This invention relates to foamable pharmaceutical and cosmetic compositions.
External topical administration is an important route for the administration of drugs in disease treatment. Many groups of drugs, including, for example, antibiotic, anti-fungal, anti-inflammatory, anesthetic, analgesic, anti-allergic, corticosteroid, retinoid and anti-proliferative medications are preferably administered in hydrophobic media, namely ointment. However, ointments often form an impermeable barrier, so that metabolic products and excreta from the wounds to which they are applied are not easily removed or drained away. Furthermore, it is difficult for the active drug dissolved in the carrier to pass through the white petrolatum barrier layer into the wound tissue, so the efficacy of the drug is reduced. In addition, ointments and creams often do not create an environment for promoting respiration of the wound tissue and it is not favorable to the normal respiration of the skin. An additional disadvantage of petroleum jelly-based products relates to the greasy feeling left following their topical application onto the skin, mucosal membranes and wounds.
Foams are considered a more convenient vehicle for topical delivery of active agents. There are several types of topical foams, including aqueous foams, such as commonly available shaving foams; hydroalcoholic foams, emulsion-based foams, comprising oil and water components, and oleaginous foams, which consist of high oil content. In skin therapy, oil containing foams are preferred, since oil contributes to skin protection and moisturization, which improve the therapeutic effect of the formulation.
Dicarboxylic acids are known to possess therapeutic properties. Dicarboxylic acids, and their mercapto, ester and salt derivatives have been used in the treatment of a variety of skin disorders and/or conditions.
Azelaic acid (AZA) is a naturally occurring nine carbon straight chain molecule with two terminal carboxyl groups. AZA is an anti-keratinizing agent, displaying antiproliferative effects on keratinocytes and modulating the early and terminal phases of epidermal differentiation. AZA is a competitive inhibitor of the reduction of testosterone to dihydrotestosterone, and as such is supposed to reduce the production of sebum in the sebaceous gland. Furthermore, recent investigations have demonstrated that AZA and sebacic acid also have anti-bacterial and anti-fungal properties. Structure-activity relationship studies have revealed that these effects are retained when the dicarboxylic acid has a backbone of about 6 to about 14 carbons.
Dicarboxylic acid esters are also known to contribute to the skin penetration of an active agent. Enhancing effects on skin penetration of methyl nicotinate have been observed with dibutyl adipate and dioctyl adipate. Diisopropyl sebacate also markedly enhances the skin penetration of the erythromycin. The skin penetration enhancing properties of mono- or di-esters of dicarboxylic acid, including dibutyl adipate, diethyl sebacate, diisopropyl dimerate, diisopropyl adipate, diisopropyl sebacate and dioctyl succinate have been recognized.
There remains an unmet need for improved, easy to use, stable oil-containing foam formulations, containing oils, which effectively deliver and/or deposit various benefit agents into and onto the skin and/or other target sites and are relatively non-irritating and thus suitable for use by people having sensitive skin and eyes.
The present invention relates to aqueous and non aqueous stable compositions comprising a dicarboxylic acid or ester derivative thereof in which the dicarboxylic acid or ester derivative is a stabilizing emollient and or has a therapeutic effect.
There is provided a pharmaceutical or cosmetic composition comprising:
wherein the benefit agent is an emollient solvent and or a pharmaceutical or cosmetic agent;
wherein the polymeric agent is about 0.01% to about 5% by weight and is selected from the group consisting of a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent;
wherein the benefit agent, stabilizer and solvent are selected to provide a composition that is substantially resistant to aging and to phase separation and or can substantially stabilize other active ingredients; and
wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition it is substantially flowable and provides a foam upon release.
There is also provided a foamable composition as described above wherein the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition, is substantially flowable and provides a foam upon release and wherein the benefit agent, stabilizer and solvent are selected to generate a breakable foam of good to excellent quality.
There is also provided a therapeutic composition comprising:
wherein the benefit agent is an emollient solvent and or a pharmaceutical or cosmetic agent;
wherein the polymeric agent is about 0.01% to about 5% by weight and is selected from the group consisting of a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent;
wherein the benefit agent, stabilizer and solvent are selected to provide a composition that is substantially resistant to aging and to phase separation and or can substantially stabilize other active ingredients; and
wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition it is substantially flowable and provides a foam upon release.
There is also provided a method of treating a disorder of a mammalian subject, comprising:
administering a foamable therapeutic composition to a target site, the composition comprising:
wherein the benefit agent is an emollient solvent and or a pharmaceutical or cosmetic agent;
wherein the polymeric agent is about 0.01% to about 5% by weight and is selected from the group consisting of a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent;
wherein the benefit agent, stabilizer and solvent are selected to provide a composition that is substantially resistant to aging and to phase separation and or can substantially stabilize other active ingredients; and
wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition it is substantially flowable and provides a foam upon release.
There is also provided a pharmaceutical or cosmetic non aqueous composition comprising:
wherein the benefit agent is an emollient solvent and or a pharmaceutical or cosmetic agent;
wherein the polymeric agent is about 0.01% to about 5% by weight and is selected from the group consisting of a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent;
wherein the benefit agent, stabilizer and solvent are selected to provide a composition that is substantially resistant to aging and to phase separation and or can substantially stabilize other active ingredients; and
wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition it is substantially flowable and provides a foam upon release.
There is also provided a therapeutic composition comprising:
wherein the benefit agent is an emollient solvent and or a pharmaceutical or cosmetic agent;
wherein the polymeric agent is about 0.01% to about 5% by weight and is selected from the group consisting of a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent;
wherein the benefit agent, stabilizer and solvent are selected to provide a composition that is substantially resistant to aging and to phase separation and or can substantially stabilize other active ingredients; and
wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition it is substantially flowable and provides a foam upon release.
There is also provided a foamable composition comprising:
There is also provided a foamable composition comprising:
There is also provided a pharmaceutical or cosmetic composition comprising:
wherein the composition is substantially free of water; and
wherein the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition it is substantially flowable and provides a foam upon release.
There is also provided a formulation of any of the compositions described above wherein the composition is in a non foam state.
There is also provided a formulation of any of the compositions described above for use in the manufacture of a medicament.
The present invention relates to a composition comprising a benefit agent, selected from the group consisting of (i) a dicarboxylic acid; and (ii) a dicarboxylic acid ester for use as vehicle composition.
According to one or more embodiments of the present invention, the composition includes:
The present invention further relates to a foamable composition including:
In one or more embodiments there is provided a pharmaceutical or cosmetic composition comprising:
wherein the benefit agent is an emollient solvent and or a pharmaceutical or cosmetic agent
wherein the polymeric agent is about 0.01% to about 5% by weight and is selected from the group consisting of a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent;
wherein the benefit agent, stabilizer and solvent are selected to provide a composition that is substantially resistant to aging and to phase separation and or can substantially stabilize other active ingredients;
wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition it is substantially flowable and provides a foam upon release.
In one or more embodiments there is provided a foamable composition which produces a foam upon release and wherein the benefit agent, stabilizer and solvent are selected to generate a breakable foam of good to excellent quality.
In one or more embodiments there is provided a composition wherein the benefit agent, stabilizer and solvent are selected to generate an emulsion that is substantially resistant to phase reversal.
In one or more embodiments there is provided a composition wherein, the benefit agent, stabilizer and solvent are selected to generate a single phase.
In one or more embodiments there is provided a composition wherein, the benefit agent, stabilizer and solvent are selected to generate a substantially uniform suspension of benefit agent crystals.
In one or more embodiments there is provided a composition, wherein the breakable foam comprises micro or nano particles, crystals or bodies.
In one or more embodiments there is provided a composition, which is substantially resistant to one or more Freeze-Thaw cycles (FTC).
In one or more embodiments there is provided a composition wherein the surface-active agent is a solid, a liquid or a mixture thereof.
In one or more embodiments there is provided a composition wherein the surface active agent is selected from the group consisting of a polysorbate, polyoxyethylene (20) sorbitan monostearate, polyoxyethylene (20) sorbitan monooleate, a polyoxyethylene fatty acid ester, Myrj 45, Myrj 49, Myrj 52 and Myrj 59; a polyoxyethylene alkylyl ether, polyoxyethylene cetyl ether, polyoxyethylene palmityl ether, polyethylene oxide hexadecyl ether, polyethylene glycol cetyl ether, brij 38, brij 52, brij 56 and brij W1, a sucrose ester, a partial ester of sorbitol, sorbitan monolaurate, sorbitan monolaurate a monoglyceride, a diglyceride, isoceteth-20, a sucrose ester, or selected from the group consisting of steareth 2, glyceryl monostearate/PEG 100 stearate, Glyceryl Stearate, Steareth-21, peg 40 stearate, polysorbate 60, polysorbate 80, sorbitan stearate, laureth 4, Sorbitan monooleate, ceteareth 20, steareth 20, ceteth 20, Macrogol Cetostearyl Ether, ceteth 2, PEG-30 Dipolyhydroxystearate, sucrose distearate, polyoxyethylene (100) stearate, PEG 100 stearate, laureth 4, cetomacrogol ether, Cetearyl alcohol, Cetearyl glucoside, Oleyl alcohol, Steareth-2, Diisopropyl adipate, Capric/caprilic triglicerides, Polysorbate 20; Montanov 68 (CETEARYL ALCOHOL (and) CETEARYL GLUCOSIDE.), Sharonmix 824 (a liquid blend of methyl paraben, ethyl paraben and propyl paraben—in phenoxyethanol), Simusol 165 (Glyceryl stearate and PEG-100 stearate). Methyl glucose sequistearate, Peg 30 dipolyhydroxystearate, sucrose stearic acid esters, sorbitan laureth, sorbitan stearate and mixtures thereof.
In one or more embodiments there is provided a composition wherein the surface active agent comprises at least one ester based surfactant or at least one ether based surfactant.
In one or more embodiments there is provided a composition wherein the surface active agent is reduced about in proportion to the increase in dicarboxylic ester.
In one or more embodiments there is provided a composition wherein the stabilizer is not a polymeric agent.
In one or more embodiments there is provided a composition wherein the surface active agent comprises a non-ionic surfactant that does not contain a polyoxyethylene (POE) moiety.
In one or more embodiments there is provided a composition wherein the surface active agent is selected from the group consisting of a non-ethoxylated sorbitan ester, a glycerol fatty acid ester, a sucrose ester and an alkyl polyglycoside or is selected from the group consisting of sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan monolaurate, sorbitan sesquioleate, glycerol monostearate, glycerol monooleate, sucrose stearate, sucrose distearate, sucrose palmitate sucrose laurate and lauryl diglucoside.
In one or more embodiments there is provided a composition wherein the polymeric agent is selected from the group consisting of carbopol 934, pemulen TR2, klucel EF, xanthan gum, methocel A4M, and carboxy methyl cellulose or selected from the group consisting of locust bean gum, sodium alginate, sodium caseinate, egg albumin, gelatin agar, carrageenin gum, sodium alginate, xanthan gum, quince seed extract, tragacanth gum, guar gum, cationic guars, hydroxypropyl guar gum, starch, an amine-bearing polymer, chitosan, alginic acid, hyaluronic acid, a chemically modified starch, a carboxyvinyl polymer, polyvinylpyrrolidone, polyvinyl alcohol, a polyacrylic acid polymer, a polymethacrylic acid polymer, polyvinyl acetate, a polyvinyl chloride polymer, a polyvinylidene chloride polymer, methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxyethyl cellulose, hydroxy propylmethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethyl cellulose, carboxymethylcellulose carboxymethylhydroxyethylcellulose, a cationic cellulose aluminum starch octenylsuccinate (ASOS), PEG 1000, PEG 4000, PEG 6000 and PEG 8000.
In one or more embodiments there is provided a composition wherein the polymeric agent is a derivatized polymer.
In one or more embodiments there is provided a composition wherein the derivatized polymer is a polymeric emulsifier.
In one or more embodiments there is provided a composition wherein the benefit agent is selected from the group consisting of diisopropyl adipate, dimethyl sebacate, dioctyl malate, diethyl sebacate, azelaic acid and TU-2100.
In one or more embodiments there is provided a composition wherein, further comprising an additional active agent.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid has the molecular formula HOOC—(CH2)n—COOH; and wherein n is in the range between 0 and 32.
In one or more embodiments there is provided a composition wherein n is in the range between 4 and 10.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid is selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid, maleic acid and fumaric acid.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid is selected from the group consisting of adipic acid, azelaic acid and sebacic acid.
In one or more embodiments there is provided a composition wherein further containing a foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols, derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having at least one double bond; a fatty acid having at least one double bond; a branched fatty alcohol; a branched fatty acid and a fatty acid substituted with a hydroxyl group.
In one or more embodiments there is provided a composition wherein further containing at least one organic carrier selected from the group consisting of a hydrophobic organic carrier, an emollient and mixtures thereof, at a concentration of about 2% to about 50% by weight.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid or dicarboxylic acid ester is in a concentration between about 0.1% and about 60%.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid is azelaic acid, and wherein the concentration of azelaic acid is between 5% and 25%.
In one or more embodiments there is provided a composition wherein the pH of the composition is below the first pKa of the dicarboxylic acid.
In one or more embodiments there is provided a composition wherein the pH of the composition is between the first and second pKa of the dicarboxylic acid.
In one or more embodiments there is provided a composition wherein the pH of the composition is above the second pKa of the dicarboxylic acid.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid is azelaic acid the pH of the composition is below 5.3.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid is azelaic acid the pH of the composition is between about 4.5 and about 5.3.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid ester is selected from the group consisting of a mono ester of said dicarboxylic acid, and a diester of the dicarboxylic acid.
In one or more embodiments there is provided a composition wherein the alcohol moiety of the dicarboxylic acid ester is selected from the group consisting of an alkyl alcohol, an aryl alcohol, methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, t-butyl alcohol, pentyl alcohol, hexyl alcohol, octyl alcohol, decyl alcohol, capryl alcohol, phenol and benzyl alcohol.
In one or more embodiments there is provided a composition wherein the alcohol moiety of the dicarboxylic acid ester is a biologically active alcohol.
In one or more embodiments there is provided a composition wherein the biologically active alcohol is selected from the group consisting of a hydroxyalkylbenzoate, salicylic acid, a dihydroxybenzene, hydroxytoluene, an alpha-hydroxy acid, retinol, a vitamin A derivative, a steroid, vitamin E, a vitamin E derivative, vitamin D and a vitamin D derivative.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid ester is selected from the group consisting of diisobutyl adipate, diisopropyl adipate, diisopropyl sebacate, diisosteary dimer dilinoleate, diisostearyl fumerate, diisopropyl dimerate, diethyl adipate, diethyl sebacate, diethylhexyl adipate, diethylhexyl malate, dioctyl malate, diethyl succinate, and dioctyl sebacate.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid ester is diisopropyl adipate, in an amount from about 0.1% to about 60%
In one or more embodiments there is provided a composition wherein the organic carrier is selected from the group consisting of mineral oil, triglycerides, medium chain triglyceride (MCT) oil, capric/caprylic triglyceride, alkyl esters of fatty acids such as isopropyl palmitate, isopropyl myristate, isopropyl isostearate, poly propylene glycol 15-stearly ether, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, acetylated lanolin alcohol, cetyl acetate, phenyl trimethicone, glyceryl oleate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, ricinoleate, isopropyl lanolate, pentaerythrityl tetrastearate, neopentylglycol dicaprylate/dicaprate, isononyl isononanoate, isotridecyl isononanoate, myristyl myristate, triisocetyl citrate, octyl dodecanol, maleated soybean oil, unsaturated or polyunsaturated oils, such as olive oil, corn oil, soybean oil, canola oil, cottonseed oil, coconut oil, sesame oil, sunflower oil, borage seed oil, syzigium aromaticum oil, hempseed oil, herring oil, cod-liver oil, salmon oil, flaxseed oil, wheat germ oil, evening primrose oils; essential oils; and silicone oils, such as dimethicone, cyclomethicone, polyalkyl siloxane, polyaryl siloxane, polyalkylaryl siloxane, a polyether siloxane copolymer and a poly(dimethylsiloxane)-(diphenyl-siloxane) copolymer.
In one or more embodiments there is provided a composition wherein the organic carrier comprises a polypropylene glycol alkyl ether.
In one or more embodiments there is provided a composition further containing at least one polar solvent.
In one or more embodiments there is provided a composition wherein the polar solvent is selected from the group consisting of dimethyl isosorbide, glycerol, propylene glycol, hexylene glycol, diethylene glycol, propylene glycol n-alkanols, terpenes, di-terpenes, tri-terpenes, limonene, terpene-ol, 1-menthol, dioxolane, ethylene glycol, other glycols, oleyl alcohol, alpha-hydroxy acids, such as lactic acid and glycolic acid, sulfoxides, such as dimethylsulfoxide (DMSO), dimethylformanide, methyl dodecyl sulfoxide, dimethylacetamide, azone (1-dodecylazacycloheptan-2-one), 2-(n-nonyl)-1,3-dioxolane, alkanols, such as dialkylamino acetates, and admixtures thereof.
In one or more embodiments there is provided a composition wherein the organic carrier is capric/caprylic triglyceride and wherein the dicarboxylic acid is azelaic acid.
In one or more embodiments there is provided a composition wherein the polar solvent is selected from the group consisting of dimethyl isosorbide, glycerol, propylene glycol, hexylene glycol, terpene-ol, oleyl alcohol, lactic acid and glycolic acid wherein the dicarboxylic acid is azelaic acid.
In one or more embodiments there is provided a composition wherein the organic carrier is capric/caprylic triglyceride.
In one or more embodiments there is provided a composition wherein the organic solvent comprises at least one organic carrier, selected from the group capric/caprylic triglyceride, a polypropylene glycol alkyl ether an ester of a fatty acid and mineral oil and wherein the dicarboxylic acid ester is diisopropyl adipate.
In one or more embodiments there is provided a composition further comprising a polar solvent, selected from the group consisting of dimethyl isosorbide, glycerol, propylene glycol, hexylene glycol, terpene-ol, oleyl alcohol, lactic acid and glycolic acid.
In one or more embodiments there is provided a composition wherein the benefit agent, stabilizer and solvent are selected to generate an emulsion that can produce a substantially strong and closed packed barrier between the oil and the water phases whilst maintaining a fluid constitution
In one or more embodiments there is provided a composition further comprising an additional component selected from the group consisting of a modulating agent, a polar solvent, an anti perspirant, an anti-static agent, a buffering agent, a bulking agent, a chelating agent, a colorant, a conditioner, a deodorant, a diluent, a dye, an emollient, fragrance, a humectant, an occlusive agent, a penetration enhancer, a perfuming agent, a permeation enhancer, a pH-adjusting agent, a preservative, a skin penetration enhancer, a sunscreen, a sun blocking agent, a sunless tanning agent, and a vitamin.
In one or more embodiments there is provided a composition wherein the organic carrier is selected from the group consisting of PPG 15-stearyl ether, isopropyl myristate and medium chain triglyceride oil and capric/caprylic triglyceride and the benefit agent is a solid at ambient temperature.
In one or more embodiments there is provided a therapeutic composition comprising therapeutically effective amount of an active agent; and a beneficially or therapeutically effective concentration of at least one benefit agent, selected from the group consisting of:
i. a dicarboxylic acid; and
ii. a dicarboxylic acid ester
wherein the active agent is selected from the group consisting of active herbal extracts, acaricides, age spot and keratose removing agents, allergen, analgesics, local anesthetics, antiacne agents, antiallergic agents, antiaging agents, antibacterials, antibiotics, antiburn agents, anticancer agents, antidandruff agents, antidepressants, antidermatitis agents, antiedemics, antihistamines, antihelminths, antihyperkeratolyte agents, antiinflammatory agents, antiirritants, antilipemics, antimicrobials, antimycotics, antiproliferative agents, antioxidants, anti-wrinkle agents, antipruritics, antipsoriatic agents, antirosacea agents antiseborrheic agents, antiseptic, antiswelling agents, antiviral agents, antiyeast agents, astringents, topical cardiovascular agents, chemotherapeutic agents, corticosteroids, dicarboxylic acids, disinfectants, fungicides, hair growth regulators, hormones, hydroxy acids, immunosuppressants, immunoregulating agents, insecticides, insect repellents, keratolytic agents, lactams, metals, metal oxides, mitocides, neuropeptides, non-steroidal anti-inflammatory agents, oxidizing agents, pediculicides, photodynamic therapy agents, retinoids, sanatives, scabicides, self tanning agents, skin whitening agents, vasoconstrictors, vasodilators, vitamins, vitamin D derivatives, wound healing agents and wart removers.
In one or more embodiments there is provided a foamable therapeutic composition wherein the dicarboxylic acid ester is present in the composition in an amount sufficient to solubilize the active agent.
In one or more embodiments there is provided a foamable therapeutic composition wherein the active agent is a steroid.
In one or more embodiments there is provided a foamable therapeutic composition wherein the steroid is selected from the group consisting of bydrocortisone, hydroxyltriamcinolone, alpha-methyl dexamethasone, dexamethasone-phosphate, beclomethsone dipropionate, clobetasol valemate, desonide, desoxymethasone, desoxycorticosterone acetate, dexamethasone, dichlorisone, diflorasone diacetate, diflucortolone valerate, fluadrenolone, fluclorolone acetonide, fludrocortisone, flumethasone pivalate, fluosinolone acetonide, fluocinonide, flucortine butylester, fluocortolone, fluprednidene (fluprednylidene) acetate, flurandrenolone, halcinonide, hydrocortisone acetate, hydrocortisone butyrate, methylprednisolone, triamcinolone acetonide, cortisone, cortodoxone, flucetonide, fludrocortisone, difluorosone diacetate, fluradrenolone acetonide, medrysone, amcinafel, amcinafide, betamethasone and the balance of its esters, chloroprednisone, chlorprednisone acetate, clocortelone, clescinolone, dichlorisone, difluprednate, flucloronide, flunisolide, fluoromethalone, fluperolone, fluprednisolone, hydrocortisone valerate, hydrocortisone cyclopentylpropionate, hydrocortmate, mepreddisone, paramethasone, prednisolone, prednisone, beclomethasone dipropionate, triamcinolone.
In one or more embodiments there is provided a foamable therapeutic composition wherein the active agent is an immunomodulator.
In one or more embodiments there is provided a foamable therapeutic composition, wherein the immunomodulator is selected from the group consisting of a cyclic peptides, cyclosporine, tacrolimus, tresperimus, pimecrolimus, sirolimus, verolimus, laflunimus, laquinimod and imiquimod.
In one or more embodiments there is provided a foamable therapeutic composition, wherein the dicarboxylic acid ester is present in the composition in an amount sufficient to solubilize the immunomodulator.
In one or more embodiments there is provided a foamable therapeutic composition, wherein the dicarboxylic acid ester is diisopropyl adipate.
In one or more embodiments there is provided a composition wherein the surface active agent comprises a non-ionic surfactant that does not contain a polyoxyethylene (POE) moiety.
In one or more embodiments there is provided a composition wherein the surface active agent is selected from the group consisting of a non-ethoxylated sorbitan ester, a glycerol fatty acid ester, a sucrose ester and an alkyl polyglycoside or is selected from the group consisting of sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan monolaurate, sorbitan sesquioleate, glycerol monostearate, glycerol monooleate, sucrose stearate, sucrose distearate, sucrose palmitate sucrose laurate and lauryl diglucoside.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid is azelaic acid.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid is azelaic acid and further comprising an organic solvent comprising capric/caprylic triglyceride.
In one or more embodiments there is provided a composition wherein the dicarboxylic acid is azelaic acid and further comprising an organic solvent comprising capric/caprylic triglyceride and further comprising at least one polar carrier, selected from the group consisting of dimethyl isosorbide, glycerol, propylene glycol, hexylene glycol, terpene-ol, oleyl alcohol, lactic acid and glycolic acid.
In one or more embodiments there is provided a method of treating a disorder of a mammalian subject, comprising:
administering a foamable therapeutic composition to a target site, the composition comprising a therapeutically effective amount of an active agent; and a beneficially or therapeutically effective concentration of at least one benefit agent, selected from the group consisting of
In one or more embodiments there is provided a method of treating a disorder of a mammalian subject, wherein the disorder is selected from the group consisting of dermatological pain, dermatological inflammation, acne, acne vulgaris, inflammatory acne, non-inflammatory acne, acne fulminans, nodular papulopustular acne, acne conglobata, dermatitis, bacterial skin infections, fungal skin infections, viral skin infections, parasitic skin infections, skin neoplasia, skin neoplasms, pruritis, cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, scalded skin syndrome, folliculitis, furuncles, hidradenitis suppurativa, carbuncles, paronychial infections, rashes, erythrasma, impetigo, ecthyma, yeast skin infections, warts, molluscum contagiosum, trauma or injury to the skin, post-operative or post-surgical skin conditions, scabies, pediculosis, creeping eruption, eczemas, psoriasis, pityriasis rosea, lichen planus, pityriasis rubra pilaris, edematous, erythema multiforme, erythema nodosum, granuloma annulare, epidermal necrolysis, sunburn, photosensitivity, pemphigus, bullous pemphigoid, dermatitis herpetiformis, keratosis pilaris, callouses, corns, ichthyosis, skin ulcers, ischemic necrosis, miliaria, hyperhidrosis, moles, Kaposi's sarcoma, melanoma, malignant melanoma, basal cell carcinoma, squamous cell carcinoma, poison ivy, poison oak, contact dermatitis, atopic dermatitis, rosacea, purpura, moniliasis, candidiasis, baldness, alopecia, Behcet's syndrome, cholesteatoma, Dercum disease, ectodermal dysplasia, gustatory sweating, nail patella syndrome, lupus, hives, hair loss, Hailey-Hailey disease, chemical or thermal skin burns, scleroderma, aging skin, wrinkles, sun spots, necrotizing fasciitis, necrotizing myositis, gangrene, scarring, and vitiligo; and wherein the active agent is suitable for treating said disorderm or is selected from the group consisting of chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranuloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VIN), contact dermatitis, pelvic inflammation, endometritis, salpingitis, oophoritis, genital cancer, cancer of the cervix, cancer of the vulva, cancer of the vagina, vaginal dryness, dyspareunia, anal and rectal disease, anal abscess/fistula, anal cancer, anal fissure, anal warts, Crohn's disease, hemorrhoids, anal itch, pruritus ani, fecal incontinence, constipation, polyps of the colon and rectum; and wherein the active agent is suitable for treating said disorder.
In one or more embodiments there is provided a method of treating a disorder of a mammalian subject, wherein the disorder is a dermatological disorder, which can be treated by a dicarboxylic acid or dicarboxylic acid ester.
In one or more embodiments there is provided a method of treating a disorder of a mammalian subject, wherein the disorder is a dermatological disorder, which can be treated by a topical steroid, an immunomodulator or an anti-infective agent.
In one or more embodiments there is provided a method of treating a disorder of a mammalian subject, wherein the disorder is selected from atopic dermatitis and psoriasis; and the active agent is selected from (i) steroid; and (ii) a combination of steroid and an additional non-steroidal active agent.
In one or more embodiments there is provided a method of treating a disorder of a mammalian subject, wherein the disorder is selected from psoriasis and atopic dermatitis and the active agent comprises an immunomodulator.
In one or more embodiments there is provided a therapeutic composition comprising: a therapeutically effective amount of an active agent wherein the active agent is substantially insoluble in water; and a beneficially or therapeutically effective concentration of at least one benefit agent, comprising a dicarboxylic acid ester in which the active agent is substantially soluble; wherein the benefit agent, stabilizer and solvent are selected to generate an emulsion that can produce a substantially strong and closed packed barrier between the oil and the water phases whilst maintaining a fluid constitution.
In one or more embodiments there is provided a foamable composition comprising: a liquid dicarboxylic acid ester, said ester having emollient properties; a stabilizer selected from the group consisting of at least one surface-active agent; at least one polymeric agent and mixtures thereof, an active agent, said active agent soluble in or having enhanced penetration due to the dicarboxylic acid; wherein the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition it is substantially flowable and provides a foam upon release
In one or more embodiments the stabilizer comprises a ether-based or ester-based surfactant.
In one or more embodiments the stabilizer comprises an alkyl-derivatized polymer having polymeric emulsifying properties.
In one or more embodiments the composition is an oil in water emulsion.
In one or more embodiments the dicarboxylic acid ester comprises about or more than 50 wt % of the composition.
In one or more embodiments the active agent is otherwise insoluble or unstable, but is solubilized or stabilized by DCA.
In one or more embodiments the composition is substantially free of water In one or more embodiments the composition is in a non foam state.
In one or more embodiments there is provided a pharmaceutical or cosmetic composition comprising:
All % values are provided on a weight (w/w) basis.
Dicarboxylic Acid and Esters Thereof
In an embodiment of the present invention, the organic carrier comprises an ester of a dicarboxylic acid. In the context of the present invention, a dicarboxylic acid is an organic material, having two carboxylic acid moieties on its carbon atom skeleton. They have the general molecular formula HOOC—(CH2)n—COOH.
Non limiting examples of some elementary dicarboxylic acids (DCA's) are succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid.
In an embodiment of the present invention, the dicarboxylic acid is a short-chain dicarboxylic acid. The simplest Short-chain dicarboxylic acid are oxalic acid (n=0), malonic acid (n=1), succinic acid (n=2) and glutaric acid (n=3).
Additional members of dicarboxylic acid group are derived from natural products or from synthesis, having “n” value from 4 up to 21. In one or more embodiments of the present invention, the dicarboxylic acid is selected from the group consisting of adipic acid (hexanedioic acid; n=4), pimelic acid (heptanedioic acid; n=5), suberic acid (octanedioic acid; n=6), azelaic acid (nonanedioic acid; n=7), sebacic acid (decanedioic acid; n=8) and dodecanedioic acid (n=10).
In an additional embodiment, the dicarboxylic acid contains 10 to 32 carbon atoms in their carbon atom skeleton, such as brassylic acid (n=11), thapsic acid (n=14), 14-methylnonacosanedioic acid (C29) and 14,15-dimethyltriacontanedioic acid (C30).
The carbon atom skeleton of the dicarboxylic acid can be saturated or unsaturated, such as in the case of maleic acid and fumaric acid.
In general terms non-esterified dicarboxylic acids are usually solid at ambient temperature. Non limiting examples of solid DCA's are oxalic, malonic glutaric, sebacic, phthalic and azaleic acid. Similarly, in general terms DCA's with short carbon chain skeleton are water soluble, such as oxalic, malonic, and succinic acid. Longer chain DCA's like adipic acid and having up to 10 carbon atoms in the carbon chain are slightly soluble in water. Also non “simple” DCA's are generally solid at ambient temperature, insoluble in water, and are usually more oil soluble than their parent DCA's
An ester of a dicarboxylic acid is a chemical compound produced by the reaction between a dicarboxylic acid and at least one alcohol, with the elimination of a molecule of water. The reaction of a dicarboxylic acid with one alcohol molecule results in a mono ester of a dicarboxylic acid. The reaction of a dicarboxylic acid with two alcohol molecules results in a diester of the dicarboxylic acid.
DCA esters are typically hydrophobic and generally insoluble in water. Most simple esters of DCA are liquid. By simple it is meant that the alcohol moiety linked to the DCA is a straight or branched alkyl chain. Examples of liquid simple diesters are dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diethyl sebacate, dibutyl sebacate, and diisopropyl adipate. Aromatic diesters of pthalic, isopthalic and therephalic acids are in the range of slightly soluble to insoluble.
The alcohol molecule, to be linked to the dicarboxylic acid, can be selected from the group of an alkyl an aryl alcohol. Exemplary alcohol, suitable according to the present invention include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, t-butyl alcohol, pentyl alcohol, hexyl alcohol, octyl alcohol, decyl alcohol, capryl alcohol, phenol, benzyl alcohol and the like.
In one or more embodiments, the alcohol is a biologically active alcohol. In an embodiment, biologically active alcohol possesses keratolytic activities. Examples of keratolytically active alcohol suitable according to the present invention include ortho-, meta- and para-hydroxyalkylbenzoate, salicylic acid, ortho-, meta-, and para-dihydroxybenzene, ortho-, meta-, and para-hydroxytoluene, alpha-hydroxy acid, retinol, and derivatives thereof such as provided in U.S. Pat. No. 6,180,669, which is incorporated herein by reference. In another embodiment, the biologically active alcohol is selected from the group consisting of steroidal hormones, steroidal anti-inflammatory agents, vitamin E and vitamin D, such as provided in U.S. Pat. Appl. 20040191196, which is incorporated herein by reference.
In an embodiment of the present invention, the dicarboxylic acid is incorporated in the foamable composition in a safe and effective amount. The term “safe and effective” means an amount of an active agent that exerts a therapeutic effect on a specific disorder, without causing adverse effects that may prohibit the use of said active agent in the treatment of said disorder. The dicarboxylic acid can be incorporated in the foamable composition of the present invention in a concentration between about 0.1% and about 25%, more preferably between about 1% and about 20%.
In an embodiment of the present invention, the dicarboxylic acid is azelaic acid, and its concentration in the composition is between 5% and 25%, or between 10% and 20%.
In one or more embodiment, the dicarboxylic acid is present in the composition in an ionized state. The first and second pKa values for a dicarboxylic acid are different from one another. Depending on the pH of the composition and the specific first and second pKa of the dicarboxylic acid, said dicarboxylic acid can be non-ionized (both carboxy groups are in their acid state); semi-ionized (one carboxy group is in an acid state and the second is in an anionic state); or doubly-ionized, wherein both carboxy groups are anionic. For example, in maleic acid the first pKa is 1.9 and the second pKa is 4.4. Therefore, if the pH of the composition is between about 2 and about 4.3, the maleic acid is mostly semi-ionized and at pH above 4.5 the maleic acid is mostly doubly-ionized. Likewise, in the case of azelaic acid the first pKa is about 4.5 and the second pKa is about 5.3. Therefore, if the pH of the composition is below 4.5, the azelaic acid is non-ionized; between about 4.5 and about 5.3, it is mostly semi-ionized and at a pH above 5.3, the azelaic acid is mostly doubly-ionized.
The ionization state of the dicarboxylic acid has influence on its therapeutic potential. On one hand, if the dicarboxylic acid is doubly anionic, its penetration into the skin will be very low, due to the lipophilic nature of the skin. On the other hand, the non-ionic state is available at very low (acidic) pH values, which can cause skin irritation.
Hence, in one or more embodiments, the pH of the composition is adjusted to a value between the first and second pKa values of the dicarboxylic acid. For example, in the case of azelaic acid, the pH is adjusted in the range from about 2.0 to about 4.5, preferably in the range from about 3.0 to about 4.5. Thus, in an embodiment of the present invention, the dicarboxylic acid is azelaic acid, and the pH of the composition is adjusted in the range from about 4.0 to about 6.0, preferably in the range from about 4.5.0 to about 5.3.
Dicarboxylic acid esters are considered excellent emollients and their inclusion in a composition which is intended for topical application contributes to the overall improvement of skin condition. Emollient dicarboxylic esters typically include an alkyl alcohol moiety, wherein said alkyl alcohol has a carbon chain of at least one or two or more carbon atoms. In certain embodiments, the alkyl alcohol is a branched alkyl, such as isopropyl alcohol; and in other embodiments the alkyl alcohol has a long carbon backbone, e.g., a carbon chain length of 6-18.
Dicarboxylic acid esters can be complex substances. One example is TU 2100 (Nonanedioic acid, bis[(2-(ethoxycarbonyl)phenyl] ester). It is also known as Azelaoyl di(ethyl salicylate) and has a CAS Registry Number: [207972-39-2] and is a solid. TU-2100 is a “non-simple” diester; with a high molecular weight, and a melting point of 34-36, which is relatively low with reference to its molecular weight.
Non-limiting examples of emollient dicarboxylic acid esters include diisobutyl adipate, diisopropyl adipate, diisopropyl sebacate, diisosteary dimer dilinoleate, diisostearyl fumerate, diisopropyl dimerate, diethyl adipate, diethyl sebacate, diethylhexyl adipate, diethylhexyl malate, dioctyl malate, diethyl succinate, and dioctyl sebacate. Other diccarboxylic acid esters are dimethyl phthalate, diethyl phthalate, diethyl sebacate, diisopropyl dimerate, dibutyl sebacate, dibutyl phthalate and dioctyl phthalate. Additionally dicarboxylic acid esters are capable of solubilizing active components which are difficult to dissolve by other oils. Furthermore, certain dicarboxylic acid esters, such as diisopropyl adipate and dimethyl sebacate are known to enhance the skin penetration of active agents. Hence in an embodiment of the present invention, the dicarboxylic acid ester is incorporated in the foamable composition in an amount, suitable to exert its emollient effect, solubilizing effect or skin penetration enhancing effect. In one or more embodiments, the dicarboxylic acid ester is incorporated in the foamable composition of the present invention in a concentration between about 0.1% and about 30%, more preferably between about 1% and about 25%.
In one embodiment, the dicarboxylic acid ester is diisopropyl adipate (DISPA), in an amount between about 0.1% and about 30%, or about 1% and about 25%.
As can be appreciated by the discussion above, there is a varied range of dicarboxylic acids and esters; some are solid, some are liquid, some are water soluble, some are slightly soluble and others are insoluble in water. There is also a varied range of functions and physical properties. Some are active agents and others are solvents and some are penetration enhancers. The challenges of making a uniform solution of solid DCA's without crystal formation or precipitation or a uniform suspension of insoluble agent, or using a DCA to solubilise a substance which is otherwise insoluble or as an emollient or as a penetration enhancer or more than one of them are as varied as their different natures and properties as may be appreciated by a man of the art. In other words each agent has its own properties and challenges which are interrelated to the objectives and other ingredients of the formulation
The sensory properties of foams containing a dicarboxylic acid or a dicarboxylic acid ester are favorable, as revealed by consumer panel tests.
Foam Adjuvant
Optionally, the foamable vehicle further includes a foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols, derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having at least one double bond; a fatty acid having at least one double bond; a branched fatty alcohol; a branched fatty acid and a fatty acid substituted with a hydroxyl group.
Additional Organic Carrier
Optionally, the foamable vehicle further includes at least one additional organic carrier selected from the group consisting of a hydrophobic organic carrier, an emollient and mixtures thereof, at a concentration of about 2% to about 50% by weight. The hydrophobic solvent and/or the emollient can be selected from the group consisting of mineral oil, triglycerides, capric/caprylic triglyceride, alkyl esters of fatty acids such as isopropyl palmitate, isopropyl isostearate, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, acetylated lanolin alcohol, cetyl acetate, phenyl trimethicone, glyceryl oleate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, ricinoleate, isopropyl lanolate, pentaerythrityl tetrastearate, neopentylglycol dicaprylate/dicaprate, isononyl isononanoate, isotridecyl isononanoate, myristyl myristate, triisocetyl citrate, octyl dodecanol, maleated soybean oil, unsaturated or polyunsaturated oils, such as olive oil, corn oil, soybean oil, canola oil, cottonseed oil, coconut oil, sesame oil, sunflower oil, borage seed oil, syzigium aromaticum oil, hempseed oil, herring oil, cod-liver oil, salmon oil, flaxseed oil, wheat germ oil, evening primrose oils; essential oils; and silicone oils, such as dimethicone, cyclomethicone, polyalkyl siloxane, polyaryl siloxane, polyalkylaryl siloxane, a polyether siloxane copolymer and a poly(dimethylsiloxane)-(diphenyl-siloxane) copolymer.
In an embodiment of the present invention, the organic carrier is a polypropylene glycol alkyl ether (PPG alkyl ether). PPG alkyl ethers are liquid, water-insoluble propoxylated fatty alcohols, having the molecular formula of RO(CH2CHOCH3)n; wherein “R” is a straight-chained or branched C4 to C22 alkyl group; and “n” is in the range between 4 and about 50. They are organic liquids that function as skin-conditioning agent in pharmaceutical and cosmetic formulations. Non-limiting exemplary PPG alkyl ethers include PPG stearyl ethers and PPG Butyl Ether. Preferred PPG alky ethers according to the present invention include PPG-15 Stearyl Ether, PPG-2 Butyl Ether, PPG-9-13 Butyl Ether and PPG-40 Butyl Ether.
According to a preferred embodiment, the organic carrier does not contain petrolatum, which is also termed “white petrolatum” and “Vaseline”. Petrolatum often forms an impermeable occlusive barrier, so that metabolic products and excreta from damaged tissue are not easily removed or drained away. Furthermore, it is difficult for the active drug dissolved in the carrier to pass through the white petrolatum barrier layer into the treated tissue, so the efficacy of the drug is reduced. An additional disadvantage of petroleum jelly-based products relates to the greasy feeling left following their topical application onto the skin, mucosal membranes and wounds causing inconvenience to the user, thereby decreasing treatment compliance.
Polymeric Agent
The composition of the present invention contains a polymeric agent selected from the group consisting of a bioadhesive agent, a gelling agent, a film forming agent and a phase change agent. A polymeric agent enhances the creation of foam having fine bubble structure, which does not readily collapse upon release from the pressurized aerosol can. The polymeric agent serves to stabilize the foam composition and to control drug residence in the target organ.
Exemplary polymeric agents include, in a non-limiting manner, naturally-occurring polymeric materials, such as locust bean gum, sodium alginate, sodium caseinate, egg albumin, gelatin agar, carrageenin gum, sodium alginate, xanthan gum, quince seed extract, tragacanth gum, guar gum, cationic guars, hydroxypropyl guar gum, starch, amine-bearing polymers such as chitosan; acidic polymers obtainable from natural sources, such as alginic acid and hyaluronic acid; chemically modified starches and the like, carboxyvinyl polymers, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid polymers, polymethacrylic acid polymers, polyvinyl acetate polymers, polyvinyl chloride polymers, polyvinylidene chloride polymers and the like.
Additional exemplary polymeric agents include semi-synthetic polymeric materials such as cellulose ethers, such as methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxyethyl cellulose, hydroxy propylmethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethyl cellulose, carboxymethylcellulose carboxymethylhydroxyethylcellulose, and cationic celluloses, carbomer (homopolymer of acrylic acid is crosslinked with an allyl ether pentaerythritol, an allyl ether of sucrose, or an allyl ether of propylene, such as Carbopol® 934, Carbopol® 940, Carbopo® 941, Carbopol® 980 and Carbopol® 981, pemulen and aluminum starch octenylsuccinate (ASOS). Polyethylene glycol, having molecular weight of 1000 or more (e.g., PEG 1,000, PEG 4,000, PEG 6,000 and PEG 10,000) also have gelling capacity and while they are considered herein as “secondary polar solvents”, as detailed herein, they are also considered polymeric agents.
In one or more embodiments the polymeric agents have emulsifying properties. In certain preferred embodiments the polymeric agent is a derivatized hydrophilic polymer with hydrophobic alkyl moieties Other types that may also a similar stabilizing effect are silicone copolymers and derivatized starch ASOS.
Mixtures of the above polymeric agents are contemplated.
The concentration of the polymeric agent should be selected so that the composition, after filling into aerosol canisters, is flowable, and can be shaken in the canister. In one or more embodiments, the concentration of the polymeric agent is selected such that the viscosity of the composition, prior to filling of the composition into aerosol canisters, is less than 12,000 CPs, and more preferably, less than 10,000 CPs.
Surface Active Agent
The composition of the present invention further contains a surface-active agent. Surface-active agents (also termed “surfactants”) include any agent linking oil and water in the composition, in the form of emulsion. A surfactant's hydrophilic/lipophilic balance (HLB) describes the emulsifier's affinity toward water or oil. HLB is defined for non-ionic surfactants. The HLB scale ranges from 1 (totally lipophilic) to 20 (totally hydrophilic), with 10 representing an equal balance of both characteristics. Lipophilic emulsifiers form water-in-oil (w/o) emulsions; hydrophilic surfactants form oil-in-water (o/w) emulsions. The HLB of a blend of two emulsifiers equals the weight fraction of emulsifier A times its HLB value plus the weight fraction of emulsifier B times its HLB value (weighted average). In many cases a single surfactant may suffice. In other cases a combination of two or more surfactants is desired. Reference to a surfactant in the specification can also apply to a combination of surfactants or a surfactant system. As will be appreciated by a person skilled in the art which surfactant or surfactant system is more appropriate is related to the vehicle and intended purpose. In general terms a combination of surfactants is usually preferable where the vehicle is an emulsion. In an emulsion environment a combination of surfactants can be significant in producing breakable forms of good quality. It has been further discovered that the generally thought considerations for HLB values for selecting a surfactant or sufactant combination are not always binding for emulsions and that good quality foams can be produced with a surfactant or surfactant combination both where the HLB values are in or towards the lipophilic side of the scale and where the HLB values are in or towards the hydrophilic side of the scale. Surfactants also play a role in foam formation where the foamable formulation is a single phase composition.
According to one or more embodiments the composition contains a single surface active agent having an HLB value between about 2 and 9, or more than one surface active agent and the weighted average of their HLB values is between about 2 and about 9. Lower HLB values may in certain embodiments be more applicable to water in oil emulsions.
According to one or more embodiments the composition contains a single surface active agent having an HLB value between about 7 and 14, or more than one surface active agent and the weighted average of their HLB values is between about 7 and about 14. Mid range HLB values may in certain embodiments be more suitable for oil in water emulsions.
According to one or more other embodiments the composition contains a single surface active agent having an HLB value between about 9 and about 19, or more than one surface active agent and the weighted average of their HLB values is between about 9 and about 19. In a waterless or substantially waterless environment a wide range of HLB values may be suitable.
Preferably, the composition of the present invention contains a non-ionic surfactant. Nonlimiting examples of possible non-ionic surfactants include a polysorbate, polyoxyethylene (20) sorbitan monostearate, polyoxyethylene (20) sorbitan monooleate, a polyoxyethylene fatty acid ester, Myrj 45, Myrj 49, Myrj 52 and Myrj 59; a polyoxyethylene alkyl ether, polyoxyethylene cetyl ether, polyoxyethylene palmityl ether, polyethylene oxide hexadecyl ether, polyethylene glycol cetyl ether, steareths such as steareth 2, brij 21, brij 721, brij 38, brij 52, brij 56 and brij W1, a sucrose ester, a partial ester of sorbitol and its anhydrides, sorbitan monolaurate, sorbitan monolaurate, a monoglyceride, a diglyceride, isoceteth-20 and mono-, di- and tri-esters of sucrose with fatty acids. In certain embodiments, suitable sucrose esters include those having high monoester content, which have higher HLB values.
In certain embodiments with DCA esters as emollient, surfactants are selected which can provide a close packed sufacant layer separating the oil and water phases. To achieve such objectives combinations of at least two surfactants are selected. Preferrably, they should be complex emulgators and more preferably they should both be of a similar molecular type. For example, a pair of ethers like steareth 2 and steareth 21, or a pair of esters for example, PEG-40 stearate and polysorbate 80. In Certain circumstances POE esters cannot be used and a combination of sorbitan laurate and sorbitan stearate or a combination of sucrose stearic acid ester mixtures and sodium laurate may be used. All these combinations due to heir versatility and strength may also be used satisfactorily and effectively with solutions of DCA's and with solid/crystalline suspensions, although the amounts and proportion may be varied according to the formulation and its objectives as will be appreciated by a man of the art.
It has been discovered also that by using a derivatized hydrophilic polymer with hydrophobic alkyl moieties as a polymeric emulsifier such as pemulen it is possible to stabilize the emulsion better about or at the region of phase reversal tension. Other types of derivatized polymers like silicone copolymers, derivatized starch [Aluminum Starch Octenylsuccinate (ASOS)]/[DRY-FLO AF Starch], and derivatized dexrin may also a similar stabilizing effect.
A series of dextrin derivative surfactants prepared by the reaction of the propylene glycol polyglucosides with a hydrophobic oxirane-containing material of the glycidyl ether are highly biodegradable. [Hong-Rong Wang and Keng-Ming Chen, Colloids and Surfaces A: Physicochemical and Engineering Aspects Volume 281, Issues 1-3, 15 Jun. 2006, Pages 190-193].
Non-limiting examples of non-ionic surfactants that have HLB of about 7 to about 12 include steareth 2 (HLB˜4.9); glyceryl monostearate/PEG 100 stearate (Av HLB˜11.2); stearate Laureth 4 (HLB˜9.7) and cetomacrogol ether (e.g., polyethylene glycol 1000 monocetyl ether).
Non-limiting examples of preferred surfactants, which have a HLB of 4-19 are set out in the Table below:
More exemplary stabilizing surfactants which may be suitable for use in the present invention are found below.
PEG-Fatty Acid Monoester Surfactants
PEG-Fatty Acid Diester Surfactants:
Transesterification Products of Oils and Alcohols
Polyglycerized Fatty Acids, Such as:
PEG-Sorbitan Fatty Acid Esters
Polyethylene Glycol Alkyl Ethers
Sugar Ester Surfactants
Sorbitan Fatty Acid Ester Surfactants
In one or more embodiments the surface active agent is a complex emulgator in which the combination of two or more surface active agents can be more effective than a single surfactant and provides a more stable emulsion or improved foam quality than a single surfactant. For example and by way of non-limiting explanation it has been found that by choosing say two surfactants, one hydrophobic and the other hydrophilic the combination can produce a more stable emulsion than a single surfactant. Preferably, the complex emulgator comprises a combination of surfactants wherein there is a difference of about 4 or more units between the HLB values of the two surfactants or there is a significant difference in the chemical nature or structure of the two or more surfactants.
Specific non limiting examples of surfactant systems are, combinations of polyoxyethylene alkyl ethers, such as Brij 59/Brij 10; Brij 52/Brij 10; Steareth 2/Steareth 20; Steareth 2/Steareth 21 (Brij 72/Brij 721); combinations of polyoxyethylene stearates such as Myrj 52/Myrj 59; combinations of sucrose esters, such as Surphope 1816/Surphope 1807; combinations of sorbitan esters, such as Span 20/Span 80; Span 20/Span 60; combinations of sucrose esters and sorbitan esters, such as Surphope 1811 and Span 60; combinations of liquid polysorbate detergents and PEG compounds, such as Tween 80/PEG-40 stearate; methyl glucaso sequistearate; polymeric emulsifiers, such as Permulen (TRI or TR2); liquid crystal systems, such as Arlatone (2121), Stepan (Mild RM1), Nikomulese (41) and Montanov (68) and the like.
In certain embodiments the surfactant is preferably one or more of the following: a combination of steareth-2 and steareth-21 on their own or in combination with glyceryl monostearate (GMS); in certain other embodiments the surfactant is a combination of polysorbate 80 and PEG-40 stearate. In certain other embodiments the surfactant is a combination of glyceryl monostearate/PEG 100 stearate. In certain other embodiments the surfactant is a combination of two or more of stearate 21, PEG 40 stearate, and polysorbate 80. In certain other embodiments the surfactant is a combination of two or more of laureth 4, span80, and polysorbate 80. In certain other embodiments the surfactant is a combination of two or more of GMS and ceteareth. In certain other embodiments the surfactant is a combination of two or more of steareth 21, ceteareth 20, ceteth 2 and laureth 4 In certain other embodiments the surfactant is a combination of ceteareth 20 and polysorbate 40 stearate. In certain other embodiments the surfactant is a combination of span 60 and GMS.
In certain other embodiments the surfactant is one or more of sucrose stearic acid esters, sorbitan laureth, and sorbitan stearate.
In one or more embodiments the stability of the composition can be improved when a combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9 is employed. The ratio between the at least one non-ionic surfactant having HLB of less than 9 and the at least one non-ionic surfactant having HLB of equal or more than 9, is between 1:8 and 8:1, or at a ratio of 4:1 to 1:4. The resultant HLB of such a blend of at least two emulsifiers is preferably between about 9 and about 14.
Thus, in an exemplary embodiment, a combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9 is employed, at a ratio of between 1:8 and 8:1, or at a ratio of 4:1 to 1:4, wherein the HLB of the combination of emulsifiers is preferably between about 5 and about 18.
In certain cases, the surface active agent is selected from the group of cationic, zwitterionic, amphoteric and ampholytic surfactants, such as sodium methyl cocoyl taurate, sodium methyl oleoyl taurate, sodium lauryl sulfate, triethanolamine lauryl sulfate and betaines.
Many amphiphilic molecules can show lyotropic liquid-crystalline phase sequences depending on the volume balances between the hydrophilic part and hydrophobic part. These structures are formed through the micro-phase segregation of two Many amphiphilic molecules can show lyotropic liquid-crystalline phase sequences depending on the volume balances between the hydrophilic part and hydrophobic part. These structures are formed through the micro-phase segregation of two incompatible components on a nanometer scale. Soap is an everyday example of a lyotropic liquid crystal. Certain types of surfactants tend to form lyotropic liquid crystals in emulsions interface (oil-in-water) and exert a stabilizing effect
In one or more embodiments the surfactant is a surfactant or surfactant combination is capable of or which tends to form liquid crystals. Surfactants which tend to form liquid crystals may improve the quality of foams. Non limiting examples of surfactants with postulated tendency to form interfacial liquid crystals are: phospholipids, alkyl glucosides, sucrose esters, sorbitan esters.
In one or more embodiments the at least one surface active agent is liquid.
In one or more embodiments the at least one surface active agent is solid, semi solid or waxy.
It should be noted that HLB values may not be so applicable to non ionic surfactants, for example, with liquid crystals or with silicones. Also HLB values may be of lesser significance in a waterless or substantially non-aqueous environment.
In one or more embodiments the surfactant can be, a surfactant system comprising of a surfactant and a co surfactant, a waxy emulsifier, a liquid crystal emulsifier, an emulsifier which is solid or semi solid at room temperature and pressure, or combinations of two or more agents in an appropriate proportion as will be appreciated a person skilled in the art. Where a solid or semi solid emulsifier combination is used it can also comprise a solid or semi solid emulsifier and a liquid emulsifier.
In one or more embodiments of the present invention, the surface-active agent includes at least one non-ionic surfactant. Ionic surfactants are known to be irritants. Therefore, non-ionic surfactants are preferred in applications including sensitive tissue such as found in most mucosal tissues, especially when they are infected or inflamed. Non-ionic surfactants alone can provide formulations and foams of good or excellent quality in the carriers and compositions of the present invention.
Thus, in a preferred embodiment, the surface active agent, the composition contains a non-ionic surfactant. In another preferred embodiment the composition includes a mixture of non-ionic surfactants as the sole surface active agent. Yet, in additional embodiments, the foamable composition includes a mixture of at least one non-ionic surfactant and at least one ionic surfactant in a ratio in the range of about 100:1 to 6:1. In one or more embodiments, the non-ionic to ionic surfactant ratio is greater than about 6:1, or greater than about 8:1; or greater than about 14:1, or greater than about 16:1, or greater than about 20:1. In further embodiments, surface active agent comprises a combination of a non-ionic surfactant and an ionic surfactant, at a ratio of between 1:1 and 20:1
In one or more embodiments of the present invention, a combination of a non-ionic surfactant and an ionic surfactant (such as sodium lauryl sulphate and cocamidopropylbetaine) is employed, at a ratio of between 1:1 and 20:1, or at a ratio of 4:1 to 10:1; for example, about 1:1, about 4:1, about 8:1, about 12:1, about 16:1 and about 20:1 or at a ratio of 4:1 to 10:1, for example, about 4:1, about 6:1, about 8:1 and about 10:1.
In selecting a suitable surfactant or combination thereof it should be borne in mind that the upper amount of surfactant that may be used may be limited by the shakability of the composition. If the surfactant is non liquid, it can make the formulation to viscous or solid. This can be particularly significant if the formulation has high molecular weight, e.g., a high molecular weight PEG or polymeric agents or petroleum or if the surfactants are large. Solvents and polymeric agents which have high molecular weight and are very viscous or solid or waxy (e.g., Peg 1500, 2000, etc. or petrolatum) can exacerbate the effect of a waxy or solid surfactant on shakability or flowability In general terms, as the amount of non-liquid surfactant is increased the shakability of the formulation reduces until a limitation point is reached where the formulation becomes non shakable and unsuitable. Thus in one embodiment, an effective amount of surfactant may be used provided the formulation remains shakable. In other certain exceptional embodiments the upper limit may be determined by flowability such as in circumstances where the composition is marginally or apparently non-shakable. The formulation is sufficiently flowable to be able to flow through an actuator valve and be released and still expand to form a good quality foam.
In certain embodiments of the present invention the amount of surfactant or combination of surfactants is between about 0.05% to about 20%; between about 0.05% to about 15%. or between about 0.05% to about 10%. In a preferred embodiment the concentration of surface active agent is between about 0.2% and about 8%. In a more preferred embodiment the concentration of surface active agent is between about 1% and about 6%.
In some embodiments, it is desirable that the surface active agent does not contain a polyoxyethylene (POE) moiety, such as polysorbate surfactants, POE fatty acid esters, and POE alkyl ethers, because the active agent is incompatible with such surface active agents. For example, the active agent pimecrolimus is not stable the presence of POE moieties, yet benefits greatly from the use of dicarboxylic esters as penetration enhancers. In such cases, alternative surface active agents are employed. In an exemplary manner, POE-free surfactants include non-ethoxylated sorbitan esters, such as sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan monolaurate and sorbitan sesquioleate; glycerol fatty acid esters, such as glycerol monostearate and glycerol monooleate; mono-, di- and tri-esters of sucrose with fatty acids (sucrose esters), sucrose stearate, sucrose distearate sucrose palmitate and sucrose laurate; and alkyl polyglycosides, such as lauryl diglucoside.
If the composition as formulated is a substantially non shakable composition it is nevertheless possible as an exception in the scope of the present invention for the formulation to be flowable to a sufficient degree to be able to flow through an actuator valve and be released and still expand to form a good quality foam. This surprising and unusual exception may be due one or more of a number of factors such as the high viscosity, the softness, the lack of crystals, the pseudoplastic or semi pseudo plastic nature of the composition and the dissolution of the propellant into the composition.
In one or more embodiments of the present invention, the surface-active agent includes mono-, di- and tri-esters of sucrose with fatty acids (sucrose esters), prepared from sucrose and esters of fatty acids or by extraction from sucro-glycerides. Suitable sucrose esters include those having high monoester content, which have higher
Phase Inversion and Tension
Phase inversion is a factor in the preparation and stabilization of emulsions and can be both an aid and a detriment. Phase inversion involves the change of emulsion type from o/w to w/o or vice versa. Prior to phase inversion occurring there is a tension in the emulsion which if destabilized or driven will lead to phase inversion and if controlled or ameliorated or dissipated will result in a more stable emulsion. The occurrence of phase inversion during preparation can be a sign of instability. If controlled, it can result in a finer product but if due to other factors after the the emulsion was prepared it can cause problems. Inversion can occur by for example adding calcium chloride to an o/w emulsion stabilized with sodium stearate to form calcium stearate. Inversion can also occur as the product of changes to the phase-volume ratio. For example if a small amount of water is added to surfactant mixed with oil and agitated aw/o emulsion is formed As the amount of water added is gradually increased a point will be reached where the water and emulsifier envlop the oil as small droplets to form an o/w emulsion. The amount of each ingredient including the surfactants will have their part to play in the phenomenum.
Substantially Alcohol-Free
According to one or more embodiments, the foamable composition is substantially alcohol-free, i.e., free of short chain alcohols. Short chain alcohols, having up to 5 carbon atoms in their carbon chain skeleton and one hydroxyl group, such as ethanol, propanol, isopropanol, butaneol, iso-butaneol, t-butaneol and pentanol, are considered less desirable solvents or polar solvents due to their skin-irritating effect. Thus, the composition is substantially alcohol-free and includes less than about 5% final concentration of lower alcohols, preferably less than about 2%, more preferably less than about 1%.
Substantially Non Aqueous
In certain cases, the active agent degrades in the presence of water, and therefore, in such cases the present of water in the composition is not desirable. Thus, in certain preferred embodiments, the composition is substantially non-aqueous. The term “substantially non-aqueous” or “substantially waterless” is intended to indicate that the composition has a water content below about 5%, preferably below about 2%, such as below about 1.5%. In certain other preferred embodiments the composition is non aqueous or waterless.
By non aqueous or waterless is meant that the composition contains no or substantially no, free or unassociated or absorbed water. It will be understood by a person of the art that the waterless solvents and substances miscible with them of the present invention can be hydrophilic and can contain water in an associated or unfree or absorbed form and may absorb water from the atmosphere and the ability to do so is its hygroscopic water capacity. It is intended that essentially non-aqueous formulations are included within its scope such that the formulations may have present a small amount of water. In some embodiments the composition ingredients are pretreated to reduce, remove or eliminate any residual or associated or absorbed water.
Shakability
‘Shakability’ means that the composition contains some or sufficient flow to allow the composition to be mixed or remixed on shaking. That is, it has fluid or semi fluid properties. In some very limited cases possibly aided by the presence of silicone it may exceptionally be possible to have a foamable composition which is flowable but not apparently shakable.
Breakability
A breakable foam is one that is thermally stable, yet breaks under sheer force.
The breakable foam of the present invention is not “quick breaking”, i.e., it does not readily collapse upon exposure to body temperature environment. Sheer-force breakability of the foam is clearly advantageous over thermally induced breakability, since it allows comfortable application and well directed administration to the target area.
Modulating Agent
The term modulating agent is used to describe an agent which can improve the stability of or stabilize a foamable carrier or composition and or an active agent by modulating the effect of a substance or residue present in the carrier or composition.
In one or more embodiments the modulating agent is used in a water in oil or oil in water emulsion. In one or more other embodiments the modulating agent is used in a unique waterless emulsion.
In certain embodiments the substance or residue may for example be acidic or basic and potentially alter pH in an emulsion environment or it may be one or more metal ions which may act as a potential catalyst in an emulsion environment.
In certain other embodiments the substance or residue may for example be acidic or basic and potentially alter an artificial pH in a waterless or substantially non aqueous environment or it may be one or more metal ions which may act as a potential catalyst in a waterless or substantially non aqueous environment.
In one or more embodiments the modulating agent is used to describe an agent which can affect pH in an aqueous solution. The agent can be any of the known buffering systems used in pharmaceutical or cosmetic formulations as would be appreciated by a man of the art. It can also be an organic acid, a carboxylic acid, a fatty acid an amino acid, an aromatic acid, an alpha or beta hydroxyl acid an organic base or a nitrogen containing compound.
In one or more further embodiments the modulating agent is used to describe an agent, which is a chelating or sequestering or complexing agent that is sufficiently soluble or functional in the solvent to enable it to “mop up” or “lock” metal ions.
In an embodiment modulating agent is used to describe an agent which can effect pH in an aqueous solution the term modulating agent more particularly means an acid or base or buffer system or combinations thereof, which is introduced into or is present in and acts to modulate the ionic or polar characteristics and any acidity or basesity balance of an emulsion carrier, composition, foamable carrier or foamable composition or resultant foam of the present invention.
In other embodiments modulating agent is used to describe an agent which can effect pH in an aqueous solution the term modulating agent more particularly means an acid or base or buffer system or combinations thereof, which is introduced into or is present in and acts to modulate the ionic or polar characteristics and any acidity or basesity balance of a waterless or substantially non aqueous carrier, composition, foamable carrier or foamable composition or resultant foam of the present invention.
The substance or residue can be introduced into the formulation from any one or more of the ingredients, some of which themselves may have acidic or basic properties. For example the polymer or solvent may contain basic residues in which case it may be desirable or beneficial to add an acid. Alternatively the surfactant may contain some acid residues in which case the addition of a base may be desirable and beneficial. In some cases more than one ingredient may contain residues which may ameliorate or compound their significance. For example if one ingredient provided weak acid residues and another stronger acid residues the pH in an emulsion environment (or artificial pH in a waterless environment) should be lower. In contrast if one residue was acid and the other basic the net effect in the formulation maybe significantly reduced. In some circumstances the active ingredient may favor an acidic pH or more significantly may need to be maintained at a certain acidic pH otherwise it may readily isomerize, chemically react or breakdown, in which case introducing acidic components such as an acidic polymer might be of help. In an embodiment of the present invention sufficient modulating agent is added to achieve a pH in which the active agent is preferably stable. In another embodiment of the present invention sufficient modulating agent is added to achieve an artificial pH in which the active agent is preferably stable.
The terms pH, pKa, and pKb, buffers and the like are used in classical measurements of an aqueous solution. Such measurements are artificial in a waterless environment. Nevertheless, reference to and description below of such terms are made for convenience and clarity, since such terms are well defined and understood with reference to aqueous solutions and further due to the lack of an appropriate uniform way of describing and identifying the artificial or virtual pH, pK etc in a waterless environment in relation to the present invention. Although predictions of artificial pH can be made using dilution techniques of measurements of waterless formulations diluted in water they are formulation sensitive and specific and have to be carefully calibrated with complex formulas.
Waterless medium can be polar and protic yet it does not conform to classical ionic behavior.
A buffer, as defined by Van Slyke [Van Slyke, J. Biol. Chem. 52, 525 (1922)], is “a substance which by its presence in solution increases the amount of acid or alkali that must be added to cause unit change in pH.”
A buffer solution is a solution of a definite pH made up in such a way that this pH alters only gradually with the addition of alkali or acid. Such a solution consists of a solution of a salt of the week acid in the presence of the three acid itself. The pH of the solution is determined by the dissociation equilibrium of the free acid.
An acid can be a strong acid or a weak acid. A strong acid is an acid, which is a virtually 100% ionized in solution. In contrast, a week acid is one which does not ionize fully. When it is dissolved in water. The lower the value for pKa, the stronger is the acid and likewise, the higher the value for pKa the weaker is the acid.
A base can be a strong base or a weak base. A strong base is something, which is fully ionic with 100% hydroxide ions. In contrast, a weak base is one which does not convert fully into hydroxide ions in solution. The lower the value for pKb, the stronger is the base and likewise, the higher the value for pKb the weaker is the base.
In one or more embodiments of the present invention the modulating agent comprises an organic compound.
In one or more preferred embodiments of the present invention the chelating agent is selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), hydroxyethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), O,O′-bis(2-aminoethyl)ethyleneglycol-N,N,N′,N′-tetraacetic acid (EGTA), trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CyDTA) or a pharmaceutically acceptable salt thereof (normally as a sodium salt), more preferably EDTA, HEDTA and their salts; most preferably EDTA and its salts.
In one or more embodiments of the present invention a preferred non limiting example of the chelating agent is EDTA. Typically, the chelating and sequestering agent is present in the composition at a level of up to about 5.0%, preferably 1.0 percent, by weight, of the composition.
In one or more embodiments of the present invention the modulating agent may also be a preservative or an antioxidant or an ionization agent. Any preservative, antioxidant or ionization agents suitable for pharmaceutical or cosmetic application may be used. Non limiting examples of antioxidants are tocopherol succinate, propyl galate, butylated hydroxy toluene and butyl hydroxy anisol. Ionization agents may be positive or may be negative depending on the environment and the active agent or composition that is to be protected. Ionization agents may for example act to protect or reduce sensitivity of active agents. Non limiting examples of positive ionization agents are benzyl conium chloride, and cetyl pyridium chloride. Non limiting examples of negative ionization agents are sodium lauryl sulphate, sodium lauryl lactylate and phospholipids.
Humectant
A humectant is a substance that helps retain moisture and also prevents rapid evaporation. Non limiting examples are propylene glycol, propylene glycol derivatives, glycerin, hydrogenated starch hydrosylate, hydrogenated lanolin, lanolin wax, D manitol, sorbitol, sodium 2-pyrrolidone-5-carboxylate, sodium lactate, sodium PCA, soluble collagen, dibutyl phthalate, and gelatin. Other examples may be found in the Handbook of Pharmaceutical Additives published by Gower.
Moisturizers
A moisturizer, is a substance that helps retain moisture or add back moisture to the skin. Examples are allantoin, petrolatum, urea, lactic acid, sodium PCV, glycerin, shea butter, caprylic/capric/stearic triglyceride, candelilla wax, propylene glycol, lanolin, hydrogenated oils, squalene, sodium hyaluronate and lysine PCA. Other examples may be found in the Handbook of Pharmaceutical Additives published by Gower.
Pharmaceutical compositions of the present invention may in one or more embodiments usefully comprise in addition a heumectant or a moisturizer or combinations thereof.
Polar Solvent
Optionally, the foamable vehicle further includes at least one polar solvent.
A “polar solvent” is an organic solvent, typically soluble in both water and oil. Certain polar solvents, for example propylene glycol and glycerin, possess the beneficial property of a heumectant.
In one or more embodiments, the polar solvent is a heumectant.
In one or more embodiments, the polar solvent is a polyol. Polyols are organic substances that contain at least two hydroxy groups in their molecular structure.
In one or more embodiments, the polar solvent contains an diol (a compound that contains two hydroxy groups in its molecular structure), such as propylene glycol (e.g., 1,2-propylene glycol and 1,3-propylene glycol), butaneediol (e.g., 1,4-butaneediol), butaneediol (e.g., 1,3-butaneediol and 1,4-butenediol), butynediol, pentanediol (e.g., 1,5-pentanediol), hexanediol (e.g., 1,6-hexanediol), octanediol (e.g., 1,8-octanediol), neopentyl glycol, 2-methyl-1,3-propanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol and dibutylene glycol.
In one or more embodiments, the polar solvent contains a triol (a compound that contains three hydroxy groups in its molecular structure), such as glycerin and 1,2,6-Hexanetriol.
Other non-limiting examples of polar solvents include pyrrolidones, (such as N-methyl-2-pyrrolidone and 1-methyl-2-pyrrolidinone), dimethyl isosorbide, 1,2,6-hexapetriol, dimethyl sulfoxide (DMSO), ethyl proxitol, dimethylacetamide (DMAc) and alpha hydroxy acids, such as lactic acid and glycolic acid.
According to still other embodiments, the polar solvent is a polyethylene glycol (PEG) or PEG derivative that is liquid at ambient temperature, including PEG200 (MW (molecular weight) about 190-210 kD), PEG300 (MW about 285-315 kD), PEG400 (MW about 380-420 kD), PEG600 (MW about 570-630 kD) and higher MW PEGs such as PEG 4000, PEG 6000 and PEG 10000 and mixtures thereof.
Polar solvents are known to enhance the penetration of active agent into the skin and through the skin, and therefore, their inclusion in the composition of the present invention can be desirable, despite their undesirable skin drying and irritation potential. There is at one level a commonality between the different polar solvents and their penetration enhancement properties. Lower molecular weight alcohols can sometimes be more potent as a solvent, for example by extracting lipids from the skin layers more effectively, which characteristic can adversely affect the skin structure and cause dryness and irritation. Therefore the selection of lower molecular weight alcohols is ideally avoided.
Polar solvents, such as detailed below possess high solubilizing capacity and contribute to the skin penetration of an active agent. Non limiting examples include dimethyl isosorbide polyols, such as glycerol (glycerin), propylene glycol, hexylene glycol, diethylene glycol, propylene glycol n-alkanols, terpenes, di-terpenes, tri-terpenes, limonene, terpene-ol, 1-menthol, dioxolane, ethylene glycol, other glycols, oleyl alcohol, alpha-hydroxy acids, such as lactic acid and glycolic acid, sulfoxides, such as dimethylsulfoxide (DMSO), dimethylformanide, methyl dodecyl sulfoxide, dimethylacetamide, azone (1-dodecylazacycloheptan-2-one), 2-(n-nonyl)-1,3-dioxolane, alkanols, such as dialkylamino acetates, and admixtures thereof. In certain preferred embodiments, the polar solvent is selected from the group consisting of dimethyl isosorbide glycerol (glycerin), propylene glycol, hexylene glycol, terpene-ol, oleyl alcohol, lactic acid and glycolic acid.
Skin Penetration Enhancer
A “skin penetration enhancer”, also termed herein “penetration enhancer,” is an organic solvent, typically soluble in both water and oil. Examples of penetration enhancer include polyols, such as glycerol (glycerin), propylene glycol, hexylene glycol, diethylene glycol, propylene glycol n-alkanols, terpenes, di-terpenes, tri-terpenes, terpen-ols, limonene, terpene-ol, 1-menthol, dioxolane, ethylene glycol, hexylene glycol, other glycols, sulfoxides, such as dimethylsulfoxide (DMSO), dimethylformanide, methyl dodecyl sulfoxide, dimethylacetamide, dimethylisosorbide, monooleate of ethoxylated glycerides (with 8 to 10 ethylene oxide units), azone (1-dodecylazacycloheptan-2-one), 2-(n-nonyl)-1,3-dioxolane, esters, such as isopropyl myristate/palmitate, ethyl acetate, butyl acetate, methyl proprionate, capric/caprylic triglycerides, octylmyristate, dodecyl-myristate; myristyl alcohol, lauryl alcohol, lauric acid, lauryl lactate ketones; amides, such as acetamide oleates such as triolein; various alkanoic acids such as caprylic acid; lactam compounds, such as azone; alkanols, such as dialkylamino acetates, and admixtures thereof.
According to one or more embodiments, the penetration enhancer is a polyethylene glycol (PEG) or PEG derivative that is liquid at ambient temperature
Potent Solvent
In one or more embodiments of the present invention, the foamable composition includes a potent solvent, in addition to or in place of one of the hydrophobic solvents, polar solvents or emollients of the composition. A potent solvent is a solvent other than mineral oil that solubilizes a specific active agent substantially better than a hydrocarbon solvent such as mineral oil or petrolatum. For example, a potent solvent solubilizes the active agent 5 fold better than a hydrocarbon solvent; or even solubilizes the active agent 10-fold better than a hydrocarbon solvent.
In one or more embodiments of the present invention, the composition includes at least one active agent in a therapeutically effective concentration; and at least one potent solvent in a sufficient amount to substantially solubilize the at least one active agent in the composition. The term “substantially soluble” means that at least 95% of the active agent has been solubilized, i.e., 5% or less of the active agent is present in a solid state. In one or more embodiments, the concentration of the at least one potent solvent is more than about 40% of the at least one solvent of the composition of the present invention; or even more than about 60%.
Non-limiting examples of pairs of active agent and potent solvent include: Betamethasone valerate: Practically insoluble in mineral oil (<0.01%); soluble more than 1% in glycofurol; Hydrocortisone butyrate: Practically insoluble in mineral oil (<0.01%); soluble more than 1% in glycofurol; Metronidazole: Practically insoluble in mineral oil (<0.01%); soluble more than 1% in dimethyl isosrbide; Ketoconazole: Practically insoluble in mineral oil (<0.01%); soluble more than 1% in glycofurol, propylene glycol and dimethyl isosrbide; Mupirocin: Practically insoluble in mineral oil (<0.01%); soluble more than 1% in glycofurol, hexylene glycol, dimethyl isosorbide, propylene glycol and polyethylene glycol 400 (PEG 400); Meloxicam, a nonsteroidal anti-inflammatory agent: Practically insoluble in mineral oil (<0.001%); soluble in propylene glycol: 0.3 mg/mL; and in PEG 400: 3.7 mg/mL; and Progesterone: Practically insoluble in mineral oil (<0.001%); soluble in PEG 400: 15.3 mg/mL.
A non-limiting exemplary list of solvents that can be considered as potent solvents includes polyethylene glycol, propylene glycol, hexylene glycol, butaneediols and isomers thereof, glycerol, benzyl alcohol, DMSO, ethyl oleate, ethyl caprylate, diisopropyl adipate, dimethylacetamide, N-methylpyrrolidone, N-hydroxyethylpyrrolidone, polyvinylpyrrolidone, isosorbide derivatives, such as dimethyl isosorbide, glycofurol and ethoxydiglycol (transcutol) and laurocapram.
The use of a potent solvent in a foam composition provides an improved method of delivering poorly soluble therapeutic agents to a target area. It is known that low drug solubility results in poor bioavailability, leading to decreased effectiveness of treatment. Foam compositions of the present invention, for which the solvent includes a potent solvent, increase the levels of the active agent in solution and thus, provide high delivery and improved therapy.
Potent solvents, as defined herein, are usually liquid. Formulations comprising potent solvents and active agents are generally disadvantageous as therapeutics, since their usage involves unwanted dripping and inconvenient method of application; resulting in inadequate dosing. Surprisingly, the foams of the present invention, which are drip-free, provide a superior vehicle for such active agents, enabling convenient usage and accurate effective dosing.
In one or more embodiments of the present invention the present invention the foamable pharmaceutical composition may additionally include a mixture of two or more of the solvents selected from the group of hydrophobic solvents, silicone oils, emollients, polar solvents and potent solvents in an appropriate proportion as would be appreciated to a person skilled in the art.
In one or more embodiments of the present invention, the PPG alkyl ether may act as a potent solvent
Additional Components
In an embodiment of the present invention, a composition of the present invention includes one or more additional components. Such additional components include but are not limited to anti perspirants, anti-static agents, buffering agents, bulking agents, chelating agents, cleansers, colorants, conditioners, deodorants, diluents, dyes, emollients, fragrances, hair conditioners, humectants, pearlescent aids, perfuming agents, permeation enhancers, pH-adjusting agents, preservatives, protectants, skin penetration enhancers, softeners, solubilizers, sunscreens, sun blocking agents, sunless tanning agents, viscosity modifiers and vitamins. As is known to one skilled in the art, in some instances a specific additional component may have more than one activity, function or effect.
Propellants
Suitable propellants include volatile hydrocarbons such as butane, propane, isobutane and fluorocarbon gases, or mixtures thereof.
The propellant makes up about 5-25 wt % of the foamable composition. The propellants are used to generate and administer the foamable composition as a foam. The total composition including propellant, foamable compositions and optional ingredients is referred to as the foamable composition.
Alcohol and organic solvents render foams inflammable. It has been surprisingly discovered that fluorohydrocarbon propellants, other than chloro-fluoro carbons (CMOs), which are non-ozone-depleting propellants, are particularly useful in the production of a non-flammable foamable composition. A test according to European Standard prEN 14851, titled “Aerosol containers—Aerosol foam flammability test” revealed that compositions containing an organic carrier that contains a hydrophobic organic carrier and/or a polar solvent, which are detected as inflammable when a hydrocarbon propellant is used, become non-flammable, while the propellant is an HFC propellant.
Such propellants include, but are not limited to, hydrofluorocarbon (HFC) propellants, which contain no chlorine atoms, and as such, fall completely outside concerns about stratospheric ozone destruction by chlorofluorocarbons or other chlorinated hydrocarbons. Exemplary non-flammable propellants according to this aspect of the invention include propellants made by DuPont under the registered trademark Dymel, such as 1,1,1,2 tetrafluorethane (Dymel 134), and 1,1,1,2,3,3,3 heptafluoropropane (Dymel 227). HFCs possess Ozone Depletion Potential of 0.00 and thus, they are allowed for use as propellant in aerosol products.
Notably, the stability of foamable emulsions including HFC as the propellant can be improved in comparison with the same composition made with a hydrocarbon propellant.
In one or more embodiments foamable compositions comprise a combination of a HFC and a hydrocarbon propellant such as n-butanee or mixtures of hydrocarbom propellants such as propane, ispbutane and butane.
Microemulsions and Nanoemulsions
Microemulsions and nanoemulsion are monophasic, transparent (or slightly translucent) dispersions of oil and water. Unlike conventional emulsions, microemulsions and nanoemulsion are thermodynamically stable, making them a favorable vehicle for pharmaceutical compositions, which have to maintain stability for long periods of time. They and a method of manufacture are more particularly described in US2006/0233721 which is incorporated herein by way of reference. As will be appreciated by a man of the art the methodology may be adapted according to the type of carrier composition.
Aging
In order to project the potential shelf life and stability of the compositions and their ingredients particularly active or benefit agents the compositions can subjected to a number of tests, including centrifugation to look for resistance to creaming, phase separation; one or more freeze thaw cycles, standing at room and higher temperatures as an indicator of resistance to aging.
Composition and Foam Physical Characteristics and Advantages
A pharmaceutical or cosmetic composition manufactured using the foamable carrier of the present invention is very easy to use. When applied onto the afflicted body surface of mammals, i.e., humans or animals, it is in a foam state, allowing free application without spillage. Upon further application of a mechanical force, e.g., by rubbing the composition onto the body surface, it freely spreads on the surface and is rapidly absorbed.
The foamable composition of the present invention is stable, having an acceptable shelf-life of at least one year, or preferably, at least two years at ambient temperature, as revealed in accelerated stability tests. The foamable compositions according to the present invention are stable. Following accelerated stability studies, they demonstrate desirable texture; they form fine bubble structures that do not break immediately upon contact with a surface, spread easily on the treated area and absorb quickly.
The composition should also be free flowing, to allow it to flow through the aperture of the container, e.g., and aerosol container, and create an acceptable foam.
Foam quality can be graded as follows:
Grade E (excellent): very rich and creamy in appearance, does not show any bubble structure or shows a very fine (small) bubble structure; does not rapidly become dull; upon spreading on the skin, the foam retains the creaminess property and does not appear watery.
Grade G (good): rich and creamy in appearance, very small bubble size, “dulls” more rapidly than an excellent foam, retains creaminess upon spreading on the skin, and does not become watery.
Grade FG (fairly good): a moderate amount of creaminess noticeable, bubble structure is noticeable; upon spreading on the skin the product dulls rapidly and becomes somewhat lower in apparent viscosity.
Grade F (fair): very little creaminess noticeable, larger bubble structure than a “fairly good” foam, upon spreading on the skin it becomes thin in appearance and watery.
Grade P (poor): no creaminess noticeable, large bubble structure, and when spread on the skin it becomes very thin and watery in appearance.
Grade VP (very poor): dry foam, large very dull bubbles, difficult to spread on the skin.
Topically administrable foams are typically of quality grade E or G, when released from the aerosol container. Smaller bubbles are indicative of more stable foam, which does not collapse spontaneously immediately upon discharge from the container. The finer foam structure looks and feels smoother, thus increasing its usability and appeal.
As further aspect of the foam is breakability. The breakable foam is thermally stable, yet breaks under sheer force. Sheer-force breakability of the foam is clearly advantageous over thermally induced breakability. Thermally sensitive foams immediately collapse upon exposure to skin temperature and, therefore, cannot be applied on the hand and afterwards delivered to the afflicted area.
Another property of the foam is specific gravity, as measured upon release from the aerosol can. Typically, foams have specific gravity of less than 0.12 g/mL; or less than 0.10 g/mL; or less than 0.08 g/mL, depending on their composition and on the propellant concentration.
Pharmaceutical Composition
The foamable carrier of the present invention is an ideal vehicle for active pharmaceutical ingredients and active cosmetic ingredients. In the context of the present invention, active pharmaceutical ingredients and active cosmetic ingredients are collectively termed “active agent” or “active agents.”
In one or more embodiments, the dicarboxylic acid or dicarboxylic ester is the active ingredient. It can be used in the formulation as a suspended solid or in solution, alone or in combination with other active agents. As is known to one skilled in the art, in some instances a specific active agent may have more than one activity, function or effect.
In one embodiment, the dicarboxylic acid or dicarboxylic acid ester is useful as an antibiotic, an antifungal agent, a keratolytic agent, an inhibitor of the reduction of testosterone to dihydrotestosterone, an inhibitor of the production of sebum in the sebaceous gland, an anti-acne agent, by way of example. Dicarboxylic acids, and azxelaic acid in particular, may be used for the treatment of diaper rash, hyperpigmentary drmatoses, acne, presbyderma of aging skin, hyperhydrosis, ischthyosis, and wrinkling of the skin, anti-tumor agents (for example, in conjunction with vitamins A, E and D), rosacea, a pigmentation disorder, a cell proliferation abnormality a skin infection and a skin inflammation and treatment of corns and callouses due to the anti-keratolytic effects.
In one or more embodiments, the dicarboxylic acid or dicarboxylic ester is used as a solvent for an active agent or as a penetration enhancer for an active agent.
Suitable active agents for use in conjunction with a dicarboxylic acid or a dicarboxylic ester include, but are not limited to, active herbal extracts, acaricides, age spot and keratose removing agents, allergen, analgesics, local anesthetics, antiacne agents, antiallergic agents, antiaging agents, antibacterials, antibiotics, antiburn agents, anticancer agents, antidandruff agents, antidepressants, antidermatitis agents, antiedemics, antihistamines, antihelminths, antihyperkeratolyte agents, antiinflammatory agents, antiirritants, antilipemics, antimicrobials, antimycotics, antiproliferative agents, antioxidants, anti-wrinkle agents, antipruritics, antipsoriatic agents, antirosacea agents antiseborrheic agents, antiseptic, antiswelling agents, antiviral agents, antiyeast agents, astringents, topical cardiovascular agents, chemotherapeutic agents, corticosteroids, dicarboxylic acids, disinfectants, fungicides, hair growth regulators, hormones, hydroxy acids, immunosuppressants, immunoregulating agents, insecticides, insect repellents, keratolytic agents, lactams, metals, metal oxides, mitocides, neuropeptides, non-steroidal anti-inflammatory agents, oxidizing agents, pediculicides, photodynamic therapy agents, retinoids, sanatives, scabicides, self tanning agents, skin whitening agents, vasoconstrictors, vasodilators, vitamins, vitamin D derivatives, wound healing agents and wart removers. As is known to one skilled in the art, in some instances a specific active agent may have more than one activity, function or effect.
In one or more embodiments, the formulation additionally includes a steroidal anti-inflammatory agent. The dicarboxylic acid ester is present in the composition in an amount sufficient to solubilize the steroid. Exemplary steroidal anti-inflammatory agents include, but are not limited to, corticosteroids such as bydrocortisone, hydroxyltriamcinolone, alpha-methyl dexamethasone, dexamethasone-phosphate, beclomethsone dipropionate, clobetasol valemate, desonide, desoxymethasone, desoxycorticosterone acetate, dexamethasone, dichlorisone, diflorasone diacetate, diflucortolone valerate, fluadrenolone, fluclorolone acetonide, fludrocortisone, flumethasone pivalate, fluosinolone acetonide, fluocinonide, flucortine butylester, fluocortolone, fluprednidene (fluprednylidene) acetate, flurandrenolone, halcinonide, hydrocortisone acetate, hydrocortisone butyrate, methylprednisolone, triamcinolone acetonide, cortisone, cortodoxone, flucetonide, fludrocortisone, difluorosone diacetate, fluradrenolone acetonide, medrysone, amcinafel, amcinafide, betamethasone and the balance of its esters, chloroprednisone, chlorprednisone acetate, clocortelone, clescinolone, dichlorisone, difluprednate, flucloronide, flunisolide, fluoromethalone, fluperolone, fluprednisolone, hydrocortisone valerate, hydrocortisone cyclopentylpropionate, hydrocortmate, mepreddisone, paramethasone, prednisolone, prednisone, beclomethasone dipropionate, triamcinolone, and mixtures thereof. In an embodiment of the present invention, the dicarboxylic acid ester is present in the composition in an amount sufficient to solubilize the steroid.
In one embodiment, the formulation additionally includes an immunomodulator. The dicarboxylic acid ester is present in the composition in an amount sufficient to solubilize the immunomodulator. Immunomodulators are chemically or biologically-derived agents that modify the immune response or the functioning of the immune system (as by the stimulation of antibody formation or the inhibition of white blood cell activity). Immunomodulators include, among other options, cyclic peptides, such as cyclosporine, tacrolimus, tresperimus, pimecrolimus, sirolimus (rapamycin), verolimus, laflunimus, laquinimod and imiquimod. Such compounds, delivered in the foam of the present invention, are especially advantageous in skin disorders such as psoriasis, eczema and atopic dermatitis, where the large skin areas are to be treated.
In an embodiment of the present invention, the active agent is selected from a dicarboxylic acid and a dicarboxylic acid ester.
Because of the multiple therapeutic properties of dicarboxylic acids and their respective esters, the combination of such dicarboxylic acids or their respective esters with another active agents can result in a synergistic therapeutic benefit. For example, psoriasis is characterized by a heperkeratinization aspect and an inflammation, and therefore, its treatment can benefit from the combination of a dicarboxylic acid, which is keratolytic and a steroid.
Fields of Applications
The foamable carrier of the present invention is suitable for treating any inflicted surface. In one or more embodiments, foamable carrier is suitable for administration to the skin, a body surface, a body cavity or mucosal surface, e.g., the cavity and/or the mucosa of the nose, mouth, eye, ear, respiratory system, vagina or rectum (severally and interchangeably termed herein “target site”).
In one embodiment, the disorder is a dermatological disorder, which can be treated by a dicarboxylic acid.
In another embodiment, the disorder is a dermatological disorder that benefits from the use of a dicarboxylic acid or dicarboxylic ester in conjunction with another active agent. The dicarboxylic acid or dicarboxylic ester may benefit by improving the solubility of the active agent or increasing the penetration of the active agent. The dicarboxylic acid or dicarboxylic ester may also provide a synergistic therapeutic effect in combination with the active agent.
By selecting a suitable active agent, or a combination of two or more active agents, the foamable composition of the present invention is useful in treating an animal or a human patient having any one of a variety of dermatological disorders, including dermatological pain, dermatological inflammation, acne, acne vulgaris, inflammatory acne, non-inflammatory acne, acne fulminans, nodular papulopustular acne, acne conglobata, dermatitis, bacterial skin infections, fungal skin infections, viral skin infections, parasitic skin infections, skin neoplasia, skin neoplasms, pruritis, cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, scalded skin syndrome, folliculitis, furuncles, hidradenitis suppurativa, carbuncles, paronychial infections, rashes, erythrasma, impetigo, ecthyma, yeast skin infections, warts, molluscum contagiosum, trauma or injury to the skin, post-operative or post-surgical skin conditions, scabies, pediculosis, creeping eruption, eczemas, psoriasis, pityriasis rosea, lichen planus, pityriasis rubra pilaris, edematous, erythema multiforme, erythema nodosum, granuloma annulare, epidermal necrolysis, sunburn, photosensitivity, pemphigus, bullous pemphigoid, dermatitis herpetiformis, keratosis pilaris, callouses, corns, ichthyosis, skin ulcers, ischemic necrosis, miliaria, hyperhidrosis, moles, Kaposi's sarcoma, melanoma, malignant melanoma, basal cell carcinoma, squamous cell carcinoma, poison ivy, poison oak, contact dermatitis, atopic dermatitis, rosacea, purpura, moniliasis, candidiasis, baldness, alopecia, Behcet's syndrome, cholesteatoma, Dercum disease, ectodermal dysplasia, gustatory sweating, nail patella syndrome, lupus, hives, hair loss, Hailey-Hailey disease, chemical or thermal skin burns, scleroderma, aging skin, wrinkles, sun spots, necrotizing fasciitis, necrotizing myositis, gangrene, scarring, and vitiligo.
Likewise, the foamable composition of the present invention is suitable for treating a disorder of a body cavity or mucosal surface, e.g., the mucosa of the nose, mouth, eye, ear, respiratory system, vagina or rectum. Non limiting examples of such conditions include chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranuloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VIN), contact dermatitis, pelvic inflammation, endometritis, salpingitis, oophoritis, genital cancer, cancer of the cervix, cancer of the vulva, cancer of the vagina, vaginal dryness, dyspareunia, anal and rectal disease, anal abscess/fistula, anal cancer, anal fissure, anal warts, Crohn's disease, hemorrhoids, anal itch, pruritus ani, fecal incontinence, constipation, polyps of the colon and rectum.
In an embodiment of the present invention, the disorder is a dermatological disorder, which can be treated by a dicarboxylic acid.
In an embodiment of the present invention, the disorder is a dermatological disorder, which can be treated by a dicarboxylic acid ester.
In an embodiment of the present invention, the disorder is a dermatological disorder, which can be treated by a topical steroid, and the dicarboxylic acid or dicarboxylic ester provides a beneficial effect by increasing the solubility or penetration of the topical steroid.
In an embodiment of the present invention, the disorder is a dermatological disorder, which can be treated by an immunomodulator and the dicarboxylic acid or dicarboxylic ester provides a beneficial effect by increasing the solubility or penetration of the topical immunomodulator.
In an embodiment of the present invention, the disorder is a dermatological disorder, which can be treated by an anti-infective agent, such as an antibacterial agent, and antibiotic, an antifungal agent and an antiviral agent, and the dicarboxylic acid or dicarboxylic ester provides a beneficial effect as an anti-infective agent or by increasing the solubility or penetration of the anti-infective agent.
In an embodiment of the present invention, the disorder is a dermatological disorder, which is common in children. Foam is advantageous in the topical treatment of children, who are sensitive to treatment with a cream or ointment.
In an embodiment of the present invention, the disorder is atopic dermatitis and the active agent is a steroid, further including a dicarboxylic acid (DCA) or DCA ester to stabilize or solubilize the topical steroid.
In an embodiment of the present invention, the disorder is psoriasis and the active agent is a steroid, further including a DCA or DCA ester to stabilize or solubilize the topical steroid.
In an embodiment of the present invention, the disorder is selected from psoriasis and atopic dermatitis and the active agent comprises a steroid and an additional non-steroidal active agent, such as a vitamin D derivative, further including a DCA or DCA ester to stabilize or solubilize the topical steroid and/or non-steroidal active agent.
In an embodiment of the present invention, the disorder is selected from psoriasis and atopic dermatitis and the active agent comprises an immunomodulator, further including a DCA or DCA ester to stabilize or solubilize the immunomodulator.
In an embodiment of the present invention, the composition is useful for the treatment of an infection. In one or more embodiments, the composition is suitable for the treatment of an infection, selected from the group of a bacterial infection, a fungal infection, a yeast infection, a viral infection and a parasitic infection.
In an embodiment of the present invention, the composition is useful for the treatment of wound, ulcer and burn.
The composition of the present invention is also suitable for administering a hormone to the skin or to a mucosal membrane or to a body cavity, in order to deliver the hormone into the tissue of the target organ, in any disorder that responds to treatment with a hormone.
Other foamable compositions are described in: U.S. Publication No. 05-0232869, published on Oct. 20, 2005, entitled NONSTEROIDAL IMMUNOMODULATING KIT AND COMPOSITION AND USES THEREOF; U.S. Publication No. 05-0205086, published on Sep. 22, 2005, entitled RETINOID IMMUNOMODULATING KIT AND COMPOSITION AND USES THEREOF; U.S. Publication No. 06-0018937, published on Jan. 26, 2006, entitled STEROID KIT AND FOAMABLE COMPOSITION AND USES THEREOF; U.S. Publication No. 05-0271596, published on Dec. 8, 2005, entitled VASOACTIVE KIT AND COMPOSITION AND USES THEREOF; U.S. Publication No. 06-0269485, published on Nov. 30, 2006, entitled ANTIBIOTIC KIT AND COMPOSITION AND USES THEREOF; U.S. Publication No. 07-0020304, published on Jan. 25, 2007, entitled NON-FLAMMABLE INSECTICIDE COMPOSITION AND USES THEREOF; U.S. Publication No. 06-0193789, published on Aug. 31, 2006, entitled FILM FORMING FOAMABLE COMPOSITION; U.S. patent application Ser. No. 11/732,547, filed on Apr. 4, 2007, entitled ANTI-INFECTION AUGMENTATION OF FOAMABLE COMPOSITIONS AND KIT AND USES THEREOF; U.S. Provisional Patent Application No. 60/789,186, filed on Apr. 4, 2006, KERATOLYTIC ANTIFUNGAL FOAM; U.S. Provisional Patent Application No. 0/815948, filed on Jun. 23, 2006, entitled FOAMABLE COMPOSITIONS COMPRISING A CALCIUM CHANNEL BLOCKER, A CHOLINERGIC AGENT AND A NITRIC OXIDE DONOR; U.S. Provisional Patent Application No. 60/818,634, filed on Jul. 5, 2006, entitled DICARBOXYLIC ACID FOAMABLE VEHICLE AND PHARMACEUTICAL COMPOSITIONS THEREOF; U.S. Provisional Patent Application No. 60/843,140, filed on Sep. 8, 2006, entitled FOAMABLE VEHICLE AND VITAMIN PHARMACEUTICAL COMPOSITIONS THEREOF, all of which are incorporated herein by reference in their entirety. More particularly any of the active ingredients; the solvents; the surfactants; foam adjuvants; penetration enhancers; humectants; moisturizers; and other excipients as well as the propellants listed therein can be applied herein and are incorporated by reference.
The following examples further exemplify the benefit agent foamable pharmaceutical carriers, pharmaceutical compositions thereof, methods for preparing the same, and therapeutic uses of the compositions. The examples are for the purposes of illustration only and are not intended to be limiting of the invention. Many variations may be carried out by one of ordinary skill in the art and are contemplated within the full scope of the present invention.
Methodology
A general procedure for preparing foamable compositions is set out in WO 2004/037225, which is incorporated herein by reference.
Emulsion Foam
Each aerosol canister is filled with PFF and crimped with valve using vacuum crimping machine.
Pressurizing
Propellant Filling
Closure Integrity Test.
By way of non limiting example the objectives of hardness, collapse time and FTC stability tests are briefly set out below as would be appreciated by a person of the art.
Hardness
LFRA100 instrument is used to characterize hardness. A probe is inserted into the test material. The resistance of the material to compression is measured by a calibrated load cell and reported in units of grams on the texture analyzer instrument display. Preferably at least three repeat tests are made. The textural characteristics of a dispensed foam can effect the degree of dermal penetration, efficacy, spreadability and acceptability to the user. The results can also be looked at as an indicator of softness. Note: the foam sample is dispensed into an aluminum sample holder and filled to the top of the holder.
Collapse Time
Collapse time (CT) is examined by dispensing a given quantity of foam and photographing sequentially its appearance with time during incubation at 36° C. It is useful for evaluating foam products, which maintain structural stability at skin temperature for at least 1 min.
Viscosity
Viscosity is measured with Brookfield LVDV-II+PRO with spindle SC4-25 at ambient temperature and 10, 5 and 1 RPM. Viscosity is usually measured at 10 RPM. However, at about the apparent upper limit for the spindle of ˜>50,000 CP, the viscosity at 1 RPM may be measured, although the figures are of a higher magnitude.
FTC (Freeze Thaw Cycles)
To check the foam appearance under extreme conditions of repeated cycles of cooling, heating, (first cycle) cooling, heating (second cycle) etc., commencing with −100° C. (24 hours) followed by +400° C. (24 hours) measuring the appearance and again repeating the cycle for up to three times.
Creaming by Centrifugation:
1. Principle of Test
Intra-Canister Uniformity
and the intra canister uniformity evaluated from the results.
Stock Compositions
Non-limiting examples of how stock solutions are made up with and without API. Other stock solutions may be made using the same methodology by simply varying adding or omitting ingredients as would be appreciated by one of the ordinary skills in the art.
The invention is described with reference to the following examples. This invention is not limited to these examples and experiments. Many variations will suggest themselves and are within the full intended scope of the appended claims.
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
Notes:
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
Notes:
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
Excellent foam formulations were prepared with DISPA, surfactant, and a nominal amount of polymeric agent.
In foamable compositions using less than 40 wt % DISPA, no solvent other than water is required to make foamable composition with resultant excellent foams. The use of a combination of ether-based or ester-based surfactants was found to be useful in forming excellent foams with a minimal number of ingredients. Without being bound by any particular theory or mode of operation, it is believed that the use of non-ionic surfactants with significant hydrophobic and hydrophilic components, increase the emulsifier or foam stabilization characteristics of the composition. Similarly, without being bound by any particular theory or mode of operation, using combinations of surfactants with high and low HLB's to provide a relatively close packed surfactant layer may strengthen the emulsion.
Visual test after addition of water indicated that DCA011 is an oil in water emulsion.
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
Polymeric agents are introduced to improve foam. Surprisingly, it was possible to prepare excellent foam formulations without a polymeric agent from DISPA, surfactant, and water (and without a foam adjuvant or another solvent). This is especially surprising as the use of water in the composition is understood to benefit from the use of a polymeric agent that can thicken or increase the viscosity of the compositions and improve the resultant foam strength.
As in Example 3 and in Example 6, the combination of ether-based or ester-based surfactants was found to be useful in forming excellent foams with a minimal number of ingredients.
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
More surprisingly, by removal of the polymer and by reducing the levels of steareth 21 and steareth 2 (ethers) (by about 40 to 50%) it was possible to obtain excellent foams without precipitation at 60% DISPA and at 60% diethyl sebacate.
Without being bound to any particular theory the physical change in the formulation may be due to DISPA reaching a concentration where phase reversal from o/w to w/o emulsion is possible. Also at this concentration range of DISPA removal of the polymeric agent, which itself can absorb water may—without being bound by any theory—have resulted in additional water being available and perhaps reducing internal emulsion tensions including any resulting from the presence of the polymeric agent and thereby unexpectedly resulting in improved foam quality even though polymeric agents are normally added to strengthen foam quality. Also as the concentration of DISPA increased and consequently the amount of water decreased it appears that the amount of surfactant required reduction as the external water phase is thinner.
It has also been discovered by using a different surfactant (ester based in place of an ether based) system it was possible to achieve compositions that can generate good quality foam and without precipitation with 60% DISPA or 60% diethyl sebacate in the absence of polymer. Addition of small amounts of xantham gum and methocel with 60% DISPA and the ester based surfactants resulted in poor foam.
It further appears to be the case that—without being limited by any theory—for any given emulsion system as the oil phase is increased with a corresponding decrease in the water phase the internal tension or pressure for phase reversal will increase and the point at which the phase reversal can occur can be retarded by selective use of non traditional derivatized polymeric agents with emulsifying properties, such as permulen that can stabilize the formulation and push back the point at which pressure for phase reversal might otherwise occur.
Surprisingly it was observed that more traditional polymeric agents like carboxy methyl cellulose or carbopol or combinations like xantham gum and methocel can interfere with foam formulation at higher levels of dicarboxylic esters.—all these formulations were examined by conductivity, by water addition test and by microscopic examination and were found to be oil in water emulsions despite the fact that the amount of oil phase was approximately double that of the aqueous phase.
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
Excellent foam formulations were prepared with diethyl sebacate, surfactant, a nominal amount of polymeric agent and water (and without any foam adjuvant or another solvent).
Part 1—Composition of Placebo or Stock Formulation PIMF-001P
Pimecrolimus is sensitive to polyethylene glycol polymers so it was necessary to develop formulations with emulsifying agents other than for example Twin, Myrj, or Brij surfactants, which are mainstream surfactants for pharmaceutical formulations. The combination of sorbitan laurate with sucrose stearic acid esters was found to be effective. Pimecrolimus is insoluble in water but is soluble in DISPA.
Part 2—Pimecrolimus Content Determined by HPLC in PFF and Foam Formulation Samples at Various Times and Storage Conditions
The formulations were comprised of 98.8%; 98.6% and 98.4% stock plus 1.2%, 1.4% and 1.6% pimecrolimus respectively.
As can be seen from the above there is no significant breakdown of the active agent after a month when solubilized in DISPA.
Part 3—Physical Properties of PFF and Foam Preparations
The basic formulation is a liquid emulsion which is inherently not stable with a tendency to cream or separate. Two contradictory forces had to be overcome to produce a good to excellent stable foam. One is to have a liquid formulation that stabilizes the active agent and the other is to have a thick almost solid like constitution which resists or retards creaming and or separation. Nevertheless, by introducing into the formulation a mixture of non-poly ethylene glycol polymer surfactants, which can produce a strong and closed packed barrier between the oil and the water that stabilizes the emulsion, together with polymeric agents that retard creaming and or separation whilst maintaining a fluid constitution, it was possible to stabilize the foam and active agent.
Microscopic examination disclosed that there were no crystals and that Pimecrolimus was solubilized.
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
Part A—Formulation
Notes
The total amount of active agent at T-0 and at T-12 months as a percentage of 100% of ingredient that should be present according to the label and as a percentage in the formulation w/w, respectively was determined. As can be seen, no reduction in API content was observed within the limits of detection and that the content remained uniform. The differences between samples taken from the top of the canisters and from samples taken from the bottom of the canisters were not significant and were well within the acceptable range.
Furthermore, the formulation comprising active ingredient azaleic acid—despite being a suspension and subject to graviational effect—was able to withstand sedimentation and degredation such that it has remained stable and uniformly distributed in the formulation as a suspension over a prolonged period of 12 months, whilst remaining flowable and shakable.
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
Good to excellent foam formulations were prepared with azelaic acid, surfactant, polymeric agent, and either another oil or propylene glycol water (and without any foam adjuvant). Reducing the levels of azelaic acid to lower levels eliminated the appearance of crystals (See below).
Surprisingly, it was possible to prepare good to excellent foam after removal of the polymeric agent. Thus, the presence of a polymeric agent, is surprisingly not essential for foam quality. Nonetheless, polymeric agents may still contribute to and can be significant with respect to foam and active agent stability.
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
Lower azaleic acid levels provide a soluble composition. No solids or precipitates are observed. No crystals were observed at the level of microscopic examination. By no crystals means the ingredients dissolve and it is not a suspension.
When medium chain triglycerides were used as the emollient the formulation was poor. However, when they were substituted by PPG or IPM the foam quality increased substantially. Without being bound by any particular theory this may be because the formulations are close to phase reversal and or is due to internal tensions.
Good to excellent foam formulations were prepared with TU-2100, PPG or IPM, surfactant, polymeric agent, and water (and without any foam adjuvant). Surprisingly a good to excellent foam was produced even after removal of polymer.
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
Surprisingly it was possible to make non aqueous PEG based minimal foam compositions of good to excellent quality with a) active ingredient, PEG, a single surfactant and optionally a polymeric agent and also with b) active ingredient, PEG, and a polymeric agent.
The following foamable vehicles were prepared and the quality of the resultant foam was ascertained.
Surprisingly it was possible to make non aqueous PG based minimal foam compositions of good to excellent quality with active ingredient, PG, a single surfactant and a polymeric agent. Whilst TU 2100 was not soluble in the non aqueous PG based composition, azelaic acid was soluble.
Number | Date | Country | Kind |
---|---|---|---|
152486 | Oct 2002 | IL | national |
This application is a continuation application of U.S. patent application Ser. No. 15/903,275, filed Feb. 23, 2018, which is a continuation application of U.S. patent application Ser. No. 13/796,860, filed Mar. 12, 2013, which is a continuation of U.S. patent application Ser. No. 11/825,406, filed on Jul. 5, 2007, which (1) claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 60/818,634, filed on Jul. 5, 2006, entitled “Dicarboxylic Acid Foamable Vehicle and Pharmaceutical Compositions Thereof;” (2) is a continuation-in-part of U.S. patent application Ser. No. 10/532,618, filed Dec. 22, 2005, which is a 371 of International Patent Application No. 1603/005527, designating the United States and filed on Oct. 24, 2003, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Patent Application No. 60/429,546, filed on Nov. 29, 2002, both entitled “Cosmetic and Pharmaceutical Foam,” and which claims the benefit of priority under 35 U.S.C. § 119(a) to Israeli Patent Application No. 152486, filed Oct. 25, 2002; (3) is a continuation-in-part of U.S. patent application Ser. No. 10/911,367, filed on Aug. 4, 2004, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Patent Application No. 60/492,385, filed on Aug. 4, 2003, both entitled “Foam Carrier Containing Amphiphilic Copolymer Gelling Agent;” (4) is a continuation-in-part of U.S. patent application Ser. No. 11/653,205, filed on Jan. 12, 2007, entitled “Oleaginous Pharmaceutical And Cosmetic Foam,” which is a) a continuation-in-part application of U.S. patent application Ser. No. 10/835,505, filed on Apr. 28, 2004, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Patent Application No. 60/530,015, filed on Dec. 16, 2003, and U.S. Patent Application No. 60/492,385, filed on Aug. 4, 2003, and b) a continuation-in-part of U.S. patent application Ser. No. 10/911,367, filed on Aug. 4, 2004, which claims the benefit of priority under 119(e) to U.S. Patent Application No. 60/492,385, filed on Aug. 4, 2003; (5) is a continuation-in-part of U.S. patent application Ser. No. 11/717,897, filed on Mar. 13, 2007, entitled “Foamable Compositions, Kits and Methods for Hyperhidrosis;” and (6) is a continuation-in-part of U.S. patent application Ser. No. 11/078,902, filed on Mar. 11, 2005, entitled “Nonsteroidal Immunomodulating Kit and Composition and Uses Thereof;” all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1159250 | Moulton | Nov 1915 | A |
1666684 | Carstens | Apr 1928 | A |
1924972 | Beckert | Aug 1933 | A |
2085733 | Bird | Jul 1937 | A |
2390921 | Clark | Dec 1945 | A |
2524590 | Boe | Oct 1950 | A |
2586287 | Apperson | Feb 1952 | A |
2617754 | Neely | Nov 1952 | A |
2767712 | Waterman | Oct 1956 | A |
2968628 | Reed | Jan 1961 | A |
3004894 | Johnson et al. | Oct 1961 | A |
3062715 | Reese et al. | Nov 1962 | A |
3067784 | Gorman | Dec 1962 | A |
3092255 | Hohman | Jun 1963 | A |
3092555 | Horn | Jun 1963 | A |
3141821 | Compeau | Jul 1964 | A |
3142420 | Gawthrop | Jul 1964 | A |
3144386 | Brightenback | Aug 1964 | A |
3149543 | Naab | Sep 1964 | A |
3154075 | Weckesser | Oct 1964 | A |
3178352 | Erickson | Apr 1965 | A |
3236457 | Kennedy et al. | Feb 1966 | A |
3244589 | Sunnen | Apr 1966 | A |
3252859 | Silver | May 1966 | A |
3261695 | Sienkiewicz | Jul 1966 | A |
3263867 | Lehmann | Aug 1966 | A |
3263869 | Corsette | Aug 1966 | A |
3298919 | Bishop et al. | Jan 1967 | A |
3301444 | Wittke | Jan 1967 | A |
3303970 | Breslau et al. | Feb 1967 | A |
3330730 | Hernandez | Jul 1967 | A |
3333333 | Noack | Aug 1967 | A |
3334147 | Brunelle et al. | Aug 1967 | A |
3342845 | Sayigh et al. | Sep 1967 | A |
3346451 | Collins et al. | Oct 1967 | A |
3366494 | Bower et al. | Jan 1968 | A |
3369034 | Chalmers | Feb 1968 | A |
3377004 | Wittke | Apr 1968 | A |
3383280 | Kuehns | May 1968 | A |
3384541 | Clark et al. | May 1968 | A |
3395214 | Mummert | Jul 1968 | A |
3395215 | Schubert | Jul 1968 | A |
3401849 | Weber, III | Sep 1968 | A |
3419658 | Sanders | Dec 1968 | A |
3456052 | Gordon | Jul 1969 | A |
3527559 | Sliwinski | Sep 1970 | A |
3540448 | Sunnen | Nov 1970 | A |
3559890 | Brooks et al. | Feb 1971 | A |
3561262 | Borucki | Feb 1971 | A |
3563098 | Weber, III | Feb 1971 | A |
3574821 | Pfirrmann | Apr 1971 | A |
3577518 | Shepherd | May 1971 | A |
3667461 | Zamarra | Jun 1972 | A |
3751562 | Nichols | Aug 1973 | A |
3770648 | Mackles | Nov 1973 | A |
3787566 | Gauvreau | Jan 1974 | A |
3819524 | Schubert et al. | Jun 1974 | A |
3824303 | Lanzet et al. | Jul 1974 | A |
3841525 | Siegel | Oct 1974 | A |
3849569 | Mead | Nov 1974 | A |
3849580 | Weinstein et al. | Nov 1974 | A |
3865275 | De Nunzio | Feb 1975 | A |
3866800 | Schmitt | Feb 1975 | A |
3878118 | Watson | Apr 1975 | A |
3882228 | Boncey et al. | May 1975 | A |
3886084 | Vassiliades | May 1975 | A |
3890305 | Weber et al. | Jun 1975 | A |
3912665 | Spitzer et al. | Oct 1975 | A |
3912667 | Spitzer et al. | Oct 1975 | A |
3923970 | Breuer | Dec 1975 | A |
3929985 | Webb, Jr. | Dec 1975 | A |
3952916 | Phillips | Apr 1976 | A |
3953591 | Snyder | Apr 1976 | A |
3959160 | Horsler et al. | May 1976 | A |
3962150 | Viola | Jun 1976 | A |
3963833 | DeSalva et al. | Jun 1976 | A |
3966090 | Prussin et al. | Jun 1976 | A |
3966632 | Colliopoulos et al. | Jun 1976 | A |
3970219 | Spitzer et al. | Jul 1976 | A |
3970584 | Hart et al. | Jul 1976 | A |
3993224 | Harrison | Nov 1976 | A |
3997467 | Jederstrom | Dec 1976 | A |
4001391 | Feinstone et al. | Jan 1977 | A |
4001442 | Stahlberger et al. | Jan 1977 | A |
4018396 | Showmaker et al. | Apr 1977 | A |
4019657 | Spitzer et al. | Apr 1977 | A |
4052513 | Kaplan | Oct 1977 | A |
4083974 | Turi | Apr 1978 | A |
4102995 | Hebborn | Jul 1978 | A |
4110426 | Barnhurst et al. | Aug 1978 | A |
4124149 | Spitzer et al. | Nov 1978 | A |
4145411 | Mende | Mar 1979 | A |
4151272 | Geary et al. | Apr 1979 | A |
4160827 | Cho et al. | Jul 1979 | A |
4178373 | Klein et al. | Dec 1979 | A |
4213979 | Levine | Jul 1980 | A |
4214000 | Papa | Jul 1980 | A |
4226344 | Booth et al. | Oct 1980 | A |
4229432 | Geria | Oct 1980 | A |
4230701 | Holick et al. | Oct 1980 | A |
4241048 | Durbak et al. | Dec 1980 | A |
4241149 | Labes et al. | Dec 1980 | A |
4252787 | Sherman et al. | Feb 1981 | A |
4254104 | Suzuki et al. | Mar 1981 | A |
4268499 | Keil | May 1981 | A |
4271149 | Winicov et al. | Jun 1981 | A |
4278206 | Prussin | Jul 1981 | A |
4292250 | DeLuca et al. | Sep 1981 | A |
4292326 | Nazzaro-Porro et al. | Sep 1981 | A |
4299826 | Luedders | Nov 1981 | A |
4305936 | Klein | Dec 1981 | A |
4309995 | Sacco | Jan 1982 | A |
4310510 | Sherman et al. | Jan 1982 | A |
4323582 | Siegel et al. | Apr 1982 | A |
4323694 | Scala, Jr. | Apr 1982 | A |
4325939 | Shah | Apr 1982 | A |
4329990 | Sneider | May 1982 | A |
4335120 | Holick et al. | Jun 1982 | A |
4338211 | Stiros | Jul 1982 | A |
4352808 | Rane et al. | Oct 1982 | A |
4363806 | Bergström et al. | Dec 1982 | A |
4385161 | Caunt et al. | May 1983 | A |
4386104 | Nazzaro-Porro | May 1983 | A |
4393066 | Garrett et al. | Jul 1983 | A |
4427670 | Ofuchi et al. | Jan 1984 | A |
4439416 | Cordon et al. | Mar 1984 | A |
4439441 | Hallesy et al. | Mar 1984 | A |
4440320 | Wernicke | Apr 1984 | A |
4447486 | Hoppe et al. | May 1984 | A |
4469674 | Shah et al. | Sep 1984 | A |
4508705 | Chaudhuri et al. | Apr 1985 | A |
4522948 | Walker | Jun 1985 | A |
4529601 | Broberg et al. | Jul 1985 | A |
4529605 | Lynch et al. | Jul 1985 | A |
4552872 | Cooper et al. | Nov 1985 | A |
4574052 | Gupte et al. | Mar 1986 | A |
4576961 | Lorck et al. | Mar 1986 | A |
4595526 | Lai | Jun 1986 | A |
4603812 | Stoesser et al. | Aug 1986 | A |
4607101 | Bernstein | Aug 1986 | A |
4612193 | Gordon et al. | Sep 1986 | A |
4627973 | Moran et al. | Dec 1986 | A |
4628063 | Haines et al. | Dec 1986 | A |
4661340 | Nagy née Kricsfalussy et al. | Apr 1987 | A |
4661524 | Thomson et al. | Apr 1987 | A |
4672078 | Sakai et al. | Jun 1987 | A |
4673569 | Shernov et al. | Jun 1987 | A |
4678463 | Millar | Jul 1987 | A |
4701320 | Hasegawa et al. | Oct 1987 | A |
4725609 | Kull, Jr. et al. | Feb 1988 | A |
4738396 | Doi et al. | Apr 1988 | A |
4741855 | Grote et al. | May 1988 | A |
4752465 | Mackles | Jun 1988 | A |
4770634 | Pellico | Sep 1988 | A |
4772427 | Dawson | Sep 1988 | A |
4780309 | Geria et al. | Oct 1988 | A |
4784842 | London et al. | Nov 1988 | A |
4792062 | Goncalves | Dec 1988 | A |
4798682 | Ansmann | Jan 1989 | A |
4804674 | Curtis-Prior et al. | Feb 1989 | A |
4806262 | Snyder | Feb 1989 | A |
4808388 | Beutler et al. | Feb 1989 | A |
4822613 | Rodero | Apr 1989 | A |
4822614 | Rodero | Apr 1989 | A |
4826048 | Skorka et al. | May 1989 | A |
4827378 | Gillan et al. | May 1989 | A |
4828837 | Uster et al. | May 1989 | A |
4836217 | Fischer et al. | Jun 1989 | A |
4837019 | Georgalas et al. | Jun 1989 | A |
4837378 | Borgman | Jun 1989 | A |
4844902 | Grohe | Jul 1989 | A |
4847068 | Dole et al. | Jul 1989 | A |
4849117 | Bronner et al. | Jul 1989 | A |
4849211 | Schrauzer | Jul 1989 | A |
4851154 | Grollier et al. | Jul 1989 | A |
4855294 | Patel et al. | Aug 1989 | A |
4863900 | Pollock et al. | Sep 1989 | A |
4867967 | Crutcher | Sep 1989 | A |
4873078 | Edmundson et al. | Oct 1989 | A |
4874794 | Katz | Oct 1989 | A |
4876083 | Grollier et al. | Oct 1989 | A |
4877805 | Kligman | Oct 1989 | A |
4885282 | Thornfeldt | Dec 1989 | A |
4897262 | Nandagiri et al. | Jan 1990 | A |
4902281 | Avoy | Feb 1990 | A |
4906453 | Tsoucalas | Mar 1990 | A |
4913893 | Varco et al. | Apr 1990 | A |
4919934 | Deckner et al. | Apr 1990 | A |
4933330 | Jorgensen et al. | Jun 1990 | A |
4950420 | Svarz | Aug 1990 | A |
4954487 | Cooper et al. | Sep 1990 | A |
4956049 | Bernheim et al. | Sep 1990 | A |
4957732 | Grollier et al. | Sep 1990 | A |
4963351 | Weston | Oct 1990 | A |
4965063 | Casey et al. | Oct 1990 | A |
4966779 | Kirk | Oct 1990 | A |
4970067 | Panandiker et al. | Nov 1990 | A |
4975466 | Bottcher et al. | Dec 1990 | A |
4981367 | Brazelton | Jan 1991 | A |
4981677 | Thau | Jan 1991 | A |
4981679 | Briggs et al. | Jan 1991 | A |
4981845 | Pereira et al. | Jan 1991 | A |
4985459 | Sunshine et al. | Jan 1991 | A |
4992478 | Geria | Feb 1991 | A |
4993496 | Riedle et al. | Feb 1991 | A |
4996193 | Hewitt et al. | Feb 1991 | A |
5002540 | Brodman et al. | Mar 1991 | A |
5002680 | Schmidt et al. | Mar 1991 | A |
5007556 | Lover | Apr 1991 | A |
5013297 | Cattanach | May 1991 | A |
5015471 | Birtwistle et al. | May 1991 | A |
5019375 | Tanner et al. | May 1991 | A |
5034220 | Helioff et al. | Jul 1991 | A |
5035895 | Shibusawa et al. | Jul 1991 | A |
5053228 | Mori et al. | Oct 1991 | A |
5071648 | Rosenblatt | Dec 1991 | A |
5071881 | Parfondry et al. | Dec 1991 | A |
5073371 | Turner et al. | Dec 1991 | A |
5082651 | Healey et al. | Jan 1992 | A |
5087618 | Bodor | Feb 1992 | A |
5089252 | Grollier et al. | Feb 1992 | A |
5091111 | Neumiller | Feb 1992 | A |
5094853 | Hagarty | Mar 1992 | A |
5100917 | Flynn et al. | Mar 1992 | A |
5104645 | Cardin et al. | Apr 1992 | A |
5112359 | Murphy et al. | May 1992 | A |
5114718 | Damani | May 1992 | A |
5122519 | Ritter | Jun 1992 | A |
5130121 | Kopolow et al. | Jul 1992 | A |
5133972 | Ferrini et al. | Jul 1992 | A |
5135915 | Czarniecki et al. | Aug 1992 | A |
5137714 | Scott | Aug 1992 | A |
5143717 | Davis | Sep 1992 | A |
5156765 | Smrt | Oct 1992 | A |
5160665 | Owada et al. | Nov 1992 | A |
5164357 | Bartman et al. | Nov 1992 | A |
5164367 | Pickart | Nov 1992 | A |
5167950 | Lins | Dec 1992 | A |
5171577 | Griat et al. | Dec 1992 | A |
5196405 | Packman | Mar 1993 | A |
5204090 | Han | Apr 1993 | A |
5204093 | Victor | Apr 1993 | A |
5208031 | Kelly | May 1993 | A |
5217707 | Szabo et al. | Jun 1993 | A |
5219877 | Shah et al. | Jun 1993 | A |
5221530 | Janchitraponvej et al. | Jun 1993 | A |
5221534 | DesLauriers et al. | Jun 1993 | A |
5221696 | Ke et al. | Jun 1993 | A |
5230897 | Griffin et al. | Jul 1993 | A |
5236707 | Stewart, II | Aug 1993 | A |
5252246 | Ding et al. | Oct 1993 | A |
5254334 | Ramirez et al. | Oct 1993 | A |
5262407 | Leveque et al. | Nov 1993 | A |
5266592 | Grub et al. | Nov 1993 | A |
5279819 | Hayes | Jan 1994 | A |
5286475 | Louvet et al. | Feb 1994 | A |
5294365 | Welch et al. | Mar 1994 | A |
5300286 | Gee | Apr 1994 | A |
5301841 | Fuchs | Apr 1994 | A |
5308643 | Osipow et al. | May 1994 | A |
5314904 | Egidio et al. | May 1994 | A |
5318774 | Alban et al. | Jun 1994 | A |
5322683 | Mackles et al. | Jun 1994 | A |
5326557 | Glover et al. | Jul 1994 | A |
5344051 | Brown | Sep 1994 | A |
5346135 | Vincent | Sep 1994 | A |
5352437 | Nakagawa et al. | Oct 1994 | A |
5369131 | Poli et al. | Nov 1994 | A |
5378451 | Gorman et al. | Jan 1995 | A |
5378730 | Lee et al. | Jan 1995 | A |
5380761 | Szabo Anna Z. et al. | Jan 1995 | A |
5384308 | Henkin | Jan 1995 | A |
5385943 | Nazzaro-Porro | Jan 1995 | A |
5389305 | Repinec et al. | Feb 1995 | A |
5389676 | Michaels | Feb 1995 | A |
5397312 | Rademaker et al. | Mar 1995 | A |
5398846 | Corba et al. | Mar 1995 | A |
5399205 | Shinohara et al. | Mar 1995 | A |
5411992 | Eini et al. | May 1995 | A |
5422361 | Munayyer et al. | Jun 1995 | A |
5429815 | Faryniarz et al. | Jul 1995 | A |
5435996 | Glover et al. | Jul 1995 | A |
5439670 | Purewal et al. | Aug 1995 | A |
5439682 | Wivell et al. | Aug 1995 | A |
5447725 | Damani et al. | Sep 1995 | A |
5449520 | Frigerio et al. | Sep 1995 | A |
5451404 | Furman | Sep 1995 | A |
5482965 | Rajadhyaksha | Jan 1996 | A |
5491245 | Gruning et al. | Feb 1996 | A |
5500211 | George et al. | Mar 1996 | A |
5508033 | Briand et al. | Apr 1996 | A |
5512555 | Waldstreicher | Apr 1996 | A |
5514367 | Lentini et al. | May 1996 | A |
5514369 | Salka et al. | May 1996 | A |
5520918 | Smith | May 1996 | A |
5523078 | Baylin | Jun 1996 | A |
5527534 | Myhling | Jun 1996 | A |
5527822 | Scheiner | Jun 1996 | A |
5529770 | McKinzie et al. | Jun 1996 | A |
5531703 | Skwarek et al. | Jul 1996 | A |
5534261 | Rodgers et al. | Jul 1996 | A |
5536743 | Borgman | Jul 1996 | A |
5540853 | Trinh et al. | Jul 1996 | A |
5545401 | Shanbrom | Aug 1996 | A |
5547989 | Chamness | Aug 1996 | A |
5558872 | Jones et al. | Sep 1996 | A |
5560859 | Hartmann et al. | Oct 1996 | A |
5567420 | McEleney et al. | Oct 1996 | A |
5576016 | Amselem et al. | Nov 1996 | A |
5578315 | Chien et al. | Nov 1996 | A |
5585104 | Ha et al. | Dec 1996 | A |
5589157 | Hatfield | Dec 1996 | A |
5589515 | Suzuki et al. | Dec 1996 | A |
5597560 | Bergamini et al. | Jan 1997 | A |
5603940 | Candau et al. | Feb 1997 | A |
5605679 | Hansenne et al. | Feb 1997 | A |
5608119 | Amano et al. | Mar 1997 | A |
5611463 | Favre | Mar 1997 | A |
5612056 | Jenner et al. | Mar 1997 | A |
5613583 | Kono et al. | Mar 1997 | A |
5613623 | Hildebrandt | Mar 1997 | A |
5614171 | Clavenna et al. | Mar 1997 | A |
5614178 | Bloom et al. | Mar 1997 | A |
5618516 | Clavenna et al. | Apr 1997 | A |
5635469 | Fowler et al. | Jun 1997 | A |
5641480 | Vermeer | Jun 1997 | A |
5643600 | Mathur | Jul 1997 | A |
5645842 | Gruning et al. | Jul 1997 | A |
5648380 | Martin | Jul 1997 | A |
5650554 | Moloney | Jul 1997 | A |
5658575 | Ribier et al. | Aug 1997 | A |
5658749 | Thornton | Aug 1997 | A |
5658956 | Martin et al. | Aug 1997 | A |
5663208 | Martin | Sep 1997 | A |
5672634 | Tseng et al. | Sep 1997 | A |
5679324 | Lisboa et al. | Oct 1997 | A |
5683710 | Akemi et al. | Nov 1997 | A |
5686088 | Mitra et al. | Nov 1997 | A |
5693258 | Tonomura et al. | Dec 1997 | A |
5695551 | Buckingham et al. | Dec 1997 | A |
5695747 | Forestier et al. | Dec 1997 | A |
5700396 | Suzuki et al. | Dec 1997 | A |
5705472 | Hayes et al. | Jan 1998 | A |
5716611 | Oshlack et al. | Feb 1998 | A |
5716621 | Bello | Feb 1998 | A |
5719122 | Chiodini et al. | Feb 1998 | A |
5719197 | Kanios et al. | Feb 1998 | A |
5725872 | Stamm et al. | Mar 1998 | A |
5725874 | Oda | Mar 1998 | A |
5730964 | Waldstreicher | Mar 1998 | A |
5733558 | Breton et al. | Mar 1998 | A |
5733572 | Unger et al. | Mar 1998 | A |
5747049 | Tominaga | May 1998 | A |
5753241 | Ribier et al. | May 1998 | A |
5753245 | Fowler et al. | May 1998 | A |
5753270 | Beauchamp et al. | May 1998 | A |
5759520 | Sachetto | Jun 1998 | A |
5759579 | Singh et al. | Jun 1998 | A |
5767104 | Bar-Shalom et al. | Jun 1998 | A |
5773410 | Yamamoto | Jun 1998 | A |
5783202 | Tomlinson et al. | Jul 1998 | A |
5788664 | Scalise | Aug 1998 | A |
5792448 | Dubief et al. | Aug 1998 | A |
5792922 | Moloney et al. | Aug 1998 | A |
5797955 | Walters | Aug 1998 | A |
5804546 | Hall et al. | Sep 1998 | A |
5807571 | List | Sep 1998 | A |
5817322 | Xu et al. | Oct 1998 | A |
5824650 | De Lacharriere et al. | Oct 1998 | A |
5833960 | Gers-Barlag et al. | Nov 1998 | A |
5833961 | Siegfried et al. | Nov 1998 | A |
5837270 | Burgess | Nov 1998 | A |
5840744 | Borgman | Nov 1998 | A |
5840771 | Oldham et al. | Nov 1998 | A |
5843411 | Hernandez et al. | Dec 1998 | A |
5846983 | Sandborn et al. | Dec 1998 | A |
5849042 | Lim et al. | Dec 1998 | A |
5854246 | Francois et al. | Dec 1998 | A |
5856452 | Moloney et al. | Jan 1999 | A |
5858371 | Singh et al. | Jan 1999 | A |
5865347 | Welschoff | Feb 1999 | A |
5866040 | Nakama et al. | Feb 1999 | A |
5869529 | Sintov et al. | Feb 1999 | A |
5871720 | Gutierrez et al. | Feb 1999 | A |
5877216 | Place et al. | Mar 1999 | A |
5879469 | Avram et al. | Mar 1999 | A |
5881493 | Restive | Mar 1999 | A |
5885581 | Massand | Mar 1999 | A |
5889028 | Sandborn et al. | Mar 1999 | A |
5889054 | Yu et al. | Mar 1999 | A |
5891458 | Britton et al. | Apr 1999 | A |
5902574 | Stoner et al. | May 1999 | A |
5902789 | Stoltz | May 1999 | A |
5905092 | Osborne et al. | May 1999 | A |
5910382 | Goodenough et al. | Jun 1999 | A |
5911981 | Dahms et al. | Jun 1999 | A |
5912007 | Pan et al. | Jun 1999 | A |
5914122 | Otterbeck et al. | Jun 1999 | A |
5914310 | Li et al. | Jun 1999 | A |
5919830 | Gopalkrishnan et al. | Jul 1999 | A |
5922331 | Mausner | Jul 1999 | A |
5925669 | Katz et al. | Jul 1999 | A |
5939376 | Durbut et al. | Aug 1999 | A |
5948682 | Moloney | Sep 1999 | A |
5951544 | Konwitz | Sep 1999 | A |
5951989 | Heymann | Sep 1999 | A |
5951993 | Scholz et al. | Sep 1999 | A |
5952373 | Lanzendorfer et al. | Sep 1999 | A |
5952392 | Katz et al. | Sep 1999 | A |
5955414 | Brown et al. | Sep 1999 | A |
5959161 | Kenmochi et al. | Sep 1999 | A |
5961957 | McAnalley | Oct 1999 | A |
5961998 | Arnaud et al. | Oct 1999 | A |
5972310 | Sachetto | Oct 1999 | A |
5976555 | Liu et al. | Nov 1999 | A |
5980904 | Leverett et al. | Nov 1999 | A |
5990100 | Rosenberg et al. | Nov 1999 | A |
5993846 | Friedman et al. | Nov 1999 | A |
6001341 | Genova et al. | Dec 1999 | A |
6006948 | Auer | Dec 1999 | A |
6017912 | Bussell | Jan 2000 | A |
6019967 | Breton et al. | Feb 2000 | A |
6024942 | Tanner et al. | Feb 2000 | A |
6030630 | Fleury et al. | Feb 2000 | A |
6033647 | Touzan et al. | Mar 2000 | A |
6039936 | Restle et al. | Mar 2000 | A |
6042848 | Lawyer et al. | Mar 2000 | A |
6045779 | Mueller et al. | Apr 2000 | A |
6060041 | Candau et al. | May 2000 | A |
6071536 | Suzuki et al. | Jun 2000 | A |
6071541 | Murad | Jun 2000 | A |
6075056 | Quigley, Jr. et al. | Jun 2000 | A |
6080394 | Lin et al. | Jun 2000 | A |
6087310 | Heinkel | Jul 2000 | A |
6087317 | Gee | Jul 2000 | A |
6090772 | Kaiser et al. | Jul 2000 | A |
6093408 | Hasenoehrl et al. | Jul 2000 | A |
6096756 | Crain et al. | Aug 2000 | A |
6110477 | Hernandez et al. | Aug 2000 | A |
6110966 | Pollock | Aug 2000 | A |
6113888 | Castro et al. | Sep 2000 | A |
6116466 | Gueret | Sep 2000 | A |
6121210 | Taylor | Sep 2000 | A |
6126920 | Jones et al. | Oct 2000 | A |
6133327 | Kimura et al. | Oct 2000 | A |
6140355 | Egidio et al. | Oct 2000 | A |
6146645 | Deckers et al. | Nov 2000 | A |
6146664 | Siddiqui | Nov 2000 | A |
6162834 | Sebillotte-Arnaud et al. | Dec 2000 | A |
6165455 | Torgerson et al. | Dec 2000 | A |
6168576 | Reynolds | Jan 2001 | B1 |
6171347 | Kunz et al. | Jan 2001 | B1 |
6180662 | Lanzendörfer et al. | Jan 2001 | B1 |
6180669 | Tamarkin | Jan 2001 | B1 |
6183762 | Deckers et al. | Feb 2001 | B1 |
6186367 | Harrold | Feb 2001 | B1 |
6187290 | Gilchrist et al. | Feb 2001 | B1 |
6189810 | Nerushai et al. | Feb 2001 | B1 |
6190365 | Abbott et al. | Feb 2001 | B1 |
6204285 | Fabiano et al. | Mar 2001 | B1 |
6210656 | Touzan et al. | Apr 2001 | B1 |
6210742 | Deckers et al. | Apr 2001 | B1 |
6214318 | Osipow et al. | Apr 2001 | B1 |
6214788 | Velazco et al. | Apr 2001 | B1 |
6217887 | Beerse et al. | Apr 2001 | B1 |
6221381 | Shelford et al. | Apr 2001 | B1 |
6221823 | Crisanti et al. | Apr 2001 | B1 |
6224888 | Vatter et al. | May 2001 | B1 |
6231837 | Stroud et al. | May 2001 | B1 |
6232315 | Shafer et al. | May 2001 | B1 |
6241971 | Fox et al. | Jun 2001 | B1 |
6251369 | Stoltz | Jun 2001 | B1 |
6258374 | Friess et al. | Jul 2001 | B1 |
6261544 | Coury et al. | Jul 2001 | B1 |
6264964 | Mohammadi | Jul 2001 | B1 |
6270781 | Gehlsen | Aug 2001 | B1 |
6271295 | Powell et al. | Aug 2001 | B1 |
6274150 | Simonnet et al. | Aug 2001 | B1 |
6283336 | Dwyer et al. | Sep 2001 | B1 |
6284802 | Bissett et al. | Sep 2001 | B1 |
6287546 | Reich et al. | Sep 2001 | B1 |
6294550 | Place et al. | Sep 2001 | B1 |
6299023 | Arnone | Oct 2001 | B1 |
6299032 | Hamilton | Oct 2001 | B1 |
6299900 | Reed et al. | Oct 2001 | B1 |
6305578 | Hildebrandt et al. | Oct 2001 | B1 |
6306841 | Place et al. | Oct 2001 | B1 |
6308863 | Harman | Oct 2001 | B1 |
6319913 | Mak et al. | Nov 2001 | B1 |
6328950 | Franzke et al. | Dec 2001 | B1 |
6328982 | Shiroyama et al. | Dec 2001 | B1 |
6333362 | Lorant | Dec 2001 | B1 |
6335022 | Simonnet et al. | Jan 2002 | B1 |
6341717 | Auer | Jan 2002 | B2 |
6344218 | Dodd et al. | Feb 2002 | B1 |
6348229 | Eini et al. | Feb 2002 | B1 |
6352727 | Takahashi | Mar 2002 | B1 |
6355230 | Gers-Barlag et al. | Mar 2002 | B2 |
6358541 | Goodman | Mar 2002 | B1 |
6358924 | Hoffmann | Mar 2002 | B1 |
6364854 | Ferrer et al. | Apr 2002 | B1 |
6372234 | Deckers et al. | Apr 2002 | B1 |
6375936 | Allard et al. | Apr 2002 | B1 |
6375960 | Simonnet et al. | Apr 2002 | B1 |
6383471 | Chen et al. | May 2002 | B1 |
6395258 | Steer | May 2002 | B1 |
6395300 | Straub et al. | May 2002 | B1 |
6403061 | Candau et al. | Jun 2002 | B1 |
6403069 | Chopra et al. | Jun 2002 | B1 |
6410036 | De Rosa et al. | Jun 2002 | B1 |
6423323 | Neubourg | Jul 2002 | B2 |
6423329 | Sine et al. | Jul 2002 | B1 |
6428772 | Singh et al. | Aug 2002 | B1 |
6433003 | Bobrove et al. | Aug 2002 | B1 |
6433024 | Popp et al. | Aug 2002 | B1 |
6433033 | Isobe et al. | Aug 2002 | B1 |
6433068 | Morrison et al. | Aug 2002 | B1 |
6437006 | Yoon et al. | Aug 2002 | B1 |
6440429 | Torizuka et al. | Aug 2002 | B1 |
6447801 | Salafsky et al. | Sep 2002 | B1 |
6451777 | Bradbury et al. | Sep 2002 | B1 |
6455076 | Hahn et al. | Sep 2002 | B1 |
6468989 | Chang et al. | Oct 2002 | B1 |
6479058 | McCadden | Nov 2002 | B1 |
6479060 | Jones et al. | Nov 2002 | B1 |
6479532 | Kamimura et al. | Nov 2002 | B1 |
6482810 | Brem et al. | Nov 2002 | B1 |
6486168 | Skwierczynski et al. | Nov 2002 | B1 |
6488947 | Bekele | Dec 2002 | B1 |
6511655 | Muller et al. | Jan 2003 | B1 |
6514487 | Barr | Feb 2003 | B1 |
6524594 | Santora et al. | Feb 2003 | B1 |
6531118 | Gonzalez et al. | Mar 2003 | B1 |
6534455 | Maurin et al. | Mar 2003 | B1 |
6536629 | van der Heijden | Mar 2003 | B2 |
6544530 | Friedman | Apr 2003 | B1 |
6544562 | Singh et al. | Apr 2003 | B2 |
6547063 | Zaveri et al. | Apr 2003 | B1 |
6548074 | Mohammadi | Apr 2003 | B1 |
6551604 | Beck et al. | Apr 2003 | B1 |
6562355 | Renault | May 2003 | B1 |
6566350 | Ono et al. | May 2003 | B2 |
6582679 | Stein et al. | Jun 2003 | B2 |
6582710 | Deckers et al. | Jun 2003 | B2 |
6589509 | Keller et al. | Jul 2003 | B2 |
6596287 | Deckers et al. | Jul 2003 | B2 |
6599513 | Deckers et al. | Jul 2003 | B2 |
6607716 | Smith et al. | Aug 2003 | B1 |
6610315 | Scholz et al. | Aug 2003 | B2 |
6620773 | Stork et al. | Sep 2003 | B1 |
6638981 | Williams et al. | Oct 2003 | B2 |
6649571 | Morgan | Nov 2003 | B1 |
6649574 | Cardis et al. | Nov 2003 | B2 |
6672483 | Roy | Jan 2004 | B1 |
6682726 | Marchesi et al. | Jan 2004 | B2 |
6682750 | Loeffler et al. | Jan 2004 | B2 |
6691898 | Hurray et al. | Feb 2004 | B2 |
6706290 | Kajander et al. | Mar 2004 | B1 |
6709663 | Espinoza | Mar 2004 | B2 |
6723309 | Deane | Apr 2004 | B1 |
6730288 | Abram | May 2004 | B1 |
6736860 | Patel et al. | May 2004 | B2 |
6753000 | Breton et al. | Jun 2004 | B2 |
6753013 | Didriksen et al. | Jun 2004 | B1 |
6753167 | Moloney et al. | Jun 2004 | B2 |
6762158 | Lukenbach et al. | Jul 2004 | B2 |
6765001 | Gans et al. | Jul 2004 | B2 |
6774114 | Castiel et al. | Aug 2004 | B2 |
6777591 | Chaudhary et al. | Aug 2004 | B1 |
6790435 | Ma et al. | Sep 2004 | B1 |
6796973 | Contente et al. | Sep 2004 | B1 |
RE38623 | Hernandez et al. | Oct 2004 | E |
6811767 | Bosch et al. | Nov 2004 | B1 |
6834778 | Jinbo et al. | Dec 2004 | B2 |
6841547 | Brown et al. | Jan 2005 | B2 |
6843390 | Bristor | Jan 2005 | B1 |
6875438 | Kraemer et al. | Apr 2005 | B2 |
6881271 | Ochiai | Apr 2005 | B2 |
6890567 | Nakatsu et al. | May 2005 | B2 |
6897195 | Su et al. | May 2005 | B2 |
6902737 | Quemin et al. | Jun 2005 | B2 |
6911211 | Eini et al. | Jun 2005 | B2 |
6914057 | Ryan et al. | Jul 2005 | B1 |
6946120 | Wai-Chiu So et al. | Sep 2005 | B2 |
6946139 | Henning | Sep 2005 | B2 |
6951654 | Malcolm et al. | Oct 2005 | B2 |
6955816 | Klysz | Oct 2005 | B2 |
6956062 | Beilfuss et al. | Oct 2005 | B2 |
6958154 | Andolino Brandt et al. | Oct 2005 | B2 |
6967023 | Eini et al. | Nov 2005 | B1 |
6968982 | Burns | Nov 2005 | B1 |
6969521 | Gonzalez et al. | Nov 2005 | B1 |
RE38964 | Shillington | Jan 2006 | E |
6986883 | Pellico | Jan 2006 | B2 |
6994863 | Eini et al. | Feb 2006 | B2 |
7002486 | Lawrence | Feb 2006 | B2 |
7014844 | Mahalingam et al. | Mar 2006 | B2 |
7021499 | Hansen et al. | Apr 2006 | B2 |
7029659 | Abram | Apr 2006 | B2 |
7060253 | Mundschenk | Jun 2006 | B1 |
7078058 | Jones et al. | Jul 2006 | B2 |
7083799 | Giacomoni | Aug 2006 | B1 |
7137536 | Walters et al. | Nov 2006 | B2 |
7195135 | Garcia | Mar 2007 | B1 |
7222802 | Sweeton | May 2007 | B2 |
7225518 | Eidenschink et al. | Jun 2007 | B2 |
7226230 | Liberatore | Jun 2007 | B2 |
7235251 | Hamer et al. | Jun 2007 | B2 |
7252816 | Angel et al. | Aug 2007 | B1 |
7270828 | Masuda et al. | Sep 2007 | B2 |
7455195 | Meketa | Nov 2008 | B2 |
7497354 | Decottignies et al. | Mar 2009 | B2 |
7575739 | Tamarkin et al. | Aug 2009 | B2 |
7645803 | Tamarkin et al. | Jan 2010 | B2 |
7654415 | van der Heijden | Feb 2010 | B2 |
7682623 | Eini et al. | Mar 2010 | B2 |
7700076 | Tamarkin et al. | Apr 2010 | B2 |
7704518 | Tamarkin et al. | Apr 2010 | B2 |
7758888 | Lapidot et al. | Jul 2010 | B2 |
7793807 | Goujon et al. | Sep 2010 | B2 |
7820145 | Tamarkin et al. | Oct 2010 | B2 |
7842791 | Britten et al. | Nov 2010 | B2 |
7960416 | Sato et al. | Jun 2011 | B2 |
8114385 | Tamarkin et al. | Feb 2012 | B2 |
8119106 | Tamarkin et al. | Feb 2012 | B2 |
8119109 | Tamarkin et al. | Feb 2012 | B2 |
8119150 | Tamarkin et al. | Feb 2012 | B2 |
8158109 | Abram et al. | Apr 2012 | B2 |
8192749 | Ashley | Jun 2012 | B2 |
8211874 | Theobald et al. | Jul 2012 | B2 |
8343945 | Tamarkin et al. | Jan 2013 | B2 |
8362091 | Tamarkin et al. | Jan 2013 | B2 |
8435498 | Tamarkin et al. | May 2013 | B2 |
8486374 | Tamarkin et al. | Jul 2013 | B2 |
8486375 | Tamarkin et al. | Jul 2013 | B2 |
8486376 | Friedman et al. | Jul 2013 | B2 |
8512718 | Eini et al. | Aug 2013 | B2 |
8518376 | Tamarkin et al. | Aug 2013 | B2 |
8518378 | Tamarkin et al. | Aug 2013 | B2 |
8592380 | Trumbore et al. | Nov 2013 | B2 |
8617100 | Eini et al. | Dec 2013 | B2 |
8618081 | Tamarkin et al. | Dec 2013 | B2 |
8623330 | Gurge et al. | Jan 2014 | B2 |
8636982 | Tamarkin et al. | Jan 2014 | B2 |
8652443 | Varanasi et al. | Feb 2014 | B2 |
8703105 | Tamarkin et al. | Apr 2014 | B2 |
8709385 | Tamarkin et al. | Apr 2014 | B2 |
8722021 | Friedman et al. | May 2014 | B2 |
8735377 | Sipos | May 2014 | B1 |
8741265 | Tamarkin et al. | Jun 2014 | B2 |
8778365 | Hardas et al. | Jul 2014 | B1 |
8784780 | Gurge et al. | Jul 2014 | B2 |
8795635 | Tamarkin et al. | Aug 2014 | B2 |
8795693 | Tamarkin et al. | Aug 2014 | B2 |
8840869 | Friedman et al. | Sep 2014 | B2 |
8846039 | Chung et al. | Sep 2014 | B2 |
8865139 | Tamarkin et al. | Oct 2014 | B1 |
8871184 | Tamarkin et al. | Oct 2014 | B2 |
8895536 | Bannister et al. | Nov 2014 | B2 |
8900553 | Tamarkin et al. | Dec 2014 | B2 |
8900554 | Tamarkin et al. | Dec 2014 | B2 |
8945516 | Tamarkin et al. | Feb 2015 | B2 |
8992896 | Tamarkin et al. | Mar 2015 | B2 |
9050253 | Tamarkin et al. | Jun 2015 | B2 |
9072667 | Tamarkin et al. | Jul 2015 | B2 |
9101662 | Tamarkin et al. | Aug 2015 | B2 |
9161916 | Tamarkin et al. | Oct 2015 | B2 |
9167813 | Tamarkin et al. | Oct 2015 | B2 |
9192558 | Chen et al. | Nov 2015 | B2 |
9211259 | Friedman et al. | Dec 2015 | B2 |
9265725 | Tamarkin et al. | Feb 2016 | B2 |
9265740 | Johnston et al. | Feb 2016 | B2 |
9271930 | At | Mar 2016 | B2 |
9320705 | Tamarkin et al. | Apr 2016 | B2 |
9439857 | Tamarkin et al. | Sep 2016 | B2 |
9474720 | Yamamoto | Oct 2016 | B2 |
9492412 | Tamarkin et al. | Nov 2016 | B2 |
9539208 | Tamarkin et al. | Jan 2017 | B2 |
9539266 | Mansouri | Jan 2017 | B2 |
9549898 | Tamarkin et al. | Jan 2017 | B2 |
9572775 | Tamarkin et al. | Feb 2017 | B2 |
9592246 | Salman et al. | Mar 2017 | B2 |
9622947 | Tamarkin et al. | Apr 2017 | B2 |
9636405 | Tamarkin et al. | May 2017 | B2 |
9662298 | Tamarkin et al. | May 2017 | B2 |
9668972 | Tamarkin et al. | Jun 2017 | B2 |
9675700 | Tamarkin et al. | Jun 2017 | B2 |
9682021 | Tamarkin et al. | Jun 2017 | B2 |
9713643 | Friedman et al. | Jul 2017 | B2 |
9795564 | Tamarkin et al. | Oct 2017 | B2 |
9849142 | Tamarkin et al. | Dec 2017 | B2 |
9884017 | Tamarkin et al. | Feb 2018 | B2 |
9931328 | Kandavilli et al. | Apr 2018 | B2 |
10029013 | Tamarkin et al. | Jul 2018 | B2 |
10086080 | Tamarkin et al. | Oct 2018 | B2 |
10137200 | Tamarkin et al. | Nov 2018 | B2 |
20010006654 | Cannell et al. | Jul 2001 | A1 |
20010027218 | Stern et al. | Oct 2001 | A1 |
20010027981 | Yquel | Oct 2001 | A1 |
20010033838 | Farmer | Oct 2001 | A1 |
20010036450 | Verite et al. | Nov 2001 | A1 |
20010054574 | Navarro | Dec 2001 | A1 |
20020004063 | Zhang | Jan 2002 | A1 |
20020013481 | Schonrock et al. | Jan 2002 | A1 |
20020015721 | Simonnet et al. | Feb 2002 | A1 |
20020031478 | Keller et al. | Mar 2002 | A1 |
20020032171 | Chen et al. | Mar 2002 | A1 |
20020035046 | Lukenbach et al. | Mar 2002 | A1 |
20020035070 | Gardlik et al. | Mar 2002 | A1 |
20020035087 | Barclay | Mar 2002 | A1 |
20020035182 | L'Alloret et al. | Mar 2002 | A1 |
20020039591 | Dahle | Apr 2002 | A1 |
20020044659 | Ohta | Apr 2002 | A1 |
20020045659 | Michelet et al. | Apr 2002 | A1 |
20020048798 | Avery et al. | Apr 2002 | A1 |
20020058010 | Picard-Lesboueyries et al. | May 2002 | A1 |
20020072544 | Miller et al. | Jun 2002 | A1 |
20020090386 | Halswanter et al. | Jul 2002 | A1 |
20020098215 | Douin et al. | Jul 2002 | A1 |
20020111281 | Vishnupad | Aug 2002 | A1 |
20020117516 | Lasserre et al. | Aug 2002 | A1 |
20020134376 | Castro et al. | Sep 2002 | A1 |
20020136755 | Tyrrell et al. | Sep 2002 | A1 |
20020143188 | Garvey et al. | Oct 2002 | A1 |
20020153390 | Vlodek | Oct 2002 | A1 |
20020165170 | Wilson et al. | Nov 2002 | A1 |
20020182162 | Shahinpoor et al. | Dec 2002 | A1 |
20020182234 | Riedel et al. | Dec 2002 | A1 |
20020187181 | Godbey et al. | Dec 2002 | A1 |
20020198136 | Mak et al. | Dec 2002 | A1 |
20030006193 | Ikeda et al. | Jan 2003 | A1 |
20030013692 | Gullans et al. | Jan 2003 | A1 |
20030017181 | Rood et al. | Jan 2003 | A1 |
20030031693 | Breton et al. | Feb 2003 | A1 |
20030053961 | Eccard | Mar 2003 | A1 |
20030077297 | Chen et al. | Apr 2003 | A1 |
20030077301 | Maibach et al. | Apr 2003 | A1 |
20030078172 | Guiramand et al. | Apr 2003 | A1 |
20030082120 | Milstein | May 2003 | A1 |
20030108502 | Uchida et al. | Jun 2003 | A1 |
20030114520 | Pereira et al. | Jun 2003 | A1 |
20030118515 | Jew et al. | Jun 2003 | A1 |
20030118527 | Jager et al. | Jun 2003 | A1 |
20030129259 | Mahalingam et al. | Jul 2003 | A1 |
20030130247 | Gans et al. | Jul 2003 | A1 |
20030148949 | Podolsky | Aug 2003 | A1 |
20030175232 | Elliott et al. | Sep 2003 | A1 |
20030175315 | Yoo et al. | Sep 2003 | A1 |
20030180347 | Young et al. | Sep 2003 | A1 |
20030185839 | Podolsky | Oct 2003 | A1 |
20030185861 | Hori et al. | Oct 2003 | A1 |
20030194379 | Brugger et al. | Oct 2003 | A1 |
20030195128 | Deckman et al. | Oct 2003 | A1 |
20030206955 | Sonneville-Aubrun et al. | Nov 2003 | A1 |
20030215418 | Asmus et al. | Nov 2003 | A1 |
20030215472 | Bonda et al. | Nov 2003 | A1 |
20030235597 | Withiam et al. | Dec 2003 | A1 |
20040002550 | Mecurio | Jan 2004 | A1 |
20040018228 | Fischell et al. | Jan 2004 | A1 |
20040028752 | Kamm et al. | Feb 2004 | A1 |
20040038912 | Michelet et al. | Feb 2004 | A1 |
20040053797 | Chen et al. | Mar 2004 | A1 |
20040058878 | Walker | Mar 2004 | A1 |
20040063787 | Villanueva | Apr 2004 | A1 |
20040067970 | Foster et al. | Apr 2004 | A1 |
20040072638 | Enos et al. | Apr 2004 | A1 |
20040076651 | Brocks et al. | Apr 2004 | A1 |
20040078896 | Hellyer et al. | Apr 2004 | A1 |
20040079361 | Clayton et al. | Apr 2004 | A1 |
20040105825 | Henning | Jun 2004 | A1 |
20040106688 | Koike et al. | Jun 2004 | A1 |
20040120917 | Perrier et al. | Jun 2004 | A1 |
20040127554 | Ghisalberti | Jul 2004 | A1 |
20040138179 | Goldstein et al. | Jul 2004 | A1 |
20040151671 | Abram et al. | Aug 2004 | A1 |
20040151756 | Richards et al. | Aug 2004 | A1 |
20040161447 | Paul | Aug 2004 | A1 |
20040184992 | Abram | Sep 2004 | A1 |
20040185123 | Mazzio et al. | Sep 2004 | A1 |
20040191196 | Tamarkin | Sep 2004 | A1 |
20040192754 | Shapira et al. | Sep 2004 | A1 |
20040195276 | Fuchs | Oct 2004 | A1 |
20040197276 | Takase et al. | Oct 2004 | A1 |
20040197295 | Riedel et al. | Oct 2004 | A1 |
20040198706 | Carrara | Oct 2004 | A1 |
20040219176 | Dominguez | Nov 2004 | A1 |
20040220187 | Stephenson et al. | Nov 2004 | A1 |
20040229813 | DiPiano et al. | Nov 2004 | A1 |
20040234475 | Lannibois-Drean et al. | Nov 2004 | A1 |
20040241099 | Popp et al. | Dec 2004 | A1 |
20040247531 | Riedel et al. | Dec 2004 | A1 |
20040258627 | Riedel et al. | Dec 2004 | A1 |
20040258628 | Riedel et al. | Dec 2004 | A1 |
20040258643 | Yaqub et al. | Dec 2004 | A1 |
20050002976 | Wu | Jan 2005 | A1 |
20050013853 | Gil-Ad et al. | Jan 2005 | A1 |
20050042182 | Arkin et al. | Feb 2005 | A1 |
20050054991 | Tobyn et al. | Mar 2005 | A1 |
20050069566 | Tamarkin et al. | Mar 2005 | A1 |
20050075407 | Tamarkin et al. | Apr 2005 | A1 |
20050079139 | Jacques et al. | Apr 2005 | A1 |
20050079228 | Jaiswal et al. | Apr 2005 | A1 |
20050084551 | Jensen et al. | Apr 2005 | A1 |
20050085843 | Opolski et al. | Apr 2005 | A1 |
20050100517 | Sanzgiri et al. | May 2005 | A1 |
20050101936 | Gonzales et al. | May 2005 | A1 |
20050106197 | Blin et al. | May 2005 | A1 |
20050123494 | Swaile et al. | Jun 2005 | A1 |
20050123496 | Shah et al. | Jun 2005 | A1 |
20050148552 | Ryan et al. | Jul 2005 | A1 |
20050153943 | Ashley | Jul 2005 | A1 |
20050164993 | Ashley | Jul 2005 | A1 |
20050186142 | Tamarkin et al. | Aug 2005 | A1 |
20050186147 | Tamarkin et al. | Aug 2005 | A1 |
20050189377 | Lanzendorfer et al. | Sep 2005 | A1 |
20050196414 | Dake et al. | Sep 2005 | A1 |
20050205086 | Tamarkin et al. | Sep 2005 | A1 |
20050207837 | Kosh et al. | Sep 2005 | A1 |
20050222090 | Cheng et al. | Oct 2005 | A1 |
20050232869 | Tamarkin et al. | Oct 2005 | A1 |
20050244354 | Speron | Nov 2005 | A1 |
20050245902 | Cornish et al. | Nov 2005 | A1 |
20050252995 | Westphal et al. | Nov 2005 | A1 |
20050255048 | Hirsh et al. | Nov 2005 | A1 |
20050258189 | Peterson et al. | Nov 2005 | A1 |
20050266035 | Healy et al. | Dec 2005 | A1 |
20050268416 | Sommers | Dec 2005 | A1 |
20050271596 | Friedman et al. | Dec 2005 | A1 |
20050276836 | Wilson et al. | Dec 2005 | A1 |
20050281749 | Willcox et al. | Dec 2005 | A1 |
20050281755 | Zarif et al. | Dec 2005 | A1 |
20050281766 | Martin et al. | Dec 2005 | A1 |
20050285912 | Delametter et al. | Dec 2005 | A1 |
20050287081 | Aust et al. | Dec 2005 | A1 |
20060008432 | Scarampi et al. | Jan 2006 | A1 |
20060018937 | Friedman et al. | Jan 2006 | A1 |
20060018938 | Neubourg | Jan 2006 | A1 |
20060029565 | Xu et al. | Feb 2006 | A1 |
20060051301 | Galopin et al. | Mar 2006 | A1 |
20060054634 | Meketa | Mar 2006 | A1 |
20060057168 | Larm et al. | Mar 2006 | A1 |
20060099151 | Neubourg | May 2006 | A1 |
20060108377 | Glynn et al. | May 2006 | A1 |
20060110415 | Gupta | May 2006 | A1 |
20060110418 | Johnson | May 2006 | A1 |
20060114745 | Ollmann et al. | Jun 2006 | A1 |
20060121073 | Goyal et al. | Jun 2006 | A1 |
20060140984 | Tamarkin et al. | Jun 2006 | A1 |
20060140990 | Bortz et al. | Jun 2006 | A1 |
20060160713 | Sekine et al. | Jul 2006 | A1 |
20060165616 | Brock et al. | Jul 2006 | A1 |
20060177392 | Walden | Aug 2006 | A1 |
20060193789 | Tamarkin et al. | Aug 2006 | A1 |
20060193813 | Simonnet | Aug 2006 | A1 |
20060204446 | Lulla et al. | Sep 2006 | A1 |
20060222675 | Sabnis et al. | Oct 2006 | A1 |
20060233721 | Tamarkin et al. | Oct 2006 | A1 |
20060239937 | Neubourg | Oct 2006 | A2 |
20060251684 | Annis et al. | Nov 2006 | A1 |
20060254597 | Thompson | Nov 2006 | A1 |
20060263323 | Hoang et al. | Nov 2006 | A1 |
20060269485 | Friedman et al. | Nov 2006 | A1 |
20060272199 | Licciardello et al. | Dec 2006 | A1 |
20060285912 | Eini et al. | Dec 2006 | A1 |
20060292080 | Abram et al. | Dec 2006 | A1 |
20070009607 | Jones | Jan 2007 | A1 |
20070010580 | De Paoli Ambrosi | Jan 2007 | A1 |
20070015739 | Walker et al. | Jan 2007 | A1 |
20070017696 | Lin et al. | Jan 2007 | A1 |
20070020213 | Tamarkin et al. | Jan 2007 | A1 |
20070020304 | Tamarkin et al. | Jan 2007 | A1 |
20070027055 | Koivisto et al. | Feb 2007 | A1 |
20070036831 | Baker | Feb 2007 | A1 |
20070053943 | Wang et al. | Mar 2007 | A1 |
20070059253 | Popp et al. | Mar 2007 | A1 |
20070069046 | Eini et al. | Mar 2007 | A1 |
20070071688 | Illel et al. | Mar 2007 | A1 |
20070098647 | Neubourg | May 2007 | A1 |
20070111956 | Matsushima et al. | May 2007 | A1 |
20070134174 | Irwin et al. | Jun 2007 | A1 |
20070140998 | Kato et al. | Jun 2007 | A1 |
20070140999 | Puglia et al. | Jun 2007 | A1 |
20070141086 | Ohara et al. | Jun 2007 | A1 |
20070142263 | Stahl et al. | Jun 2007 | A1 |
20070148112 | Dingley et al. | Jun 2007 | A1 |
20070148194 | Amiji et al. | Jun 2007 | A1 |
20070154402 | Trumbore et al. | Jul 2007 | A1 |
20070160548 | Riccardi et al. | Jul 2007 | A1 |
20070166274 | Mazur et al. | Jul 2007 | A1 |
20070224143 | Konis | Sep 2007 | A1 |
20070237724 | Abram et al. | Oct 2007 | A1 |
20070264317 | Yosha et al. | Nov 2007 | A1 |
20070271235 | Frank et al. | Nov 2007 | A1 |
20070281999 | Fox et al. | Dec 2007 | A1 |
20070292355 | Tamarkin et al. | Dec 2007 | A1 |
20070292359 | Friedman et al. | Dec 2007 | A1 |
20070292461 | Tamarkin et al. | Dec 2007 | A1 |
20080008397 | Kisilev | Jan 2008 | A1 |
20080015263 | Bolotin et al. | Jan 2008 | A1 |
20080015271 | Abram et al. | Jan 2008 | A1 |
20080031907 | Tamarkin et al. | Feb 2008 | A1 |
20080031908 | Aubrun-Sonneville et al. | Feb 2008 | A1 |
20080035155 | Dahl | Feb 2008 | A1 |
20080044444 | Tamarkin et al. | Feb 2008 | A1 |
20080050317 | Tamarkin et al. | Feb 2008 | A1 |
20080058055 | LeMay et al. | Mar 2008 | A1 |
20080063682 | Cashman et al. | Mar 2008 | A1 |
20080069779 | Tamarkin et al. | Mar 2008 | A1 |
20080131378 | Keller et al. | Jun 2008 | A1 |
20080138293 | Tamarkin et al. | Jun 2008 | A1 |
20080138296 | Tamarkin et al. | Jun 2008 | A1 |
20080152596 | Friedman et al. | Jun 2008 | A1 |
20080153789 | Dmowski et al. | Jun 2008 | A1 |
20080166303 | Tamarkin et al. | Jul 2008 | A1 |
20080167376 | Bar-Or et al. | Jul 2008 | A1 |
20080181854 | Eini et al. | Jul 2008 | A1 |
20080188445 | Muldoon et al. | Aug 2008 | A1 |
20080188446 | Muldoon et al. | Aug 2008 | A1 |
20080193762 | Dubertret et al. | Aug 2008 | A1 |
20080206155 | Tamarkin et al. | Aug 2008 | A1 |
20080206161 | Tamarkin et al. | Aug 2008 | A1 |
20080241079 | Neubourg | Oct 2008 | A1 |
20080253973 | Tamarkin et al. | Oct 2008 | A1 |
20080255498 | Houle | Oct 2008 | A1 |
20080260655 | Tamarkin et al. | Oct 2008 | A1 |
20080292560 | Tamarkin et al. | Nov 2008 | A1 |
20080311167 | Oronsky et al. | Dec 2008 | A1 |
20080317679 | Tamarkin et al. | Dec 2008 | A1 |
20090017147 | Lintner et al. | Jan 2009 | A1 |
20090053290 | Sand et al. | Feb 2009 | A1 |
20090061001 | Hougaz | Mar 2009 | A1 |
20090093514 | Statham et al. | Apr 2009 | A1 |
20090130029 | Tamarkin et al. | May 2009 | A1 |
20090131488 | Harel et al. | May 2009 | A1 |
20090175799 | Tamarkin et al. | Jul 2009 | A1 |
20090214628 | De Rijk | Aug 2009 | A1 |
20090291917 | Akama et al. | Nov 2009 | A1 |
20100111879 | Tamarkin et al. | May 2010 | A1 |
20100221194 | Loupenok | Sep 2010 | A1 |
20100247449 | Graupe et al. | Sep 2010 | A1 |
20100286417 | Mendes et al. | Nov 2010 | A1 |
20110002969 | Serraima et al. | Jan 2011 | A1 |
20110097279 | Tamarkin et al. | Apr 2011 | A1 |
20110207765 | Van Den Bussche et al. | Aug 2011 | A1 |
20110262542 | Ashley | Oct 2011 | A1 |
20120064136 | Baker, Jr. et al. | Mar 2012 | A1 |
20120082632 | Phillips et al. | Apr 2012 | A1 |
20120087872 | Tamarkin et al. | Apr 2012 | A1 |
20120128598 | Trumbore et al. | May 2012 | A1 |
20120141384 | Tamarkin | Jun 2012 | A1 |
20120148503 | Tamarkin et al. | Jun 2012 | A1 |
20120156144 | Tamarkin et al. | Jun 2012 | A1 |
20120164087 | Carter | Jun 2012 | A1 |
20120181201 | Heggie | Jul 2012 | A1 |
20120237453 | Tamarkin et al. | Sep 2012 | A1 |
20130053353 | Tamarkin et al. | Feb 2013 | A1 |
20130115173 | Trumbore et al. | May 2013 | A1 |
20130161351 | Eini et al. | Jun 2013 | A1 |
20130164225 | Tamarkin et al. | Jun 2013 | A1 |
20130189195 | Tamarkin et al. | Jul 2013 | A1 |
20130189196 | Tamarkin et al. | Jul 2013 | A1 |
20130251644 | Majhi et al. | Sep 2013 | A1 |
20130261565 | Wong et al. | Oct 2013 | A1 |
20130295022 | Friedman et al. | Nov 2013 | A1 |
20130296387 | Saad | Nov 2013 | A1 |
20140066524 | Tamarkin et al. | Mar 2014 | A1 |
20140086848 | Tamarkin et al. | Mar 2014 | A1 |
20140121188 | Tamarkin et al. | May 2014 | A1 |
20140140937 | Gurge et al. | May 2014 | A1 |
20140182585 | Tamarkin et al. | Jul 2014 | A1 |
20140186269 | Tamarkin et al. | Jul 2014 | A1 |
20140221320 | Joks et al. | Aug 2014 | A1 |
20140228355 | Kortagere et al. | Aug 2014 | A1 |
20140242016 | Binks et al. | Aug 2014 | A1 |
20140248219 | Tamarkin et al. | Sep 2014 | A1 |
20150025060 | Tamarkin et al. | Jan 2015 | A1 |
20150098907 | Tamarkin et al. | Apr 2015 | A1 |
20150141381 | Levy et al. | May 2015 | A1 |
20150157586 | Tamarkin et al. | Jun 2015 | A1 |
20150164922 | Tamarkin et al. | Jun 2015 | A1 |
20150174144 | Bowser et al. | Jun 2015 | A1 |
20150196570 | Tamarkin et al. | Jul 2015 | A1 |
20150209296 | Yamamoto | Jul 2015 | A1 |
20150374625 | Tamarkin et al. | Dec 2015 | A1 |
20160101051 | Tamarkin et al. | Apr 2016 | A1 |
20160101184 | Tamarkin et al. | Apr 2016 | A1 |
20160128944 | Chawrai et al. | May 2016 | A1 |
20160158261 | Friedman et al. | Jun 2016 | A1 |
20160213757 | Edelson et al. | Jul 2016 | A1 |
20160279152 | Chen et al. | Sep 2016 | A1 |
20160287615 | Chan et al. | Oct 2016 | A1 |
20160354473 | Tamarkin et al. | Dec 2016 | A1 |
20160361252 | Franke | Dec 2016 | A1 |
20160361320 | Zhao et al. | Dec 2016 | A1 |
20170014517 | Tamarkin | Jan 2017 | A1 |
20170049712 | Bhalani et al. | Feb 2017 | A1 |
20170119665 | Tamarkin et al. | May 2017 | A1 |
20170157175 | Tamarkin et al. | Jun 2017 | A1 |
20170172857 | Tamarkin et al. | Jun 2017 | A1 |
20170181970 | Tamarkin et al. | Jun 2017 | A1 |
20170216334 | Tamarkin et al. | Aug 2017 | A1 |
20170231909 | Tamarkin et al. | Aug 2017 | A1 |
20170274084 | Friedman et al. | Sep 2017 | A1 |
20170340743 | Tamarkin et al. | Nov 2017 | A1 |
20170348418 | Tamarkin et al. | Dec 2017 | A1 |
20170354597 | Tamarkin et al. | Dec 2017 | A1 |
20180000734 | Tamarkin et al. | Jan 2018 | A1 |
20180064638 | Tamarkin et al. | Mar 2018 | A1 |
20180147218 | Tamarkin et al. | May 2018 | A1 |
20180153804 | Tamarkin et al. | Jun 2018 | A1 |
20180193468 | Tamarkin et al. | Jul 2018 | A1 |
20180193469 | Tamarkin et al. | Jul 2018 | A1 |
20180214558 | Tamarkin et al. | Aug 2018 | A1 |
20180235984 | Eini et al. | Aug 2018 | A1 |
20190000980 | Tamarkin et al. | Jan 2019 | A1 |
20190022000 | Tamarkin et al. | Jan 2019 | A1 |
20190022001 | Tamarkin et al. | Jan 2019 | A1 |
20190029958 | Tamarkin et al. | Jan 2019 | A1 |
20190054106 | Tamarkin et al. | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
198780257 | Sep 1986 | AU |
782515 | Dec 2005 | AU |
2114537 | Feb 1993 | CA |
2154438 | Jan 1996 | CA |
2422244 | Sep 2003 | CA |
2502986 | May 2004 | CA |
2534372 | Oct 2005 | CA |
639913 | Dec 1983 | CH |
1 882 100 | Nov 1963 | DE |
1926796 | Mar 1970 | DE |
2 608 226 | Sep 1977 | DE |
4140474 | Jun 1993 | DE |
10009233 | Aug 2000 | DE |
10138495 | Feb 2003 | DE |
102004016710 | Oct 2005 | DE |
0 052 404 | May 1982 | EP |
0 156 507 | Oct 1985 | EP |
0 186 453 | Jul 1986 | EP |
0 213 827 | Mar 1987 | EP |
0 214 865 | Mar 1987 | EP |
0 270 316 | Jun 1988 | EP |
0 297 436 | Jan 1989 | EP |
0 336 812 | Oct 1989 | EP |
0 414 920 | Mar 1991 | EP |
0 211 550 | Apr 1991 | EP |
0 216 856 | Jul 1991 | EP |
0 454 102 | Oct 1991 | EP |
0 326 196 | Mar 1992 | EP |
0 484 530 | May 1992 | EP |
0 485 299 | May 1992 | EP |
0 488 089 | Jun 1992 | EP |
0 528 190 | Feb 1993 | EP |
0 552 612 | Jul 1993 | EP |
0 569 773 | Nov 1993 | EP |
0 404 376 | Mar 1994 | EP |
0 598 412 | May 1994 | EP |
0 391 124 | Jun 1995 | EP |
0 662 431 | Jul 1995 | EP |
0 535 327 | Oct 1996 | EP |
0 738 516 | Oct 1996 | EP |
0 757 959 | Feb 1997 | EP |
0 824 911 | Feb 1998 | EP |
0 829 259 | Mar 1998 | EP |
0 676 198 | Oct 1998 | EP |
0 979 654 | Feb 2000 | EP |
0 993 827 | Apr 2000 | EP |
1 025 836 | Aug 2000 | EP |
1 055 425 | Nov 2000 | EP |
0 506 197 | Jul 2001 | EP |
1 215 258 | Jun 2002 | EP |
1 287 813 | Mar 2003 | EP |
1 308 169 | May 2003 | EP |
1 375 386 | Jan 2004 | EP |
0 504 301 | Mar 2004 | EP |
1 428 521 | Jun 2004 | EP |
1 438 946 | Jul 2004 | EP |
1 189 579 | Sep 2004 | EP |
1 475 381 | Nov 2004 | EP |
1 500 385 | Jan 2005 | EP |
1 537 916 | Jun 2005 | EP |
1 600 185 | Nov 2005 | EP |
0 928 608 | Mar 2006 | EP |
1 653 932 | May 2006 | EP |
1 734 927 | Dec 2006 | EP |
1 758 547 | Mar 2007 | EP |
1 483 001 | Nov 2007 | EP |
1 584 324 | Nov 2007 | EP |
1 889 609 | Feb 2008 | EP |
1 902 706 | Mar 2008 | EP |
2 129 383 | Dec 2009 | EP |
2 422 768 | Feb 2012 | EP |
2 494 959 | Sep 2012 | EP |
2 456 522 | Dec 1980 | FR |
2 591 331 | Jun 1987 | FR |
2 640 942 | Jun 1990 | FR |
2 736 824 | Jan 1997 | FR |
2 774 595 | Aug 1999 | FR |
2 789 371 | Aug 2000 | FR |
2 793 479 | Nov 2000 | FR |
2 814 959 | Apr 2002 | FR |
2 833 246 | Jun 2003 | FR |
2 840 903 | Dec 2003 | FR |
2 843 373 | Feb 2004 | FR |
2 845 672 | Apr 2004 | FR |
2 848 998 | Jun 2004 | FR |
2 860 976 | Apr 2005 | FR |
2 915 891 | Nov 2008 | FR |
808 104 | Jan 1959 | GB |
808 105 | Jan 1959 | GB |
922 930 | Apr 1963 | GB |
933 486 | Aug 1963 | GB |
998 490 | Jul 1965 | GB |
1 026 831 | Apr 1966 | GB |
1 033 299 | Jun 1966 | GB |
1 081 949 | Sep 1967 | GB |
1 121 358 | Jul 1968 | GB |
1 162 684 | Aug 1969 | GB |
1 170 152 | Nov 1969 | GB |
1 201 918 | Aug 1970 | GB |
1 347 950 | Feb 1974 | GB |
1 351 761 | May 1974 | GB |
1 351 762 | May 1974 | GB |
1 353 381 | May 1974 | GB |
1 376 649 | Dec 1974 | GB |
1 397 285 | Jun 1975 | GB |
1 408 036 | Oct 1975 | GB |
1 457 671 | Dec 1976 | GB |
1 489 672 | Oct 1977 | GB |
2 004 746 | Apr 1979 | GB |
1 561 423 | Feb 1980 | GB |
2 114 580 | Aug 1983 | GB |
2 166 651 | May 1986 | GB |
2 153 686 | Jul 1987 | GB |
2 172 298 | Nov 1988 | GB |
2 206 099 | Dec 1988 | GB |
2 337 461 | Nov 1999 | GB |
2 367 809 | Apr 2002 | GB |
2 406 330 | Mar 2005 | GB |
2 406 791 | Feb 2008 | GB |
2 474 930 | May 2011 | GB |
49491 | Sep 1979 | IL |
152 486 | May 2003 | IL |
55-069682 | May 1980 | JP |
56-039815 | Apr 1981 | JP |
57-044429 | Mar 1982 | JP |
60-001113 | Jan 1985 | JP |
61-275395 | Dec 1986 | JP |
62-241701 | Oct 1987 | JP |
63-119420 | May 1988 | JP |
01-100111 | Apr 1989 | JP |
01-156906 | Jun 1989 | JP |
02-184614 | Jul 1990 | JP |
02-255890 | Oct 1990 | JP |
03-050289 | Mar 1991 | JP |
04-51958 | Feb 1992 | JP |
04-282311 | Oct 1992 | JP |
04-312521 | Nov 1992 | JP |
05-070340 | Mar 1993 | JP |
05-213734 | Aug 1993 | JP |
06-100414 | Apr 1994 | JP |
06-263630 | Sep 1994 | JP |
06-329532 | Nov 1994 | JP |
07-215835 | Aug 1995 | JP |
08-040899 | Feb 1996 | JP |
08-501529 | Feb 1996 | JP |
08-119831 | May 1996 | JP |
08-165218 | Jun 1996 | JP |
08-277209 | Oct 1996 | JP |
09-84855 | Mar 1997 | JP |
09-099553 | Apr 1997 | JP |
09-110636 | Apr 1997 | JP |
10-114619 | May 1998 | JP |
10-332456 | Dec 1998 | JP |
11-501045 | Jan 1999 | JP |
11-250543 | Sep 1999 | JP |
2000-017174 | Jan 2000 | JP |
2000-080017 | Mar 2000 | JP |
2000-128734 | May 2000 | JP |
2000-191429 | Jul 2000 | JP |
2000-239140 | Sep 2000 | JP |
2000-351726 | Dec 2000 | JP |
2000-354623 | Dec 2000 | JP |
2001-002526 | Jan 2001 | JP |
2001-019606 | Jan 2001 | JP |
2001-072963 | Mar 2001 | JP |
2002-012513 | Jan 2002 | JP |
2002-047136 | Feb 2002 | JP |
2002-524490 | Aug 2002 | JP |
2002-302419 | Oct 2002 | JP |
2003-012511 | Jan 2003 | JP |
2003-055146 | Feb 2003 | JP |
2004-047136 | Feb 2004 | JP |
2004-250435 | Sep 2004 | JP |
2004-348277 | Dec 2004 | JP |
2005-314323 | Nov 2005 | JP |
2005-350378 | Dec 2005 | JP |
2006-008574 | Jan 2006 | JP |
2006-036317 | Feb 2006 | JP |
2006-103799 | Apr 2006 | JP |
2006-525145 | Nov 2006 | JP |
2007-131539 | May 2007 | JP |
2007-155667 | Jun 2007 | JP |
2007-326996 | Dec 2007 | JP |
0143232 | Jul 1998 | KR |
2001-003063 | Jan 2001 | KR |
520014 | May 2005 | NZ |
540166 | Jun 2007 | NZ |
2277501 | Jun 2006 | RU |
66796 | Jul 2001 | UA |
WO 82001821 | Jun 1982 | WO |
WO 8605389 | Sep 1986 | WO |
WO 8801502 | Mar 1988 | WO |
WO 8801863 | Mar 1988 | WO |
WO 8808316 | Nov 1988 | WO |
WO 8906537 | Jul 1989 | WO |
WO 9005774 | May 1990 | WO |
WO 9111991 | Aug 1991 | WO |
WO 9200077 | Jan 1992 | WO |
WO 92005142 | Apr 1992 | WO |
WO 9205763 | Apr 1992 | WO |
WO 9211839 | Jul 1992 | WO |
WO 9213602 | Aug 1992 | WO |
WO 93025189 | Dec 1993 | WO |
WO 94006440 | Mar 1994 | WO |
WO 9603115 | Feb 1996 | WO |
WO 9619921 | Jul 1996 | WO |
WO 9624325 | Aug 1996 | WO |
WO 9626711 | Sep 1996 | WO |
WO 9627376 | Sep 1996 | WO |
WO 9639119 | Dec 1996 | WO |
WO 9703638 | Feb 1997 | WO |
WO 9739745 | Oct 1997 | WO |
WO 9817282 | Apr 1998 | WO |
WO 9818472 | May 1998 | WO |
WO 9819654 | May 1998 | WO |
WO 9821955 | May 1998 | WO |
WO 9823291 | Jun 1998 | WO |
WO 9831339 | Jul 1998 | WO |
WO 9836733 | Aug 1998 | WO |
WO 9852536 | Nov 1998 | WO |
WO 9908649 | Feb 1999 | WO |
WO 9920250 | Apr 1999 | WO |
WO 9937282 | Jul 1999 | WO |
WO 9953923 | Oct 1999 | WO |
WO 200009082 | Feb 2000 | WO |
WO 200015193 | Mar 2000 | WO |
WO 200023051 | Apr 2000 | WO |
WO 200033825 | Jun 2000 | WO |
WO 200038731 | Jul 2000 | WO |
WO 200061076 | Oct 2000 | WO |
WO 200062776 | Oct 2000 | WO |
WO 200072805 | Dec 2000 | WO |
WO 200076461 | Dec 2000 | WO |
WO 200101949 | Jan 2001 | WO |
WO 200105366 | Jan 2001 | WO |
WO 200108681 | Feb 2001 | WO |
WO 200110961 | Feb 2001 | WO |
WO 200153198 | Jul 2001 | WO |
WO 200154212 | Jul 2001 | WO |
WO 200154679 | Aug 2001 | WO |
WO 200162209 | Aug 2001 | WO |
WO 200170242 | Sep 2001 | WO |
WO 200176579 | Oct 2001 | WO |
WO 200182880 | Nov 2001 | WO |
WO 200182890 | Nov 2001 | WO |
WO 200185102 | Nov 2001 | WO |
WO 200185128 | Nov 2001 | WO |
WO 200195728 | Dec 2001 | WO |
WO 200200820 | Jan 2002 | WO |
WO 200207685 | Jan 2002 | WO |
WO 200215860 | Feb 2002 | WO |
WO 200215873 | Feb 2002 | WO |
WO 200224161 | Mar 2002 | WO |
WO 200228435 | Apr 2002 | WO |
WO 200241847 | May 2002 | WO |
WO 200243490 | Jun 2002 | WO |
WO 2002062324 | Aug 2002 | WO |
WO 2002078667 | Oct 2002 | WO |
WO 2002087519 | Nov 2002 | WO |
WO 2003000223 | Jan 2003 | WO |
WO 2003002082 | Jan 2003 | WO |
WO 2003005985 | Jan 2003 | WO |
WO 2003013984 | Feb 2003 | WO |
WO 2003015699 | Feb 2003 | WO |
WO 2003051294 | Jun 2003 | WO |
WO 2003053292 | Jul 2003 | WO |
WO 2003055445 | Jul 2003 | WO |
WO 2003055454 | Jul 2003 | WO |
WO 2003070301 | Aug 2003 | WO |
WO 2003071995 | Sep 2003 | WO |
WO 2003075851 | Sep 2003 | WO |
WO 2003092641 | Nov 2003 | WO |
WO 2003094873 | Nov 2003 | WO |
WO 2003097002 | Nov 2003 | WO |
WO 2004017962 | Mar 2004 | WO |
WO 2004037197 | May 2004 | WO |
WO 2004037225 | May 2004 | WO |
WO 2004003284 | Aug 2004 | WO |
WO 2004064769 | Aug 2004 | WO |
WO 2004064833 | Aug 2004 | WO |
WO 2004071479 | Aug 2004 | WO |
WO 2004078158 | Sep 2004 | WO |
WO 2004078896 | Sep 2004 | WO |
WO 2004093895 | Nov 2004 | WO |
WO 2004112780 | Dec 2004 | WO |
WO 2005009416 | Feb 2005 | WO |
WO 2005011567 | Feb 2005 | WO |
WO 2005018530 | Mar 2005 | WO |
WO 2005032522 | Apr 2005 | WO |
WO 2005044219 | May 2005 | WO |
WO 2005063224 | Jul 2005 | WO |
WO 2005065652 | Jul 2005 | WO |
WO 2005076697 | Aug 2005 | WO |
WO 2005097068 | Oct 2005 | WO |
WO 2005102282 | Nov 2005 | WO |
WO 2005102539 | Nov 2005 | WO |
WO 2005117813 | Dec 2005 | WO |
WO 2006003481 | Jan 2006 | WO |
WO 2006010589 | Feb 2006 | WO |
WO 2006011046 | Feb 2006 | WO |
WO 2006020682 | Feb 2006 | WO |
WO 2006028339 | Mar 2006 | WO |
WO 2006031271 | Mar 2006 | WO |
WO 2006045170 | May 2006 | WO |
WO 2006079632 | Aug 2006 | WO |
WO 2006081327 | Aug 2006 | WO |
WO 2006091229 | Aug 2006 | WO |
WO 2006100485 | Sep 2006 | WO |
WO 2006120682 | Nov 2006 | WO |
WO 2006121610 | Nov 2006 | WO |
WO 2006122158 | Nov 2006 | WO |
WO 2006129161 | Dec 2006 | WO |
WO 2006131784 | Dec 2006 | WO |
WO 2007007208 | Jan 2007 | WO |
WO 2007010494 | Jan 2007 | WO |
WO 2007012977 | Feb 2007 | WO |
WO 2007023396 | Mar 2007 | WO |
WO 2007031621 | Mar 2007 | WO |
WO 2007039825 | Apr 2007 | WO |
WO 2007050543 | May 2007 | WO |
WO 2007054818 | May 2007 | WO |
WO 2007072216 | Jun 2007 | WO |
WO 2007082698 | Jul 2007 | WO |
WO 2007085902 | Aug 2007 | WO |
WO 2007099396 | Sep 2007 | WO |
WO 2007111962 | Oct 2007 | WO |
WO 2008008397 | Jan 2008 | WO |
WO 2008010963 | Jan 2008 | WO |
WO 2008038147 | Apr 2008 | WO |
WO 2008041045 | Apr 2008 | WO |
WO 2008075207 | Jun 2008 | WO |
WO 2008087148 | Jul 2008 | WO |
WO 2008104734 | Sep 2008 | WO |
WO 2008110872 | Sep 2008 | WO |
WO 2008152444 | Dec 2008 | WO |
WO 2009007785 | Jan 2009 | WO |
WO 2009069006 | Jun 2009 | WO |
WO 2009072007 | Jun 2009 | WO |
WO 2009087578 | Jul 2009 | WO |
WO 2009090495 | Jul 2009 | WO |
WO 2009090558 | Jul 2009 | WO |
WO 2009098595 | Aug 2009 | WO |
WO 2011006026 | Jan 2011 | WO |
WO 2011013008 | Feb 2011 | WO |
WO 2011013009 | Feb 2011 | WO |
WO 2011026094 | Mar 2011 | WO |
WO 2011039637 | Apr 2011 | WO |
WO 2011039638 | Apr 2011 | WO |
WO 2011064631 | Jun 2011 | WO |
WO 2011106026 | Sep 2011 | WO |
WO 2011138678 | Nov 2011 | WO |
WO 2013136192 | Sep 2013 | WO |
WO 2014134394 | Sep 2014 | WO |
WO 2014134427 | Sep 2014 | WO |
WO 2014151347 | Sep 2014 | WO |
WO 2014201541 | Dec 2014 | WO |
WO 2015075640 | May 2015 | WO |
WO 2015114320 | Aug 2015 | WO |
WO 2015153864 | Oct 2015 | WO |
WO 2017029647 | Feb 2017 | WO |
WO 2017030555 | Feb 2017 | WO |
Entry |
---|
“Everything but the Olive.” The Olive Oil Source 1998-2016 [online]. Retrieved from the Internet: http://www.oliveoilsource.com/pageA chemical-characteristics. |
“Suppositories?” CareCure Community, SCI Forum [online]. http://sci.rutgers.edu/forum/showthread.php?4176-Suppositories. Published: Apr. 16, 2002, 3 pages. |
1058. Benzalkonium Chloride; 2350. Citric Acid; 6143. Methyl Salicylate. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition, 2001, pp. 181, 405-406, 1090-1091, 1556. |
242. Allantoin, The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 10th edition, Merck & Co., Inc., 1983, p. 39. |
Abdullah, G.Z. et al. (Jan. 2013) “Carbopol 934, 940 and Ultrez 10 as viscosity modifiers of palm olein esters based nano-scaled emulsion containing ibuprofen” Pak J Pharm Sci, 26(1):75-83. |
Abrams et al., “Ciclopirox gel treatment of scalp seborrheic dermatitis,” in: Shuster, S. (ed.) Hydroxy-Piridones as Antifungal Agents with Special Emphasis on Onychomycosis. Springer, Berlin, Heidelberg; 1999, Chapter 8, pp. 45-50. |
Adachi, “Storage and Oxidative Stability of O/W/ Nano-emulsions,” Foods Food Ingredients J. Jpn., 2004, 209(11), 1 page (Abstract). |
Adisen et al., “Topical tetracycline in the treatment of acne vulgaris,” J Drugs Dermatol., Oct. 2008, 7(10):953-955. |
Alcohol SDA 40B, 200 Proof. Material Safety Data Sheets [online]. Retrieved from the Internet: http://www.pharmco-prod.com/pages/MSDS/SDA.sub.--40B.sub.--200.pdf, on Dec. 9, 2008. MSDS 044, Revision 2.1, Revision Date Dec. 2005, 2 pages. |
Alcohol, Wikipedia, the free encyclopedia [online]. Last modified on Apr. 23, 2014. Retrieved on May 17, 2014, http://en.wikipedia.org/wiki/Alcohol, 17 pages. |
Aldara™ (imiquimod) Cream. Highlights of Prescribing Information, Graceway Pharmaceuticals, LLC, Mar. 2007, 29 pages. |
Allantoin, Römpp Online, retrieved on Sep. 23, 2015, https://roempp.thieme.de/roempp4.0/do/data/RD-O 1-01552, 5 pages. |
Al-Mughrabi et al., “Effectiveness of Essential Oils and Their Combinations with Aluminum Starch Octenylsuccinate on Potato Storage Pathogens,” TEOP, 2013, 16(1):23-31. |
Ambrose et al., “In Vitro Studies of Water Activity and Bacterial Growth Inhibition of Sucrose-Polyethylene Glycol 400-Hydrogen Peroxide and Xylose-Polyethylene Glycol 400-Hydrogen Peroxide Pastes Used to Treat Infected Wounds,” Antimicrobial Agents and Chemotherapy, Sep. 1991, 35(9):1799-1803. |
Aminobenzoic Acid, Knovel, 2006, retrieved on Apr. 18, 2012, http://www.knovel.com/web/portal/knovel_content?p_p_id=EXT_KNOVEL_CONTENT . . . , 2 pages. |
Anton et al., “Water-in-oil nano-emulsion formation by the phase inversion temperature method: a novel and general concept, a new template for nanoencapsulation,” Proceedings of the 33rd Annual Meeting and Exposition of the Controlled Release Society, Jul. 2006, Vienna, Austria, 2 pages. |
Arct et al., “Common cosmetic hydrophilic ingredients as penetration modifiers of flavonoids,” International Journal of Cosmetic Science, Dec. 2002, 24(6):357-366 (Abstract Only). |
Arisan, Kozmetic ve Kisisel Bakim Urunleri Grubu, retrieved on Dec. 10, 2008, http://www.arisankimya.com/kozmetik.htm, 8 pages. |
Arquad HTL8-MS, AkzoNobel Functional Applications, retrieved on Mar. 18, 2013, Retrieved from the Internet: <URL: http://sc.akzonobel.com/en/fa/Pages/product-detail.aspx?prodID=8764>, 1 page. |
Aslam et al. (2015) “Emerging drugs for the treatment of acne” Expert Opin Emerging Drugs, 20:91-101. |
Atopic Dermatitis/Eczema, ibabydoc.com, Copyright 2000, retrieved on Jan. 30, 2010, http://www.ibabydoc.com/online/diseaseeczema.asp 6 pages. |
Ausburger and Shangraw, “Bubble size analysis of high consistency aerosol foams and its relationship to foam rheology; Effects fo Container Emptying, Propellent Type, and Time,” J. Pharma Sci, Apr. 1968, 57(4):624-631. |
Austria, et al., “Stability of vitamin C derivatives in solution and topical formulations”, Journal of Pharmaceutical and Biomedical Analysis, 1997, 15:795-801. |
Barry and Badal, “Stability of minocycline, doxycycline, and tetracycline stored in agar plates and microdilution trays,” Current Microbiology, 1978, 1:33-36. |
Barry and Woodford, “Comparative bio-availability and activity of proprietary topical corticosteroid preparations: vasoconstrictor assays on thirty-one ointments,” British J. Dermatology, 1975, 93:563-571. |
Baskaran et al., “Poloxamer-188 improves capillary blood flow and tissue viability in a cutaneous burn wound,” J. Surg. Res., 2001, 101(1):56-61. |
Beauty Banter, “Interesting list of comedogenic ingredients!!!!!!!!!!!” QVC blog, Interesting list of comedogenic ingredients, 2014, 1-14. |
Bell-Syer et al., “A systematic review of oral treatments for fungal infections of the skin of the feet,” J. Dermatology. Treat., 2001, 12:69-74. |
Ben-Et and Tatarsky “Application of NMR for the Determination of HLB Values of Nonionic Surfactants,” Journal of the American Oil Chemists Society, Mar. 20, 1972, 49:499-500. |
Bernstein and Harrison, “Effects of the Immunomodulating Agent R837 on Acute and Latent Herpes Simplex Virus Type 2 Infections,” Antimicrobial Agents and Chemotherapy, Sep. 1989, 33(9):1511-1515. |
Beuchat (Feb. 1983) “Influence of Water Activity on Growth, Metabolic Activities and Survival of Yeasts and Molds” J Food Prot, 46(2):135-141. |
Blaney and Cook, “Topical use of tetracycline in the treatment of acne,” Arch Dermatol, Jul. 1976, 112:971-973. |
Blute et al., “Phase behaviour of alkyl glycerol ether surfactants”, Physikalische Chemie/Physical Chemistry Tenside Surf. Det., 1998, 35(3):207-212. |
Boehm et al., “Synthesis of high specific activity [.sup.3 H]-9-cis-retinoic acid and its application for identifying retinoids with unusual binding properties,” J. Med. Chem., 1994, 37:408-414. |
Brenes, et al., “Stability of Copigmented Anthocyanins and Ascorbic Acid in a Grape Juice Model System”, J. Agric Food Chem, 2005, 53(1):49-56 (Abstract Only). |
Brisaert, M. et al. (1996) “Investigation on the chemical stability of erythromycin in solutions using an optimization system” Pharm World Sci, 18(5):182-186. |
Bronopol, 2-Bromo-2-Nuro-1,3-Propanediol, Chemical land, Jul. 17, 2006, retrieved on Jun. 4, 2011, http://chemicalland21.com/specialtychem/perchem/BRONOPOL.html, 4 pages. |
Brown et al., “Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties,” Biochem. J., 1998, 330:1173-1178. |
Buck and Guth, “Treatment of Vaginal Intraepithelial Neoplasia (Primarily Low Grade) with Imiquimod 5% Cream”, Journal of Lower Genital Tract Disease, 2003, 7(3):290-293. |
Bucks et al., “Bioavailability of Topically Administered Steroids: A “Mass Balance” Technique,” J. Investigative Dermatology, 1988, 91(1):29-33. |
Bunker and Dowd, “Alterations in Scalp Blood Flow after the Epicutaneous Application of 3% Minoxidil and 0.1% Hexyl Nicotinate in Alopecia,” British Society for Investigative Dermatology, Sep. 1986, 117(5):668-669. |
Burn Patients Need Vitamin D Supplements, NUTRAingredients.com, Jan. 23, 2004, retrieved on May 5, 2010, http://www.nutraingredients.com/Research/Burn-patients-need-vitamin-D-supplements, 1 page. |
Burton and Marshall, “Hypertrichosis due to minoxidil,” British J. Dermatology, 1979, 101:593-595. |
C12-15 Alkyl Benzoate, Paula's Choice Skincare, retrieved on Oct. 24, 2010, http://ww.cosmeticscop.com/cosmetic-ingredient-dictionary/definition/259/c12-15-alkyl-benzoate.aspx, 1 page. |
Campos and Silva, “Ascorbic Acid and Its Derivatives in Cosmetic Formulations”, Cosmetics and Toiletries, 2000, 115(6):59-62 (Abstract Only. |
Can Tuberous Sclerosis Be Prevented?, Sharecare, 2002, retrieved on Aug. 29, 2013, <URL: http://www.sharecare.com/health/autosomal-dominant-genetic-disorders/can-tuberous-sclerosis-be-prevented;jsessionid=8505791360520A907DE75930E061E60E6>, 2 pages. |
Canavan et al. (2016) “Optimizing Non-Antibiotic Treatments for Patients with Acne: A Review” Dermatol Ther, 6:555-578. |
Carapeti et al., “Topical diltiazem and bethanechol decrease anal sphincter pressure and heal anal fissures without side effects,” Dis Colon Rectum, 2000, 43(10):1359-1362. |
Carbowax 1000MSDS, Material Safety Data Sheet for Polyethylene glycol 1000 MSDS, last updated Nov. 6, 2008, retrieved on Dec. 13, 2008, http://www.sciencelab.com/xMSDS-Polyethylene.sub.-glycol.sub.-1000-9926-622, 6 pages. |
Carelli et al., “Effect of Vehicles on Yohimbine Permeation Across Excised Hairless Mouse Skin”, Pharm Acta Hely, Aug. 1978, 73(3):127-134 (Abstract Only). |
Causes of Psoriasis, retrieved on Sep. 9, 2010, http://www.quickcare.org/skin/causes-of0psoriasis.html, 3 pages. |
Cetearyl Alcohol, Natural Wellbeing, Copyright 2001-2012, retrieved on Apr. 10, 2014, http://www.naturalwellbeing.com/learning-center/Cetearyl_Alcohol, 3 pages. |
Chebil et al., “Solubility of Flavonoids in Organic Solvents,” J. Chem. Eng. Data, 2007, 52(5):1552-1556 (Abstract Only). |
Chemical Characteristics, the Olive Oil Source, © 1998-2015, retrieved on Jun. 12, 2015, http://www.oliveoilsource.com/page/chemical-characteristics, 10 pages. |
Cheshire and Freeman, “Disorders of Sweating,” Semin Neurol, 2003, 23(4):399-406. |
Chevrant-Breton et al., “Etude du Traitement Capillaire <<Bioscalin>> dans les Alopecies Diffuses de la Femme”, Gazette Medicale, 1986, 93(17):75-79 (English Abstract). |
Chiang et al., “Bioavailability Assessment of Topical Delivery Systems: In Vitro Delivery of Minoxidil from Prototypical Semi-Solid Formulations”, Int. J. Pharm, 1989, 49(2):109-114 (Abstract Only). |
Chinnian et al., “Photostability Profiles of Minoxidil Solutions”, PDA J. Pharm Sci Technol., Mar.-Apr. 1996, 50(2):94-98 (English Abstract). |
Chollet et al., “Development of a Topically Active Imiquimod Formulation”, Pharmaceutical Development and Technology, 1999, 4(1):35-43. |
Chollet et al., “The Effect of Temperatures on the Solubility of Imiquimod in Isostearic Acid”, Abstract 3031, Pharmaceutical Research, Nov. 1997, 14(11 Supplemental):S475. |
Chrysos et al., “Effect of nifedipine on rectoanal motility,” Dis Colon Rectum, Feb. 1996, 39(2):212-216. |
Clobetasol Propionate Cream and Ointment, Apr. 2006, retrieved Jul. 3, 2014, http://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=994, 7 pages. |
Cloez-Tayarani et al., “Differential effect of serotonin on cytokine production in lipopolysaccharide-stimulated human peripheral blood mononuclear cells: involvement of 5-hydroxytryptamine2A receptors,” Int. Immunol., 2003, 15:233-240. |
Coal Tars and Coal-Tar Pitches, Report on Carcinogens, Twelfth Edition, 2011, 3 pages. |
Coatzee et al., “Acceptability and feasibility of Micralax® applicators and of methyl cellulose gel placebo for large-scale clinical trials of vaginal microbicides,” AIDS, 2001, 15:1837-1842. |
Coconut Oil, Wikipedia, the free encyclopedia, retrieved on Jul. 3, 2015, https://en.wikipedia.org/wiki/Coconut_oil, 8 pages. |
Codex Standard for Olive Oils and Olive Pomace Oils Codex Stan 33-1981, Adopted in 1981, recently amended 2013, 8 pages. |
Cole and Gazewood, “Diagnosis and Treatment of Impetigo,” American Family Physical Website, 2007, http://www.aafp.org/afp, 6 pages. |
Colloidal Silica, W.R. Grace & Co. Enriching Lives, Everywhere™, 2011, retrieved on Jun. 4, 2011, http://www.grace.com/engineeredmaterials/materialsciences/colloidalsilica/default.aspx, 4 pages. |
Communication of a Notice of Opposition in European Application No. 03772600.7, dated Jan. 13, 2015, 36 pages. |
Cook and Mortenson, “Nifedipine for treatment of anal fissures,” Dis Colon Rectum, 2000, 43(3):430-431. |
Craig, D.Q.M. et al. (Jul. 1994) “An investigation into the structure and properties of Carbopol 934 gels using dielectric spectroscopy and oscillatory rheometry” J Controlled Rel, 30(3):213-223 (Abstract). |
Cremophor A Grades, BASF The Chemical Company, Jan. 2008, 6 pages. |
Croda Crop Care, Arlacel 165, 2011, retrieved on Aug. 3, 2015, http://www.crodapersonalcare.com/home.aspx?view=dtl&d=content&s=157&r=401&p=2578&productName=&inciname=&application=&subapplication=&productfunction=&consumerbenefit=&prodID=1926, 2 pages. |
Croda Product Care Europe, Cetomacrogol 1000, 2011, retrieved on Aug. 3, 2015, http://www.crodapersonalcare.com/home.aspx?view=dtl&d=content&s=157&r=273&p=1859&productName=&inciname=&chemicaltype=&application=&subapplication=&productfunction=&consumerbenefit=&prodID=27, 1 page. |
Crohn's Disease, Merck Manual Home Edition, retrieved on Jan. 16, 2013, <http://www.merckmanuals.com/home/digestive_disorders/inflammatory_bowel_diseases_ibd/crohn_disease.html?qt=crohn's disease&alt=sh>, 3 pages. |
Cunha, “Minocycline versus Doxycycline in the treatment of Lyme Neuroborreliosis,” Clin. Infect. Diseases, 2000, 30: 237-238. |
Dacarbazine, Chemical Book, 2010, retrieved on Oct. 18, 2013, <URL: http://www.chemicalbook.com/ChemicalProductProperty_EN_CB7710656.htm>, 2 pages. |
Dalby et al., “Determination of Drug Solubility in Aerosol Propellants,” Pharmaceutical Research, 1991, 8(9):1206-1209. |
Dawber and Rundegren, “Hypertrichosis in Females Applying Minoxidil Topical Solution and in Normal Controls”, JEADV, 2003, 17:271-275. |
Denatonium Benzoate, retrieved Dec. 9, 2008, http://www.newdruginfo.com/pharmaceopeia/usp28/v28230/usp28nf23s0_m-22790.htm, 2 pages. |
Dentinger, et al., “Stability of Nifedipine in an Extemporaneously Compounded Oral Solution”, American Journal of Health-System Pharmacy, 2003, 60(10):1019-1022 (English Abstract). |
Derivative, Merriam Webster Online Dictionary, retrieved on Jul. 5, 2008, http://www.merriam-webster.com/cgi-bin/dictionary?book=dictionary&va=derivative, 1 page. |
Devos and Miller, “Antisense Oligonucleotides: Treating neurodegeneration at the Level of RNA,” Neurotherapeutics, 2013, 10:486-497. |
Diethyltoluamide, Wikipedia, the free encyclopedia, retrieved on Sep. 11, 2015, https://de.wikipedia.org/wiki/Diethyltoluamid, 12 pages. |
Dimethylphthalate, Wikipedia, the free encyclopedia, retrieved on Sep. 11, 2015, http://de.wikipedia.org/wiki/Dimethylphthalat, 8 pages. |
Disorder, American Heritage Dictionary of the English Language, 2007, retrieved on Oct. 9, 2010, http://www.credoreference.com/entry/hmdictenglang/disorder, 1 page. |
Draelos, “Antiperspirants and the Hyperhidrosis Patients,” Dermatologic Therapy, 2001, 14:220-224. |
Drug Index—Dacarbazine, BC Cancer Agency, Jun. 2004, retrieved on Oct. 18, 2013, <URL:http://www.bccancer.bc.ca/HPI/DrugDatabase/DrugIndexPro/Dacarbazine.htm>, 6 pages. |
Drugfuture, Chemical Index Database, “Sorbitan Esters” Monograph [online]. Retrieved from: http://www.drugfuture.com/chemdata/sorbitan-esters.html, on Jul. 1, 2016, 2 pages. |
Durian et al., “Scaling behavior in shaving cream,” The American Physical Society, Dec. 1991, 44(12):R7902-7905. |
Durmortier et al., “A review of poloxamer 407 pharmaceutical and pharmacological characteristics,” Pharmaceutical Res., Dec. 2006, 23(12):2709-2728. |
E7023 Ethanol 200 Proof (Absolute), Sigma-Aldrich Co., © 2008, retrieved on Dec. 9, 2008, http://www.sigmaaldrich.com/catalog/ProductDetail.do?N4=E7023SIAL&N5=SEAR- CH.sub.--CONCAT.sub.--PNOBRAND.sub.--KEY&F=SPEC, 2 pages. |
Ebadi et al., “Healing effect of topical nifedipine on skin wounds of diabetic rats,” DARU, 2003, 11(1):19-22. |
Edens et al., Storage Stability and Safety of Active Vitamin C in a New Dual-Chamber Dispenser, Journal of Applied Cosmetology, 1999, 17(4):136-143 (English Abstract). |
Edirisinghe et al., “Effect of fatty acids on endothelium-dependent relaxation in the rabbit aorta”, Clin Sci, Aug. 2006, 111(2): 145-51. |
Edwards, “Imiquimod in Clinical Practice,” J. Am Acad Dermatol., Jul. 2000 43(1, Pt 2):S12-S17 (English Abstract). |
Effendy and Maibach “Surfactants and Experimental Irritant Contact Dermatitis.” Contact Dermatol., 1995, 33:217-225. |
Elias and Ghadially, “The aged epidermal permeability barrier,” Clinical Geriatric Medicine, Feb. 2002, 103-120. |
Ellis et al., “The Treatment of Psoriasis with Liquor Carbonis Detergens,” J. Invest Dermatology, 1948, 10:455-459. |
Emulsifiers With HLB Values, The Herbarie, retrieved on Aug. 5, 2009, http://www.theherbarie.com/files/resources-center/formulating/Emulsifiers- .sub.--HLB.sub.--Values.pdf, 3 pages. |
Esposito et al., “Nanosystems for Skin Hydration: A Comparative Study,” International Journal of Cosmetic Science, 2007, 29: 39-47. |
Established (“Approved”) Excipients, Encyclopedia of Pharmaceutical Technology, Second Edition, © 2002, vol. 3, 2146-2147. |
Ethylene Oxide Derivatives: An Essence of Every Industry, retrieved on Jul. 12, 2011, http://www.emulsifiers.in/ethylene_oxide_derivatives2.htm, 3 pages. |
European Patent Application No. 03772600.7 (Patent No. 1556009): Communication of a Notice of Opposition, dated Sep. 23, 2015, 42 pages. |
European Patent Application No. 03772600.7 (Patent No. 1556009): Communication of a Notice of Opposition. dated Sep. 24, 2015, 30 pages. |
European Patent Application No. 03772600.7 (Patent No. 1556009): Reply of the Patent Proprietor to the Notices of Opposition, dated May 9, 2016, 134 pages. |
European Patent Application No. 03772600.7 (Patent No. 1556009): Summons to Attend Oral Proceedings, dated Jun. 30, 2016, 19 pages. |
European Patent Application No. 03772600.7 (Patent No. 1556009): Interlocutory Decision in Opposition Proceedings, dated Feb. 3, 2017, 54 pages. |
European Patent Application No. 03772600.7 (Patent No. 1556009): Minutes of Oral Proceedings, dated Feb. 3, 2017, 6 pages. |
Excessive Sweating, Merck Manual Home Edition, Oct. 2007, retrieved on Apr. 14, 2011, www.merckmanuals.com/home/print/sec18/ch206/ch206c.html, 2 pages. |
Fantin et al., “Critical influence of resistance to streptogramin B-type antibiotics on activity of RP 59500 (Quinupristin-dalfopristin) in experimental endocarditis due to Staphylococcus aureus,” Antimicrob Agents and Chemothery, Feb. 1995, 39:400-405. |
Farahmand et al., “Formulation and Evaluation of a Vitamin C Multiple Emulsion”, Pharmaceutical Development and Technology, May 2006, 11(2):255-261 (English Abstract). |
Flick, Cosmetic and Toiletry Formulations, 2nd Edition, Copyright 1996, vol. 5, 251-309. |
Floyd, “Silicone Surfactants: Applicants in the Personal Care Industry,” Silicone Surfactants, 1999, Chapter 7, 181-207. |
Fluhr et al., “Glycerol accelerates recovery of barrier function in vivo,” Acta Derm. Venereol, 1999, 79:418-421. |
Foamix Pharmaceuticals Ltd. (May 1, 2017) “Foamix Pharmaceuticals Announces Plans for Additional Phase 3 Trial for FMX101 in Moderate to Severe Acne,” Press Release [online]. Retrieved from: http://www.foamix.co.il/news.asp?nodeID=564&itemID=204, on Jun. 12, 2017, 5 pages. |
Foamix Pharmaceuticals, Statement: Use of Luviquat FC 370, Approved by Yohan Hazot, May 3, 2016, 3 pages. |
Fontana, “Water Activity: Why It is Important for Food Safety,” International Conference on Food Safety, Nov. 16-18, 1998, 177-185. |
Fontana (Apr. 1999) “Pharmaceutical Applications for Water Activity” Pharmaceutical Online [online]. Retrieved from https://www.pharmaceuticalonline.com/doc/pharmaceutical-applications-for-water-activit- . . . , on Jan. 17, 2018 (4 pages). |
Frankel, A.J. et al. (2010) “Coal Tar 2% Foam in Combination with a Superpotent Corticosteroid Foam for Plaque Psoriasis. Case Report and Clinical Implications” J Clin Aesthet Dermatol, 3(10):42-45. |
Fully-Refined Paraffin Wax (FRP Wax), Industrial Raw Materials LLC, Feb. 21, 2008, retrieved on Aug. 22, 2013, <http://irmwax.com/Wax/Paraffingully_refined.asp> 1 page. |
Gallarate et al., “On the Stability of Ascorbic Acid in Emulsified Systems for Topical and Cosmetic Use”, International Journal of Pharmaceutics, 1999, 188:233-241. |
Galligan et al., “Adhesive Polyurethane Liners for Anterior Restorations,” J. Dent. Res., Jul.-Aug. 1968, 629-632. |
Garti et al. “Sucrose Esters microemulsions,” J. Molec. Liquids, 1999, 80:253-296. |
Gas Gangrene, Merck Manual Home Edition, 2008, retrieved on Jan. 16, 2013, <http://www.merckmanuals.com/home/infections/bacterial_infections/gas_gangrene.html?qt=gasgangrene&alt=sh>1 page. |
Gelbard et al. “Primary Pediatric Hyperhidrosis: A Review of Current Treatment Options,” Pediatric Dermatology, 2008, 25(6):591-598. |
Gels, UNC: The Pharmaceutics and Compounding Laboratory, retrieved on Aug. 25, 2014, http://pharmlabs.unc.edu/labs/gels/agents/htm, 4 pages. |
Ghica, M.V. et al. (2011) “Design and optimization of some collagen-minocycline based hydrogels potentially applicable for the treatment of cutaneous wound infections” Pharmazie, 66:853-861. |
Gill et al., “Adverse Drug Reactions in a Paediatric Intensive Care Unit,” Acta Paediatric, 1995, 84:438-441. |
Gladkikh, “Ascorbic Acid and Methods of Increasing its Stability in Drugs”, Translated from Khimiko-Farmatsevticheskii Zhurnal, 1970, 4(12):37-42. |
Glaser and Ballard, “Hyperhidrosis: A Comprehensive and Practical Approach to Patient Management,” Expert Rev. Dermatol., Oct. 2006, 1(6):773-775. |
Google Search Strategy for Minocycline Solubility, retrieved on Aug. 15, 2013, <http://www.googl.com/search?rls=com.microsoft%3Aen-us%3AIE-SearchBox&q-melocyc1ine+solubility>, 1 page. |
Graves et al., “Structure of Concentrated Nanoemulsions,” The Journal of Chemical Physics, Apr. 1, 2005, 122:134703, 6 pages. |
Griffin, “Calculation of HLB Values of Non-Ionic Surfactants,” Journal of the Society of Cosmetic Chemists, May 14, 1954, 249-256. |
Groveman et al., “Lack of Efficacy of Polysorbate 60 in the Treatment of Male Pattern Baldness”, Arch Intern Med, 1985, 145:1454-1458. |
Gschnait et al., “Topical Indomethacin Protects from UVB and UVA Irradiation,” Arch. Dermatol. Res., 1984, 276:131-132. |
Hakan et al., “The protective effect of fish oil enema in acetic acid and ethanol induced colitis,” The Turkish Journal of Gastroenterology, 2000, 11(2):155-161. |
Hall, “Diaper Area Hemangiomas: A Unique Set of Concerns,” retrieved on Dec. 1, 2008, http://members.tripod.com/.about.Michelle.sub.--G/diaper.html, 8 pages. |
Hallstar® GMS SE/AS, retrieved on Jun. 4, 2011, http://www.hallstar.com/pis.php?product=1H022, 1 page. |
Hammer et al., “Anti-Microbial Activity of Essential Oils and other Plant extracts,” J. Applied Microbiology, 1999, 86:985-990. |
Hargreaves, “Chemical Formulation, an Overview of Surfactant-Based Preparations Used in Everyday Life”, The Royal Society of Chemistry, 2003, 114-115. |
Harrison et al., “Effects of cytokines and R-837, a cytokine inducer, on UV-irradiation augmented recurrent genital herpes in guinea pigs”, Antiviral Res., 1991, 15(4):315-322. |
Harrison et al., “Modification of Immunological Responses and Clinical Disease During Topical R-837 Treatment of Genital HSV-2 Infection,” Antiviral Research, 1988, 10:209-224. |
Harrison et al., “Pharmacokinetics and Safety of Imiquimod 5% Cream in the Treatment of Actinic Keratoses of the Face, Scalp, or Hands and Arms”, Arch. Dermatol. Res., Jun. 2004, 296(1):6-11 (English Abstract). |
Harrison et al., “Posttherapy Suppression of Genital Herpes Simplex Virus (HSV) Recurrences and Enhancement of HSV-Specific T-Cell Memory by Imiquimod in Guinea Pigs”, Antimicrobial Agents and Chemotherapy, Sep. 1994, 38(9):2059-2064. |
Harry, “Skin Penetration,” The British Journal of Dermatology and Syphilis, 1941, 53:65-82. |
Hashim et al., “Tinea versicolor and visceral leishmaniasis,” Int J Dermatol., Apr. 1994; 33(4):258-259 (Abstract). |
Haute.De, “Substance (INCI-Designation): Triethanolamine” [online]. Retrieved on Sep. 14, 2015, http://www.haut.de/service/inci/anzeige&id=l6384&query=Triethanolamine&funktio . . . ; German with English translation, 3 pages. |
Haw, “The HLB System: A Time Saving Guide to Surfactant Selection,” Presentation to the Midwest Chapter of the Society of Cosmetic Chemists, Mar. 9, 2004, 39 pages. |
Healy, “Gelled Emollient Systems for Controlled Fragrance Release and Enhanced Product Performance,” Cosmetics and toiletries, 2002, 117(2): 47-54. |
Heart Failure, The Merck Manual, 2008, retrieved Oct. 9, 2010, http://www.merck.com/mmhe/sec03/ch025/ch025a.html, 12 pages. |
Helmenstine, “Surfactant Definition—Chemistry Glossary Definition of Surfactant,” About.com Chemistry, retrieved on Mar. 5, 2012, http://chemistry.about.com/od/chemistryglossary/g/surfactant.htm, 1 page. |
Hepburn, “Cutaneous leishmaniasis,” Clin Exp Dermatol, Jul. 2000, 25(5):363-370 (Abstract). |
HLB Systems, Pharmcal.tripod.com, retrieved on Sep. 17, 2010, http://pharmcal.tripod.com/ch17.htm, 3 pages. |
HLB-Numbers, Sigma Aldrich, 2009, retrieved on Feb. 2, 2009, http://www.sigmaaldrich.com/materials-science/micro-and-nanoelectronics/l- ithography-nanopatterning/hlb-numbers.html, 3 pages. |
How to Have a Healthy Libido in Mid-Life and Beyond, GreenWillowTree.com, Jan. 2001, retrieved on Jul. 28, 2012, http://www.greenwillowtree.com/Page.bok?file=libido.html, 5 pages. |
Hubbe, Colloidal Silica, Mini-Encyclopedia of Papermaking Wet-End Chemistry: Additives and Ingredients, their Composition, Functions, Strategies for Use, Feb. 1, 2001, retrieved on Jun. 4, 2011, http://www4.ncsu.edu/˜hubbe/CSIL.htm, 2 pages. |
Human Immunodeficiency Virus Infection, Merck Manual Home Edition, 2008, retrieved on Jan. 16, 2013, <http://www.merckmanuals.com/home/infections/human_immunodeficiency_virus_hiv_infection/human_immunodeficiency_virus_infection.html?qt=human immunodeficiency virus infection&alt=sh >, 11 pages. |
Hwang et al., “Isolation and identification of mosquito repellents in Artemisia vulgaris,” J. Chem. Ecol., 1985, 11: 1297-1306. |
ICI Americas Inc., “Meaning of HLB Advantages and Limitations” Chapter 1 in the HLB System. A Time-Saving Guide to Emulsifier Selection. Wilmington, Delaware: 1980; pp. 1-4. |
Ikuta et al., “Scanning Electron Microscopic Observation of Oil/Wax/Water/Surfactant System”, Journal of SCCJ, 2004, 34(4):280-291 (English Abstract). |
Indomethacin, Aug. 15, 2009, retrived on Jun. 3, 2011, http://it03.net/com/oxymatrine/down/1249534834.pdf, 3 pages. |
Innocenzi et al., “An Open-Label Tolerability and Effacy Study of an Aluminum Sesquichlorhydrate Topical Foam in Axillary and Palmar Primary Hyperhidrosis,” Dermatologic Therapy, 2008, 21:S27-S30. |
Izquierdo et al. “Formation and Stability of Nano-Emulsions Prepared Using the Phase Inversion Temperature Method,” Langmuir, 2002, 18(1):26-30 (Abstract). |
Jan, “Troubled Times: Detergent Foam,” retrieved on Feb. 9, 2012, http://zetatalk.com/health/theal17c.htm, 2 pages. |
Joseph, “Understanding foams & foaming,” University of Minnesota, May 1997, http://www.aem.umn.edu/people/faculty/joseph/archive/docs/understandingfoams.pdf, 8 pages. |
Kalkan et al., “The Measurement of Sweat Intensity Using a New Technique,” Tr. J. of Medical Sciences, 1998, 28:515-517. |
Kanamoto et al., “Pharmacokinetics of two rectal dosage forms of ketoprofen in patients after anal surgery,” J Pharmacobiodyn., Mar. 1988, 11(3):141-145. |
Kang et al., “Enhancement of the Stability and Skin Penetration of Vitamin C by Polyphenol”, Immune Netw., Dec. 2004, 4(4):250-254 (English Abstract). |
Kanicky, J.R. and D.O. Shah (2002) “Effect of Degree, Type, and Position of Unsaturation on the pKa of Long-Chain Fatty Acids” J Colloid and Interface Science, 256:201-207. |
Karasu et al., “Practice Guideline for the Treatment of Patients with Major Depressive Disorder,” Second Edition, Apr. 2000, 78 pages. |
KATHON™ CG, Rohm and Haas Personal Care, Jun. 2006, 9 pages. |
Kaur et al., “Formulation Development of Self Nanoemulsifying Drug Delivery System (SNEDDS) of Celecoxib for Improvement of Oral Bioavailability,” Pharmacophore, 2013, 4(4):120-133. |
Kim, “Stability of Minoxidil in Aqueous Solution”, Yakhak Hoechi, 1986, 30(5):228-231 (English Abstract). |
Kinnunen and Hannuksela, “Skin reactions to hexylene glycol,” Contact Dermatitis, Sep. 1989, 21(3):154-158. |
Kircik, L.H. and S. Kumar (Aug. 2010) “Scalp Psoriasis” J Drugs Dermatol, 9(8 Suppl):s101-s137. |
Kleber et al., “Practice Guideline for the Treatment of Patients with Substance Use Disorders,” Aug. 2006, 276 pages. |
Klucel Hydroxypropylcellulose; Chemical and Physical Properties, Hercules Limited, copyright 1986, retrieved on Aug. 25, 2014, http://legacy.library.ucsf.edu/tid/cnf81a99/pdf, 35 pages. |
Knight et al., “Topical diltiazem ointment in the treatment of chronic anal fissure,” Br. J. Surg., 2001, 88(4):553-556. |
Koerber, “Humectants and Water Activity,” Water Activity News, 2000, 8 pages. |
Kolb, “Emulsifiers, emollients and solubilizers for personal care”, pp. 1-9, accessed Jun. 20, 2018. |
Kreuter, “Nanoparticles and microparticles for drug and vaccine delivery,” J. Anat., 1996, 189:503-505. |
Kucharekova et al., “Effect of a lipid-rich emollient containing ceramide 3 in experimentally induced skin barrier dysfunction,” Contact Dermatitis, Jun. 2002, 46:331-338. |
Kumar et al., “Application of Broad Spectrum Antiseptic Povidone Iodine as Powerful Action: A Review,” Journal of Pharmaceutical Science and Technology, 2009, 1(2):48-58. |
Kwak et al. “Study of Complete Transparent Nano-Emulsions which Contain Oils.” IFSCC Conference, Seoul Korea, Sep. 2003, 3 pages. |
Laboratory 6—Characteristics of Surfactants and Emulsions, retrieved on Jan. 29, 2010, http://web.archive.org/web/20000106225413/http://pharmacy.wilkes.edu/kibbeweb/lab7.html, 5 pages. |
Lautenschlager, “A Closer Look on Natural Agents: Facts and Future Aspects,” Kosmetic Konzept Kosmetische Praxis, 2006, 5:8-10. |
Le Vine et al., “Components of the Goeckerman Regimen,” Journal of Investigative Dermatology, 1979, 73:170-173. |
Lebwohl and Ali, “Treatment of psoriasis. Part 1. Topical therapy and phototherapy,” J. Am Acad Dermatol, Oct. 2001, 487-498. |
Lebwohl et al., “A randomized, double-blind, placebo-controlled study of clobestasol propionate 0.05% foam in the treatment of nonscalp psoriasis,” International Journal of Dermatology, 2002, 41(5): 269-274. |
Lee et al., “Historical review of melanoma treatment and outcomes,” Clinics in Dermatology, 2013, 31: 141-147. |
Lee et al., “The Stabilization of L-Ascorbic Acid in Aqueous Solution and Water-in-Oil-in-Water Double Emulsion by Controlling pH and Electrolyte Concentration,” J. Cosmet. Sci., Jan./Feb. 2004, 55:1-12. |
Leive et al., “Tetracyclines of various hydrophobicities as a probe for permeability of Escherichia coli outer membrane,” Antimicrobial Agents and Chemotherapy, 1984, 25:539-544. |
Leunapon-F, Leuna-Tenside, Screenshot, retrieved on Sep. 18, 2015, http://www.leuna-tenside.de/2006_7_14_3143/2006_8_7 5750/2006_8_7 241/cas-68439-49-6, 1 page. |
Leung and Robinson, “Bioadhesive Drug Delivery,” American Chemical Society, 1991, Chapter 23, 350-366. |
Li et al., “Solubility Behavior of Imiquimod in Alkanoic Acids”, Pharmaceutical Research, Abstract 3029, Nov. 1997,14(11):5475, 2 pages. |
Licking Vaginal Dryness Without a Prescription, retrieved on Dec. 14, 2008, http://www.estronaut.com/a/vag.sub.--dryness.htm, 3 pages. |
Lin et al., “Ferulic acid stabilizes a solution of vitamins c and e and doubles its photoprotection of skin,” J Invest Dermatol, 2005, 125:826-832. |
Lippacher et al., “Liquid and Semisolid SLN Dispersions for Topical Application: Rheological Characterization,” European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58:561-567. |
Livingstone and Hubel, “Segregation of form, color, movement, and depth: Anatomy, physiology, and perception,” Science, May 1988, 240:740-749. |
Lupke and Kemper, “The HET-CAM Test: An Alternative to the Draize Eye Test,” FD Chem. Toxic., 1986, 24:495-196. |
Lupo, “Antioxidants and Vitamins in Cosmetics”, Clinics in Dermatology, 2001, 19:467-473. |
Luviquat Polymer Grades, BASF The Chemical Company, May 2012, 32 pages. |
Mailer, “Chemistry and quality of olive oil,” NSW Dept. of Primary Industries, Aug. 2006, Primefact 227, 1-4. |
Martindale: The Complete Drug Reference, 33rd Edition, Jun. 2002, Pharmaceutical Press, pp. 1073 and 1473. |
Martindale: The Complete Drug Reference, Thirty-third edition, Bath Press, London, 2002, 1073 and 1473. |
Martindale: The Extra Pharmacopoeia, Twenty-eighth edition, The Pharmaceutical Press, London, 1982, 862-864. |
Material Safety Data Sheet, Luvitol EHO, Caelo, Nov. 28, 2013, 4 pages. |
Material Safety Data Sheet, Butane, Gas Innovations, Sep. 7, 2007, 3 pages. |
Material Safety Data Sheet, Carbon Dioxide, Airgas, Feb. 11, 2016, 11 pages. |
Material Safety Data Sheet, Dimethyl Ether, Airgas, May 14, 2015, 12 pages. |
Material Safety Data Sheet, Hydroxyethyl Cellulose, Sigma-Aldrich, Jan. 14, 2004, http://terpconnect.umd.edu/-choi/MSDS/Sigma-Aldrich/HYDROXYETHYL%20CELLULOSE, 5 pages. |
Material Safety Data Sheet, Hydroxyethyl Cellulose, Sigma-Aldrich, Jan. 2004, 5 pages. |
Material Safety Data Sheet, Liquor carbonis detergens, Caelo, Nov. 28, 2013, 5 pages. |
Material Safety Data Sheet, Mineral Oil, Macron Fine Chemicals, Oct. 24, 2011, 6 pages. |
Material Safety Data Sheet, N-Butane, Airgas, May 7, 2015, 13 pages. |
Material Safety Data Sheet, Nitrous Oxide, Airgas, Feb. 11, 2016, 11 pages. |
Material Safety Data Sheet, Propane, Airgas, Oct. 20, 2015, 12 pages. |
Material Safety Data Sheet, Science Lab.com, Polyethylene Glycol 200, MSDS, Nov. 6, 2008, 6 pages. |
Material Safety Data Sheet, USP, Progesterone, Apr. 26, 2006, 5 pages. |
Mead, “Electrostatic Mechanisms Underlie Neomycin Block of the Cardiac Ryanodine Receptor Channel (RyR2),” Biophysical Journal, 2004, (87): 3814-3825. |
Messenger et al., “Minoxidil: Mechanisms of Action on Hair Growth”, British Journal of Dermatology, 2004, 150:186-194. |
Metronidazole (Veterinary—Systemic), The United States Pharmacopeial Convention, 2007, retrieved on Sep. 10, 2009, www.usp.org/pdf/EN/veterinary/metronidazole.pdf, 4 pages. |
Metz et al., “A Phase I Study of Topical Tempol for the Prevention of Alopecia Induced by Whole Brain Radiotherapy,” Clinical Cancer Research, Oct. 2004, 10:6411-6417. |
Meucci et al., “Ascorbic Acid Stability in Aqueous Solutions”, Acta Vitaminol Enzymol, 1985, 7(3-4):147-153 (English Abstact). |
Milton, D.T. et al. (2006) “A Phase I/II Study of Weekly High-Dose Erlotinib in Previously Treated Patients With Nonsmall Cell Lung Cancer” Cancer, 107:1034-1041. |
Mineral Oil USP, U.S. Department of Health & Human Services, Chemical Abstracts Service Registry No. 8012-95-1, 2011, 7 pages. |
Minocycline (DB01017), Drug Bank, Feb 8, 2013, retrieved on Aug. 15, 2013, <http://www.drugbank.ca/drugs/DB01017>, 10 pages. |
Minocycline, Wikipedia, the free encyclopedia, retrieved on Oct. 21, 2011, http://en.wikipedia.org/wiki/Minocycline, 7 pages. |
MMP Inc., International Development and Manufacturing, “Formulating specialties,” retrieved on Feb. 2, 2010, http://mmpinc.com, 3 pages. |
Molan, “World Wide Wounds: Honey as a topical antibacterial agent for treatment of infected wounds,” Dec. 2001, retrieved May 7, 2008, http://www.worldwidewounds.com/2001/november/Molan/honey-as-topical-agent.html, 13 pages. |
Molins PLC v. Textron Inc., 48 F.3d 1172, 33 USPQ2d 1823 (Fed. Cir. 1995), 19 pages. |
Morgan et al., “Enhanced Skin Permeation of Sex Hormones with Novel Topical Spray Vehicles,” Journal of Pharmaceutical Sciences, Oct. 1998, 87(10):1213-1218. |
Mousse, Merriam-Webster Online Dictionary, retrieved on Dec. 8, 2008, http://www.merriam-webster.com/dictionary/mousse, 2 pages. |
Musial, W. and A. Kubis (2004) “Carbopols as factors buffering triethanolamine interacting with artificial skin sebum” Polim Med, 34(4):17-30 (Abstract). |
Natural Skincare Authority, “Disodium EDTA: Cosmetic Toxin Data,” 2011, retrieved on Nov. 17, 2013, http://www.natural-skincare-authority.com/DISODIUM-EDTA.html, 4 pages. |
Neutrogena Clinical SPF 30 Facial Lifting Wrinkle Treatment, Apr. 28, 2010, retrieved on Sep. 11, 2010, http://www.cosmetoscope.com/2010/04/neutrogea-clinical-with-johnson-johnsons-cytomimic-techology/, 5 pages. |
Neves et al., “Rheological Properties of Vaginal Hydrophilic Polymer Gels,” Current Drug Delivery, 2009, 6:83-92. |
New Nanomaterials to Deliver Anticancer Drugs to Cells Developed, Science Daily, Jun. 2007, retrieved on Oct. 14, 2013, <URL: http://www.sciencedaily.com/releases/2007/06/070607112931.htm>, 3 pages. |
Nietz, “Molecular orientation at surfaces of solids,” J. Phys. Chem., 1928, 32(2): 255-269. |
Niram Chemicals, Chemical products—Cetostearyl Alcohol, Cetyl Alcohol, Stearyl Alcohol and Polyethylene Glycol Importer & Supplier, retrieved on Jul. 17, 2012, http://www.indiamart.com/niramchemicals/chemicals.html, 7 pages. |
Novartis “Lamisil®” Product Information, T2001-29 [online]. Retrieved from: http://www.fda.gov/downloads/Drugs/DrugSafety/PostmarketDrugSafetylnformationforPatientsandProviders/ucm052213.pdf; Published: Apr. 2001, 8 pages. |
Oh et al., “Antimicrobial activity of ethanol, glycerol monolaurate or lactic acid against Listeria moncylogenes,”Int. J. Food Microbiology, 1993, 20:239-246. |
Olsen et al., “A Multicenter, Randomized, Placebo-Controlled, Double-Blind Clinical Trial of a Novel Formulation of 5% Minoxidil Topical Foam Versus Placebo in the Treatment of Androgenetic Alopecia in Men”, J. Am. Acad Dermatol, Nov. 2007, 57:767-774. |
OM-Cinnamate, MakingCosmetics.com, retrieved on Sep. 26, 2009, http://www.makingcosmetics.com/sunscreens/OM-Cinnamate-p102. html, 1 page. |
Omega-9 Fatty Acids (Oleic Acid), Orthomolecular.org, Dec. 2004, retrieved on Aug. 15, 2014, http://orthomolecular.org/nutrients/omega9.html, 1 page. |
Optimization of Nano-Emulsions Production by Microfluidization, European Food Research and Technology. Sep. 2007, 22:5-6 (English Abstract). |
Oranje et al., “Topical retapamulin ointment, 1%, versus sodium fusidate ointment, 2%, for impetigo: a randomized, observer-blinded, noninferiority study,” Dermatology, 2007, 215(4):331-340. |
Osborne and Henke, “Skin Penetration Enhancers Cited in the Technical Literature,” Pharm. Technology, Nov. 1997, 21(11):58-86. |
Padhi et al., “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries,” J. Electrochemical Soc., Apr. 1997, 144(4): 1188-1194. |
Padi and Kulkarni, “Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms,” Eur J. Pharmacol, 2008, 601:79-87. |
Pakpayat et al., “Formulation of Ascorbic Acid Microemulsions with Alkyl Polyglycosides”, European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72:444-452. |
Palamaras and Kyriakis, “Calcium antagonists in dermatology: a review of the evidence and research-based studies,” Derm. Online Journal, 2005, 11(2):8. |
Passi et al., “Lipophilic antioxidants in human sebum and aging,” Free Radical Research, 2002,36(4):471-477. |
Pharmaceutical Benefits Advisory Committee (PBAC) of Australia. PBAC Public Summary Document—Nov. 2014 Meeting (5 pages). |
Pendergrass et al., “The shape and dimension of the human vagina as seen in three-dimensional vinyl polysiloxane casts,” Gynecol Obstet. Invest., 1996, 42(3):178-82 (Abstract). |
Penreco, “Intelligent Gel Technology Product Specifications,” Rev. 06/16 (2 pages). |
Permethrin (Insecticide), Wildpro, retrieved on Jun. 4, 2015, http://wildpro.twycrosszoo.org/S/00Chem/ChComplex/perm.htm, 5 pages. |
Perotti et al., “Topical Nifedipine With Lidocaine Ointment vs. Active Control for Treatment of Chronic Anal Fissure,” Dis Colon Rectum, 2002, 45(11):1468-1475. |
Polystyrene, Wikipedia the free encyclopedia, retrieved Apr. 21, 2014, http://web.archive.org/web/20060312210423/http://en.wikipedia.org/wiki/Polystyrene, 4 pages. |
PPG-40-PEG-60 Lanolin Oil, Environmental Working Group, 2010, retrieved on May 19, 2010, http://www.cosmeticsdatabase.com/ingredient/722972/PPG-40-PEG-60_Lanolin_Oil/?ingred06=722972., 3 pages. |
Prevent, The American Heritage Dictionary of the English Language, 2007, retrieved on Oct. 9, 2010, http://www.credoreference.com/entry/hmdictenglang/prevent, 1 page. |
Product Data Sheet for Meclocycline, bioaustralis fine chemicals, Jun. 28, 2013, 1 page. |
Promius™ Pharma LLC (2012) Scytera™ (coal tar) Foam, 2%. Product Information Sheet, 1 page. |
Prud'Homme et al., Foams: theory, measurements and applications, Marcel Dekker, Inc., 1996, 327-328. |
Purcell, “Natural Jojoba Oil Versus Dryness and Free Radicals,” Cosmetics and Toiletries Manufacture Worldwide, 1988, 4 pages. |
Purdy et al., “Transfusion-transmitted malaria: unpreventable by current donor exclusion guidelines?” Transfusion, Mar. 2004, 44:464. |
Raschke et al., “Topical Activity of Ascorbic Acid: From In Vitro Optimization to In Vivo Efficacy”, Skin Pharmacology and Physiology, Jul./Aug. 2004, 17(4):200-206 (Abstract). |
Ravet et al., “Electroactivity of natural and sythetic triphylite,” J. Power Sources, 2001, 97-98: 503-507. |
Raymond, “Iodine as an Aerial Disinfectant,” J. Hygiene, May 1946, 44(5):359-361. |
Reaction Rate, Wikipedia, the free encyclopedia, retrieved on Dec. 18, 2011, en.wikipedia.org/wiki/Reaction_rate, 6 pages. |
Receptacle, Merriam Webster, retrieved on Jul. 12, 2011, http://www.merriam-webster.com/dictionary/receptacle, 1 page. |
Refina, “Viscosity Guide for Paints, Petroleum & Food Products,” accessed Mar. 4, 2015, http://www.refina.co.uk/webpdfs/info_docs/Viscosity_guide_chart.pdf, 2 pages. |
Regulation (EC) No. 2003/2003 of the European Parliament and of the Council, Official Journal of the European Union, Oct. 13, 2003, 2 pages. |
Repa et al. “All-trans-retinol is a ligand for the retinoic acid receptors,” Proc. Natl. Acad Sci, USA, Aug. 1993, 90: 7293-7297. |
Reregistration Eligibility Decision for Pyrethrins, EPA, Jun. 7, 2006, 108 pages. |
Richwald, “Imiquimod”, Drugs Today, 1999, 35(7):497 (Abstract). |
Rieger and Rhien, “Emulsifier Selection/HLB,” Surfactants in Cosmetics, 129, 1997. |
Rohstoffinformationen, Hoffmann Mineral, 2008, 8 pages (with English translation). |
Rosacea, Clinuvel Pharmaceuticals, 2010, retrieved on Sep. 9, 2010, http://clinuvel.com/skin-conditions/common-skin-conditions/rosacea#h0-6-prevention, 5 pages. |
Rowe et al., “Glyceryl Monooleate,” Handbook of Pharmaceutical Excipients, 2011, 10 pages, retrieved on Dec. 19, 2011, http://www.medicinescomplete.com/mc/excipients/current/1001938996.htm?q=glyceryl%20monooleate&t=search&ss=text&p=l# hit. |
Rowe et al., “Octyldodecanol,” Handbook of Pharmaceutical Excipients, 2011, 9 pages, retrieved on Dec. 19, 2011, URL:http://www.medicinescomplete.com/mc/excipients/current/1001942450.htm?q=octyldodecanol&t=search&ss=text&p=l# hit. |
Rowe et al., “Sucrose Palmitate,” Handbook of Pharmaceutical Excipients, 2011, 11 pages, retrieved on Dec. 19, 2011, URL:http://www.medicinescomplete.com/mc/excipients/current/EXP-TD-c46-mn0001.htm?q=sucrose%20stearate&t=search&ss=text&p=l# hit. |
Rowe et al., “Sucrose Stearate,” Handbook of Pharmaceutical Excipients, 2011, 11 pages, retrieved on Dec. 19, 2011, URL:http://www.medicinescomplete.com/mc/excipients/current/EXP-TD-cll-mnOOOI-mnOOOI.htm?q=sucrose%20stearate&t=search&ss=text&p=3# hit. |
Rses (Oil in Refrigerator Systems, Service Application Manual, 2009). |
Rutledge, “Some corrections to the record on insect repellents and attractants,” J. Am. Mosquito Control Assoc, Dec. 1988, 4(4): 414-425. |
Sakai et al., “Characterization of the physical properties of the stratum corneum by a new tactile sensor,” Skin Research and Technology, Aug. 2000, 6:128-134. |
Sanders et al., “Stabilization of Aerosol Emulsions and Foams,” J. Soc. Cosmet. Chem., 1970, 21:377-391. |
Sarpotdar, P.P. et al. (1986 Jan) “Effect of Polyethylene Glycol 400 on the Penetration of Drugs Through Human Cadaver Skin In Vitro” J Pharma Sci, 75(1):26-28. |
Savin et al., “Tinea versicolor treated with terbinafine 1% solution,” Int J. Dermatol, Nov. 1999; 38(11): 863-865. |
Schaefer, “Silicone Surfactants,” Tenside Surf. Det., 1990, 27(3): 154-158. |
Schmidt, “Malassezia furfur: a fungus belonging to the physiological skin flora and its relevance in skin disorders,” Cutis, Jan. 1997, 59(1):21-24 (Abstract). |
Schmolka, “A review of block polymer surfactants,” Journal of the American Oil Chemists Society, Mar. 1977, 54: 110-116. |
Schott, “Rheology,” Remington's Pharmaceutical Sciences, 17th Edition, 1985, 330-345. |
Schutze, “Iodine and Sodium Hypochlorite as Wound Disinfectants,” The British Medical Journal, 1915, 921-922. |
Sciarra, “Aerosol Technology,” Kirk-Othmer Encyclopedia of Chemical Technology, Jul. 2012, 20 pages. |
Scientific Discussion for the Approval of Aldara, EMEA, 2005, 10 pages. |
Scott, “A Practical Guide to Equipment Selection and Operating Techniques,” Pharmaceutical Dosage Forms: Disperse Systems, vol. 3, Copyright 1998, 291-362. |
Scully et al., “Cancers of the oral mucosa treatment and management,” Medscape Drugs, Diseases and Procedures, Apr. 20, 2012, retrieved on Oct. 12, 2013, <http://emedicine.medscape.com/article/1075729-treatment>, 10 pages. |
Seborrheic Dermatitis, retrieved on Sep. 9, 2010, http://www.cumc.columbia.edu/student/health/pdf/R-S/Seborrhea%20Dermatitis.pdf, 2 pages. |
Security Datasheet, Luvitol EHO, Cetearyloctanoat, Nov. 27, 2013, 10 pages. |
Sehgal, “Ciclopirox: a new topical pyrodonium antimycotic agent: A double-blind study in superficial dermatomycoses,” British Journal of Dermatology, 1976, 95:83-88. |
Sharp, “Oil,” Dictionary of Chemistry, Copyright 1990, 286. |
Shear et al., “Pharmacoeconomic analysis of topical treatments for tinea infections,” Pharmacoeconomics, Mar. 1995, 7(3):251-267. |
Shear, Vocabulary.com, retrieved on Aug. 23, 2013, <URL: https://www.vocabulary.com/dictionary/shear>, 3 pages. |
Shear, Vocabulary.com, retrieved on Aug. 23, 2013, https://www.vocabulary.com/dictionary/shear, 3 pages. |
Shemer, A. et al. (2016) “Topical minocycline foam for moderate to severe acne vulgaris: Phase 2 randomized double-blind, vehicle-controlled study results” J Am Acad Dermatol, 74(6):1251-1252. |
Sheu et al., “Effect of Tocopheryl Polyethylene Glycol Succinate on the Percutaneous Penetration of Minoxidil from Water/Ethanol/Polyethylene Glycol 400 Solutions,” Drug Dev. Ind. Pharm., Jun. 2006, 32(5):595-607 (Abstract). |
Shim et al., “Transdermal Delivery of Mixnoxidil with Block Copolymer Nanoparticles,” J. Control Release, Jul. 2004, 97(3):477-484 (Abstract). |
Shrestha et al., “Forming properties of monoglycerol fatty acid esters in nonpolar oil systems,” Langmuir, 2006, 22: 8337-8345. |
Sigma-Aldrich. http://www.sigmaaldrich.com/catalog/product/sial/p1754?lang=en® ion=. Published:Mar. 5, 2014. |
Sigma Aldrich, “Surfactants Classified by HLB Numbers” 2017 [online]. Retrieved from the Internet: www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=22686648, on Jul. 8, 2017 (3 pages). |
Silicone, Oxford Dictionaries Online, retrieved on Apr. 19, 2011, http://www.oxforddictionaries.com/definition/silicone?view=uk, 1 page. |
Simoni et al., “Retinoic acid and analogs as potent inducers of differentiation and apoptosis. New promising chemopreventive and chemotherapeutic agents in oncology,” Pure Appl Chem., 2001, 73(9):1437-1444. |
Simovic et al., “The influence of Processing Variables on Performance of O/W Emulsion Gels Based on Polymeric Emulsifier (Pemulen® TR-2NF),” International Journal of Cosmetic Science, Dec. 2001, 21(2)119-125 (Abstract). |
Smith, “Hydroxy acids and skin again,” Soap Cosmetics Chemical Specialties, Sep. 1993, 69(9):54-59. |
Smith, “Sore Nipples,” Breastfeeding Mom's Sore Nipples / Breastfeeding Basics, retrieved on Feb. 8, 2012, http://breastfeedingbasics.com/articles/sore-nipples, 9 pages. |
Softemul-165: Product Data Sheet, Mohini Organics PVT LTD, retrieved Apr. 10, 2014, http://www.mohiniorganics.com/Softemul165.html#, 1 page. |
Solans et al., “Overview of basic aspects of microemulsions,” Industrial Applications of Microemulsions, New York, 1997, 1-17. |
Solodyn® (Minocycline HCl, USP) Prescribing Information; revised Jun. 2016, 2 pages. |
Sonneville-Aubrun et al., “Nanoemulsions: A New Vehicle for Skincare Products,” Advances in Colloid and Interface Science, 2004, 108-109:145-149. |
Spa Collections, AG & Co. Essential oil workshop, retrieved on Jan. 31, 2010, http://www.agworkshop.com/p3.asp, 1 page. |
Squillante et al., “Codiffusion of propylene glycol and dimethyl isosorbide in hairless mouse skin,” European J. Pharm. Biopharm., 1998, 46:265-271. |
Squire and Goode, “A randomized, single-blind, single-centre clinical trial to evaluate comparative clinical efficacy of shampoos containing ciclopirox olamine (1.5%) and salicylic acid (3%), or ketoconazole (2%, Nizoral) for the treatment of dandruff/seborrhoeic dermatitis,” Dermatolog Treat., Jun. 2002, 13(2):51-60 (Abstract). |
Sreenivasa et al., “Preparation and Evaluation of Minoxidil Gels for Topical Application in Alopecia,” Indian Journal of Pharmaceutical Sciences, 2006, 68(4):432-436. |
Sreenivasan, B. et al. (1956)“Studies on Castor Oil. I. Fatty Acid Composition of Castor Oil” J Am Oil Chem Soc, 33:61-66. |
Stehle et al., “Uptake of minoxidil from a new foam formulation devoid of propylene glycol to hamster ear hair follicles,” J. Invest. Dermatol., 2005, 124(4): A101 (Abstract). |
Sugisaka et al., “The Physicochemical Properties of Imiquimod, The First Imidazoquinoline Immune Response Modifier”, Pharmaceutical Research, Nov. 1997, 14(11):S475, Abstract 3030. |
Sun Pharmaceutical Industries Ltd. v. Eli Lilly and Co., 611 F.3d 1381, 95 USPQ2d 1797 (Fed. Cir. 2010),7 pages. |
Sung, J.H. et al. (2010) “Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan” Intl J Pharmaceut, 392:232-240. |
Surfactant, Wikipedia, the free encyclopedia, retrieved on Oct. 24, 2010, http://en.wikipedia.org/wiki/Surfactant, 7 pages. |
Tadros, “Surfactants in Nano-Emulsions.” Applied Surfactants: Principles and Applications, 2005, 285-308. |
Tamarkin, D. (2013) “Foam: A Unique Delivery Vehicle for Topically Applied Formulations” in: Formulating Topical Applications—a Practical Guide. Dayan N, Ed., Carol Stream, IL: CT Books, Chapter 9, pp. 233-260. |
Tan et al., “Effect of Carbopol and PolyvinYlpyrrolidone on the Mechanical, Rheological, and Release Properties of Bioadhesive Polyethylene Glycol Gels,” AAPS PharmSciTech, 2000; 1(3) Article 24, 10 pages. |
Tanhehco, “Potassium Channel Modulators as Anti-Inflammatory Agents”, Expert Opinion on Therapeutic Patents, Jul. 2001, 11(7):1137-1145 (Abstract). |
Tarumoto et al., “Studies on toxicity of hydrocortisone 17-butyrate 21-propionate-1. Acute toxicity of hydrocortisone 17-butyrate 21-propionate and its analogues in mice, rats and dogs (author's transl),” J Toxicol Sci., Jul. 1981, 6:1-16 (Abstract). |
Tata et al., “Penetration of Minoxidil from Ethanol Propylene Glycol Solutions: Effect of Application Volume on Occlusion,” Journal of Pharmaceutical Sciences, Jun. 1995, 84(6):688-691. |
Tata et al., “Relative Influence of Ethanol and Propylene Glycol Cosolvents on Deposition of Minoxidil into the Skin,” Journal of Pharmaceutical Sciences, Jul. 1994, 83(10):1508-1510. |
Tavss et al., “Anionic detergent-induced skin irritation and anionic detergent-induced pH rise of bovine serum albumin,” J. Soc. Cosmet. Chem., Jul./Aug. 1988, 39:267-272. |
TCI America, Safety Data Sheet; Product Name: Squalane. Product Code: H0096 [online]. Retrieved from: https://www.spectrumchemical.com/MSDS/TCI-H0096.pdf. Revised: Oct. 6, 2014, 5 pages. |
Tea Tree Oil, LookChem, Chemical Abstract No. 68647-73-4, 2012, 2 pages. |
The HLB System—A Time-Saving Guide to Emulsifier Selection, ICI Americas Inc., Mar. 1980, 1-22. |
The United States Pharmacopeia: The National Formulary, USP23/NF18, US Pharmacopoeia, Jan. 1995, p. 10-14. |
Third Party Submission in Published Patent Application, U.S. Appl. No. 12/014,088, Feb. 4, 2009, 4 pages. |
Thorgeirsdottir et al., “Antimicrobial activity of monocaprin: a monoglyceride with potential use as a denture disinfectant,” Acta Odontologica Scandinavica, Feb. 2006, 64:21-26 (Abstract only). |
Tirumala et al., “Abstract: D28.00011: Enhanced order in thinfilms of Pluronic (A-B-A) and Brij (A-B) Block copolymers blended with poly (acrylic acid),” Session D28: Block Copolymer Thin Films, Mar. 13, 2006, 1 page, Abstract. |
Tjulandin, S. et al. (2013) “Phase I, dose-finding study of AZD8931, an inhibitor of EGFR (erbB1), HER2 (erbB2) and HER3 (erbB3) signaling, in patients with advanced solid tumors” Invest New Drugs, 32(1):145-153. |
Todd et al., “Volatile Silicone Fluids for Cosmetic Formulations,” Cosmetics and Toiletries, Jan. 1976, 91:27-32. |
Torma et al., “Biologic activities of retinoic acid and 3, 4-Didehydroretinoic acid in human keratinocytes are similar and correlate with receptor affinities and transactivation properties,” J. Invest. Dermatology, 1994, 102: 49-54. |
Torres-Rodriguez, “New topical antifungal drugs,” Arch Med Res., Winter 1993, 24(4): 371-375 (Abstract). |
Toxicology and Carcinogenesis Studies of T-Butyl Alcohol (Cas No. 75-65-0) in F344/N Rats and B6C3F1 Mice (Drinking Water Studies), May 1995, retrieved on Dec. 9, 2008, http://ntp.niehs.nih.gob/?objectid-=0709F73D-A849-80CA-5FB784E8666576D1, 4 pages. |
Trofatter, “Imiqimod in clinical practice”, European Journal of Dermatology, Oct./Nov. 1998, 8(7 Supp.):17-19 (Abstract). |
Tsai et al., “Drug and Vehicle Deposition from Topical Applications: Use of In Vitro Mass Balance Technique with Minoxidil Solutions”, J. Pharm. Sci., Aug. 1992, 81(8):736-743 (Abstract). |
Tsai et al., “Effect of Minoxidil Concentration on the Deposition of Drug and Vehicle into the Skin,” International Journal of Pharmaceutics, 1993, 96(1-3):111-117 (Abstract). |
Tsai et al., “Influence of Application Time and Formulation Reapplication on the Delivery of Minoxidil through Hairless Mouse Skin as Measured in Franz Diffusion Cells,” Skin Pharmacol., 1994, 7:270-277. |
Tyring, “Immune-Response Modifiers: A New Paradigm in the Treatment of Human Papillomavirus,” Current Therapeutic Research, Sep. 2000, 61(9):584-596 (Abstract). |
Tzen et al. “Surface Structure and Properties of Plant Seed Oil Bodies,” Department of Botany and Plant Sciences, University of California, Riverside, California 92521, Apr. 15, 1992, 9 pages |
Tzen et al., “Lipids, proteins and structure of seed oil bodies from diverse species,” Plant Physiol., 1993, 101:267-276. |
U.S. Final Office Action for U.S. Appl. No. 11/430,437, Tamarkin et al., dated Dec. 16, 2008, 24 pages. |
U.S. Office Action for U.S. Appl. No. 11/430,437, Tamarkin et al., dated May 9, 2008, 27 pages. |
U.S. Office Action from U.S. Appl. No. 11/430,599, dated Jul. 28, 2008, 59 pages. |
Uner et al., “Skin Moisturizing Effect and Skin Penetration of Ascorbyl Palmitate Entrapped in Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) Incorporated into Hydrogel,” Pharmazie, 2005, 60:751-755. |
United States Standards for Grades of Olive Oil and Olive-Pomace Oil, United States Dept. of Agriculture, Oct. 25, 2010, 21 pages. |
Valenta, “Effects of Penetration Enhancers on the In-vitro Percutaneous Absorption of Progesterone,” J. Pharm. Pharmacol., 1997, 49: 955-959. |
Van Cutsem et al., “The anti-inflammatory effects of ketoconazole,” J. Am. Acad. Dermatol., Aug. 1991, 25(2):257-261. |
Van Slyke, “On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution,” J. Biol. Chem., 1922, 52:525-570. |
Vera et al., “Scattering optics of Foam,” Applied Optics, Aug. 20, 2001, 40(24):4210-4214. |
Veron et al., “Stability of Minoxidil Topical Formulations”, Ciencia Pharmaceutica, 1992, 2(6):411-414 (Abstract). |
View of NCT01171326 on Dec. 7, 2010, ClinicalTrials.gov archive, Dec. 7, 2010, retrieved on Sep. 9, 2013, http://clinicaltrials.gov/archive/NCT01171326/2010_12_07, 4 pages. |
View of NCT01362010 on Jun. 9, 2011, ClinicalTrials.gov archive, Jun. 9, 2011, retrieved on Sep. 9, 2013, < http://clinicaltrials.gov/archive/NCT01362010/2011_06_09>, 3 pages. |
Wang and Chen, “Preparation and surface active properties of biodegradable dextrin derivative surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281(1-3):190-193. |
Water Jel Technologies, “Material Safety Data Sheet for Neomycin Antibiotic Ointment,” Dec. 1, 2004, 7 pages. |
WebMD (2014) “Psoriasis Health Center” [online]. Retrieved Apr. 13, 2015; retrieved from the Internet: http://www.webmd.com/skin-problems-and-treatments/psoriasis/psoriasis-symptoms, 3 pages. |
WebMD (2014) “Understanding Rosacea—the Basics” [online]. Retrieved Apr. 13, 2015; retrieved from the Internet: http://www.webmd.com/skin-problems-and-treatments/understanding-rosacea-basics (5 pages). |
WebMD (2017) “User Reviews & Ratings—Scytera topical” [online]. Retrieved Mar. 1, 2017; retrieved from the Internet: http://www.webmd.com/drugs/drugreview-151502-Scytera+topical.aspx?drugid=151502&drugname=Scytera+topical&sortby=3 (2 pages). |
Weindl et al., “Hyaluronic acid in the treatment and prevention of skin diseases: molecular biological, pharmaceutical and clinical aspects,” Skin Pharmacology and Physiology, 2004, 17: 207-213. |
Wenninger et al., “International Cosmetic Ingredient Dictionary and Handbook,” The Cosmetic, Toiletry, and Fragrance Association, Washington, DC., 1997, vol. 1, 4 pages. |
Wermuth, “Similarity in drugs: reflections on analogue design,” Drug Discovery Today, Apr. 2006, 11(7/8):348-354. |
What Is CP Serum, Skin Biology, retrieved on Dec. 1, 2008, http://web.archive.org/web/20030810230608/http://www.skinbio.com/cpserum.-html, 21 pages. |
What Is TSC?, Tuberous Sclerosis Alliance, Jan. 1, 2005, retrieved on Feb. 6, 2014, http://www.tsalliance.org.pages.aspx?content=2, 3 pages. |
Williams et al., “Acne vulgaris,” Lancet, 2012, 379:361-372. |
Williams et al., “Scale up of an olive/water cream containing 40% diethylene glycol monoethyl ether,” Dev. Ind. Pharm., 2000, 26(1):71-77. |
Williams et al., “Urea analogues in propylene glycol as penetration enhancers in human skin,” International Journal of Pharmaceutics, 1989, 36, 43-50. |
Wormser et al., “Protective effect of povidone-iodine ointment against skin lesions induced by sulphur and nitrogen mustards and by non-mustard vesicants,” Arch. Toxicol., 1997, 71, 165-170. |
Wormser, “Early topical treatment with providone-iodine ointment reduces, and sometimes prevents, skin damage following heat stimulus,” Letter to the Editor, Burns, 1998, 24:383. |
Wrightson, W.R. et al. (1998) “Analysis of minocycline by high-performance liquid chromatography in tissue and serum” J Chromatography B, 706:358-361. |
Wu et al., “Interaction of Fatty Acid Monolayers with Cobalt Nanoparticles,” Nano Letters, 2004, 4(2): 383-386. |
Yamada et al., “Candesartan, an angiotensin II receptor antagonist, suppresses pancreatic inflammation and fibrosis in rats,” J. Pharmacol. Exp. Ther., 2003, 307(1):17-23. |
Zeichner, J.A. (2010) “Use of Topical Coal Tar Foam for the Treatment of Psoriasis in Difficult-to-treat Areas” J Clin Aesthet Dermatol, 3(9):37-40. |
Zinc Oxide, Knovel, 2006, retrieved on Apr. 18, 2012, http://www.knovel.com/web/portal/knovel_content?p_p_id=EXT_KNOVEL_CONTENT . . . , 2 pages. |
Ziolkowsky, “Moderne Aerosolschaume in der Kosmetik (Modern Aerosol Foams in Chemical and Marketing Aspects)” Seifen-Ole-Fette-Wachse, Aug. 1986, 112(13): 427-429 (with English translation). |
Versagel® M Series, Mineral Oil Moisturizing Gels. Product Bulletin, retrieved from https://archive.org/web/, as archived Oct. 15, 2006, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20190076356 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
60818634 | Jul 2006 | US | |
60429546 | Nov 2002 | US | |
60492385 | Aug 2003 | US | |
60530015 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15903275 | Feb 2018 | US |
Child | 16189767 | US | |
Parent | 13796860 | Mar 2013 | US |
Child | 15903275 | US | |
Parent | 11825406 | Jul 2007 | US |
Child | 13796860 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10532618 | US | |
Child | 11825406 | US | |
Parent | 10911367 | Aug 2004 | US |
Child | 11825406 | US | |
Parent | 11653205 | Jan 2007 | US |
Child | 10911367 | US | |
Parent | 10835505 | Apr 2004 | US |
Child | 11653205 | US | |
Parent | 10911367 | US | |
Child | 10835505 | US | |
Parent | 11717897 | Mar 2007 | US |
Child | 11825406 | US | |
Parent | 11078902 | Mar 2005 | US |
Child | 11717897 | US |