaphragm 21 is adopted, the vibration system 20 of the speaker has enhanced rigidity and internal damping property. The segmentation vibration of the speaker at high frequencies is reduced, the bandwidth of the speaker is effectively extended, and the distortion of the speaker is reduced, thus realizing a full-range frequency type speaker with moderate damping, wide dynamic range, and abundant sound, and improving the users' listening experience.
Particularly, as shown in
In the present embodiment, as shown in
Particularly, as shown in
In the present embodiment, as shown in
In the present embodiment, as shown in
In the present embodiment, as shown in
The above description is only optional embodiments of the present application, and is not intended to limit the present application. Any modifications, equivalent substitutions, and improvements made within the spirit and principles of the present application are included within the protection scope of the present application.
Number | Date | Country | Kind |
---|---|---|---|
201810402942.0 | Apr 2018 | CN | national |
201820638191.8 | Apr 2018 | CN | national |