The invention relates to diaphragm pumps, and more particularly, to bypass valves in diaphragm pumps.
Diaphragm pumps are used in many pumping applications, and offer several distinct advantages as compared to rotary and other types of pumps. Diaphragm pumps have good suction lift characteristics, good dry running characteristics, and can be up to 97% efficient. Various types of diaphragm pump work well with air and with highly viscous liquids, and can have good self-priming capabilities. Depending on the design, diaphragm pumps can also minimize the number of moving parts that are in contact with the process fluid. This can be ideal for applications to gritty and/or highly viscous liquids, and to corrosive liquids and gases.
In some applications, there is a risk that a diaphragm pump may continue to operate when the outlet 110 is blocked, due for example to a clog or to inadvertent closing of an outlet valve. This can cause the pressure in the pumping chamber 100 and outlet 104 to rise to dangerous levels, which could lead to rupture of the diaphragm and/or damage to other components. Spilling of toxic process fluid could also result. Accordingly, many diaphragm pumps include a bypass valve 112 that remains closed during normal operation, but opens to allow fluid to flow from the relatively higher pressure outlet 104 to the lower pressure inlet 102 if the pressure difference rises above a preset threshold value. Typically, the bypass valve is held shut by a bypass spring 114, and the tension of the bypass spring determines the threshold pressure difference that will cause the bypass valve 112 to open.
Of course, the base of the bypass spring 114 must be supported by something. In the simplified example of
It is also frequently desirable to maximize the size of the diaphragm 106 and/or pumping chamber 100, while minimizing the outer volume and weight of the pump. One approach is to make the walls of the pump housing 108 thinner, but this approach is limited because the pump housing must have sufficient strength to withstand the mechanical forces that are applied to it by fluid pressures and flow, and by the mechanical manipulation of the diaphragm. It can be especially difficult to make the walls thinner when the outlet 104 is perpendicular to the input 102, as compared to being in-line with the input 102 as shown in
What is needed, therefore, is a diaphragm pump having a maximized interior pumping chamber volume and a minimized outer size and weight, where the diaphragm pump includes a bypass valve that is easy to install and does not require support by a special plug or mounting bracket.
A diaphragm pump having a maximized interior diaphragm size and pumping chamber volume and a minimized outer size and weight includes a bypass valve and spring that are easy to install and do not require support by a special plug or mounting bracket. The outlet of the diaphragm pump is perpendicular to its inlet, which causes the bypass valve and spring to operate laterally as seen from the base of the pump, where the diaphragm is located. The bypass valve and spring are installed through the base of the pump, the bypass spring being suspended between the bypass valve and a simple “T” insert that is held in place by the interior structure of the pump, without need for brackets or fasteners.
The interior size of the pump housing is maximized while the exterior size and weight are minimized by providing a substantially conical housing having a thickness that varies around its circumference in a cycloid pattern, thereby providing support ribs and secure locations for assembly screws, while significantly increasing the interior volume and reducing the weight as compared to a housing with uniform thickness. The truncated cone shape of the housing provides enhanced mechanical strength for withstanding forces applied longitudinally to the diaphragm at the base of the housing, as well as the longitudinal mechanical forces applied by the fluid flow and valve operations. The right-angle arrangement of the inlet and outlet provide for a compact pump that is ideal for certain applications.
The present invention is a diaphragm pump for pumping a process fluid. The diaphragm pump includes a pump housing having an outer wall, an inlet region within the pump housing into which process fluid flows in an inlet direction, an outlet region within the pump housing from which process fluid flows out in an outlet direction, the outlet region being separated from the inlet region by a separating boundary, a pumping zone that is separated from the inlet region by at least one inlet valve, and from the outlet region by at least one outlet valve, the pumping zone being partially bounded by a flexible diaphragm, a bypass valve that penetrates the separating boundary, the bypass valve being configured, when open, to allow process fluid to flow from the outlet region into the inlet region a bypass spring having a proximal end and a distal end, the proximal end of the bypass spring being in pressing communication with the bypass valve, and a support insert having a top end in pressing communication with the distal end of the bypass spring, the support insert being held in position within the housing by the bypass valve spring and by positioning elements that abut the support insert without attachment thereto, each of the positioning elements being unitary with a structural element within the pump housing that is required for pumping of process fluid from the inlet region to the outlet region.
In embodiments, the outlet region surrounds the inlet region. In some of these embodiments the separating boundary is substantially cylindrical. In other of these embodiments the separating boundary includes a first boundary segment that is unitary with the pump housing and a second boundary segment that is unitary with a valve support structure that supports at least one of the inlet valves or at least one of the outlet valves.
In various embodiments the positioning elements include at least one positioning element that is unitary with the pump housing. In certain embodiments, the positioning elements include at least one positioning element that is unitary with a valve support structure that supports at least one of the inlet valves or at least one of the outlet valves.
In exemplary embodiments, the support insert includes an insert body having a left face and a right face, the left and right faces being separated by a thickness that is less than a width of the left and right faces, the top of the insert body being terminated by a top extension having a flat upper surface that extends beyond the left and right faces of the insert body. In some of these embodiments the insert body is positioned to allow process fluid to flow in the inlet region past the left and right faces of the insert body. And in other of these embodiments the positioning elements include a slot into which a base of the insert body is inserted.
In embodiments, the outer wall of the pump housing is shaped substantially as a truncated cone, extending at it smaller end to a pump inlet and at its larger end to a pump base. In some of these embodiments, the outer wall of the pump housing makes an angle of approximately 30 degrees with the central axis of the truncated cone.
In various embodiments, an inner surface of the outer wall of the pump housing is cycloid shaped, cusps of the cycloid extending inward to form thickened regions of the pump housing outer wall, and rounded segments of the cycloid curving outward to form thinned regions of the pump housing outer wall. In some of these embodiments, at least one of the thickened regions at the base of the pump housing outer wall includes a threaded hole configured to accept an assembly screw.
Certain embodiments further include a valve support structure that supports the inlet and outlet valves and divides the pumping zone from the inlet and outlet regions, the valve support structure including a positioning member that is unitary therewith and is configured to prevent the support insert from moving in a direction parallel to the inlet direction.
And in other embodiments, the inlet direction is substantially perpendicular to the outlet direction.
The features and advantages described herein are not all-inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and not to limit the scope of the inventive subject matter.
With reference to
It can be seen in
With reference to
The cycloid, or “scalloped” interior shape of the pump housing 118 included in some embodiments can also be seen in
As noted above, the conical shape of the housing 118 in embodiments provides enhanced mechanical strength for withstanding forces applied longitudinally to the diaphragm 202 at the base of the housing 118, as well as the longitudinal mechanical forces applied by the fluid flow and valve operations.
The foregoing description of the embodiments of the invention has been presented for the purposes of illustration and description. Each and every page of this submission, and all contents thereon, however characterized, identified, or numbered, is considered a substantive part of this application for all purposes, irrespective of form or placement within the application. This specification is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of this disclosure.
Although the present application is shown in a limited number of forms, the scope of the invention is not limited to just these forms, but is amenable to various changes and modifications without departing from the spirit thereof. The disclosure presented herein does not explicitly disclose all possible combinations of features that fall within the scope of the invention. In particular, the limitations presented in dependent claims below, as well as features described in the specification which may not appear in the claims, can be combined in any number and in any order without departing from the scope of the invention, unless the limitations and/or features are logically incompatible with each other.
Number | Name | Date | Kind |
---|---|---|---|
4610605 | Hartley | Sep 1986 | A |
4762149 | Pickl, Jr. | Aug 1988 | A |
5571000 | Zimmermann et al. | Nov 1996 | A |
5800136 | Kurth et al. | Sep 1998 | A |
6092998 | Dexter et al. | Jul 2000 | A |
6299414 | Schoenmeyr | Oct 2001 | B1 |
6648004 | Lau | Nov 2003 | B2 |
7988266 | Xiao et al. | Aug 2011 | B2 |
8070458 | Meza | Dec 2011 | B2 |
20050126649 | Onishi | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
H08326938 | Dec 1996 | JP |
H11153239 | Jun 1999 | JP |
2008303951 | Dec 2008 | JP |
2009250363 | Oct 2009 | JP |
Entry |
---|
International Preliminary Report on Patentability for Appl No. PCT/US2015/046551 dated Nov. 27, 2015. |
International Search Report for Appl No. PCT/US2015/046551 dated Nov. 30, 2015. |
Written Opinion of the International Search Report for Appl No. PCT/US2015/046551 dated Nov. 27, 2015. |
Number | Date | Country | |
---|---|---|---|
20160017881 A1 | Jan 2016 | US |