(1) Technical Field
This invention relates to a diaphragm circulator and, more generally, to a device whereby mechanical power is converted into hydraulic power, i.e., the product of the flow rate multiplied by the pressure, for a liquid or gaseous fluid charged or uncharged with particles, or for any material capable of flowing (divided, powdery, fluidized or emulsified materials).
(2) Description of the Prior Art
There are numerous types of pumps, suction devices, compressors, fans . . . which perform this function. A new technique has recently appeared for providing this function, at least for a liquid, by means of a diaphragm acting as an intermediate means of converting (a transfer medium) mechanical power (the integral over a time interval of the product of force multiplied by displacement) into hydraulic power (the integral over the same interval of the product of flow rate multiplied by pressure), this transfer occurring by way of a deformation and kinetic energy of this diaphragm, the deformation being propagated in the diaphragm in the form of a ripple and the corresponding energy being progressively transferred to the fluid with which the diaphragm is in contact.
The document EP 880 650 exemplifies several embodiments of such a fluid circulator while emphasizing certain requirements to be met for there to be an efficient transfer of energy between the diaphragm and the fluid, resulting in an increase in the hydraulic power of the fluid. These requirements are the establishment of tension in the diaphragm in order for there to be ripple propagation, on the one hand, and, on the other hand, the presence of means of creating a damping of the ripple amplitude during the progression thereof from an edge of the diaphragm, where this ripple is generated by a mechanical actuator, up to an opposing edge.
This document teaches the use of rigid walls as damping-creating means, the spacing of which decreases from the inlet port to the exhaust port for the fluid treated by the circulator.
Many studies have been conducted on this new device in order to better characterize the phenomena involved, which had never before been explored, and to optimize the parameters which govern these phenomena. In particular, these studies made it possible to better identify the requirements to be met, which are stated to a limited extent in the document EP 880 650, which furthermore is the only element exemplifying the prior art for this new technique.
This is how experiments showed that the tension state of the diaphragm is a variable which is correlated with the mechanical properties of the material of this diaphragm. In reality, the initial tension state of the idle diaphragm can be equal to zero if, for example, the diaphragm is made of a material which is elastically deformable in at least one direction, combined with a geometry such that imposing a deformation on the diaphragm produces tension therein, in the aforesaid direction, which enables progression of this deformation in the form of a ripple, along this direction, which becomes the direction of propagation. Hereinafter, this type of diaphragm will be referred to as a diaphragm having intrinsic tension-creating means. For example, this will involve an elastic disk-shaped diaphragm, with or without an opening at the centre, wherein the outer edge remains undeformed during the excitation thereof by the actuator, while the idle diaphragm is not tensed. It may likewise involve a flat elastic diaphragm wherein the two ends are subjected to forces which oppose the forces imparted to the diaphragm by the fluid in which the energy is transferred. Owing to the presence of these forces, the conditions necessary for the propagation of a deformation produced at one end towards the other end are present.
It was also observed that a diaphragm consisting of a sheet which is flat when idle, non-deformable under tension, in the directions of the plane thereof, but elastically deformable under bending, e.g., about an axis contained within this plane, constitutes a medium enabling operation like a diaphragm according to the invention, if the diaphragm is subjected to a tensile or simply holding force perpendicular to or having a component which is perpendicular to the axis about which the bending occurs. This perpendicular direction is the direction of propagation.
Furthermore, theoretical and experimental research made it possible to clarify that it was possible to create a forced damping of the ripple amplitude without necessarily having to decrease the spacing of the stationary walls between which the diaphragm ripples. As a matter of fact, an excitation of the actuator resulting in the application of an reciprocating force or an reciprocating couple of given frequency and amplitude forces, at an edge of the elastic diaphragm placed inside the fluid, in the absence of walls surrounding it, generates ripples capable of propagating along the diaphragm towards the side thereof which is opposite the excited side, with a free amplitude which may be characterized by envelope surfaces of this amplitude. In order to visualize these envelope surfaces, a reflectionless propagation of waves or ripples considered, i.e., in the (theoretical or virtual) case where the diaphragm is of infinite length or the evolution of the amplitude of a primary ripple between a first instant, after the creation thereof, and a second instant separated from the first by a relatively short time interval, considering the dimensions of the diaphragm. The shape of these surfaces depends on the nature of the excitation of the diaphragm edge. Thus, in the case of excitation by means of an actuator which moves the edge of the diaphragm, the envelope surfaces will have a divergent bell-shaped profile; in the case of an actuator transmitting a couple of forces to the edge of the diaphragm, the surfaces will instead have the profile of two curves secant to the axis about which the torque is transmitted. Force damping of this ripple is obtained if stationary walls between which the diaphragm ripples are placed between (inside of) these envelope surfaces.
This condition does not necessarily eliminate a decrease in their spacing, as is described in the document EP 880 650. For particular diaphragm geometries and types, and particularly in a gaseous fluid, it is indeed possible to observe that the envelope curves diverge between the excited edge and the opposite edge of the diaphragm, thus, by simply reducing the degree of divergence, hydraulic power is successfully transferred into the fluid. The greater this reduction, the greater the preference given to the pressure component in this energy. The type of material comprising the diaphragm as well as the uniformity thereof, or the lack of uniformity thereof, in the direction of progression of the ripples, are also determining factors in the shape of the envelope surfaces of the amplitude of a ripple during the propagation thereof into the diaphragm, and are therefore determining factors in the shape and relative spacing of the rigid walls which create the forced damping of this ripple. In particular, for a uniform diaphragm, it is advantageous to provide for the thickness thereof to decrease in the direction of propagation of the ripples. The envelope curve of a tapered diaphragm such as this is more divergent than for a diaphragm of constant thickness, all things being otherwise equal. Due to this diaphragm geometry, a high damping factor is obtained, since stationary walls can be well within these envelope curves.
These observations and experimental research enabled the subject matter of the invention to be defined as a diaphragm circulator for a flowable material, comprising a circulator body wherein an internal circuit is arranged, which has at least one inlet port for the material, one propulsion chamber and at least one discharge port for this material, the propulsion chamber having rigid walls between which a deformable diaphragm is placed, with one edge adjacent to the inlet port and one edge adjacent to the discharge port, the diaphragm forming the support for a ripple, while a mechanical actuator for the diaphragm is connected to the diaphragm on the inlet port side, in order to apply an reciprocating force or a couple of reciprocating forces generating said ripple to the corresponding edge of the diaphragm, wherein the rigid walls of the circulator are arranged inside of envelope surfaces of the free amplitude of the ripple propagating along the diaphragm, and wherein the diaphragm is associated, via at least one of the edges thereof, with means which create tension in the diaphragm, at least during generation of the ripple, whereby, during operation, the prevailing tension in the diaphragm is higher on the discharge port side than on the inlet port side.
This variation in tension in the diaphragm is a result of the trussing effect on the diaphragm by the fluid having acquired hydraulic energy along the entire propulsion chamber.
In the above definition of the circulator according to the invention, the free amplitude of the ripple should be understood to mean the theoretical or virtual amplitude that was defined above. This definition is neither disclosed nor suggested by the circulators of the prior art (EP 880 650), i.e., those which have both a circulation chamber the walls of which converge towards one another from the inlet port to the discharge port, and a diaphragm in which tension is voluntarily established in the direction of the fluid flow. However, this definition relates to all circulators which, while having a circulation chamber with converging walls, also have a diaphragm the dimension of which, in the direction of ripple propagation, is set by appropriate means so that in the diaphragm, even without any initial tension, the elongation of the diaphragm which accompanies the creation of a ripple generates tension in the direction of ripple propagation, the diaphragm being made or not made of a material that is elastically deformable in the direction of propagation. These are intrinsic means of establishing this tension condition necessary for propagation. Other examples of this type of means exist: a frame in the interior plane of which the diaphragm is attached to the end crossmembers of this frame, either by inextensible means, if the diaphragm is elastic between these two crossmembers, or by extensible means, if the diaphragm is inextensible between the crossmembers (e.g., a flat sheet, made of metal or a composite synthetic material, capable of bending about a direction of the plane thereof). An initial tension may or may not be established when the diaphragm is mounted in the frame. These arrangements can be transposed in the case of tubular diaphragms provided with elastic radial extensibility.
In the case of a disk-shaped diaphragm, this requirement is met if the peripheral edge of the diaphragm is integral with a non-deforming band, the diaphragm having the possibility of being solid or perforated at the centre thereof with an opening the edge of which is a means of immobilizing the diaphragm truss in the direction of ripple propagation. The dimensional characteristic of the diaphragm would not be achieved if, for example, the edge of the centre hole thereof were provided with radial incisions, which would destroy the expansion resistance of the opening.
The non-deforming outer banding of the diaphragm can consist of a bead belonging to the diaphragm itself, which is non-deforming with respect to the loads involved, which may be light.
The term “rigid walls” should also be understood to mean walls which, in absolute terms, may however possess a certain degree of flexibility, but which, when applied to use, behave like rigid walls with regard to all of the other materials involved in the device.
In a first embodiment of the invention, a portion of the propulsion chamber is defined by the circulator body and one of the faces of the diaphragm is connected to an inlet port for an external supply of a material being treated, and, in particular, propelled, and to a discharge port which is itself connected to the inlet port of the other portion of the propulsion chamber defined by the circulator body and the other face of the diaphragm, this other portion terminating at the circulator discharge port, the two chamber portions being otherwise separated from one another.
In this embodiment, a circulation stage is created on each side of the diaphragm, which, all things otherwise being equal, makes it possible to obtain a greater pump pressure performance or, at equal performance, to be capable of choosing a diaphragm material which has a lower modulus of elasticity but which is better suited to the chemical specifications of the application. In particular, this increased performance can be obtained with the over dimensions being unchanged. In another embodiment, the circulator comprises a disk-shaped diaphragm the outer periphery of which is attached to a moving excitation assembly which is guided along an axis perpendicular to the plane of the diaphragm by a centre guide column integral with the circulator body. This type of excitation device is advantageous because it concentrates all of the motorizing and guiding functions at the central axis of the circulator, functions which can be provided at reduced dimensions, which enables them to be obtained at a low cost. The motorization and guidance of the moving parts are in fact the most costly functions of the circulator. For example, it is easy to motorize by means of a plunger core electromagnet with a return spring, the core, which slides along the guide column, being attached to a stirrup clamp for the connection thereof to the periphery of the diaphragm, thereby forming the moving assembly.
In a yet simpler embodiment, the moving assembly comprises an annular permanent magnet surrounding the guide column, which forms the plunger core for a magnet coil and armature arranged around the permanent magnet.
The circulator according to the invention can have a substantially cylindrical body which defines several superimposed propulsion spaces connected in series between an inlet port and a discharge port, the diaphragms of each space being attached via the outer edge thereof to a single moving motorization assembly. In this way, a circulator is obtained with compact design, which is capable of supplying a fluid under high pressure.
For another application of the invention, a structure will have been provided wherein the outer edge of the diaphragm (or of the support thereof) is provided with exterior relief surfaces which constitute shearing members for the surrounding product being treated. In order to increase the efficiency of this shearing, which turns into grinding, the moving assembly and the diaphragm are driven in a complementary continuous or reciprocating rotational movement about the aforesaid guide axis.
For the purpose of providing a silent circulator, the latter comprises a vibration generator for generating vibration in the circulator body which is opposite in phase to the reciprocating movement of the moving assembly. As a matter of fact, the movement of the moving assembly is substantially reciprocal, linear and at a controlled frequency. This characteristic lends itself well to the creation of active sound insulation. The vibrator can be of any electromagnetic or piezoelectric type.
In another embodiment, the diaphragm is of a quadrilateral shape with two parallel opposing sides, and the ripple generator is a variable reciprocating force couple.
This arranged is particularly well-suited to relatively light diaphragms of low surface density, which are intended to propel a gas like a fan. As a matter of fact, in this application, it is useful to assign greater importance to the flow rate in comparison to the pressure, and to thus produce and propagate a ripple of considerable amplitude. The edge of the diaphragm opposite the excited one is subject a hold which opposes both variation in the length thereof, as a result of the ripple effect, and trussing of the diaphragm due to the action of the fluid.
Numerous applications of the air circulator are possible. Mention is made in particular of household appliances such as hand dryers or hair dryers which will have a have a completely novel shape in comparison with that of existing appliances, which is dictated by the rotating shape of an air-blowing turbine.
Mention should also be made of one advantageous application of this circulator for cooling electronic components and boards. As a matter of fact, these latter are increasingly more powerfully, compact as a result of the miniaturization thereof, and built into any computer, such as a portable or non-portable personal computer, or a computer on-board a vehicle. In this application, at least one of the walls of the circulation chamber forms a radiator for the component being cooled. It is thus swept by the air propelled into this chamber. It may likewise be textured with relief surfaces, small-size fins or ribs which increase the transfer surface.
Finally, among the numerous other applications of the circulator of the invention, mention will be made of those wherein it comprises a propulsion unit for a means of transport, a watercraft in particular (buoyant or submarine), the circulator being rigidly attached via the body thereof to the craft, while the fluid which passes through the circulation chamber and receives the diaphragm's energy, generates a reaction force which propels the craft.
Other characteristics and advantages of the invention will emerge from the description provided below of several exemplary embodiments of the circulator.
Reference will be made to the appended drawings, in which:
A sectional view of a diaphragm 1 has been shown in
The edges 2 and 4 of the diaphragm may be rectilinear or concentrically circular. Mention will also be made of tubular-shaped diaphragms each of the edges of which are at one end of a tube.
Tension in the existing diaphragm in its resting state or resulting from a resistance to its elongation under the effect of this mechanical stress is represented by the forces 6a and 6b. This diaphragm, now extended, is the source of propagation of the wave in the direction of the tension.
Assuming that edge 4 is infinite, with a diaphragm of decreasing thickness in the direction 5 of the propagation and/or in the absence of reflection of the ripple, the theoretical free amplitude of the ripple increases from edge 2 to edge 4. The amplitude is contained between the two ripple envelope surfaces shown in
Now, as shown in
It should be noted that, during operation, a sort of trussing of the diaphragm occurs, in the direction of the fluid inlet end, the intensity of which is proportionally greater the higher the hydraulic energy acquired by the fluid. The result of this is a variation in the tensile forces of the diaphragm along the direction of propagation, the highest force 6b being observed at the end 4 of the diaphragm 1, adjacent to the discharge port 4a of the propulsion chamber. Thus, tension in the diaphragm is not constant and, for a uniform diaphragm, one of the consequences of this variation is the extension of the length of the ripple between the inlet port and the discharge port. Under the same conditions, fluid velocity inside the circulation chamber increases from the inlet port 2a to the discharge port 4a of the circulation chamber.
Edge 2 of the diaphragm 1 can be attached to a reciprocating force couple generator, no longer imparting a reciprocating linear movement to this diaphragm, as in the example shown, but a reciprocating angular movement. In the same way, this stressing of the diaphragm generates a ripple due to the fact that the diaphragm is subjected to the same intrinsic or extrinsic tension conditions.
Part or cup 20 receives the second part 25 of the circulator body, which closes up the skirt 22 opening, this second part 25 comprising a stationary wall 26 which is placed opposite wall 21 of the first part 20, in order to define the fluid propulsion chamber, this part having radial extensions 27 whereby it cooperates with the first part 20 inside of the skirt 22, in order to establish the relative position and spacing of the two walls 21 and 26 surrounding the propulsion chamber. The connection between the two parts 20 and 25 is ensured by any known means (clamping, gluing, screwing, welding . . . ). In the axis of symmetry of the circulator, part 25 also comprises a centre column 28 opposite the end fitting 24, which forms the guide element for a moving assembly described hereinbelow.
The propulsion chamber 29 contains an elastically deformable diaphragm 30 between walls 21 and 26. This diaphragm 30, which is disk-shaped, has a peripheral bead and a central opening 32 bounded by an edge 32a. Through openings 32b are made in the diaphragm in order to distribute the fluid taken in on both sides of the diaphragm. The peripheral bead 31 comprises the base of two flexible lips 33 and 34 having a partially toric shape, the free edge of which is provided with cylindrical beads 33a, 34a which close up the chamber sealingly at the outer periphery of the stationary walls 2126. In the vicinity end fitting 23, the connection of lip 34 with part 20 of the circulator body leaves an influent conduit 23 open, which permanently connects the propulsion chamber 29 space contained between the rigid walls 21 and 26 to the interior space of the inlet end fitting 23, thereby forming an annular distribution chamber for the intake into the propulsion chamber.
The second part 25 of the circulator body comprises a cylindrical wall 36 surrounding the column 28, which forms the housing for an electromagnetic device comprising a coil 37, the axis of which is the axis of revolution of the circulator, and an armature 38 with an air gap 39. At the air-gap terminals 39, the armature thus defines two poles which are reversed at each reversal of the electrical current flowing inside the winding 37. The armature can be made of pure iron or of an iron-silicon, powder-based composite material in a resin matrix (known commercially under the trademark SOMALLOY), or consist of a laminated structure.
Finally, the circulator described comprises a stirrup 40 with a central core 41 slidably mounted on the column 28 and provided with a magnetized ring 42, which is plumb over the air gap 39, so as to have three superimposed cylindrical pole surfaces references as MSN in the figures. It is pointed out that this type of magnetized ring can be of the plasto-magnet type, i.e., a finely divided magnetic material (ferrite, rare earth, samarium, iron or cobalt powder . . . ) in a plastic matrix that has been magnetized during manufacture while controlling the direction of magnetization. The magnet can be designed as an assembly of permanent magnets and suitable armatures.
Starting in a radial direction from the core 41, the moving assembly comprises arms 43 which connect it beneath the skirt 36 to the bead 31 of the diaphragm 30. These arms are visible in
It is observed that the pump in these
The embodiment shown in
In this embodiment, it is understood that the fluid admitted into chamber part 51 via conduit 55 is placed into circulation and undergoes a first pressure rise in the propulsion chamber part 52. Thus, a double pressure rise occurs for a single fluid flow rate. As in the preceding embodiment, the a.c. power supply of the winding 37 results in a reciprocating movement of the stirrup 40 and thus a reciprocating excitation of the outer edge 59 of the diaphragm 50, perpendicular to the mid-plane thereof. In this embodiment, as in the preceding embodiment, the number of constituent parts of the pump or circulator is very low, hence a very inexpensive cost price. Furthermore, all things otherwise being equal from a dimensional standpoint, this embodiment makes it possible to obtain a higher discharge pressure for the treated fluid than that obtained with the preceding embodiment.
In
As in the preceding examples, part 61 of the circulator comprises a guide column 28 for a motor having the same elements as described previously, with the same reference signs. This is how, in the particular case of
It is understood that the fluid admitted at 66 is drawn into the propulsion chamber 65 by the rippling diaphragm 74, in order to be discharged through the exhaust port 67 and through the radial conduits 69 so as to reach the intake chamber 70 of the second propulsion stage for the fluid, and thereby be treated by oscillating diaphragm 75 and emerge from the circulator via the exhaust port 71.
The example shown in
An alternative embodiment of the circulator shown in
A schematic representation of an air circulator 80 according to the invention is shown in
In this diagram, for example, a magnetostatic means for holding the diaphragm 81 is shown (a magnet 81 attracted by an armature 86), which forms the means necessary for establishing extrinsic tension in the diaphragm and resistant to the trussing tendency thereof.
A ventilator or air blower such as this is very advantageous because it comprises only very few constituent parts. Furthermore, as shown by experiments, it has a significant flow rate in comparison with the overall dimensions thereof. Its efficiency is advantageous because there are no internal head losses associated with a change in the direction of the airflow. Finally, the noise produced by this ventilator is incomparably lower than that observed with those on the market consisting, for example, of hair dryers and hand dryers, due, in particular, to a low operating frequency.
One example of use of a ventilator according to the invention is shown in
Returning to
Lastly, mention is made of an important field of application for the circulator according to the invention. This involves its use as a propeller unit. As a matter of fact, with regard to
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
PCT/FR2006/002596 | Nov 2006 | FR | national |