The exemplary embodiment(s) of the present invention relates to RFID tags and a dice recognizing system. More specifically, the exemplary embodiment(s) of the present invention relates to a dice with RFID tags and a dice recognizing system for recognizing dice with RFID tags, which can unartificially determine the results and state of dice in real-time.
A dice game is a competition or game based on adding points determined by random throws of a plurality of dice. The dice game is generally played by placing a plurality of dice in a dice cup and manually shaking the dice cup. When the dice cup and the dice come to rest, the dice cup is opened and the points of the dice are compared to determine the result of the competition or game. The “points” are customarily referred to the numbers of the pips showing on the upward faces of the dice after they come to rest. Another dice game is played by manually throwing a plurality of dice on an open table surface or in a container. When the dice come to rest on the table surface or in the container, the dice tags are artificially judged to determine the result of the competition or game. However, no matter what kind of dice game, they all require shaking (throwing) dice and determining the result in an artificial manner. It is easy to cause cheats in such dice games so that they cannot be completely fair and impartial.
In order to make dice game fair and impartial, techniques for new dice games have been developed on game machines so that a player can simulate throwing real dice on the game machine and the result can be determined by the game machine. However, the interest in a dice game mainly on throwing, real dice and the uncertainty in waiting for rolling dice. The excitement and suspense cannot be substituted by computer technology.
In order to keep both the interest in a dice game and the fair and impartial result of a dice game, there is indeed a need to provide a system which combines real dice with machine interpretation of the dice tags.
In techniques for machine interpretation or information recognition of articles, radio frequency identification (RFID) technology is widely applied, also called electronic tag, which is a communication technology. There is no need to make mechanical or optical contact between an RFID system and a specific object. It is only necessary to pre-install an RFID tag in the specific object such that the RFID system can recognize and read/write the correlated data of the specific object via radio signals.
RFID tags are divided into passive type, semi-active type and active type. RFID tags can store a certain amount of information, so they are commonly used for recognizing and recording commodities or personnel. Passive RFID tags have no need to be connected to a power source and have the advantages of small size and low price, so they are the most widely used RFID tags now.
In view of various problems of the prior art, the inventors, based on previous experience, propose a dice with RFID tags and a dice recognizing system for recognizing dice with RFID tags to improve the above drawbacks.
In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a dice with RFID tags and a dice recognizing system for recognizing dice with RFID tags, which solve the problem that it is easy to cause unfair results because dice are artificially shaken (thrown) and the results are artificially determined, so as to keep the interest in throwing dice.
According to an object of the present invention, there is provided a dice with RFID tags, comprising a dice body and a plurality of RFID tags. The dice body is a regular cube with six faces. Each two opposite faces of the six faces are parallel to each other. At least one pip is disposed on each face. In addition, the RFID tags are disposed on any two opposite faces. One of the two opposite faces is disposed with at least one RFID tag, and the other one of the opposite faces is disposed with a plurality of RFID tags.
In the dice with RFID tags according to the present invention, all the RFID tags are disposed on the pips, respectively, and the RFID tags can be interconnected into a polygon when seeing through all the faces with the RFID tags.
According to an object of the present invention, there is further provided a dice recognizing system for recognizing dice with RFID tags, comprising at least one dice body, a plurality of RFID tags, at least one RFID reader and at least one processing module. Each of the dice bodies is a regular cube with six faces. Each two opposite faces of the six faces are parallel to each other. At least one pip is disposed on each face. In addition, the RFID tags are disposed on any two opposite faces. One of the two opposite faces is disposed with at least one RFID tag, and the other one of the opposite faces is disposed with a plurality of RFID tags. Moreover, the RFID reader has an antenna and is dis posed on a platform. The dice body rolls or rests on the platform. The height of an induction field formed by the RFID reader and the antenna is less than half the height of the dice body. When the dice body rests on the platform, the RFID reader emits an electromagnetic wave to drive the RFID tags to emit the first signal. The antenna receives the first signal emitted by the driven RFID tags. Then, the RFID reader emits the second signal to the processing module. The processing module records and analyzes the second signal after receiving the second signal.
In the dice recognizing system for recognizing dice with RFID tags according to the present invention, all the RFID tag are disposed on the pips, respectively, and the RFID tags of all the dice can be interconnected into a polygon when seeing through all the faces of all the dice bodies with the RFID tags.
As described above, the dice with RFID tags and the dice recognizing system for recognizing dice with RFID tags according to the present invention may have one or more of the following advantages:
(1) According to the dice with RFID tags and the dice recognizing system for recognizing dice with RFID tags, the RFID reader can directly read signals from all the RFID tags and transmit them to the processing module for determination. This process is performed without artificial determination and thus makes the result of throwing dice fair and impartial.
(2) According to the dice with RFID tags and the dice recognizing system for recognizing dice with RFID tags, a result of throwing dice is determined mechanically, which is not by a simulation of a game machine. The dice and the system are used to determine a result of throwing real dice, so as to keep the original interest in throwing dice.
(3) In the dice with RFID tags and the dice recognizing system for recognizing dice with RFID tags, passive RFID tags are used as targets for recognition purposes. Passive RFID tags have the advantages of small size and low price and have no need to be connected to an additional power source. Thus, this invention is easily implemented without changing an original manner or habit of using dice and has no influence on the original appearance of dice.
With these and other objects, advantages, and features of the invention that may become hereinafter apparent, the nature of the invention may be more clearly understood by reference to the detailed description of the invention, the embodiments and to the several drawings herein.
Referring to
In the first embodiment, the dice body 1 is disposed thereon with three RFID tags: a tag A, a tag B and a tag C, respectively. Each RFID tag stores different recognition data for distinguishing different tags. The tag A and the tag B are respectively disposed on the face 2 with three pips 3 and respectively disposed on the pips 3 in two corners of this face (as illustrated in
Referring to
When the number of pips on the dice is one, the tag A and the tag C on the dice body 1 are near the top of the dice body 1 and the tag B is near the bottom of the dice body 1 (as illustrated by 411 in
When a top view of the dice body 1 shows a pattern of three or four pips 3 (as illustrated by 4c or 4d in
Referring to
Referring to
Referring to
Referring to
At least a dice body 1 is placed inside the transparent cover 511. In this embodiment, it is exemplified that three dice are placed, but the present invention is not limited thereto. The console 54 comprises a processing module 53 and a display screen 541. The height of an induction field (not illustrated) formed by the RFID reader 52 and the antenna 521 is less than half the height of the dice body 1.
When all the dice bodies 1 are thrown and then rest on the platform 51 within the area covered by the transparent cover 511, the RFID reader 52 emits wireless electromagnetic waves to drive the RFID tags on each dice body 1. Due to different distances from the tags on the dice bodies 1 to the RFID reader 52, some tags located nearer from the RFID reader 52 are activated to emit first signals, but some RFID tags located farther from the RFID reader 52 are not activated. Each RFID tag has its own unique recognition information. Relatively, the first signals emitted by the RFID tags when activated are different from each other in order to distinguish these tags.
The RFID reader 52 receives, through the antenna 521, the first signals emitted by the activated RFID tags. The results of the upper faces of dice bodies 1 can be obtained by different combinations of the first signals, so as to determine the number of pips that appear on the upper face of each dice body 1.
The tag positions of the first embodiment of a dice with RFID tags according to the present invention are exemplified as well as with reference to
In this embodiment, the combinations of the first signals transmitted from the dice bodies 1 to the RFID reader 52 are the tag B and the tag C, the tag A and the tag B, and the tag A and the tag C, respectively. That is, the numbers of pips on the upper faces of the dice bodies 1 are one, two and four, respectively. The RFID reader 52 further converts the combinations of the first signals into a second signal to be transmitted to processing module 53. The result that the numbers of pips on the upper faces of the dice bodies 1 are one, two and four can be received and then analyzed by the processing module 53 to drive the display screen 541 to display this result. The processing module 53 can further drive the display screen 541 to display that the sum of the numbers of pips on the upper faces of the dice bodies 1 is seven, but the present invention is not limited thereto.
Referring to
The above description is illustrative only and is not to be considered limiting. Various modifications or changes can be made without departing from the spirit and scope of the invention. All such equivalent modifications and changes shall be included within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2693962 | Stevens | Nov 1954 | A |
3350098 | Cromp et al. | Oct 1967 | A |
3459427 | Rhodes | Aug 1969 | A |
4892311 | Zaitsu | Jan 1990 | A |
5651548 | French et al. | Jul 1997 | A |
5694045 | Ikeda et al. | Dec 1997 | A |
5707061 | Ikeda et al. | Jan 1998 | A |
5751570 | Stobbe et al. | May 1998 | A |
6220594 | Peng | Apr 2001 | B1 |
6331145 | Sity et al. | Dec 2001 | B1 |
6394903 | Lam | May 2002 | B1 |
6609710 | Order | Aug 2003 | B1 |
6834855 | Mancuso | Dec 2004 | B2 |
20040036213 | Lindsey | Feb 2004 | A1 |
20050137008 | Itagaki et al. | Jun 2005 | A1 |
20050215312 | Tresser et al. | Sep 2005 | A1 |
20050221886 | Itagaki et al. | Oct 2005 | A1 |
20060187051 | Wu et al. | Aug 2006 | A1 |
20060246403 | Monpouet et al. | Nov 2006 | A1 |
20070035399 | Hecht et al. | Feb 2007 | A1 |
20090104976 | Ouwerkerk et al. | Apr 2009 | A1 |
20100032896 | Berlec et al. | Feb 2010 | A1 |
20100059933 | Sasaki | Mar 2010 | A1 |
20100062832 | Yoshihara | Mar 2010 | A1 |
20100120512 | Darling | May 2010 | A1 |
20100124964 | Kishi | May 2010 | A1 |
20110018194 | Nicely et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
02249574 | Oct 1990 | JP |
Number | Date | Country | |
---|---|---|---|
20120004023 A1 | Jan 2012 | US |