DICKKOPF-1 VARIANT ANTIBODIES AND METHODS OF USE

Information

  • Patent Application
  • 20230312749
  • Publication Number
    20230312749
  • Date Filed
    November 17, 2022
    2 years ago
  • Date Published
    October 05, 2023
    a year ago
Abstract
Provided herein are methods and compositions relating to libraries of optimized antibodies having nucleic acids encoding for an antibody comprising modified sequences. Libraries described herein comprise nucleic acids encoding Dickkopf WNT signaling pathway inhibitor 1 (DKK1) antibodies. Further described herein are protein libraries generated when the nucleic acid libraries are translated. Further described herein are cell libraries expressing variegated nucleic acid libraries described herein.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML copy, created on Apr. 17, 2023, is named 44854-843_201_SL.xml and is 2,407,906 bytes in size.


BACKGROUND

Dickkopf WNT signaling pathway inhibitor 1 (also known as dickkopf-1 or DKK1) is a secreted glycoprotein characterized by two cysteine-rich domains that mediate protein-protein interactions. DKK1 is involved in embryonic development of the heart, head, and forelimbs through its inhibition of the WNT signaling pathway. In adults, elevated expression of this gene has been observed in numerous human cancers, and this protein may promote proliferation, invasion, and growth in cancer cell lines. Given the role of DKK1 in various diseases and disorders, there is a need for improved therapeutics.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.


BRIEF SUMMARY

Provided herein are antibodies or antibody fragments comprising a variable domain, heavy chain region (VH), wherein the VH comprises complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein (a) an amino acid sequence of CDRH1 is as set forth in any one of SEQ ID NOs: 1-98 or 919-1332; (b) an amino acid sequence of CDRH2 is as set forth in any one of SEQ ID NOs: 99-196 or 1333-1746; and (c) an amino acid sequence of CDRH3 is as set forth in any one of SEQ ID NOs: 197-294 or 1747-2160. Further provided herein are antibodies or antibody fragments, wherein the antibody is a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv), a single chain antibody, a Fab fragment, a F(ab′)2 fragment, a Fd fragment, a Fv fragment, a single-domain antibody, an isolated complementarity determining region (CDR), a diabody, a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof. Further provided herein are antibodies or antibody fragments, wherein the antibody is a single domain antibody. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 50 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 25 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 10 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 5 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment binds to DKK1.


Provided herein are antibodies or antibody fragments comprising a variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 295-392, 394-712, or 2164-2258, and wherein the VL comprises at least 90% sequence identity to any one of SEQ ID NOs 713-918. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment binds to a spike glycoprotein. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment binds to a receptor binding domain of the spike glycoprotein. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 50 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 25 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 10 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 5 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody is a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv), a single chain antibody, a Fab fragment, a F(ab′)2 fragment, a Fd fragment, a Fv fragment, a single-domain antibody, an isolated complementarity determining region (CDR), a diabody, a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof. Further provided herein are antibodies or antibody fragments, wherein the antibody is a single domain antibody.


Provided herein are nucleic acid compositions comprising: a first nucleic acid encoding a variable domain, heavy chain region (VH) comprising complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein (a) an amino acid sequence of CDRH1 is as set forth in any one of SEQ ID NOs: 1-98 or 919-1332; (b) an amino acid sequence of CDRH2 is as set forth in any one of SEQ ID NOs: 99-196 or 1333-1746; and (c) an amino acid sequence of CDRH3 is as set forth in any one of SEQ ID NOs: 197-294 or 1747-2160; and an excipient.


Provided herein are nucleic acid compositions comprising: a) a first nucleic acid encoding a variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 295-392, 394-712, or 2164-2258; and an excipient.


Provided herein are antibodies or antibody fragments comprising a variable domain, light chain region (VL), wherein the VL comprises complementarity determining regions CDRL1, CDRL2, and CDRL3, and wherein (a) an amino acid sequence of CDRL1 is as set forth in any one of SEQ ID NOs: 2259-2464; (b) an amino acid sequence of CDRL2 is as set forth in any one of SEQ ID NOs: 2465-2521; and (c) an amino acid sequence of CDRL3 is as set forth in any one of SEQ ID NOs: 2522-2727. Further provided herein are antibodies or antibody fragments, wherein the antibody is a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv), a single chain antibody, a Fab fragment, a F(ab′)2 fragment, a Fd fragment, a Fv fragment, a single-domain antibody, an isolated complementarity determining region (CDR), a diabody, a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof. Further provided herein are antibodies or antibody fragments, wherein the antibody is a single domain antibody. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 50 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 25 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 10 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 5 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment binds to DKK1.


Provided herein are antibodies or antibody fragments comprising a variable domain, light chain region (VL) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 713-918. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment binds to a spike glycoprotein. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment binds to a receptor binding domain of the spike glycoprotein. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 50 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 25 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 10 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody or antibody fragment comprises a KD of less than 5 nM. Further provided herein are antibodies or antibody fragments, wherein the antibody is a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv), a single chain antibody, a Fab fragment, a F(ab′)2 fragment, a Fd fragment, a Fv fragment, a single-domain antibody, an isolated complementarily determining region (CDR), a diabody, a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof. Further provided herein are antibodies or antibody fragments, wherein the antibody is a single domain antibody.


Provided herein are nucleic acid compositions comprising: a first nucleic acid encoding a variable domain, light chain region (VL) comprising complementarily determining regions CDRL1, CDRL2, and CDRL3, and wherein (a) an amino acid sequence of CDRL1 is as set forth in any one of SEQ ID NOs: 2259-2464; (b) an amino acid sequence of CDRL2 is as set forth in any one of SEQ ID NOs: 2465-2521; and (c) an amino acid sequence of CDRL3 is as set forth in any one of SEQ ID NOs: 2522-2727; and an excipient.


Provided herein are nucleic acid compositions comprising: a) a first nucleic acid encoding a variable domain, light chain region (VL) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 713-918; and an excipient.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1A depicts a first schematic of an immunoglobulin.



FIG. 1B depicts a second schematic of an immunoglobulin.



FIG. 2 depicts a schematic of a motif for placement in an immunoglobulin.



FIG. 3 presents a diagram of steps demonstrating an exemplary process workflow for gene synthesis as disclosed herein.



FIG. 4 illustrates an example of a computer system.



FIG. 5 is a block diagram illustrating an architecture of a computer system.



FIG. 6 is a diagram demonstrating a network configured to incorporate a plurality of computer systems, a plurality of cell phones and personal data assistants, and Network Attached Storage (NAS).



FIG. 7 is a block diagram of a multiprocessor computer system using a shared virtual address memory space.



FIG. 8A depicts a schematic of an immunoglobulin comprising a VH domain attached to a VL domain using a linker.



FIG. 8B depicts a schematic of a full-domain architecture of an immunoglobulin comprising a VH domain attached to a VL domain using a linker, a leader sequence, and pIII sequence.



FIG. 8C depicts a schematic of four framework elements (FW1, FW2, FW3, FW4) and the variable 3 CDR (L1, L2, L3) elements for a VL or VH domain.



FIG. 9A depicts long read NGS sequencing of the eluted phage pool for antibody pool A. The top portion of the figure shows the cluster enrichment number, the number of instances the antibody appears, plotted against the cluster rank, which lists the antibody rank order of the antibodies by size cluster. The bottom portion of the figure shows the parallel histogram showing the distribution of the HCDR3 lengths among the top 95 antibody clusters.



FIG. 9B depicts long read NGS sequencing of the eluted phage pool for antibody pool B. The top portion of the figure shows the cluster enrichment number, the number of instances the antibody appears, plotted against the cluster rank, which lists the antibody rank order of the antibodies by size cluster. The bottom portion of the figure shows the parallel histogram showing the distribution of the HCDR3 lengths among the top 95 antibody clusters.



FIG. 9C depicts long read NGS sequencing of the eluted phage pool for antibody pool C. The top portion of the figure shows the cluster enrichment number, the number of instances the antibody appears, plotted against the cluster rank, which lists the antibody rank order of the antibodies by size cluster. The bottom portion of the figure shows the parallel histogram showing the distribution of the HCDR3 lengths among the top 95 antibody clusters.



FIG. 10A depicts the distribution of antibody yields from 1.2 mL high-throughput antibody expression and purification among antibodies identified from the three library pools. Points are color-coded by whether the antibody was identified by phage ELISA screening (blue) or NGS enrichment data (green).



FIG. 10B depicts the distribution of antibody binding affinity to DKK1 as measured by SPR (Carterra). Points are color-coded by whether the antibody was identified by phage ELISA screening (blue) or NGS enrichment data (green).



FIG. 10C depicts the distribution of MFI ratio among antibodies identified from the three library pools. The MFI ratio is defined as the MFI measured of the antibody binding to HEK293 cells overexpressing DKK1 divided by the MFI measured of the antibody binding to HEK293 cells. Points are color-coded by whether the antibody was identified by phage ELISA screening (blue) or NGS enrichment data (green).



FIG. 11A depicts the relationship between the MFI ratio and binding affinity to DKK1 as measured by SPR. The size of each dot corresponds to the antibody yield from 1.2 ml high-throughput antibody expression and purification. Points are color-coded by the library pool used during panning.



FIG. 11B depicts the relationship between the MFI ratio and binding affinity to DKK1 as measured by SPR. The size of each dot corresponds to the antibody yield from 1.2 ml high-throughput antibody expression and purification. Points are color-coded by whether the antibody was identified by phage ELISA screening (blue) or NGS enrichment data (green).



FIG. 12A depicts Carterra SPR kinetic graphs showing VHH-Fc hits identified from NGS sequencing binding with high affinity to DKK1. Antibody lawn (10 ug/mL), 0-500 nM antigen, HBSTE+0.5 mg/mL BSA pH 7.4. FIG. 12B depicts Carterra SPR kinetic graphs showing VHH-Fc hits identified from ELISA screening binding with high affinity to DKK1. FIG. 12C depicts additional Carterra SPR kinetic graphs showing VHH-Fc hits identified from NGS sequencing binding with high affinity to DKK1. FIG. 12D depicts additional Carterra SPR kinetic graphs showing VHH-Fc hits identified from NGS sequencing binding with high affinity to DKK1.



FIG. 13 depicts the results of a TCF/LEF reporter (Wnt signaling) assay. Wnt signaling activation is plotted with SPR binding affinity.



FIGS. 14A-14D depict in vitro primary immune cell activation. FIG. 14A depicts an immune cell activation assay using peripheral blood mononuclear cells (PBMCs) and interferon gamma (IFN or IFN-γ). FIG. 14B depicts an immune cell activation assay using PBMCs and granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF is the marker for NK cell activation. Human PBMC is treated with immune stimulator, mWnt3a, hDKK1, and Dkk1 leads from ML synthetic library (FIG. 14C) and ML from VHH library (FIG. 14D). Cytokine release of GM-CSF is measured by ELISA.



FIG. 15A depicts the outcomes of a tumor killing assay. Activated immune cells kill PC3, while hDKK1 treatment inhibits cytotoxicity. FIG. 15B depicts a graph of the results of a tumor killing assay. FIG. 15C highlights specific hits from the tumor killing assay that were also found in the TCF/LEF reporter (Wnt signaling) assay. FIG. 15D shows that ML synthetic library and ML from VHH library restore the cytotoxicity potency when DKK1 leads block the interaction of hDKK1 to the receptor. FIG. 15E shows PC3 tumor cell viability results. FIG. 15F shows top clones in a PC3 cytotoxicity assay. FIG. 15G shows a subset of the top clones in a PC3 cytotoxicity assay.



FIG. 16 depicts antibody yield results from 1 mL Expi293 cell culture.



FIGS. 17A-C show anti-DKK1 binding to hDKK1 by SPR analysis. FIG. 17A shows two epitope binds (activation of Wnt signaling vs immune response) apparent among DKK1 leads. FIG. 17B shows an example of a hDDK1 protein with CRD1 and CRD2 annotated. FIG. 17C shows that DKK1 leads which bind to hDKK1 CRD1 and/or hDKK1 CRD2 result in different activation pathways.



FIGS. 18A-18C depict Wnt TCF/LEF reporter assay screening. Wnt TCF/LEF signaling is blocked by DKK1 binding to LRP5/6. DKK1 leads were screened from a VHH library (FIG. 18A), a ML synthetic library (FIG. 18B), and a ML from VHH library (FIG. 18C).



FIGS. 19A-19D depict BsAb functional assays. DKK1-99 binds to DKK1 CRD1 and activates an immune response, while DKK1-100 binds to DKK1 CRD2 and activates Wnt signaling. A bispecific Ab of DKK1-99 and DKK1-100 (FIG. 19A) shows the potency of activating both Wnt (FIG. 19B) and immune response (FIG. 19C). FIG. 19D shows another graph of immune response activation.



FIGS. 20A-20D depict DKK1 leads in tumor regression. FIG. 20A shows a schematic of mice inoculation with PC3 cells. Dosing was initiated at tumor volume average of approximately 100 mm3 with 10 mg/kg via intraperitoneal injection once every 3 days for 8 cycles. Tumor sizes were measured 3 times a week. FIG. 20B shows that anti-DKK1 treatment downregulates tumor growth, showing its efficacy in tumor suppression. FIG. 20C shows that anti-DKK1 treatment downregulates tumor growth, showing efficacy in tumor suppression in days 1-7 of the study. FIG. 20D shows the mean tumor volume across days 1-7 of the study.



FIG. 21 depicts a schematic of the panning rounds for DKK1 antibody production.



FIGS. 22A-22C show that antagonism of DKK1 inhibition of WNT in TCF/LEF assays is biphasic. FIG. 22A shows a control DKN-01 antibody. FIG. 22B shows the results for DKK1-28. FIG. 22C shows the results for DKK1-100.



FIG. 23A shows that transient and cell line TCF/LEF reporter rankings match in functional assays. FIG. 23B shows a subset of the results of FIG. 23A.



FIG. 24 shows the development of a DKK1/LRP6 binding assay.



FIGS. 25A-25C show that functional antagonists DKN-01 (FIG. 25A), DKK1-100 (FIG. 25B), and DKK1-28 (FIG. 25C) enhance DKK1 binding to LRP6.



FIGS. 26A-26B show the results of primary immune cell reactivation assays. FIG. 26A shows results using the IFN-gamma marker of immune cell activation. FIG. 26B shows results using the GM-CSF marker for immune cell activation.



FIG. 27A shows the results for primary NK cell activation. FIG. 27B shows immune cell activation assay results for top clones. FIG. 27C shows a subset of the results of FIG. 27B.



FIG. 28A-28D show the identification of antagonists DKK1-473 (FIG. 28A), DKK1-478 (FIG. 28B), DKK1-477 (FIG. 28C), and DKK1-448 (FIG. 28D) through signaling titration assays.



FIG. 29A shows the results of an immune assay. FIG. 29B shows a subset of the results of FIG. 29A.



FIG. 30 depicts lung tumor organoid killing by immune cells with DKK1 inhibition.





DETAILED DESCRIPTION

The present disclosure employs, unless otherwise indicated, conventional molecular biology techniques, which are within the skill of the art. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art.


Definitions

Throughout this disclosure, various embodiments are presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of any embodiments. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range to the tenth of the unit of the lower limit unless the context clearly dictates otherwise. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual values within that range, for example, 1.1, 2, 2.3, 5, and 5.9. This applies regardless of the breadth of the range. The upper and lower limits of these intervening ranges may independently be included in the smaller ranges, and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure, unless the context clearly dictates otherwise.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of any embodiment. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, components, and/or groups, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Unless specifically stated or obvious from context, as used herein, the term “about” in reference to a number or range of numbers is understood to mean the stated number and numbers +/−10% thereof, or 10% below the lower listed limit and 10% above the higher listed limit for the values listed for a range.


Unless specifically stated, as used herein, the term “nucleic acid” encompasses double- or triple-stranded nucleic acids, as well as single-stranded molecules. In double- or triple-stranded nucleic acids, the nucleic acid strands need not be coextensive (i.e., a double-stranded nucleic acid need not be double-stranded along the entire length of both strands). Nucleic acid sequences, when provided, are listed in the 5′ to 3′ direction, unless stated otherwise. Methods described herein provide for the generation of isolated nucleic acids. Methods described herein additionally provide for the generation of isolated and purified nucleic acids. A “nucleic acid” as referred to herein can comprise at least 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, or more bases in length. Moreover, provided herein are methods for the synthesis of any number of polypeptide-segments encoding nucleotide sequences, including sequences encoding non-ribosomal peptides (NRPs), sequences encoding non-ribosomal peptide-synthetase (NRPS) modules and synthetic variants, polypeptide segments of other modular proteins, such as antibodies, polypeptide segments from other protein families, including non-coding DNA or RNA, such as regulatory sequences e.g. promoters, transcription factors, enhancers, siRNA, shRNA, RNAi, miRNA, small nucleolar RNA derived from microRNA, or any functional or structural DNA or RNA unit of interest. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, intergenic DNA, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), small nucleolar RNA, ribozymes, complementary DNA (cDNA), which is a DNA representation of mRNA, usually obtained by reverse transcription of messenger RNA (mRNA) or by amplification; DNA molecules produced synthetically or by amplification, genomic DNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. cDNA encoding for a gene or gene fragment referred herein may comprise at least one region encoding for exon sequences without an intervening intron sequence in the genomic equivalent sequence.


DKK1 Libraries


Provided herein are methods and compositions relating to dickkopf WNT signaling pathway inhibitor 1 (DKK1) variant immunoglobulins (e.g., antibody, VHH)comprising nucleic acids encoding for an immunoglobulin comprising a DKK1 binding domain. Immunoglobulins as described herein can stably support a DKK1 binding domain. Libraries as described herein may be further variegated to provide for variant libraries comprising nucleic acids each encoding for a predetermined variant of at least one predetermined reference nucleic acid sequence. Further described herein are protein libraries that may be generated when the nucleic acid libraries are translated. In some instances, nucleic acid libraries as described herein are transferred into cells to generate a cell library. Also provided herein are downstream applications for the libraries synthesized using methods described herein. Downstream applications include identification of variant nucleic acids or protein sequences with enhanced biologically relevant functions, e.g., improved stability, affinity, binding, functional activity, and for the treatment or prevention of a disease state associated with DKK1.


Provided herein are libraries comprising nucleic acids encoding for an immunoglobulin. In some instances, the immunoglobulin is an antibody. As used herein, the term antibody will be understood to include proteins having the characteristic two-armed, Y-shape of a typical antibody molecule as well as one or more fragments of an antibody that retain the ability to specifically bind to an antigen. Exemplary antibodies include, but are not limited to, a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv) (including fragments in which the VL and VH are joined using recombinant methods by a synthetic or natural linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules, including single chain Fab and scFab), a single chain antibody, a Fab fragment (including monovalent fragments comprising the VL, VH, CL, and CH1 domains), a F(ab′)2 fragment (including bivalent fragments comprising two Fab fragments linked by a disulfide bridge at the hinge region), a Fd fragment (including fragments comprising the VH and CH1 fragment), a Fv fragment (including fragments comprising the VL and VH domains of a single arm of an antibody), a single-domain antibody (dAb or sdAb) (including fragments comprising a VH domain), an isolated complementarity determining region (CDR), a diabody (including fragments comprising bivalent dimers such as two VL and VH domains bound to each other and recognizing two different antigens), a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof. In some instances, the libraries disclosed herein comprise nucleic acids encoding for an immunoglobulin, wherein the immunoglobulin is a Fv antibody, including Fv antibodies comprised of the minimum antibody fragment which contains a complete antigen-recognition and antigen-binding site. In some embodiments, the Fv antibody consists of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association, and the three hypervariable regions of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. In some embodiments, the six hypervariable regions confer antigen-binding specificity to the antibody. In some embodiments, a single variable domain (or half of an Fv comprising only three hypervariable regions specific for an antigen, including single domain antibodies isolated from camelid animals comprising one heavy chain variable domain such as VHH antibodies or nanobodies) has the ability to recognize and bind antigen. In some instances, the libraries disclosed herein comprise nucleic acids encoding for an immunoglobulin, wherein the immunoglobulin is a single-chain Fv or scFv, including antibody fragments comprising a VH, a VL, or both a VH and VL domain, wherein both domains are present in a single polypeptide chain. In some embodiments, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains allowing the scFv to form the desired structure for antigen binding. In some instances, a scFv is linked to the Fc fragment or a VHH is linked to the Fc fragment (including minibodies). In some instances, the antibody comprises immunoglobulin molecules and immunologically active fragments of immunoglobulin molecules, e.g., molecules that contain an antigen binding site. Immunoglobulin molecules are of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG 1, IgG 2, IgG 3, IgG 4, IgA 1 and IgA 2), or subclass.


In some embodiments, libraries comprise immunoglobulins that are adapted to the species of an intended therapeutic target. Generally, these methods include “mammalization” and comprise methods for transferring donor antigen-binding information to a less immunogenic mammal antibody acceptor to generate useful therapeutic treatments. In some instances, the mammal is mouse, rat, equine, sheep, cow, primate (e.g., chimpanzee, baboon, gorilla, orangutan, monkey), dog, cat, pig, donkey, rabbit, or human. In some instances, provided herein are libraries and methods for felinization and caninization of antibodies.


“Humanized” forms of non-human antibodies can be chimeric antibodies that contain minimal sequence derived from the non-human antibody. A humanized antibody is generally a human antibody (recipient antibody) in which residues from one or more CDRs are replaced by residues from one or more CDRs of a non-human antibody (donor antibody). The donor antibody can be any suitable non-human antibody, such as a mouse, rat, rabbit, chicken, or non-human primate antibody having a desired specificity, affinity, or biological effect. In some instances, selected framework region residues of the recipient antibody are replaced by the corresponding framework region residues from the donor antibody. Humanized antibodies may also comprise residues that are not found in either the recipient antibody or the donor antibody. In some instances, these modifications are made to further refine antibody performance.


“Caninization” can comprise a method for transferring non-canine antigen-binding information from a donor antibody to a less immunogenic canine antibody acceptor to generate treatments useful as therapeutics in dogs. In some instances, caninized forms of non-canine antibodies provided herein are chimeric antibodies that contain minimal sequence derived from non-canine antibodies. In some instances, caninized antibodies are canine antibody sequences (“acceptor” or “recipient” antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-canine species (“donor” antibody) such as mouse, rat, rabbit, cat, dogs, goat, chicken, bovine, horse, llama, camel, dromedaries, sharks, non-human primates, human, humanized, recombinant sequence, or an engineered sequence having the desired properties. In some instances, framework region (FR) residues of the canine antibody are replaced by corresponding non-canine FR residues. In some instances, caninized antibodies include residues that are not found in the recipient antibody or in the donor antibody. In some instances, these modifications are made to further refine antibody performance. The caninized antibody may also comprise at least a portion of an immunoglobulin constant region (Fc) of a canine antibody.


“Felinization” can comprise a method for transferring non-feline antigen-binding information from a donor antibody to a less immunogenic feline antibody acceptor to generate treatments useful as therapeutics in cats. In some instances, felinized forms of non-feline antibodies provided herein are chimeric antibodies that contain minimal sequence derived from non-feline antibodies. In some instances, felinized antibodies are feline antibody sequences (“acceptor” or “recipient” antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-feline species (“donor” antibody) such as mouse, rat, rabbit, cat, dogs, goat, chicken, bovine, horse, llama, camel, dromedaries, sharks, non-human primates, human, humanized, recombinant sequence, or an engineered sequence having the desired properties. In some instances, framework region (FR) residues of the feline antibody are replaced by corresponding non-feline FR residues. In some instances, felinized antibodies include residues that are not found in the recipient antibody or in the donor antibody. In some instances, these modifications are made to further refine antibody performance. The felinized antibody may also comprise at least a portion of an immunoglobulin constant region (Fc) of a felinize antibody.


Provided herein are libraries comprising nucleic acids encoding for a non-immunoglobulin. For example, the non-immunoglobulin is an antibody mimetic. Exemplary antibody mimetics include, but are not limited to, anticalins, affilins, affibody molecules, affimers, affitins, alphabodies, avimers, atrimers, DARPins, fynomers, Kunitz domain-based proteins, monobodies, anticalins, knottins, armadillo repeat protein-based proteins, and bicyclic peptides.


Libraries described herein comprising nucleic acids encoding for an immunoglobulin comprising variations in at least one region of the immunoglobulin. Exemplary regions of the antibody for variation include, but are not limited to, a complementarity-determining region (CDR), a variable domain, or a constant domain. In some instances, the CDR is CDR1, CDR2, or CDR3. In some instances, the CDR is a heavy domain including, but not limited to, CDRH1, CDRH2, and CDRH3. In some instances, the CDR is a light domain including, but not limited to, CDRL1, CDRL2, and CDRL3. In some instances, the variable domain is variable domain, light chain (VL) or variable domain, heavy chain (VH). In some instances, the VL domain comprises kappa or lambda chains. In some instances, the constant domain is constant domain, light chain (CL) or constant domain, heavy chain (CH).


Methods described herein provide for synthesis of libraries comprising nucleic acids encoding for an immunoglobulin, wherein each nucleic acid encodes for a predetermined variant of at least one predetermined reference nucleic acid sequence. In some cases, the predetermined reference sequence is a nucleic acid sequence encoding for a protein, and the variant library comprises sequences encoding for variation of at least a single codon such that a plurality of different variants of a single residue in the subsequent protein encoded by the synthesized nucleic acid are generated by standard translation processes. In some instances, the variant library comprises varied nucleic acids collectively encoding variations at multiple positions. In some instances, the variant library comprises sequences encoding for variation of at least a single codon of a CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, or VH domain. In some instances, the variant library comprises sequences encoding for variation of multiple codons of a CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, or VH domain. In some instances, the variant library comprises sequences encoding for variation of multiple codons of framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). An exemplary number of codons for variation include, but are not limited to, at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 225, 250, 275, 300, or more than 300 codons.


In some instances, the at least one region of the immunoglobulin for variation is from heavy chain V-gene family, heavy chain D-gene family, heavy chain J-gene family, light chain V-gene family, or light chain J-gene family. In some instances, the light chain V-gene family comprises immunoglobulin kappa (IGK) gene or immunoglobulin lambda (IGL). Exemplary genes include, but are not limited to, IGHV1-18, IGHV1-69, IGHV1-8, IGHV3-21, IGHV3-23, IGHV3-30/33rn, IGHV3-28, IGHV1-69, IGHV3-74, IGHV4-39, IGHV4-59/61, IGKV1-39, IGKV1-9, IGKV2-28, IGKV3-11, IGKV3-15, IGKV3-20, IGKV4-1, IGLV1-51, IGLV2-14, IGLV1-40, and IGLV3-1. In some instances, the gene is IGHV1-69, IGHV3-30, IGHV3-23, IGHV3, IGHV1-46, IGHV3-7, IGHV1, or IGHV1-8. In some instances, the gene is IGHV1-69 and IGHV3-30. In some instances, the gene is IGHJ3, IGHJ6, IGHJ, IGHJ4, IGHJ5, IGHJ2, or IGH1. In some instances, the gene is IGHJ3, IGHJ6, IGHJ, or IGHJ4.


Provided herein are libraries comprising nucleic acids encoding for immunoglobulins, wherein the libraries are synthesized with various numbers of fragments. In some instances, the fragments comprise the CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, or VH domain. In some instances, the fragments comprise framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). In some instances, the immunoglobulin libraries are synthesized with at least or about 2 fragments, 3 fragments, 4 fragments, 5 fragments, or more than 5 fragments. The length of each of the nucleic acid fragments or average length of the nucleic acids synthesized may be at least or about 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, or more than 600 base pairs. In some instances, the length is about 50 to 600, 75 to 575, 100 to 550, 125 to 525, 150 to 500, 175 to 475, 200 to 450, 225 to 425, 250 to 400, 275 to 375, or 300 to 350 base pairs.


Libraries comprising nucleic acids encoding for immunoglobulins as described herein comprise various lengths of amino acids when translated. In some instances, the length of each of the amino acid fragments or average length of the amino acid synthesized may be at least or about 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, or more than 150 amino acids. In some instances, the length of the amino acid is about 15 to 150, 20 to 145, 25 to 140, 30 to 135, 35 to 130, 40 to 125, 45 to 120, 50 to 115, 55 to 110, 60 to 110, 65 to 105, 70 to 100, or 75 to 95 amino acids. In some instances, the length of the amino acid is about 22 amino acids to about 75 amino acids. In some instances, the immunoglobulins comprise at least or about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, or more than 5000 amino acids.


A number of variant sequences for the at least one region of the immunoglobulin for variation are de novo synthesized using methods as described herein. In some instances, a number of variant sequences is de novo synthesized for CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, VH, or combinations thereof. In some instances, a number of variant sequences is de novo synthesized for framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). The number of variant sequences may be at least or about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, or more than 500 sequences. In some instances, the number of variant sequences is at least or about 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, or more than 8000 sequences. In some instances, the number of variant sequences is about 10 to 500, 25 to 475, 50 to 450, 75 to 425, 100 to 400, 125 to 375, 150 to 350, 175 to 325, 200 to 300, 225 to 375, 250 to 350, or 275 to 325 sequences.


Variant sequences for the at least one region of the immunoglobulin, in some instances, vary in length or sequence. In some instances, the at least one region that is de novo synthesized is for CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, VH, or combinations thereof. In some instances, the at least one region that is de novo synthesized is for framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). In some instances, the variant sequence comprises at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, or more than 50 variant nucleotides or amino acids as compared to wild-type. In some instances, the variant sequence comprises at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 additional nucleotides or amino acids as compared to wild-type. In some instances, the variant sequence comprises at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 less nucleotides or amino acids as compared to wild-type. In some instances, the libraries comprise at least or about 101, 102, 103, 104, 105, 106, 107, 108, 109, 1010, or more than 1010 variants.


Following synthesis of libraries described herein, libraries may be used for screening and analysis. For example, libraries are assayed for library displayability and panning. In some instances, displayability is assayed using a selectable tag. Exemplary tags include, but are not limited to, a radioactive label, a fluorescent label, an enzyme, a chemiluminescent tag, a colorimetric tag, an affinity tag or other labels or tags that are known in the art. In some instances, the tag is histidine, polyhistidine, myc, hemagglutinin (HA), or FLAG. In some instances, libraries are assayed by sequencing using various methods including, but not limited to, single-molecule real-time (SMRT) sequencing, Polony sequencing, sequencing by ligation, reversible terminator sequencing, proton detection sequencing, ion semiconductor sequencing, nanopore sequencing, electronic sequencing, pyrosequencing, Maxam-Gilbert sequencing, chain termination (e.g., Sanger) sequencing, +S sequencing, or sequencing by synthesis.


In some instances, the libraries are assayed for functional activity, structural stability (e.g., thermal stable or pH stable), expression, specificity, or a combination thereof. In some instances, the libraries are assayed for immunoglobulin (e.g., an antibody) capable of folding. In some instances, a region of the antibody is assayed for functional activity, structural stability, expression, specificity, folding, or a combination thereof. For example, a VH region or VL region is assayed for functional activity, structural stability, expression, specificity, folding, or a combination thereof.


DKK1 Libraries


Provided herein are DKK1 variant immunoglobulins (e.g., antibody, VHH)comprising nucleic acids encoding for immunoglobulins (e.g., antibodies) that bind to DKK1. In some instances, the immunoglobulin sequences for DKK1 binding domains are determined by interactions between the DKK1 binding domains and the DKK1.


Sequences of DKK1 binding domains based on surface interactions of DKK1 are analyzed using various methods. For example, multispecies computational analysis is performed. In some instances, a structure analysis is performed. In some instances, a sequence analysis is performed. Sequence analysis can be performed using a database known in the art. Non-limiting examples of databases include, but are not limited to, NCBI BLAST (blast.ncbi.nlm.nih.gov/Blast.cgi), UCSC Genome Browser (genome.ucsc.edu/), UniProt (www.uniprot.org/), and IUPHAR/BPS Guide to PHARMACOLOGY (guidetopharmacology.org/).


Described herein are DKK1 binding domains designed based on sequence analysis among various organisms. For example, sequence analysis is performed to identify homologous sequences in different organisms. Exemplary organisms include, but are not limited to, mouse, rat, equine, sheep, cow, primate (e.g., chimpanzee, baboon, gorilla, orangutan, monkey), dog, cat, pig, donkey, rabbit, fish, fly, and human.


Following identification of DKK1 binding domains, libraries comprising nucleic acids encoding for the DKK1 binding domains may be generated. In some instances, libraries of DKK1 binding domains comprise sequences of DKK1 binding domains designed based on conformational ligand interactions, peptide ligand interactions, small molecule ligand interactions, extracellular domains of DKK1, or antibodies that target DKK1. In some instances, libraries of DKK1 binding domains comprise sequences of DKK1 binding domains designed based on peptide ligand interactions. Libraries of DKK1 binding domains may be translated to generate protein libraries. In some instances, libraries of DKK1 binding domains are translated to generate peptide libraries, immunoglobulin libraries, derivatives thereof, or combinations thereof. In some instances, libraries of DKK1 binding domains are translated to generate protein libraries that are further modified to generate peptidomimetic libraries. In some instances, libraries of DKK1 binding domains are translated to generate protein libraries that are used to generate small molecules.


Methods described herein provide for synthesis of libraries of DKK1 binding domains comprising nucleic acids each encoding for a predetermined variant of at least one predetermined reference nucleic acid sequence. In some cases, the predetermined reference sequence is a nucleic acid sequence encoding for a protein, and the variant library comprises sequences encoding for variation of at least a single codon such that a plurality of different variants of a single residue in the subsequent protein encoded by the synthesized nucleic acid are generated by standard translation processes. In some instances, the libraries of DKK1 binding domains comprise varied nucleic acids collectively encoding variations at multiple positions. In some instances, the variant library comprises sequences encoding for variation of at least a single codon in a DKK1 binding domain. In some instances, the variant library comprises sequences encoding for variation of multiple codons in a DKK1 binding domain. An exemplary number of codons for variation include, but are not limited to, at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 225, 250, 275, 300, or more than 300 codons.


Methods described herein provide for synthesis of libraries comprising nucleic acids encoding for the DKK1 binding domains, wherein the libraries comprise sequences encoding for variation of length of the DKK1 binding domains. In some instances, the library comprises sequences encoding for variation of length of at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 225, 250, 275, 300, or more than 300 codons less as compared to a predetermined reference sequence. In some instances, the library comprises sequences encoding for variation of length of at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, or more than 300 codons more as compared to a predetermined reference sequence.


Provided herein are DKK1 variant immunoglobulins (e.g., antibody, VHH) comprising nucleic acids encoding for immunoglobulins comprising DKK1 binding domains comprising variation in domain type, domain length, or residue variation. In some instances, the domain is a region in the immunoglobulin comprising the DKK1 binding domains. For example, the region is the VH, CDRH1, CDRH2, CDRH3, VL, CDRL1, CDRL2, or CDRL3 domain. In some instances, the domain is the DKK1 binding domain.


Methods described herein provide for synthesis of a DKK1 binding library of nucleic acids each encoding for a predetermined variant of at least one predetermined reference nucleic acid sequence. In some cases, the predetermined reference sequence is a nucleic acid sequence encoding for a protein, and the variant library comprises sequences encoding for variation of at least a single codon such that a plurality of different variants of a single residue in the subsequent protein encoded by the synthesized nucleic acid are generated by standard translation processes. In some instances, the DKK1 binding library comprises varied nucleic acids collectively encoding variations at multiple positions. In some instances, the variant library comprises sequences encoding for variation of at least a single codon of a VH, CDRH1, CDRH2, CDRH3, VL, CDRL1, CDRL2, or CDRL3 domain. In some instances, the variant library comprises sequences encoding for variation of at least a single codon in a DKK1 binding domain. In some instances, the variant library comprises sequences encoding for variation of multiple codons of a VH, CDRH1, CDRH2, CDRH3, VL, CDRL1, CDRL2, or CDRL3 domain. In some instances, the variant library comprises sequences encoding for variation of multiple codons in a DKK1 binding domain. An exemplary number of codons for variation include, but are not limited to, at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 225, 250, 275, 300, or more than 300 codons.


Methods described herein provide for synthesis of a DKK1 binding library of nucleic acids each encoding for a predetermined variant of at least one predetermined reference nucleic acid sequence, wherein the DKK1 binding library comprises sequences encoding for variation of length of a domain. In some instances, the domain is VH, CDRH1, CDRH2, CDRH3, VL, CDRL1, CDRL2, or CDRL3 domain. In some instances, the domain is the DKK1 binding domain. In some instances, the library comprises sequences encoding for variation of length of at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 225, 250, 275, 300, or more than 300 codons less as compared to a predetermined reference sequence. In some instances, the library comprises sequences encoding for variation of length of at least or about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, or more than 300 codons more as compared to a predetermined reference sequence.


Provided herein are DKK1 variant immunoglobulins (e.g., antibody, VHH) comprising nucleic acids encoding for immunoglobulins comprising DKK1 binding domains, wherein the DKK1 binding libraries are synthesized with various numbers of fragments. In some instances, the fragments comprise the VH, CDRH1, CDRH2, CDRH3, VL, CDRL1, CDRL2, or CDRL3 domain. In some instances, the DKK1 variant immunoglobulins (e.g., antibody, VHH) are synthesized with at least or about 2 fragments, 3 fragments, 4 fragments, 5 fragments, or more than 5 fragments. The length of each of the nucleic acid fragments or average length of the nucleic acids synthesized may be at least or about 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, or more than 600 base pairs. In some instances, the length is about 50 to 600, 75 to 575, 100 to 550, 125 to 525, 150 to 500, 175 to 475, 200 to 450, 225 to 425, 250 to 400, 275 to 375, or 300 to 350 base pairs.


DKK1 variant immunoglobulins (e.g., antibody, VHH) comprising nucleic acids encoding for immunoglobulins comprising DKK1 binding domains as described herein comprise various lengths of amino acids when translated. In some instances, the length of each of the amino acid fragments or average length of the amino acid synthesized may be at least or about 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, or more than 150 amino acids. In some instances, the length of the amino acid is about 15 to 150, 20 to 145, 25 to 140, 30 to 135, 35 to 130, 40 to 125, 45 to 120, 50 to 115, 55 to 110, 60 to 110, 65 to 105, 70 to 100, or 75 to 95 amino acids. In some instances, the length of the amino acid is about 22 to about 75 amino acids.


DKK1 variant immunoglobulins (e.g., antibody, VHH) comprising de novo synthesized variant sequences encoding for immunoglobulins comprising DKK1 binding domains comprise a number of variant sequences. In some instances, a number of variant sequences is de novo synthesized for a CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, CDRL3, VL, VH, or a combination thereof. In some instances, a number of variant sequences is de novo synthesized for framework element 1 (FW1), framework element 2 (FW2), framework element 3 (FW3), or framework element 4 (FW4). In some instances, a number of variant sequences is de novo synthesized for a GPCR binding domain. For example, the number of variant sequences is about 1 to about 10 sequences for the VH domain, about 108 sequences for the DKK1 binding domain, and about 1 to about 44 sequences for the VL domain. The number of variant sequences may be at least or about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, or more than 500 sequences. In some instances, the number of variant sequences is about 10 to 300, 25 to 275, 50 to 250, 75 to 225, 100 to 200, or 125 to 150 sequences.


Described herein are antibodies or antibody fragments thereof that binds DKK1. In some embodiments, the antibody or antibody fragment thereof comprises a sequence as set forth in Tables 4-8. In some embodiments, the antibody or antibody fragment thereof comprises a sequence that is at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a sequence as set forth in Tables 4-8.


In some instances, an antibody or antibody fragment described herein comprises a CDRH1 sequence of any one of SEQ ID NOs: 1-98 or 919-1332. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a CDRH1 sequence of any one of SEQ ID NOs: 1-98 or 919-1332. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a CDRH1 sequence of any one of SEQ ID NOs: 1-98 or 919-1332. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a CDRH1 sequence of any one of SEQ ID NOs: 1-98 or 919-1332. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a CDRH1 sequence of any one of SEQ ID NOs: 1-98 or 919-1332.


In some instances, an antibody or antibody fragment described herein comprises a CDRH2 sequence of any one of SEQ ID NOs: 99-196 or 1333-1746. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a CDRH2 sequence of any one of SEQ ID NOs: 99-196 or 1333-1746. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a CDRH2 sequence of any one of SEQ ID NOs: 99-196 or 1333-1746. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a CDRH2 sequence of any one of SEQ ID NOs: 99-196 or 1333-1746. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a CDRH2 sequence of any one of SEQ ID NOs: 99-196 or 1333-1746.


In some instances, an antibody or antibody fragment described herein comprises a CDRH3 sequence of any one of SEQ ID NOs: 197-294 or 1747-2160. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a CDRH3 sequence of any one of SEQ ID NOs: 197-294 or 1747-2160. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a CDRH3 sequence of any one of SEQ ID NOs: 197-294 or 1747-2160. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a CDRH3 sequence of any one of SEQ ID NOs: 197-294 or 1747-2160. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a CDRH3 sequence of any one of SEQ ID NOs: 197-294 or 1747-2160.


In some instances, an antibody or antibody fragment described herein comprises a CDRL1 sequence of any one of SEQ ID NOs: 2259-2464. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a CDRL1 sequence of any one of SEQ ID NOs: 2259-2464. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a CDRL1 sequence of any one of SEQ ID NOs: 2259-2464. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a CDRL1 sequence of any one of SEQ ID NOs: 2259-2464. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a CDRL1 sequence of any one of SEQ ID NOs: 2259-2464.


In some instances, an antibody or antibody fragment described herein comprises a CDRL2 sequence of any one of SEQ ID NOs: 2465-2521. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a CDRL2 sequence of any one of SEQ ID NOs: 2465-2521. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a CDRL2 sequence of any one of SEQ ID NOs: 2465-2521. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a CDRL2 sequence of any one of SEQ ID NOs: 2465-2521. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a CDRL2 sequence of any one of SEQ ID NOs: 2465-2521.


In some instances, an antibody or antibody fragment described herein comprises a CDRL3 sequence of any one of SEQ ID NOs: 2522-2727. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 80% identical to a CDRL3 sequence of any one of SEQ ID NOs: 2522-2727. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 85% identical to a CDRL3 sequence of any one of SEQ ID NOs: 2522-2727. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 90% identical to a CDRL3 sequence of any one of SEQ ID NOs: 2522-2727. In some instances, an antibody or antibody fragment described herein comprises a sequence that is at least 95% identical to a CDRL3 sequence of any one of SEQ ID NOs: 2522-2727.


Described herein, in some embodiments, are antibodies or antibody fragments comprising a variable domain, heavy chain region (VH) and a variable domain, light chain region (VL), wherein the VH comprises an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 295-392, 394-712, or 2164-2258, and wherein the VL comprises an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 713-918. In some instances, the antibodies or antibody fragments comprise VH comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 295-392, 394-712, or 2164-2258. In some instances, the antibodies or antibody fragments comprise VL comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 713-918.


The term “sequence identity” means that two polynucleotide sequences are identical (i.e., on a nucleotide-by-nucleotide basis) over the window of comparison. The term “percentage of sequence identity” is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as EMBOSS MATCHER, EMBOSS WATER, EMBOSS STRETCHER, EMBOSS NEEDLE, EMBOSS LALIGN, BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software.


Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.


In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: 100 times the fraction X/Y, where Xis the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program.


The term “homology” or “similarity” between two proteins is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one protein sequence to the second protein sequence. Similarity may be determined by procedures which are well-known in the art, for example, a BLAST program (Basic Local Alignment Search Tool at the National Center for Biological Information).


The terms “complementarity determining region,” and “CDR,” which are synonymous with “hypervariable region” or “HVR,” are known in the art to refer to non-contiguous sequences of amino acids within antibody variable regions, which confer antigen specificity and/or binding affinity. In general, there are three CDRs in each heavy chain variable region (CDRH1, CDRH2, CDRH3) and three CDRs in each light chain variable region (CDRL1, CDRL2, CDRL3). “Framework regions” and “FR” are known in the art to refer to the non-CDR portions of the variable regions of the heavy and light chains. In general, there are four FRs in each full-length heavy chain variable region (FR-H1, FR-H2, FR-H3, and FR-H4), and four FRs in each full-length light chain variable region (FR-L1, FR-L2, FR-L3, and FR-L4). The precise amino acid sequence boundaries of a given CDR or FR can be readily determined using any of a number of well-known schemes, including those described by Kabat et al. (1991), “Sequences of Proteins of Immunological Interest,” 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (“Kabat” numbering scheme), Al-Lazikani et al., (1997) JMB 273,927-948 (“Chothia” numbering scheme); MacCallum et al., J. Mol. Biol. 262:732-745 (1996), “Antibody-antigen interactions: Contact analysis and binding site topography,” J. Mol. Biol. 262, 732-745.” (“Contact” numbering scheme); Lefranc M P et al., “IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains,” Dev Comp Immunol, 2003 January; 27(1):55-77 (“IMGT” numbering scheme); Honegger A and Plückthun A, “Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool,” J Mol Biol, 2001 Jun. 8; 309(3):657-70, (“Aho” numbering scheme); and Whitelegg N R and Rees A R, “WAM: an improved algorithm for modelling antibodies on the WEB,” Protein Eng. 2000 December; 13(12):819-24 (“AbM” numbering scheme. In certain embodiments the CDRs of the antibodies described herein can be defined by a method selected from Kabat, Chothia, IMGT, Aho, AbM, or combinations thereof.


The boundaries of a given CDR or FR may vary depending on the scheme used for identification. For example, the Kabat scheme is based on structural alignments, while the Chothia scheme is based on structural information. Numbering for both the Kabat and Chothia schemes is based upon the most common antibody region sequence lengths, with insertions accommodated by insertion letters, for example, “30a,” and deletions appearing in some antibodies. The two schemes place certain insertions and deletions (“indels”) at different positions, resulting in differential numbering. The Contact scheme is based on analysis of complex crystal structures and is similar in many respects to the Chothia numbering scheme.


DKK1 variant immunoglobulins (e.g., antibody, VHH)comprising de novo synthesized variant sequences encoding for immunoglobulins comprising DKK1 binding domains comprise improved diversity. For example, variants are generated by placing DKK1binding domain variants in immunoglobulins comprising N-terminal CDRH3 variations and C-terminal CDRH3 variations. In some instances, variants include affinity maturation variants. Alternatively or in combination, variants include variants in other regions of the immunoglobulin including, but not limited to, CDRH1 and CDRH2. In some instances, the number of variants of the DKK1 variant immunoglobulins (e.g., antibody, VHH) is at least or about 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, or more than 1020 non-identical sequences.


In some instances, the at least one region of the antibody for variation is from heavy chain V-gene family, heavy chain D-gene family, heavy chain J-gene family, light chain V-gene family, or light chain J-gene family. In some instances, the light chain V-gene family comprises immunoglobulin kappa (IGK) gene or immunoglobulin lambda (IGL). Exemplary regions of the antibody for variation include, but are not limited to, IGHV1-18, IGHV1-69, IGHV1-8, IGHV3-21, IGHV3-23, IGHV3-30/33rn, IGHV3-28, IGHV1-69, IGHV3-74, IGHV4-39, IGHV4-59/61, IGKV1-39, IGKV1-9, IGKV2-28, IGKV3-11, IGKV3-15, IGKV3-20, IGKV4-1, IGLV1-51, IGLV2-14, IGLV1-40, and IGLV3-1. In some instances, the gene is IGHV1-69, IGHV3-30, IGHV3-23, IGHV3, IGHV1-46, IGHV3-7, IGHV1, or IGHV1-8. In some instances, the gene is IGHV1-69 and IGHV3-30. In some instances, the region of the antibody for variation is IGHJ3, IGHJ6, IGHJ, IGHJ4, IGHJ5, IGHJ2, or IGH1. In some instances, the region of the antibody for variation is IGHJ3, IGHJ6, IGHJ, or IGHJ4. In some instances, the at least one region of the antibody for variation is IGHV1-69, IGHV3-23, IGKV3-20, IGKV1-39, or combinations thereof. In some instances, the at least one region of the antibody for variation is IGHV1-69 and IGKV3-20, In some instances, the at least one region of the antibody for variation is IGHV1-69 and IGKV1-39. In some instances, the at least one region of the antibody for variation is IGHV3-23 and IGKV3-20. In some instances, the at least one region of the antibody for variation is IGHV3-23 and IGKV1-39.


Provided herein are libraries comprising nucleic acids encoding for a DKK1 antibody comprising variation in at least one region of the antibody, wherein the region is the CDR region. In some instances, the DKK1 antibody is a single domain antibody comprising one heavy chain variable domain such as a VHH antibody. In some instances, the VHH antibody comprises variation in one or more CDR regions. In some instances, libraries described herein comprise at least or about 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2400, 2600, 2800, 3000, or more than 3000 sequences of a CDR1, CDR2, or CDR3. In some instances, libraries described herein comprise at least or about 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, or more than 1020 sequences of a CDR1, CDR2, or CDR3. For example, the libraries comprise at least 2000 sequences of a CDR1, at least 1200 sequences for CDR2, and at least 1600 sequences for CDR3. In some instances, each sequence is non-identical.


In some instances, the CDR1, CDR2, or CDR3 is of a variable domain, light chain (VL). CDR1, CDR2, or CDR3 of a variable domain, light chain (VL) can be referred to as CDRL1, CDRL2, or CDRL3, respectively. In some instances, libraries described herein comprise at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2400, 2600, 2800, 3000, or more than 3000 sequences of a CDR1, CDR2, or CDR3 of the VL. In some instances, libraries described herein comprise at least or about 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, or more than 1020 sequences of a CDR1, CDR2, or CDR3 of the VL. For example, the libraries comprise at least 20 sequences of a CDR1 of the VL, at least 4 sequences of a CDR2 of the VL, and at least 140 sequences of a CDR3 of the VL. In some instances, the libraries comprise at least 2 sequences of a CDR1 of the VL, at least 1 sequence of CDR2 of the VL, and at least 3000 sequences of a CDR3 of the VL. In some instances, the VL is IGKV1-39, IGKV1-9, IGKV2-28, IGKV3-11, IGKV3-15, IGKV3-20, IGKV4-1, IGLV1-51, IGLV2-14, IGLV1-40, or IGLV3-1. In some instances, the VL is IGKV2-28. In some instances, the VL is IGLV1-51.


In some instances, the CDR1, CDR2, or CDR3 is of a variable domain, heavy chain (VH). CDR1, CDR2, or CDR3 of a variable domain, heavy chain (VH) can be referred to as CDRH1, CDRH2, or CDRH3, respectively. In some instances, libraries described herein comprise at least or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2400, 2600, 2800, 3000, or more than 3000 sequences of a CDR1, CDR2, or CDR3 of the VH. In some instances, libraries described herein comprise at least or about 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, or more than 1020 sequences of a CDR1, CDR2, or CDR3 of the VH. For example, the libraries comprise at least 30 sequences of a CDR1 of the VH, at least 570 sequences of a CDR2 of the VH, and at least 108 sequences of a CDR3 of the VH. In some instances, the libraries comprise at least 30 sequences of a CDR1 of the VH, at least 860 sequences of a CDR2 of the VH, and at least 107 sequences of a CDR3 of the VH. In some instances, the VH is IGHV1-18, IGHV1-69, IGHV1-8 IGHV3-21, IGHV3-23, IGHV3-30/33rn, IGHV3-28, IGHV3-74, IGHV4-39, or IGHV4-59/61. In some instances, the VH is IGHV1-69, IGHV3-30, IGHV3-23, IGHV3, IGHV1-46, IGHV3-7, IGHV1, or IGHV1-8. In some instances, the VH is IGHV1-69 or IGHV3-30. In some instances, the VH is IGHV3-23.


Libraries as described herein, in some embodiments, comprise varying lengths of a CDRL1, CDRL2, CDRL3, CDRH1, CDRH2, or CDRH3. In some instances, the length of the CDRL1, CDRL2, CDRL3, CDRH1, CDRH2, or CDRH3 comprises at least or about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, or more than 90 amino acids in length. For example, the CDRH3 comprises at least or about 12, 15, 16, 17, 20, 21, or 23 amino acids in length. In some instances, the CDRL1, CDRL2, CDRL3, CDRH1, CDRH2, or CDRH3 comprises a range of about 1 to about 10, about 5 to about 15, about 10 to about 20, or about 15 to about 30 amino acids in length.


Libraries comprising nucleic acids encoding for antibodies having variant CDR sequences as described herein comprise various lengths of amino acids when translated. In some instances, the length of each of the amino acid fragments or average length of the amino acid synthesized may be at least or about 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, or more than 150 amino acids. In some instances, the length of the amino acid is about 15 to 150, 20 to 145, 25 to 140, 30 to 135, 35 to 130, 40 to 125, 45 to 120, 50 to 115, 55 to 110, 60 to 110, 65 to 105, 70 to 100, or 75 to 95 amino acids. In some instances, the length of the amino acid is about 22 amino acids to about 75 amino acids. In some instances, the antibodies comprise at least or about 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, or more than 5000 amino acids.


Ratios of the lengths of a CDRL1, CDRL2, CDRL3, CDRH1, CDRH2, or CDRH3 may vary in libraries described herein. In some instances, a CDRL1, CDRL2, CDRL3, CDRH1, CDRH2, or CDRH3 comprising at least or about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, or more than 90 amino acids in length comprises about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or more than 90% of the library. For example, a CDRH3 comprising about 23 amino acids in length is present in the library at 40%, a CDRH3 comprising about 21 amino acids in length is present in the library at 30%, a CDRH3 comprising about 17 amino acids in length is present in the library at 20%, and a CDRH3 comprising about 12 amino acids in length is present in the library at 10%. In some instances, a CDRH3 comprising about 20 amino acids in length is present in the library at 40%, a CDRH3 comprising about 16 amino acids in length is present in the library at 30%, a CDRH3 comprising about 15 amino acids in length is present in the library at 20%, and a CDRH3 comprising about 12 amino acids in length is present in the library at 10%.


Libraries as described herein encoding for a VHH antibody comprise variant CDR sequences that are shuffled to generate a library with a theoretical diversity of at least or about 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, or more than 1020 sequences. In some instances, the library has a final library diversity of at least or about 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, or more than 1020 sequences.


Provided herein are DKK1 variant immunoglobulins (e.g., antibody, VHH)encoding for an immunoglobulin. In some instances, the DKK1 immunoglobulin is an antibody. In some instances, the DKK1 immunoglobulin is a VHH antibody. In some instances, the DKK1 immunoglobulin comprises a binding affinity (e.g., kD) to DKK1 of less than 1 nM, less than 1.2 nM, less than 2 nM, less than 5 nM, less than 10 nM, less than 11 nm, less than 13.5 nM, less than 15 nM, less than 20 nM, less than 25 nM, or less than 30 nM. In some instances, the DKK1 immunoglobulin comprises a kD of less than 1 nM. In some instances, the DKK1immunoglobulin comprises a kD of less than 1.2 nM. In some instances, the DKK1 immunoglobulin comprises a kD of less than 2 nM. In some instances, the DKK1 immunoglobulin comprises a kD of less than 5 nM. In some instances, the DKK1 immunoglobulin comprises a kD of less than 10 nM. In some instances, the DKK1 immunoglobulin comprises a kD of less than 13.5 nM. In some instances, the DKK1 immunoglobulin comprises a kD of less than 15 nM. In some instances, the DKK1 immunoglobulin comprises a kD of less than 20 nM. In some instances, the DKK1immunoglobulin comprises a kD of less than 25 nM. In some instances, the DKK1 immunoglobulin comprises a kD of less than 30 nM.


Provided herein are DKK1 variant immunoglobulins (e.g., antibody, VHH)encoding for an immunoglobulin, wherein the immunoglobulin comprises a long half-life. In some instances, the half-life of the DKK1 immunoglobulin is at least or about 12 hours, 24 hours 36 hours, 48 hours, 60 hours, 72 hours, 84 hours, 96 hours, 108 hours, 120 hours, 140 hours, 160 hours, 180 hours, 200 hours, or more than 200 hours. In some instances, the half-life of the DKK1 immunoglobulin is in a range of about 12 hours to about 300 hours, about 20 hours to about 280 hours, about 40 hours to about 240 hours, or about 60 hours to about 200 hours.


DKK1 immunoglobulins as described herein may comprise improved properties. In some instances, the DKK1 immunoglobulins are monomeric. In some instances, the DKK1 immunoglobulins are not prone to aggregation. In some instances, at least or about 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the DKK1 immunoglobulins are monomeric. In some instances, the DKK1 immunoglobulins are thermostable. In some instances, the DKK1 immunoglobulins result in reduced non-specific binding.


Following synthesis of DKK1 variant immunoglobulins (e.g., antibody, VHH)comprising nucleic acids encoding immunoglobulins comprising DKK1 binding domains, libraries may be used for screening and analysis. For example, libraries are assayed for library displayability and panning. In some instances, displayability is assayed using a selectable tag. Exemplary tags include, but are not limited to, a radioactive label, a fluorescent label, an enzyme, a chemiluminescent tag, a colorimetric tag, an affinity tag or other labels or tags that are known in the art. In some instances, the tag is histidine, polyhistidine, myc, hemagglutinin (HA), or FLAG. In some instances, the DKK1 variant immunoglobulins (e.g., antibody, VHH)comprises nucleic acids encoding immunoglobulins with multiple tags such as GFP, FLAG, and Lucy as well as a DNA barcode. In some instances, libraries are assayed by sequencing using various methods including, but not limited to, single-molecule real-time (SMRT) sequencing, Polony sequencing, sequencing by ligation, reversible terminator sequencing, proton detection sequencing, ion semiconductor sequencing, nanopore sequencing, electronic sequencing, pyrosequencing, Maxam-Gilbert sequencing, chain termination (e.g., Sanger) sequencing, +S sequencing, or sequencing by synthesis.


Expression Systems


Provided herein are libraries comprising nucleic acids encoding for immunoglobulins comprising DKK1 binding domains, wherein the libraries have improved specificity, stability, expression, folding, or downstream activity. In some instances, libraries described herein are used for screening and analysis.


Provided herein are libraries comprising nucleic acids encoding for immunoglobulins comprising DKK1 binding domains, wherein the nucleic acid libraries are used for screening and analysis. In some instances, screening and analysis comprise in vitro, in vivo, or ex vivo assays. Cells for screening include primary cells taken from living subjects or cell lines. Cells may be from prokaryotes (e.g., bacteria and fungi) or eukaryotes (e.g., animals and plants). Exemplary animal cells include, without limitation, those from a mouse, rabbit, primate, and insect. In some instances, cells for screening include a cell line including, but not limited to, Chinese Hamster Ovary (CHO) cell line, human embryonic kidney (HEK) cell line, or baby hamster kidney (BHK) cell line. In some instances, nucleic acid libraries described herein may also be delivered to a multicellular organism. Exemplary multicellular organisms include, without limitation, a plant, a mouse, rabbit, primate, and insect.


Nucleic acid libraries or protein libraries encoded thereof described herein may be screened for various pharmacological or pharmacokinetic properties. In some instances, the libraries are screened using in vitro assays, in vivo assays, or ex vivo assays. For example, in vitro pharmacological or pharmacokinetic properties that are screened include, but are not limited to, binding affinity, binding specificity, and binding avidity. Exemplary in vivo pharmacological or pharmacokinetic properties of libraries described herein that are screened include, but are not limited to, therapeutic efficacy, activity, preclinical toxicity properties, clinical efficacy properties, clinical toxicity properties, immunogenicity, potency, and clinical safety properties.


Pharmacological or pharmacokinetic properties that may be screened include, but are not limited to, cell binding affinity and cell activity. For example, cell binding affinity assays or cell activity assays are performed to determine agonistic, antagonistic, or allosteric effects of libraries described herein. In some instances, libraries as described herein are compared to cell binding or cell activity of ligands of DKK1.


Libraries as described herein may be screened in cell-based assays or in non-cell-based assays. Examples of non-cell-based assays include, but are not limited to, using viral particles, using in vitro translation proteins, and using proteoliposomes with DKK1.


Nucleic acid libraries as described herein may be screened by sequencing. In some instances, next generation sequence is used to determine sequence enrichment of DKK1 binding variants. In some instances, V gene distribution, J gene distribution, V gene family, CDR3 counts per length, or a combination thereof is determined. In some instances, clonal frequency, clonal accumulation, lineage accumulation, or a combination thereof is determined. In some instances, number of sequences, sequences with VH clones, clones, clones greater than 1, clonotypes, clonotypes greater than 1, lineages, simpsons, or a combination thereof is determined. In some instances, a percentage of non-identical CDR3s is determined. For example, the percentage of non-identical CDR3s is calculated as the number of non-identical CDR3s in a sample divided by the total number of sequences that had a CDR3 in the sample.


Provided herein are nucleic acid libraries, wherein the nucleic acid libraries may be expressed in a vector. Expression vectors for inserting nucleic acid libraries disclosed herein may comprise eukaryotic or prokaryotic expression vectors. Exemplary expression vectors include, without limitation, mammalian expression vectors: pSF-CMV-NEO-NH2-PPT-3XFLAG, pSF-CMV-NEO—COOH-3XFLAG, pSF-CMV—PURO-NH2-GST-TEV, pSF-OXB20-COOH-TEV-FLAG(R)-6His, pCEP4 pDEST27, pSF-CMV-Ub-KrYFP, pSF-CMV-FMDV-daGFP, pEF1a-mCherry-N1 Vector, pEFla-tdTomato Vector, pSF-CMV-FMDV-Hygro, pSF-CMV-PGK-Puro, pMCP-tag(m), and pSF-CMV—PURO-NH2-CMYC; bacterial expression vectors: pSF-OXB20-BetaGal,pSF-OXB20-Fluc, pSF-OXB20, and pSF-Tac; plant expression vectors: pRI 101-AN DNA and pCambia2301; and yeast expression vectors: pTYB21 and pKLAC2, and insect vectors: pAc5.1/V5-His A and pDEST8. In some instances, the vector is pcDNA3 or pcDNA3.1.


Described herein are nucleic acid libraries that are expressed in a vector to generate a construct comprising an immunoglobulin comprising sequences of DKK1 binding domains. In some instances, a size of the construct varies. In some instances, the construct comprises at least or about 500, 600, 700, 800, 900, 1000, 1100, 1300, 1400, 1500, 1600, 1700, 1800, 2000, 2400, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000, 4200, 4400, 4600, 4800, 5000, 6000, 7000, 8000, 9000, 10000, or more than 10000 bases. In some instances, a the construct comprises a range of about 300 to 1,000, 300 to 2,000, 300 to 3,000, 300 to 4,000, 300 to 5,000, 300 to 6,000, 300 to 7,000, 300 to 8,000, 300 to 9,000, 300 to 10,000, 1,000 to 2,000, 1,000 to 3,000, 1,000 to 4,000, 1,000 to 5,000, 1,000 to 6,000, 1,000 to 7,000, 1,000 to 8,000, 1,000 to 9,000, 1,000 to 10,000, 2,000 to 3,000, 2,000 to 4,000, 2,000 to 5,000, 2,000 to 6,000, 2,000 to 7,000, 2,000 to 8,000, 2,000 to 9,000, 2,000 to 10,000, 3,000 to 4,000, 3,000 to 5,000, 3,000 to 6,000, 3,000 to 7,000, 3,000 to 8,000, 3,000 to 9,000, 3,000 to 10,000, 4,000 to 5,000, 4,000 to 6,000, 4,000 to 7,000, 4,000 to 8,000, 4,000 to 9,000, 4,000 to 10,000, 5,000 to 6,000, 5,000 to 7,000, 5,000 to 8,000, 5,000 to 9,000, 5,000 to 10,000, 6,000 to 7,000, 6,000 to 8,000, 6,000 to 9,000, 6,000 to 10,000, 7,000 to 8,000, 7,000 to 9,000, 7,000 to 10,000, 8,000 to 9,000, 8,000 to 10,000, or 9,000 to 10,000 bases.


Provided herein are libraries comprising nucleic acids encoding for immunoglobulins, wherein the nucleic acid libraries are expressed in a cell. In some instances, the libraries are synthesized to express a reporter gene. Exemplary reporter genes include, but are not limited to, acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase (LacZ), beta glucoronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), cerulean fluorescent protein, citrine fluorescent protein, orange fluorescent protein, cherry fluorescent protein, turquoise fluorescent protein, blue fluorescent protein, horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthase (OCS), luciferase, and derivatives thereof. Methods to determine modulation of a reporter gene are well known in the art, and include, but are not limited to, fluorometric methods (e.g. fluorescence spectroscopy, Fluorescence Activated Cell Sorting (FACS), fluorescence microscopy), and antibiotic resistance determination.


Diseases and Disorders


Provided herein are DKK1 variant immunoglobulins (e.g., antibody, VHH)comprising nucleic acids encoding for immunoglobulins (e.g., antibodies) comprising DKK1 binding domains that may have therapeutic effects. In some instances, the DKK1 variant immunoglobulins (e.g., antibody, VHH)result in protein when translated that is used to treat a disease or disorder. In some instances, the protein is an immunoglobulin. In some instances, the protein is a peptidomimetic.


Exemplary diseases include, but are not limited to, cancer (e.g., gastro-esophageal cancer, endometrial cancer, ovarian cancer, prostate cancer, liver cancer, etc.), inflammatory diseases or disorders, a metabolic disease or disorder, a cardiovascular disease or disorder, a respiratory disease or disorder, pain, a digestive disease or disorder, a reproductive disease or disorder, an endocrine disease or disorder, or a neurological disease or disorder. In some instances, the cancer is a solid cancer or a hematologic cancer. In some instances, a modulator of DKK1 as described herein is used for treatment of weight gain (or for inducing weight loss), treatment of obesity, or treatment of Type II diabetes. In some instances, the DKK1 modulator is used for treating hypoglycemia. In some instances, the DKK1 modulator is used for treating post-bariatric hypoglycemia. In some instances, the DKK1 modulator is used for treating severe hypoglycemia. In some instances, the DKK1 modulator is used for treating hyperinsulinism. In some instances, the DKK1modulator is used for treating congenital hyperinsulinism.


DKK1 can be tumorigenic in cancer. DKK1 can also be immunosuppressive (e.g., via myeloid-derived suppressor cells (MDSCs) or natural killer (NK) cells). DKK1 can lead to immune suppression through T cell inactivation, MDSC accumulation, or NK cell clearance. DKK1 can inhibit Wnt binding to low-density lipoprotein (LDL) receptor related protein 5 (LRP5). DKK1 can inhibit Wnt binding to LDL receptor related protein 6 (LRP6). DKK1 can inhibit Wnt binding to an LRP5/6 complex. Mutations in Wnt activating genes can lead to increased DKK1 expression.


Antagonist mAb can activate an innate immune response with anti-angiogenic and direct antitumor effects, binding and removing DKK1 from the tumor microenvironment. Tumors with Wnt activating mutations can responded to DKK1 antagonism. For example, high tumoral DKK1 can be associated with longer progression-free survival in esophagogastic cancer patients.


In some instances, the subject is a mammal. In some instances, the subject is a mouse, rabbit, dog, or human. Subjects treated by methods described herein may be infants, adults, or children. Pharmaceutical compositions comprising antibodies or antibody fragments as described herein may be administered intravenously or subcutaneously.


Described herein are pharmaceutical compositions comprising antibodies or antibody fragment thereof that binds DKK1. In some embodiments, the antibody or antibody fragment thereof comprises a sequence as set forth in Tables 4-8. In some embodiments, the antibody or antibody fragment thereof comprises a sequence that is at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to a sequence as set forth in Tables 4-8.


In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a CDRH1 sequence of any one of SEQ ID NOs: 1-98 or 919-1332. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 80% identical to a CDRH1 sequence of any one of SEQ ID NOs: 1-98 or 919-1332. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 85% identical to a CDRH1 sequence of any one of SEQ ID NOs: 1-98 or 919-1332. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 90% identical to a CDRH1 sequence of any one of SEQ ID NOs: 1-98 or 919-1332. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 95% identical to a CDRH1 sequence of any one of SEQ ID NOs: 1-98 or 919-1332.


In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a CDRH2 sequence of any one of SEQ ID NOs: 99-196 or 1333-1746. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 80% identical to a CDRH2 sequence of any one of SEQ ID NOs: 99-196 or 1333-1746. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 85% identical to a CDRH2 sequence of any one of SEQ ID NOs: 99-196 or 1333-1746. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 90% identical to a CDRH2 sequence of any one of SEQ ID NOs: 99-196 or 1333-1746. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 95% identical to a CDRH2 sequence of any one of SEQ ID NOs: 99-196 or 1333-1746.


In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a CDRH3 sequence of any one of SEQ ID NOs: 197-294 or 1747-2160. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 80% identical to a CDRH3 sequence of any one of SEQ ID NOs: 197-294 or 1747-2160. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 85% identical to a CDRH3 sequence of any one of SEQ ID NOs: 197-294 or 1747-2160. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 90% identical to a CDRH3 sequence of any one of SEQ ID NOs: 197-294 or 1747-2160. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 95% identical to a CDRH3 sequence of any one of SEQ ID NOs: 197-294 or 1747-2160.


In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a CDRL1 sequence of any one of SEQ ID NOs: 2259-2464. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 80% identical to a CDRL1 sequence of any one of SEQ ID NOs: 2259-2464. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 85% identical to a CDRL1 sequence of any one of SEQ ID NOs: 2259-2464. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 90% identical to a CDRL1 sequence of any one of SEQ ID NOs: 2259-2464. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 95% identical to a CDRL1 sequence of any one of SEQ ID NOs: 2259-2464.


In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a CDRL2 sequence of any one of SEQ ID NOs: 2465-2521. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 80% identical to a CDRL2 sequence of any one of SEQ ID NOs: 2465-2521. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 85% identical to a CDRL2 sequence of any one of SEQ ID NOs: 2465-2521. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 90% identical to a CDRL2 sequence of any one of SEQ ID NOs: 2465-2521. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 95% identical to a CDRL2 sequence of any one of SEQ ID NOs: 2465-2521.


In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a CDRL3 sequence of any one of SEQ ID NOs: 2522-2727. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 80% identical to a CDRL3 sequence of any one of SEQ ID NOs: 2522-2727. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 85% identical to a CDRL3 sequence of any one of SEQ ID NOs: 2522-2727. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 90% identical to a C CDRL3 sequence of any one of SEQ ID NOs: 2522-2727. In some instances, a pharmaceutical composition comprises an antibody or antibody fragment described herein comprising a sequence that is at least 95% identical to a CDRL3 sequence of any one of SEQ ID NOs: 2522-2727.


In some embodiments, the antibody or antibody fragment comprising a variable domain, heavy chain region (VH) and a variable domain, light chain region (VL), wherein VH comprises complementarity determining regions CDRH1, CDRH2, and CDRH3, wherein VL comprises complementarity determining regions CDRL1, CDRL2, and CDRL3, and wherein (a) an amino acid sequence of CDRH1 is as set forth in any one of SEQ ID NOs: 1-98 or 919-1332; (b) an amino acid sequence of CDRH2 is as set forth in any one of SEQ ID NOs: 99-196 or 1333-1746; and (c) an amino acid sequence of CDRH3 is as set forth in any one of SEQ ID NOs: 197-294 or 1747-2160. In some embodiments, the antibody or antibody fragment comprising a variable domain, heavy chain region (VH) and a variable domain, light chain region (VL), wherein VH comprises complementarity determining regions CDRH1, CDRH2, and CDRH3, wherein VL comprises complementarity determining regions CDRL1, CDRL2, and CDRL3, and wherein (a) an amino acid sequence of CDRH1 is at least or about 80%, 85%, 90%, or 95% identical to any one of SEQ ID NOs: 1-98; (b) an amino acid sequence of CDRH2 is at least or about 80%, 85%, 90%, or 95% identical to any one of SEQ ID NOs: 99-196; and (c) an amino acid sequence of CDRH3 is at least or about 80%, 85%, 90%, or 95% identical to any one of SEQ ID NOs: 197-294.


In some embodiments, the antibody or antibody fragment comprising a variable domain, heavy chain region (VH) and a variable domain, light chain region (VL), wherein VH comprises complementarity determining regions CDRH1, CDRH2, and CDRH3, wherein VL comprises complementarity determining regions CDRL1, CDRL2, and CDRL3, and wherein (a) an amino acid sequence of CDRL1 is as set forth in any one of SEQ ID NOs: 2259-2464; (b) an amino acid sequence of CDRL2 is as set forth in any one of SEQ ID NOs: 2465-2521; and (c) an amino acid sequence of CDRL3 is as set forth in any one of SEQ ID NOs: 2522-2727. In some embodiments, the antibody or antibody fragment comprising a variable domain, heavy chain region (VH) and a variable domain, light chain region (VL), wherein VH comprises complementarity determining regions CDRH1, CDRH2, and CDRH3, wherein VL comprises complementarity determining regions CDRL1, CDRL2, and CDRL3, and wherein (a) an amino acid sequence of CDRL1 is at least or about 80%, 85%, 90%, or 95% identical to any one of SEQ ID NOs: 2259-2464; (b) an amino acid sequence of CDRL2 is at least or about 80%, 85%, 90%, or 95% identical to any one of SEQ ID NOs: 2465-2521; and (c) an amino acid sequence of CDRL3 is at least or about 80%, 85%, 90%, or 95% identical to any one of SEQ ID NOs: 2522-2727.


Described herein, in some embodiments, are antibodies or antibody fragments comprising a variable domain, heavy chain region (VH), wherein the VH comprises an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 295-392, 394-712, or 2164-2258. In some instances, the antibodies or antibody fragments comprise VH comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 295-392, 394-712, or 2164-2258.


Described herein, in some embodiments, are antibodies or antibody fragments comprising a variable domain, light chain region (VL), wherein the VL comprises an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 713-918. In some instances, the antibodies or antibody fragments comprise VL comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 713-918.


Variant Libraries


Codon Variation


Variant nucleic acid libraries described herein may comprise a plurality of nucleic acids, wherein each nucleic acid encodes for a variant codon sequence compared to a reference nucleic acid sequence. In some instances, each nucleic acid of a first nucleic acid population contains a variant at a single variant site. In some instances, the first nucleic acid population contains a plurality of variants at a single variant site such that the first nucleic acid population contains more than one variant at the same variant site. The first nucleic acid population may comprise nucleic acids collectively encoding multiple codon variants at the same variant site. The first nucleic acid population may comprise nucleic acids collectively encoding up to 19 or more codons at the same position. The first nucleic acid population may comprise nucleic acids collectively encoding up to 60 variant triplets at the same position, or the first nucleic acid population may comprise nucleic acids collectively encoding up to 61 different triplets of codons at the same position. Each variant may encode for a codon that results in a different amino acid during translation.


A nucleic acid population may comprise varied nucleic acids collectively encoding up to 20 codon variations at multiple positions. In such cases, each nucleic acid in the population comprises variation for codons at more than one position in the same nucleic acid. In some instances, each nucleic acid in the population comprises variation for codons at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more codons in a single nucleic acid. In some instances, each variant long nucleic acid comprises variation for codons at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more codons in a single long nucleic acid. In some instances, the variant nucleic acid population comprises variation for codons at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more codons in a single nucleic acid. In some instances, the variant nucleic acid population comprises variation for codons in at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or more codons in a single long nucleic acid.


Highly Parallel Nucleic Acid Synthesis


Provided herein is a platform approach utilizing miniaturization, parallelization, and vertical integration of the end-to-end process from polynucleotide synthesis to gene assembly within nanowells on silicon to create a revolutionary synthesis platform. Devices described herein provide, with the same footprint as a 96-well plate, a silicon synthesis platform capable of increasing throughput by a factor of up to 1,000 or more compared to traditional synthesis methods, with production of up to approximately 1,000,000 or more polynucleotides, or 10,000 or more genes in a single highly-parallelized run.


With the advent of next-generation sequencing, high resolution genomic data has become an important factor for studies that delve into the biological roles of various genes in both normal biology and disease pathogenesis. At the core of this research is the central dogma of molecular biology and the concept of “residue-by-residue transfer of sequential information.” Genomic information encoded in the DNA is transcribed into a message that is then translated into the protein that is the active product within a given biological pathway.


Another exciting area of study is on the discovery, development and manufacturing of therapeutic molecules focused on a highly-specific cellular target. High diversity DNA sequence libraries are at the core of development pipelines for targeted therapeutics. Gene mutants are used to express proteins in a design, build, and test protein engineering cycle that ideally culminates in an optimized gene for high expression of a protein with high affinity for its therapeutic target. As an example, consider the binding pocket of a receptor. The ability to test all sequence permutations of all residues within the binding pocket simultaneously will allow for a thorough exploration, increasing chances of success. Saturation mutagenesis, in which a researcher attempts to generate all possible mutations at a specific site within the receptor, represents one approach to this development challenge. Though costly and time- and labor-intensive, it enables each variant to be introduced into each position. In contrast, combinatorial mutagenesis, where a few selected positions or short stretch of DNA may be modified extensively, generates an incomplete repertoire of variants with biased representation.


To accelerate the drug development pipeline, a library with the desired variants available at the intended frequency in the right position available for testing—in other words, a precision library—enables reduced costs as well as turnaround time for screening. Provided herein are methods for synthesizing nucleic acid synthetic variant libraries which provide for precise introduction of each intended variant at the desired frequency. To the end user, this translates to the ability to not only thoroughly sample sequence space but also be able to query these hypotheses in an efficient manner, reducing cost and screening time. Genome-wide editing can elucidate important pathways, libraries where each variant and sequence permutation can be tested for optimal functionality, and thousands of genes can be used to reconstruct entire pathways and genomes to re-engineer biological systems for drug discovery.


In a first example, a drug itself can be optimized using methods described herein. For example, to improve a specified function of an antibody, a variant polynucleotide library encoding for a portion of the antibody is designed and synthesized. A variant nucleic acid library for the antibody can then be generated by processes described herein (e.g., PCR mutagenesis followed by insertion into a vector). The antibody is then expressed in a production cell line and screened for enhanced activity. Example screens include examining modulation in binding affinity to an antigen, stability, or effector function (e.g., ADCC, complement, or apoptosis). Exemplary regions to optimize the antibody include, without limitation, the Fc region, Fab region, variable region of the Fab region, constant region of the Fab region, variable domain of the heavy chain or light chain (VH or VL), and specific complementarity-determining regions (CDRs) of VH or VL.


Nucleic acid libraries synthesized by methods described herein may be expressed in various cells associated with a disease state. Cells associated with a disease state include cell lines, tissue samples, primary cells from a subject, cultured cells expanded from a subject, or cells in a model system. Exemplary model systems include, without limitation, plant and animal models of a disease state.


To identify a variant molecule associated with prevention, reduction or treatment of a disease state, a variant nucleic acid library described herein is expressed in a cell associated with a disease state, or one in which a cell a disease state can be induced. In some instances, an agent is used to induce a disease state in cells. Exemplary tools for disease state induction include, without limitation, a Cre/Lox recombination system, LPS inflammation induction, and streptozotocin to induce hypoglycemia. The cells associated with a disease state may be cells from a model system or cultured cells, as well as cells from a subject having a particular disease condition. Exemplary disease conditions include a bacterial, fungal, viral, autoimmune, or proliferative disorder (e.g., cancer). In some instances, the variant nucleic acid library is expressed in the model system, cell line, or primary cells derived from a subject, and screened for changes in at least one cellular activity. Exemplary cellular activities include, without limitation, proliferation, cycle progression, cell death, adhesion, migration, reproduction, cell signaling, energy production, oxygen utilization, metabolic activity, and aging, response to free radical damage, or any combination thereof


Substrates


Devices used as a surface for polynucleotide synthesis may be in the form of substrates which include, without limitation, homogenous array surfaces, patterned array surfaces, channels, beads, gels, and the like. Provided herein are substrates comprising a plurality of clusters, wherein each cluster comprises a plurality of loci that support the attachment and synthesis of polynucleotides. In some instances, substrates comprise a homogenous array surface. For example, the homogenous array surface is a homogenous plate. The term “locus” as used herein refers to a discrete region on a structure which provides support for polynucleotides encoding for a single predetermined sequence to extend from the surface. In some instances, a locus is on a two-dimensional surface, e.g., a substantially planar surface. In some instances, a locus is on a three-dimensional surface, e.g., a well, microwell, channel, or post. In some instances, a surface of a locus comprises a material that is actively functionalized to attach to at least one nucleotide for polynucleotide synthesis, or preferably, a population of identical nucleotides for synthesis of a population of polynucleotides. In some instances, polynucleotide refers to a population of polynucleotides encoding for the same nucleic acid sequence. In some cases, a surface of a substrate is inclusive of one or a plurality of surfaces of a substrate. The average error rates for polynucleotides synthesized within a library described here using the systems and methods provided are often less than 1 in 1000, less than about 1 in 2000, less than about 1 in 3000 or less often without error correction.


Provided herein are surfaces that support the parallel synthesis of a plurality of polynucleotides having different predetermined sequences at addressable locations on a common support. In some instances, a substrate provides support for the synthesis of more than 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more non-identical polynucleotides. In some cases, the surfaces provide support for the synthesis of more than 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more polynucleotides encoding for distinct sequences. In some instances, at least a portion of the polynucleotides have an identical sequence or are configured to be synthesized with an identical sequence. In some instances, the substrate provides a surface environment for the growth of polynucleotides having at least 80, 90, 100, 120, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500 bases or more.


Provided herein are methods for polynucleotide synthesis on distinct loci of a substrate, wherein each locus supports the synthesis of a population of polynucleotides. In some cases, each locus supports the synthesis of a population of polynucleotides having a different sequence than a population of polynucleotides grown on another locus. In some instances, each polynucleotide sequence is synthesized with 1, 2, 3, 4, 5, 6, 7, 8, 9 or more redundancy across different loci within the same cluster of loci on a surface for polynucleotide synthesis. In some instances, the loci of a substrate are located within a plurality of clusters. In some instances, a substrate comprises at least 10, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 20000, 30000, 40000, 50000 or more clusters. In some instances, a substrate comprises more than 2,000; 5,000; 10,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,100,000; 1,200,000; 1,300,000; 1,400,000; 1,500,000; 1,600,000; 1,700,000; 1,800,000; 1,900,000; 2,000,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; or 10,000,000 or more distinct loci. In some instances, a substrate comprises about 10,000 distinct loci. The amount of loci within a single cluster is varied in different instances. In some cases, each cluster includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 150, 200, 300, 400, 500 or more loci. In some instances, each cluster includes about 50-500 loci. In some instances, each cluster includes about 100-200 loci. In some instances, each cluster includes about 100-150 loci. In some instances, each cluster includes about 109, 121, 130 or 137 loci. In some instances, each cluster includes about 19, 20, 61, 64 or more loci. Alternatively or in combination, polynucleotide synthesis occurs on a homogenous array surface.


In some instances, the number of distinct polynucleotides synthesized on a substrate is dependent on the number of distinct loci available in the substrate. In some instances, the density of loci within a cluster or surface of a substrate is at least or about 1, 10, 25, 50, 65, 75, 100, 130, 150, 175, 200, 300, 400, 500, 1,000 or more loci per mm2. In some cases, a substrate comprises 10-500, 25-400, 50-500, 100-500, 150-500, 10-250, 50-250, 10-200, or 50-200 mm2. In some instances, the distance between the centers of two adjacent loci within a cluster or surface is from about 10-500, from about 10-200, or from about 10-100 um. In some instances, the distance between two centers of adjacent loci is greater than about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 um. In some instances, the distance between the centers of two adjacent loci is less than about 200, 150, 100, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, each locus has a width of about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 um. In some cases, each locus has a width of about 0.5-100, 0.5-50, 10-75, or 0.5-50 um.


In some instances, the density of clusters within a substrate is at least or about 1 cluster per 100 mm2, 1 cluster per 10 mm2, 1 cluster per 5 mm2, 1 cluster per 4 mm2, 1 cluster per 3 mm2, 1 cluster per 2 mm2, 1 cluster per 1 mm2, 2 clusters per 1 mm2, 3 clusters per 1 mm2, 4 clusters per 1 mm2, 5 clusters per 1 mm2, 10 clusters per 1 mm2, 50 clusters per 1 mm2 or more. In some instances, a substrate comprises from about 1 cluster per 10 mm2 to about 10 clusters per 1 mm2. In some instances, the distance between the centers of two adjacent clusters is at least or about 50, 100, 200, 500, 1000, 2000, or 5000 um. In some cases, the distance between the centers of two adjacent clusters is between about 50-100, 50-200, 50-300, 50-500, and 100-2000 um. In some cases, the distance between the centers of two adjacent clusters is between about 0.05-50, 0.05-10, 0.05-5, 0.05-4, 0.05-3, 0.05-2, 0.1-10, 0.2-10, 0.3-10, 0.4-10, 0.5-10, 0.5-5, or 0.5-2 mm. In some cases, each cluster has a cross section of about 0.5 to about 2, about 0.5 to about 1, or about 1 to about 2 mm. In some cases, each cluster has a cross section of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm. In some cases, each cluster has an interior cross section of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.15, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm.


In some instances, a substrate is about the size of a standard 96 well plate, for example between about 100 and about 200 mm by between about 50 and about 150 mm. In some instances, a substrate has a diameter less than or equal to about 1000, 500, 450, 400, 300, 250, 200, 150, 100 or 50 mm. In some instances, the diameter of a substrate is between about 25-1000, 25-800, 25-600, 25-500, 25-400, 25-300, or 25-200 mm. In some instances, a substrate has a planar surface area of at least about 100; 200; 500; 1,000; 2,000; 5,000; 10,000; 12,000; 15,000; 20,000; 30,000; 40,000; 50,000 mm2 or more. In some instances, the thickness of a substrate is between about 50-2000, 50-1000, 100-1000, 200-1000, or 250-1000 mm.


Surface Materials


Substrates, devices, and reactors provided herein are fabricated from any variety of materials suitable for the methods, compositions, and systems described herein. In certain instances, substrate materials are fabricated to exhibit a low level of nucleotide binding. In some instances, substrate materials are modified to generate distinct surfaces that exhibit a high level of nucleotide binding. In some instances, substrate materials are transparent to visible and/or UV light. In some instances, substrate materials are sufficiently conductive, e.g., are able to form uniform electric fields across all or a portion of a substrate. In some instances, conductive materials are connected to an electric ground. In some instances, the substrate is heat conductive or insulated. In some instances, the materials are chemical resistant and heat resistant to support chemical or biochemical reactions, for example polynucleotide synthesis reaction processes. In some instances, a substrate comprises flexible materials. For flexible materials, materials can include, without limitation: nylon, both modified and unmodified, nitrocellulose, polypropylene, and the like. In some instances, a substrate comprises rigid materials. For rigid materials, materials can include, without limitation: glass; fuse silica; silicon, plastics (for example polytetraflouroethylene, polypropylene, polystyrene, polycarbonate, and blends thereof, and the like); and metals (for example, gold, platinum, and the like). The substrate, solid support or reactors can be fabricated from a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, polydimethylsiloxane (PDMS), and glass. The substrates/solid supports or the microstructures/reactors therein may be manufactured with a combination of materials listed herein or any other suitable material known in the art.


Surface Architecture


Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates have a surface architecture suitable for the methods, compositions, and systems described herein. In some instances, a substrate comprises raised and/or lowered features. One benefit of having such features is an increase in surface area to support polynucleotide synthesis. In some instances, a substrate having raised and/or lowered features is referred to as a three-dimensional substrate. In some cases, a three-dimensional substrate comprises one or more channels. In some cases, one or more loci comprise a channel. In some cases, the channels are accessible to reagent deposition via a deposition device such as a material deposition device. In some cases, reagents and/or fluids collect in a larger well in fluid communication one or more channels. For example, a substrate comprises a plurality of channels corresponding to a plurality of loci with a cluster, and the plurality of channels are in fluid communication with one well of the cluster. In some methods, a library of polynucleotides is synthesized in a plurality of loci of a cluster.


Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates are configured for polynucleotide synthesis. In some instances, the structure is configured to allow for controlled flow and mass transfer paths for polynucleotide synthesis on a surface. In some instances, the configuration of a substrate allows for the controlled and even distribution of mass transfer paths, chemical exposure times, and/or wash efficacy during polynucleotide synthesis. In some instances, the configuration of a substrate allows for increased sweep efficiency, for example by providing sufficient volume for a growing polynucleotide such that the excluded volume by the growing polynucleotide does not take up more than 50, 45, 40, 35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1%, or less of the initially available volume that is available or suitable for growing the polynucleotide. In some instances, a three-dimensional structure allows for managed flow of fluid to allow for the rapid exchange of chemical exposure.


Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates comprise structures suitable for the methods, compositions, and systems described herein. In some instances, segregation is achieved by physical structure. In some instances, segregation is achieved by differential functionalization of the surface generating active and passive regions for polynucleotide synthesis. In some instances, differential functionalization is achieved by alternating the hydrophobicity across the substrate surface, thereby creating water contact angle effects that cause beading or wetting of the deposited reagents. Employing larger structures can decrease splashing and cross-contamination of distinct polynucleotide synthesis locations with reagents of the neighboring spots. In some cases, a device, such as a material deposition device, is used to deposit reagents to distinct polynucleotide synthesis locations. Substrates having three-dimensional features are configured in a manner that allows for the synthesis of a large number of polynucleotides (e.g., more than about 10,000) with a low error rate (e.g., less than about 1:500, 1:1000, 1:1500, 1:2,000, 1:3,000, 1:5,000, or 1:10,000). In some cases, a substrate comprises features with a density of about or greater than about 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400 or 500 features per mm2.


A well of a substrate may have the same or different width, height, and/or volume as another well of the substrate. A channel of a substrate may have the same or different width, height, and/or volume as another channel of the substrate. In some instances, the diameter of a cluster or the diameter of a well comprising a cluster, or both, is between about 0.05-50, 0.05-10, 0.05-5, 0.05-4, 0.05-3, 0.05-2, 0.05-1, 0.05-0.5, 0.05-0.1, 0.1-10, 0.2-10, 0.3-10, 0.4-10, 0.5-10, 0.5-5, or 0.5-2 mm. In some instances, the diameter of a cluster or well or both is less than or about 5, 4, 3, 2, 1, 0.5, 0.1, 0.09, 0.08, 0.07, 0.06, or 0.05 mm. In some instances, the diameter of a cluster or well or both is between about 1.0 and 1.3 mm. In some instances, the diameter of a cluster or well, or both is about 1.150 mm. In some instances, the diameter of a cluster or well, or both is about 0.08 mm. The diameter of a cluster refers to clusters within a two-dimensional or three-dimensional substrate.


In some instances, the height of a well is from about 20-1000, 50-1000, 100-1000, 200-1000, 300-1000, 400-1000, or 500-1000 um. In some cases, the height of a well is less than about 1000, 900, 800, 700, or 600 um.


In some instances, a substrate comprises a plurality of channels corresponding to a plurality of loci within a cluster, wherein the height or depth of a channel is 5-500, 5-400, 5-300, 5-200, 5-100, 5-50, or 10-50 um. In some cases, the height of a channel is less than 100, 80, 60, 40, or 20 um.


In some instances, the diameter of a channel, locus (e.g., in a substantially planar substrate) or both channel and locus (e.g., in a three-dimensional substrate wherein a locus corresponds to a channel) is from about 1-1000, 1-500, 1-200, 1-100, 5-100, or 10-100 um, for example, to about 90, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, the diameter of a channel, locus, or both channel and locus is less than about 100, 90, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, the distance between the center of two adjacent channels, loci, or channels and loci is from about 1-500, 1-200, 1-100, 5-200, 5-100, 5-50, or 5-30, for example, to about 20 um.


Surface Modifications


Provided herein are methods for polynucleotide synthesis on a surface, wherein the surface comprises various surface modifications. In some instances, the surface modifications are employed for the chemical and/or physical alteration of a surface by an additive or subtractive process to change one or more chemical and/or physical properties of a substrate surface or a selected site or region of a substrate surface. For example, surface modifications include, without limitation, (1) changing the wetting properties of a surface, (2) functionalizing a surface, i.e., providing, modifying or substituting surface functional groups, (3) defunctionalizing a surface, i.e., removing surface functional groups, (4) otherwise altering the chemical composition of a surface, e.g., through etching, (5) increasing or decreasing surface roughness, (6) providing a coating on a surface, e.g., a coating that exhibits wetting properties that are different from the wetting properties of the surface, and/or (7) depositing particulates on a surface.


In some cases, the addition of a chemical layer on top of a surface (referred to as adhesion promoter) facilitates structured patterning of loci on a surface of a substrate. Exemplary surfaces for application of adhesion promotion include, without limitation, glass, silicon, silicon dioxide and silicon nitride. In some cases, the adhesion promoter is a chemical with a high surface energy. In some instances, a second chemical layer is deposited on a surface of a substrate. In some cases, the second chemical layer has a low surface energy. In some cases, surface energy of a chemical layer coated on a surface supports localization of droplets on the surface. Depending on the patterning arrangement selected, the proximity of loci and/or area of fluid contact at the loci are alterable.


In some instances, a substrate surface, or resolved loci, onto which nucleic acids or other moieties are deposited, e.g., for polynucleotide synthesis, are smooth or substantially planar (e.g., two-dimensional) or have irregularities, such as raised or lowered features (e.g., three-dimensional features). In some instances, a substrate surface is modified with one or more different layers of compounds. Such modification layers of interest include, without limitation, inorganic and organic layers such as metals, metal oxides, polymers, small organic molecules, and the like.


In some instances, resolved loci of a substrate are functionalized with one or more moieties that increase and/or decrease surface energy. In some cases, a moiety is chemically inert. In some cases, a moiety is configured to support a desired chemical reaction, for example, one or more processes in a polynucleotide synthesis reaction. The surface energy, or hydrophobicity, of a surface is a factor for determining the affinity of a nucleotide to attach onto the surface. In some instances, a method for substrate functionalization comprises: (a) providing a substrate having a surface that comprises silicon dioxide; and (b) silanizing the surface using a suitable silanizing agent described herein or otherwise known in the art, for example, an organofunctional alkoxysilane molecule. Methods and functionalizing agents are described in U.S. Pat. No. 5,474,796, which is herein incorporated by reference in its entirety.


In some instances, a substrate surface is functionalized by contact with a derivatizing composition that contains a mixture of silanes, under reaction conditions effective to couple the silanes to the substrate surface, typically via reactive hydrophilic moieties present on the substrate surface. Silanization generally covers a surface through self-assembly with organofunctional alkoxysilane molecules. A variety of siloxane functionalizing reagents can further be used as currently known in the art, e.g., for lowering or increasing surface energy. The organofunctional alkoxysilanes are classified according to their organic functions.


Polynucleotide Synthesis


Methods of the current disclosure for polynucleotide synthesis may include processes involving phosphoramidite chemistry. In some instances, polynucleotide synthesis comprises coupling a base with phosphoramidite. Polynucleotide synthesis may comprise coupling a base by deposition of phosphoramidite under coupling conditions, wherein the same base is optionally deposited with phosphoramidite more than once, i.e., double coupling. Polynucleotide synthesis may comprise capping of unreacted sites. In some instances, capping is optional. Polynucleotide synthesis may also comprise oxidation or an oxidation step or oxidation steps. Polynucleotide synthesis may comprise deblocking, detritylation, and sulfurization. In some instances, polynucleotide synthesis comprises either oxidation or sulfurization. In some instances, between one or each step during a polynucleotide synthesis reaction, the device is washed, for example, using tetrazole or acetonitrile. Time frames for any one step in a phosphoramidite synthesis method may be less than about 2 min, 1 min, 50 sec, 40 sec, 30 sec, 20 sec and 10 sec.


Polynucleotide synthesis using a phosphoramidite method may comprise a subsequent addition of a phosphoramidite building block (e.g., nucleoside phosphoramidite) to a growing polynucleotide chain for the formation of a phosphite triester linkage. Phosphoramidite polynucleotide synthesis proceeds in the 3′ to 5′ direction. Phosphoramidite polynucleotide synthesis allows for the controlled addition of one nucleotide to a growing nucleic acid chain per synthesis cycle. In some instances, each synthesis cycle comprises a coupling step. Phosphoramidite coupling involves the formation of a phosphite triester linkage between an activated nucleoside phosphoramidite and a nucleoside bound to the substrate, for example, via a linker. In some instances, the nucleoside phosphoramidite is provided to the device activated. In some instances, the nucleoside phosphoramidite is provided to the device with an activator. In some instances, nucleoside phosphoramidites are provided to the device in a 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the substrate-bound nucleosides. In some instances, the addition of nucleoside phosphoramidite is performed in an anhydrous environment, for example, in anhydrous acetonitrile. Following addition of a nucleoside phosphoramidite, the device is optionally washed. In some instances, the coupling step is repeated one or more additional times, optionally with a wash step between nucleoside phosphoramidite additions to the substrate. In some instances, a polynucleotide synthesis method used herein comprises 1, 2, 3 or more sequential coupling steps. Prior to coupling, in many cases, the nucleoside bound to the device is de-protected by removal of a protecting group, where the protecting group functions to prevent polymerization. A common protecting group is 4,4′-dimethoxytrityl (DMT).


Following coupling, phosphoramidite polynucleotide synthesis methods optionally comprise a capping step. In a capping step, the growing polynucleotide is treated with a capping agent. A capping step is useful to block unreacted substrate-bound 5′—OH groups after coupling from further chain elongation, preventing the formation of polynucleotides with internal base deletions. Further, phosphoramidites activated with 1H-tetrazole may react, to a small extent, with the 06 position of guanosine. Without being bound by theory, upon oxidation with I2/water, this side product, possibly via O6-N7 migration, may undergo depurination. The apurinic sites may end up being cleaved in the course of the final deprotection of the polynucleotide thus reducing the yield of the full-length product. The O6 modifications may be removed by treatment with the capping reagent prior to oxidation with I2/water. In some instances, inclusion of a capping step during polynucleotide synthesis decreases the error rate as compared to synthesis without capping. As an example, the capping step comprises treating the substrate-bound polynucleotide with a mixture of acetic anhydride and 1-methylimidazole. Following a capping step, the device is optionally washed.


In some instances, following addition of a nucleoside phosphoramidite, and optionally after capping and one or more wash steps, the device bound growing nucleic acid is oxidized. The oxidation step comprises a phosphite triester which is oxidized into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester internucleoside linkage. In some instances, oxidation of the growing polynucleotide is achieved by treatment with iodine and water, optionally in the presence of a weak base (e.g., pyridine, lutidine, collidine). Oxidation may be carried out under anhydrous conditions using, e.g. tert-Butyl hydroperoxide or (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO). In some methods, a capping step is performed following oxidation. A second capping step allows for device drying, as residual water from oxidation that may persist can inhibit subsequent coupling. Following oxidation, the device and growing polynucleotide are optionally washed. In some instances, the step of oxidation is substituted with a sulfurization step to obtain polynucleotide phosphorothioates, wherein any capping steps can be performed after the sulfurization. Many reagents are capable of the efficient sulfur transfer, including but not limited to 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).


In order for a subsequent cycle of nucleoside incorporation to occur through coupling, the protected 5′ end of the device bound growing polynucleotide is removed so that the primary hydroxyl group is reactive with a next nucleoside phosphoramidite. In some instances, the protecting group is DMT and deblocking occurs with trichloroacetic acid in dichloromethane. Conducting detritylation for an extended time or with stronger than recommended solutions of acids may lead to increased depurination of solid support-bound polynucleotide and thus reduces the yield of the desired full-length product. Methods and compositions of the disclosure described herein provide for controlled deblocking conditions limiting undesired depurination reactions. In some instances, the device bound polynucleotide is washed after deblocking. In some instances, efficient washing after deblocking contributes to synthesized polynucleotides having a low error rate.


Methods for the synthesis of polynucleotides typically involve an iterating sequence of the following steps: application of a protected monomer to an actively functionalized surface (e.g., locus) to link with either the activated surface, a linker or with a previously deprotected monomer; deprotection of the applied monomer so that it is reactive with a subsequently applied protected monomer; and application of another protected monomer for linking. One or more intermediate steps include oxidation or sulfurization. In some instances, one or more wash steps precede or follow one or all of the steps.


Methods for phosphoramidite-based polynucleotide synthesis comprise a series of chemical steps. In some instances, one or more steps of a synthesis method involve reagent cycling, where one or more steps of the method comprise application to the device of a reagent useful for the step. For example, reagents are cycled by a series of liquid deposition and vacuum drying steps. For substrates comprising three-dimensional features such as wells, microwells, channels and the like, reagents are optionally passed through one or more regions of the device via the wells and/or channels.


Methods and systems described herein relate to polynucleotide synthesis devices for the synthesis of polynucleotides. The synthesis may be in parallel. For example, at least or about at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 10000, 50000, 75000, 100000 or more polynucleotides can be synthesized in parallel. The total number polynucleotides that may be synthesized in parallel may be from 2-100000, 3-50000, 4-10000, 5-1000, 6-900, 7-850, 8-800, 9-750, 10-700, 11-650, 12-600, 13-550, 14-500, 15-450, 16-400, 17-350, 18-300, 19-250, 20-200, 21-150,22-100, 23-50, 24-45, 25-40, 30-35. Those of skill in the art appreciate that the total number of polynucleotides synthesized in parallel may fall within any range bound by any of these values, for example 25-100. The total number of polynucleotides synthesized in parallel may fall within any range defined by any of the values serving as endpoints of the range. Total molar mass of polynucleotides synthesized within the device or the molar mass of each of the polynucleotides may be at least or at least about 10, 20, 30, 40, 50, 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 25000, 50000, 75000, 100000 picomoles, or more. The length of each of the polynucleotides or average length of the polynucleotides within the device may be at least or about at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 150, 200, 300, 400, 500 nucleotides, or more. The length of each of the polynucleotides or average length of the polynucleotides within the device may be at most or about at most 500, 400, 300, 200, 150, 100, 50, 45, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 nucleotides, or less. The length of each of the polynucleotides or average length of the polynucleotides within the device may fall from 10-500, 9-400, 11-300, 12-200, 13-150, 14-100, 15-50, 16-45, 17-40, 18-35, 19-25. Those of skill in the art appreciate that the length of each of the polynucleotides or average length of the polynucleotides within the device may fall within any range bound by any of these values, for example 100-300. The length of each of the polynucleotides or average length of the polynucleotides within the device may fall within any range defined by any of the values serving as endpoints of the range.


Methods for polynucleotide synthesis on a surface provided herein allow for synthesis at a fast rate. As an example, at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 125, 150, 175, 200 nucleotides per hour, or more are synthesized. Nucleotides include adenine, guanine, thymine, cytosine, uridine building blocks, or analogs/modified versions thereof. In some instances, libraries of polynucleotides are synthesized in parallel on substrate. For example, a device comprising about or at least about 100; 1,000; 10,000; 30,000; 75,000; 100,000; 1,000,000; 2,000,000; 3,000,000; 4,000,000; or 5,000,000 resolved loci is able to support the synthesis of at least the same number of distinct polynucleotides, wherein polynucleotide encoding a distinct sequence is synthesized on a resolved locus. In some instances, a library of polynucleotides is synthesized on a device with low error rates described herein in less than about three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days, 24 hours, or less. In some instances, larger nucleic acids assembled from a polynucleotide library synthesized with low error rate using the substrates and methods described herein are prepared in less than about three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days, 24 hours, or less.


In some instances, methods described herein provide for generation of a library of nucleic acids comprising variant nucleic acids differing at a plurality of codon sites. In some instances, a nucleic acid may have 1 site, 2 sites, 3 sites, 4 sites, 5 sites, 6 sites, 7 sites, 8 sites, 9 sites, 10 sites, 11 sites, 12 sites, 13 sites, 14 sites, 15 sites, 16 sites, 17 sites 18 sites, 19 sites, 20 sites, 30 sites, 40 sites, 50 sites, or more of variant codon sites.


In some instances, the one or more sites of variant codon sites may be adjacent. In some instances, the one or more sites of variant codon sites may not be adjacent but are separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more codons.


In some instances, a nucleic acid may comprise multiple sites of variant codon sites, wherein all the variant codon sites are adjacent to one another, forming a stretch of variant codon sites. In some instances, a nucleic acid may comprise multiple sites of variant codon sites, wherein none the variant codon sites are adjacent to one another. In some instances, a nucleic acid may comprise multiple sites of variant codon sites, wherein some the variant codon sites are adjacent to one another, forming a stretch of variant codon sites, and some of the variant codon sites are not adjacent to one another.


Referring to the Figures, FIG. 3 illustrates an exemplary process workflow for synthesis of nucleic acids (e.g., genes) from shorter nucleic acids. The workflow is divided generally into phases: (1) de novo synthesis of a single stranded nucleic acid library, (2) joining nucleic acids to form larger fragments, (3) error correction, (4) quality control, and (5) shipment. Prior to de novo synthesis, an intended nucleic acid sequence or group of nucleic acid sequences is preselected. For example, a group of genes is preselected for generation.


Once large nucleic acids for generation are selected, a predetermined library of nucleic acids is designed for de novo synthesis. Various suitable methods are known for generating high density polynucleotide arrays. In the workflow example, a device surface layer is provided. In the example, chemistry of the surface is altered in order to improve the polynucleotide synthesis process. Areas of low surface energy are generated to repel liquid while areas of high surface energy are generated to attract liquids. The surface itself may be in the form of a planar surface or contain variations in shape, such as protrusions or microwells which increase surface area. In the workflow example, high surface energy molecules selected serve a dual function of supporting DNA chemistry, as disclosed in International Patent Application Publication WO/2015/021080, which is herein incorporated by reference in its entirety.


In situ preparation of polynucleotide arrays is generated on a solid support and utilizes single nucleotide extension process to extend multiple oligomers in parallel. A deposition device, such as a material deposition device, is designed to release reagents in a step-wise fashion such that multiple polynucleotides extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence 302. In some instances, polynucleotides are cleaved from the surface at this stage. Cleavage includes gas cleavage, e.g., with ammonia or methylamine.


The generated polynucleotide libraries are placed in a reaction chamber. In this exemplary workflow, the reaction chamber (also referred to as “nanoreactor”) is a silicon coated well, containing PCR reagents and lowered onto the polynucleotide library 303. Prior to or after the sealing 304 of the polynucleotides, a reagent is added to release the polynucleotides from the substrate. In the exemplary workflow, the polynucleotides are released subsequent to sealing of the nanoreactor 305. Once released, fragments of single stranded polynucleotides hybridize in order to span an entire long-range sequence of DNA. Partial hybridization 305 is possible because each synthesized polynucleotide is designed to have a small portion overlapping with at least one other polynucleotide in the pool.


After hybridization, a PCA reaction is commenced. During the polymerase cycles, the polynucleotides anneal to complementary fragments and gaps are filled in by a polymerase. Each cycle increases the length of various fragments randomly depending on which polynucleotides find each other. Complementarity amongst the fragments allows for formation of a complete large span of double stranded DNA 306.


After PCA is complete, the nanoreactor is separated from the device 307 and positioned for interaction with a device having primers for PCR 308. After sealing, the nanoreactor is subject to PCR 309 and the larger nucleic acids are amplified. After PCR 310, the nanochamber is opened 311, error correction reagents are added 312, the chamber is sealed 313 and an error correction reaction occurs to remove mismatched base pairs and/or strands with poor complementarity from the double stranded PCR amplification products 314. The nanoreactor is opened and separated 315. Error corrected product is next subject to additional processing steps, such as PCR and molecular bar coding, and then packaged 322 for shipment 323.


In some instances, quality control measures are taken. After error correction, quality control steps include for example interaction with a wafer having sequencing primers for amplification of the error corrected product 316, sealing the wafer to a chamber containing error corrected amplification product 317, and performing an additional round of amplification 318. The nanoreactor is opened 319 and the products are pooled 320 and sequenced 321. After an acceptable quality control determination is made, the packaged product 322 is approved for shipment 323.


In some instances, a nucleic acid generated by a workflow such as that in FIG. 3 is subject to mutagenesis using overlapping primers disclosed herein. In some instances, a library of primers is generated by in situ preparation on a solid support and utilize single nucleotide extension process to extend multiple oligomers in parallel. A deposition device, such as a material deposition device, is designed to release reagents in a step wise fashion such that multiple polynucleotides extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence 302.


Computer Systems


Any of the systems described herein, may be operably linked to a computer and may be automated through a computer either locally or remotely. In various instances, the methods and systems of the disclosure may further comprise software programs on computer systems and use thereof. Accordingly, computerized control for the synchronization of the dispense/vacuum/refill functions such as orchestrating and synchronizing the material deposition device movement, dispense action and vacuum actuation are within the bounds of the disclosure. The computer systems may be programmed to interface between the user specified base sequence and the position of a material deposition device to deliver the correct reagents to specified regions of the substrate.


The computer system 400 illustrated in FIG. 4 may be understood as a logical apparatus that can read instructions from media 411 and/or a network port 405, which can optionally be connected to server 409 having fixed media 412. The system, such as shown in FIG. 4 can include a CPU 401, disk drives 403, optional input devices such as keyboard 415 and/or mouse 416 and optional monitor 407. Data communication can be achieved through the indicated communication medium to a server at a local or a remote location. The communication medium can include any means of transmitting and/or receiving data. For example, the communication medium can be a network connection, a wireless connection or an internet connection. Such a connection can provide for communication over the World Wide Web. It is envisioned that data relating to the present disclosure can be transmitted over such networks or connections for reception and/or review by a party 422 as illustrated in FIG. 4.



FIG. 5 is a block diagram illustrating a first example architecture of a computer system 500 that can be used in connection with example instances of the present disclosure. As depicted in FIG. 5, the example computer system can include a processor 502 for processing instructions. Non-limiting examples of processors include: Intel Xeon™ processor, AMD Opteron™ processor, Samsung 32-bit RISC ARM 1176JZ(F)-S v1.0™ processor, ARM Cortex-A8 Samsung S5PC100™ processor, ARM Cortex-A8 Apple A4™ processor, Marvell PXA 930™ processor, or a functionally-equivalent processor. Multiple threads of execution can be used for parallel processing. In some instances, multiple processors or processors with multiple cores can also be used, whether in a single computer system, in a cluster, or distributed across systems over a network comprising a plurality of computers, cell phones, and/or personal data assistant devices.


As illustrated in FIG. 5, a high-speed cache 504 can be connected to, or incorporated in, the processor 502 to provide a high speed memory for instructions or data that have been recently, or are frequently, used by the processor 502. The processor 502 is connected to a north bridge 506 by a processor bus 508. The north bridge 506 is connected to random access memory (RAM) 510 by a memory bus 512 and manages access to the RAM 510 by the processor 502. The north bridge 506 is also connected to a south bridge 514 by a chipset bus 516. The south bridge 514 is, in turn, connected to a peripheral bus 518. The peripheral bus can be, for example, PCI, PCI-X, PCI Express, or other peripheral bus. The north bridge and south bridge are often referred to as a processor chipset and manage data transfer between the processor, RAM, and peripheral components on the peripheral bus 518. In some alternative architectures, the functionality of the north bridge can be incorporated into the processor instead of using a separate north bridge chip. In some instances, system 500 can include an accelerator card 522 attached to the peripheral bus 518. The accelerator can include field programmable gate arrays (FPGAs) or other hardware for accelerating certain processing. For example, an accelerator can be used for adaptive data restructuring or to evaluate algebraic expressions used in extended set processing.


Software and data are stored in external storage 524 and can be loaded into RAM 510 and/or cache 504 for use by the processor. The system 500 includes an operating system for managing system resources; non-limiting examples of operating systems include: Linux, Windows™, MACOS™, BlackBerry OS™, iOS™, and other functionally-equivalent operating systems, as well as application software running on top of the operating system for managing data storage and optimization in accordance with example instances of the present disclosure. In this example, system 500 also includes network interface cards (NICs) 520 and 521 connected to the peripheral bus for providing network interfaces to external storage, such as Network Attached Storage (NAS) and other computer systems that can be used for distributed parallel processing.



FIG. 6 is a diagram showing a network 600 with a plurality of computer systems 602a, and 602b, a plurality of cell phones and personal data assistants 602c, and Network Attached Storage (NAS) 604a, and 604b. In example instances, systems 602a, 602b, and 602c can manage data storage and optimize data access for data stored in Network Attached Storage (NAS) 604a and 604b. A mathematical model can be used for the data and be evaluated using distributed parallel processing across computer systems 602a, and 602b, and cell phone and personal data assistant systems 602c. Computer systems 602a, and 602b, and cell phone and personal data assistant systems 602c can also provide parallel processing for adaptive data restructuring of the data stored in Network Attached Storage (NAS) 604a and 604b. FIG. 6 illustrates an example only, and a wide variety of other computer architectures and systems can be used in conjunction with the various instances of the present disclosure. For example, a blade server can be used to provide parallel processing. Processor blades can be connected through a back plane to provide parallel processing. Storage can also be connected to the back plane or as Network Attached Storage (NAS) through a separate network interface. In some example instances, processors can maintain separate memory spaces and transmit data through network interfaces, back plane or other connectors for parallel processing by other processors. In other instances, some or all of the processors can use a shared virtual address memory space.



FIG. 7 is a block diagram of a multiprocessor computer system 700 using a shared virtual address memory space in accordance with an example instance. The system includes a plurality of processors 702a-f that can access a shared memory subsystem 704. The system incorporates a plurality of programmable hardware memory algorithm processors (MAPs) 706a-f in the memory subsystem 704. Each MAP 706a-f can comprise a memory 708a-f and one or more field programmable gate arrays (FPGAs) 710a-f The MAP provides a configurable functional unit and particular algorithms or portions of algorithms can be provided to the FPGAs 710a-f for processing in close coordination with a respective processor. For example, the MAPs can be used to evaluate algebraic expressions regarding the data model and to perform adaptive data restructuring in example instances. In this example, each MAP is globally accessible by all of the processors for these purposes. In one configuration, each MAP can use Direct Memory Access (DMA) to access an associated memory 708a-f, allowing it to execute tasks independently of, and asynchronously from the respective microprocessor 702a-f. In this configuration, a MAP can feed results directly to another MAP for pipelining and parallel execution of algorithms.


The above computer architectures and systems are examples only, and a wide variety of other computer, cell phone, and personal data assistant architectures and systems can be used in connection with example instances, including systems using any combination of general processors, co-processors, FPGAs and other programmable logic devices, system on chips (SOCs), application specific integrated circuits (ASICs), and other processing and logic elements. In some instances, all or part of the computer system can be implemented in software or hardware. Any variety of data storage media can be used in connection with example instances, including random access memory, hard drives, flash memory, tape drives, disk arrays, Network Attached Storage (NAS) and other local or distributed data storage devices and systems.


In example instances, the computer system can be implemented using software modules executing on any of the above or other computer architectures and systems. In other instances, the functions of the system can be implemented partially or completely in firmware, programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in FIG. 5, system on chips (SOCs), application specific integrated circuits (ASICs), or other processing and logic elements. For example, the Set Processor and Optimizer can be implemented with hardware acceleration through the use of a hardware accelerator card, such as accelerator card 522 illustrated in FIG. 5.


The following examples are set forth to illustrate more clearly the principle and practice of embodiments disclosed herein to those skilled in the art and are not to be construed as limiting the scope of any claimed embodiments. Unless otherwise stated, all parts and percentages are on a weight basis.


EXAMPLES

The following examples are given for the purpose of illustrating various embodiments of the disclosure and are not meant to limit the present disclosure in any fashion. The present examples, along with the methods described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the disclosure. Changes therein and other uses which are encompassed within the spirit of the disclosure as defined by the scope of the claims will occur to those skilled in the art.


Example 1: Functionalization of a Device Surface

A device was functionalized to support the attachment and synthesis of a library of polynucleotides. The device surface was first wet cleaned using a piranha solution comprising 90% H2SO4 and 10% H2O2 for 20 minutes. The device was rinsed in several beakers with DI water, held under a DI water gooseneck faucet for 5 min, and dried with N2. The device was subsequently soaked in NH4OH (1:100; 3 mL:300 mL) for 5 min, rinsed with DI water using a handgun, soaked in three successive beakers with DI water for 1 min each, and then rinsed again with DI water using the handgun. The device was then plasma cleaned by exposing the device surface to O2. A SAMCO PC-300 instrument was used to plasma etch O2 at 250 watts for 1 min in downstream mode.


The cleaned device surface was actively functionalized with a solution comprising N-(3-triethoxysilylpropyl)-4-hydroxybutyramide using a YES-1224P vapor deposition oven system with the following parameters: 0.5 to 1 torr, 60 min, 70° C., 135° C. vaporizer. The device surface was resist coated using a Brewer Science 200× spin coater. SPR™ 3612 photoresist was spin coated on the device at 2500 rpm for 40 sec. The device was pre-baked for 30 min at 90° C. on a Brewer hot plate. The device was subjected to photolithography using a Karl Suss MA6 mask aligner instrument. The device was exposed for 2.2 sec and developed for 1 min in MSF 26A. Remaining developer was rinsed with the handgun and the device soaked in water for 5 min. The device was baked for 30 min at 100° C. in the oven, followed by visual inspection for lithography defects using a Nikon L200. A descum process was used to remove residual resist using the SAMCO PC-300 instrument to O2 plasma etch at 250 watts for 1 min.


The device surface was passively functionalized with a 100 μL, solution of perfluorooctyltrichlorosilane mixed with 10 μL, light mineral oil. The device was placed in a chamber, pumped for 10 min, and then the valve was closed to the pump and left to stand for 10 min. The chamber was vented to air. The device was resist stripped by performing two soaks for 5 min in 500 mL NMP at 70° C. with ultrasonication at maximum power (9 on Crest system). The device was then soaked for 5 min in 500 mL isopropanol at room temperature with ultrasonication at maximum power. The device was dipped in 300 mL of 200 proof ethanol and blown dry with N2. The functionalized surface was activated to serve as a support for polynucleotide synthesis.


Example 2: Synthesis of a 50-Mer Sequence on an Oligonucleotide Synthesis Device

A two-dimensional oligonucleotide synthesis device was assembled into a flowcell, which was connected to a flowcell (Applied Biosystems (ABI394 DNA Synthesizer”). The two-dimensional oligonucleotide synthesis device was uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE (Gelest) which was used to synthesize an exemplary polynucleotide of 50 bp (“50-mer polynucleotide”) using polynucleotide synthesis methods described herein.


The sequence of the 50-mer was as described in SEQ ID NO: 393. 5′AGACAATCAACCATTTGGGGTGGACAGCCTTGACCTCTAGACTTCGGCAT##TTTTTTT TTT3′ (SEQ ID NO.: 393), where #denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes), which is a cleavable linker enabling the release of oligos from the surface during deprotection.


The synthesis was done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 1 and an ABI synthesizer.









TABLE 1







Synthesis protocols









General DNA Synthesis

Time


Process Name
Process Step
(sec)












WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
23



N2 System Flush
4



Acetonitrile System Flush
4


DNA BASE ADDITION
Activator Manifold Flush
2


(Phosphoramidite +
Activator to Flowcell
6


Activator Flow)
Activator +
6



Phosphoramidite to




Flowcell




Activator to Flowcell
0.5



Activator +
5



Phosphoramidite to




Flowcell




Activator to Flowcell
0.5



Activator +
5



Phosphoramidite to




Flowcell




Activator to Flowcell
0.5



Activator +
5



Phosphoramidite to




Flowcell




Incubate for 25 sec
25


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
15



N2 System Flush
4



Acetonitrile System Flush
4


DNA BASE ADDITION
Activator Manifold Flush
2


(Phosphoramidite +
Activator to Flowcell
5


Activator Flow)
Activator +
18



Phosphoramidite to




Flowcell




Incubate for 25 sec
25


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
15



N2 System Flush
4



Acetonitrile System Flush
4


CAPPING (CapA + B, 1:1,
CapA + B to Flowcell
15


Flow)




WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
15



Acetonitrile System Flush
4


OXIDATION (Oxidizer
Oxidizer to Flowcell
18


Flow)




WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
N2 System Flush
4



Acetonitrile System Flush
4



Acetonitrile to Flowcell
15



Acetonitrile System Flush
4



Acetonitrile to Flowcell
15



N2 System Flush
4



Acetonitrile System Flush
4



Acetonitrile to Flowcell
23



N2 System Flush
4



Acetonitrile System Flush
4


DEBLOCKING (Deblock
Deblock to Flowcell
36


Flow)




WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
N2 System Flush
4



Acetonitrile System Flush
4



Acetonitrile to Flowcell
18



N2 System Flush
4.13



Acetonitrile System Flush
4.13



Acetonitrile to Flowcell
15









The phosphoramidite/activator combination was delivered similarly to the delivery of bulk reagents through the flowcell. No drying steps were performed as the environment stays “wet” with reagent the entire time.


The flow restrictor was removed from the ABI 394 synthesizer to enable faster flow. Without flow restrictor, flow rates for amidites (0.1M in ACN), Activator, (0.25M Benzoylthiotetrazole (“BTT”; 30-3070-xx from GlenResearch) in ACN), and Ox (0.02M I2 in 20% pyridine, 10% water, and 70% THF) were roughly ˜100 uL/sec, for acetonitrile (“ACN”) and capping reagents (1:1 mix of CapA and CapB, wherein CapA is acetic anhydride in THF/Pyridine and CapB is 16% 1-methylimidizole in THF), roughly ˜200 uL/sec, and for Deblock (3% dichloroacetic acid in toluene), roughly −300 uL/sec (compared to ˜50 uL/sec for all reagents with flow restrictor). The time to completely push out Oxidizer was observed, the timing for chemical flow times was adjusted accordingly and an extra ACN wash was introduced between different chemicals. After polynucleotide synthesis, the chip was deprotected in gaseous ammonia overnight at 75 psi. Five drops of water were applied to the surface to recover polynucleotides. The recovered polynucleotides were then analyzed on a BioAnalyzer small RNA chip.


Example 3: Synthesis of a 100-Mer Sequence on an Oligonucleotide Synthesis Device

The same process as described in Example 2 for the synthesis of the 50-mer sequence was used for the synthesis of a 100-mer polynucleotide (“100-mer polynucleotide”; 5′ CGGGATCCTTATCGTCATCGTCGTACAGATCCCGACCCATTTGCTGTCCACCAGTCATG CTAGCCATACCATGATGATGATGATGATGAGAACCCCGCAT ##TTTTTTTTTT3′, where #denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes); SEQ ID NO.: 2161) on two different silicon chips, the first one uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE and the second one functionalized with 5/95 mix of 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane, and the polynucleotides extracted from the surface were analyzed on a BioAnalyzer instrument.


All ten samples from the two chips were further PCR amplified using a forward (5′ATGCGGGGTTCTCATCATC3′; SEQ ID NO.: 2162) and a reverse (5′CGGGATCCTTATCGTCATCG3; SEQ ID NO.: 2163) primer in a 50 uL PCR mix (25 uL NEB Q5 mastermix, 2.5 uL 10 uM Forward primer, 2.5 uL 10 uM Reverse primer, luL polynucleotide extracted from the surface, and water up to 50 uL) using the following thermalcycling program:

    • 98° C., 30 sec
    • 98° C., 10 sec; 63° C., 10 sec; 72° C., 10 sec; repeat 12 cycles
    • 72° C., 2 min


The PCR products were also run on a BioAnalyzer, demonstrating sharp peaks at the 100-mer position. Next, the PCR amplified samples were cloned, and Sanger sequenced. Table 2 summarizes the results from the Sanger sequencing for samples taken from spots 1-5 from chip 1 and for samples taken from spots 6-10 from chip 2.









TABLE 2







Sequencing results









Spot
Error rate
Cycle efficiency












1
 1/763 bp
99.87%


2
 1/824 bp
99.88%


3
 1/780 bp
99.87%


4
 1/429 bp
99.77%


5
1/1525 bp
99.93%


6
1/1615 bp
99.94%


7
 1/531 bp
99.81%


8
1/1769 bp
99.94%


9
 1/854 bp
99.88%


10
1/1451 bp
99.93%









Thus, the high quality and uniformity of the synthesized polynucleotides were repeated on two chips with different surface chemistries. Overall, 89% of the 100-mers that were sequenced were perfect sequences with no errors, corresponding to 233 out of 262.


Table 3 summarizes error characteristics for the sequences obtained from the polynucleotide samples from spots 1-10.









TABLE 3





Error characteristics

















Sample ID/Spot no.













OSA_0046/1
OSA_0047/2
OSA_0048/3
OSA_0049/4
OSA_0050/5





Total Sequences
32 
32 
32 
32 
32 


Sequencing Quality
25 of 28
27 of 27
26 of 30
21 of 23
25 of 26


Oligo Quality
23 of 25
25 of 27
22 of 26
18 of 21
24 of 25


ROI Match Count
2500  
2698  
2561  
2122  
2499  


ROI Mutation
2
2
1
3
1


ROI Multi Base
0
0
0
0
0


Deletion


ROI Small Insertion
1
0
0
0
0


ROI Single Base
0
0
0
0
0


Deletion


Large Deletion Count
0
0
1
0
0


Mutation: G > A
2
2
1
2
1


Mutation: T > C
0
0
0
1
0


ROI Error Count
3
2
2
3
1


ROI Error Rate
Err: ~1 in 834
Err: ~1 in 1350
Err: ~1 in 1282
Err: ~1 in 708
Err: ~1 in 2500


ROI Minus Primer
MP Err: ~1 in 763
MP Err: ~1 in 824
MP Err: ~1 in 780
MP Err: ~1 in 429
MP Err: ~1 in 1525


Error Rate












Sample ID/Spot no.













OSA_0051/6
OSA_0052/7
OSA_0053/8
OSA_0054/9
OSA_0055/10





Total Sequences
32 
32 
32 
32 
32 


Sequencing Quality
29 of 30
27 of 31
29 of 31
28 of 29
25 of 28


Oligo Quality
25 of 29
22 of 27
28 of 29
26 of 28
20 of 25


ROI Match Count
2666  
2625  
2899  
2798  
2348  


ROI Mutation
0
2
1
2
1


ROI Multi Base
0
0
0
0
0


Deletion


ROI Small Insertion
0
0
0
0
0


ROI Single Base
0
0
0
0
0


Deletion


Large Deletion Count
1
1
0
0
0


Mutation: G > A
0
2
1
2
1


Mutation: T > C
0
0
0
0
0


ROI Error Count
1
3
1
2
1


ROI Error Rate
Err: ~1 in 2667
Err: ~1 in 876
Err: ~1 in 2900
Err: ~1 in 1400
Err: ~1 in 2349


ROI Minus Primer
MP Err: ~1 in 1615
MP Err: ~1 in 531
MP Err: ~1 in 1769
MP Err: ~1 in 854
MP Err: ~1 in 1451


Error Rate









Example 4: Exemplary Sequences









TABLE 4







Variable Heavy Chain CDRs













DKK1
SEQ

SEQ

SEQ



Variant
ID NO
CDR1 Sequence
ID NO
CDR2 Sequence
ID NO
CDR3 Sequence





DKK1-1
   1
GRTFSRFAM
  99
EGVASITSGGTTNY
 197
AADDGARGSW





DKK1-2
   2
GSAFSSTVM
 100
EFVATINSLGGTSY
 198
AAAYSGHFSGRVSDFLW





DKK1-3
   3
GSTFSTYAM
 101
EFVASINWGGGNTYY
 199
AAKKVSFGDW





DKK1-4
   4
GNIFRINAM
 102
ELVAAISRSGGSTNY
 200
AKDKNGPW





DKK1-5
   5
GGLTFSTYAM
 103
EFVAAVSWSGGNTYY
 201
AAEIGYYSGGTYYSSEAW





DKK1-6
   6
GIPFSTRTM
 104
EFVAAISSGATTLY
 202
AAGNGGRAYGYSRARYEW





DKK1-7
   7
GISGSVFSRTPM
 105
EFVAALSKDGARTYY
 203
ARDLVGTDAFDIW





DKK1-8
   8
GFTFSNYAM
 106
EFVAAISWSDGSTYY
 204
AAEGGYSGTYYYTGDFDW





DKK1-9
   9
GRSFSMYAM
 107
ELVAAISWSGGSTVY
 205
AAEGGYSGTYYYTGDFDW





DKK1-10
  10
GRTISNYAM
 108
EFVAAISWRGGSTYY
 206
AAAPRPKYVSVSYFSTSSNYDW





DKK1-11
  11
GPTVDAYAM
 109
EFVSAISWSGSATFY
 207
AAAPRPKRVSVRYFSTSSNYDW





DKK1-12
  12
GRTFNSRPM
 110
EFVAAISSSASSTYY
 208
AAGNGGRLYGHSRARYDW





DKK1-13
  13
GFLMYDRAM
 111
EIVAAISRTGSSIYY
 209
AAGNGGRKYGHHRARYDW





DKK1-14
  14
GSIFSRLAM
 112
EFVAAISSSGISTIY
 210
ARGQRGRWLEPLTGW





DKK1-15
  15
GFTFGTTTM
 113
ELVAAITSGGGTTYY
 211
AKDLAAAGYYYYYGMDVW





DKK1-16
  16
GNIFTRNVM
 114
EFVGAINWSGGNTVY
 212
ARHDHNNRGLDYW





DKK1-17
  17
GGTFSRYAM
 115
EFVAGISWTLGRTYY
 213
ARDPFGKW





DKK1-18
  18
GITFRFKAM
 116
EFVAAINRSGRSTRY
 214
AAESHGSTSPRNPLQYDW





DKK1-19
  19
GRTYGM
 117
EFVAGISWTLGRTYY
 215
ASDESDAANW





DKK1-20
  20
GPTFSIYDM
 118
EFVTGSNTGGTTY
 216
ATCTDFEYDW





DKK1-21
  21
GIPSSIRAM
 119
EWVSGISISDSSTYY
 217
AAGKRYGYYDW





DKK1-22
  22
GSTLSINAM
 120
ELVAAISWSGGTAY
 218
AAQSRYRSNYYDHDKYAW





DKK1-23
  23
GYNFSTFCM
 121
EWVAAISGGGSTMY
 219
AASKWYGGFGDTDIEW





DKK1-24
  24
GSSFSAYGM
 122
EFVAGISWTLGRTYY
 220
AADGVPEYSDYASGPVW





DKK1-25
  25
GSTSRSYGM
 123
EFVAGISWTLGRTYY
 221
ARDPSGKW





DKK1-26
  26
GFSLDYYGM
 124
EVVASIRWNAKPYY
 222
AAGKRYGYYDW





DKK1-27
  27
GRTFSNYAM
 125
EWVASISTSGKTTYY
 223
AAGNGGRNYGHSRARYEW





DKK1-28
  28
GLTTVYTM
 126
EFVAAISWYVSTTFY
 224
AAEGGYSGTYYYTGDFDW





DKK1-29
  29
GSIGGLNAM
 127
EFVAAINYSGRSTVY
 225
AAGAGRDRGFSRAQYAW





DKK1-30
  30
GRTFSKYAM
 128
EFVAAISWSGESTYY
 226
AAAPRPKRVSVSYFYTSSNYDW





DKK1-31
  31
GRTLSRSAM
 129
ELVAAISWSGGSTYY
 227
AAGNGGRTYGHSRARYEW





DKK1-32
  32
GRTFSNGPM
 130
EFVAAISRGGKISHY
 228
AAGNGGRYYGHSRARYDW





DKK1-33
  33
GRSLNTYTM
 131
ELVAVIISGGSTAY
 229
AAGNGGRSYGHSRARYDW





DKK1-34
  34
GFTFDDRAM
 132
EFVAAISWSGGSTYY
 230
AAAPRPKRVSVSYFYTSSNYDW





DKK1-35
  35
GRTFTTYPM
 133
EFVAAISSSGSSTVY
 231
AAGNGGRQYGHSRARYDW





DKK1-36
  36
GIPSTLRAM
 134
EFVAAINWSGASTVY
 232
AAGNGGRQYGHSRARYDW





DKK1-37
  37
GRTFSSYSM
 135
EFIAAINLSSGSTYY
 233
AAGNGGRNYGHSRARYEW





DKK1-38
  38
GTSFSIGAM
 136
EWVSSISPGGLFPYY
 234
AARDAIVGVTDTSGYRW





DKK1-39
  39
GTVFSISDM
 137
EWVSAISPGGGYTVY
 235
ARSSWFDCGVQGRDLGNEYDW





DKK1-40
  40
GRTISSFRM
 138
EFVAAISRGGNVTPY
 236
AANSDSGFDSYSVWAAYEW





DKK1-41
  41
GRTLSRS
 139
SWSGGS
 237
GNGGRTYGHSRARYE





DKK1-42
  42
GRTFSSL
 140
TSGGR
 238
GNGGRTYGHSRARYE





DKK1-43
  43
GTSFSVG
 141
SWSGGT
 239
GNGGRQYGHSRARYD





DKK1-44

GRG
 142
NRSGKS
 240
GNGGRSYGHSRARYD





DKK1-45
  45
GRTFSNF
 143
SATGS
 241
GNGGRQYGHSRARYD





DKK1-46
  46
GRTLSSI
 144
TRAGS
 242
GNGGRYYGHSRARYD





DKK1-47
  47
GRTFSSL
 145
SSGGS
 243
GNGGRTYGHSRARYD





DKK1-48
  48
GRSFGNF
 146
TSGGS
 244
GNGGRSYGHSRARYD





DKK1-49
  49
GFTFTNY
 147
NWSGRR
 245
APRPKRVSVQYFSTSSNYD





DKK1-50
  50
GRTFSLY
 148
NRSGKS
 246
GNGGRQYGHSRARYD





DKK1-51
  51
GRTFSTS
 149
NRSGKT
 247
GNGGRAYGYSRARYE





DKK1-52
  52
GRTFSIS
 150
SPSGN
 248
GNGGRAYGYSRARYE





DKK1-53
  53
GRTFSSY
 151
SRSGT
 249
GNGGRTYGHSRARYE





DKK1-54
  54
GFTFDDR
 152
STGGT
 250
GNGGRTYGHSRARYE





DKK1-55
  55
GFTFGDY
 153
DWSGRR
 251
APRPKRVSVSYFSTASNYD





DKK1-56
  56
GRTFSSL
 154
SSSGGT
 252
GNGGRLYGHSRARYD





DKK1-57
  57
GSTFSKA
 155
TFSGAR
 253
GNGGRTYGHSRARYD





DKK1-58
  58
GRRFSAD
 156
RSGGT
 254
GNGGRQYGHSRARYD





DKK1-59
  59
GFTVSNY
 157
SWSGGS
 255
APRPKRVSVRYFSTSSNYD





DKK1-60
  60
GRAFSSS
 158
NRGGKI
 256
GNGGRLYGHSRARYD





DKK1-61
  61
GRTFSSN
 159
SRSGGS
 257
GNGGRTYGHSRARYD





DKK1-62
  62
GRTFSYN
 160
NRSGKS
 258
GNGGRHYGHSRARYD





DKK1-63
  63
GFRMYDR
 161
SRSGGR
 259
GNGGRLYGHSRARYD





DKK1-64
  64
GRTSSAY
 162
SRSGAS
 260
GNGGRSYGHSRARYD





DKK1-65
  65
GRTFSRF
 163
SARGM
 261
GNGGRTYGHSRARYE





DKK1-66
  66
GRTFSSY
 164
NLSSGS
 262
GNGGRNYGHSRARYE





DKK1-67
  67
GRTFRSY
 165
SMSGKE
 263
GNGGRTYGHSRARYE





DKK1-68
  68
GRTFSNY
 166
STSGKT
 264
GNGGRNYGHSRARYE





DKK1-69
  69
GRTFSSY
 167
SRSGGS
 265
GNGGRHYGHSRARYD





DKK1-70
  70
GTSFSIG
 168
SRSGAS
 266
GNGGRTYGHSRARYD





DKK1-71
  71
GRTISNA
 169
RSGGT
 267
GNGGRQYGHSRARYD





DKK1-72
  72
GGIYRVN
 170
NWSGGS
 268
GNGGRKYGHHRARYD





DKK1-73
  73
GRTFSSK
 171
NWSGGL
 269
GNGGRAYGYSRARYE





DKK1-74
  74
GIPFSSR
 172
SRSGTG
 270
GNGGRTYGHSRARYD





DKK1-75
  75
GPTVDAY
 173
SWSGSA
 271
APRPKRVSVRYFSTSSNYD





DKK1-76
  76
GIPFSTR
 174
SSGAT
 272
GNGGRAYGYSRARYE





DKK1-77
  77
GRTFNSR
 175
SSSASS
 273
GNGGRLYGHSRARYD





DKK1-78
  78
GFTFSSS
 176
LRGGS
 274
GNGGRHYGHSRARYD





DKK1-79
  79
SIGIAFSSR
 177
TRSGGK
 275
GNGGRTYGHSRARYE





DKK1-80
  80
GFLMYDR
 178
SRTGSS
 276
GNGGRKYGHHRARYD





DKK1-81
  81
GIAFQGY
 179
DTNGGH
 277
EGGYRGTYYYTGDFD





DKK1-82
  82
GRTFSNT
 180
TSGGS
 278
GNGGRHYGHNRPRYD





DKK1-83
  83
GSTSSLR
 181
SWSLSR
 279
APRPKRVSVSYFSTASNYD





DKK1-84
  84
GRTFTNY
 182
NRGGST
 280
GNRRRPYGYSHSRYD





DKK1-85
  85
GITFKRY
 183
TSRDGTT
 281
GNGGRNYGHSRSRYE





DKK1-86
  86
GRTFINY
 184
IWTGVS
 282
APRPNRVSVRYFSTNNNYD





DKK1-87
  87
GRTFSGY
 185
SWSGGS
 283
GNGGRHYGHSRARYD





DKK1-88
  88
GLTFSTY
 186
ASNGN
 284
GNGGRAYGYSRARYE





DKK1-89
  89
GFTSDDY
 187
SWSGGR
 285
APRPKRVSVRYFSTSSNYD





DKK1-90
  90
GRTFRSY
 188
SWSPGR
 286
APRPKRISVQYFTTSSNYD





DKK1-91
  91
GFTVSSY
 189
SWSGGR
 287
APRPKRVSFSYFSTSSNYE





DKK1-92
  92
GFGFGSY
 190
SWTGGS
 288
APRPKRVSVRYFNTSSNYD





DKK1-93
  93
GRTFSRY
 191
SWSGGS
 289
GNGGRYYNHSRTRYE





DKK1-94
  94
GRIFGGY
 192
SWSGAS
 290
GNGGSRYGHSRARYD





DKK1-95
  95
GSIENIN
 193
SSGGGI
 291
GNGGRKYGHHRARYD





DKK1-96
  96
GFTFSSFGNF
 194
NWSSRS
 292
GNGGRQYGHSRARYD





DKK1-97
  97
GNIDRLY
 195
SWSVSS
 293
EGGYSGTYYYTGDFD





DKK1-98
  98
GRTFSNF
 196
LRGGS
 294
APRPKRVSVSYFSTASNYD





DKK1-99
 919
GRTFSNF
1333
LRGGS
1747
APRPKRVSVSYFSTASNYD





DKK1-100
 920
GNIDRLY
1334
SWSVSS
1748
EGGYSGTYYYTGDFD





DKK1-101
 921
GFTFSSFGNF
1335
NWSSRS
1749
GNGGRQYGHSRARYD





DKK1-102
 922
GSIENIN
1336
SSGGGI
1750
GNGGRKYGHHRARYD





DKK1-103
 923
GRIFGGY
1337
SWSGAS
1751
GNGGSRYGHSRARYD





DKK1-104
 924
GRTFSRY
1338
SWSGGS
1752
GNGGRYYNHSRTRYE





DKK1-105
 925
GFGFGSY
1339
SWTGGS
1753
APRPKRVSVRYFNTSSNYD





DKK1-106
 926
GFTVSSY
1340
SWSGGR
1754
APRPKRVSFSYFSTSSNYE





DKK1-107
 927
GRTFRSY
1341
SWSPGR
1755
APRPKRISVQYFTTSSNYD





DKK1-108
 928
GFTSDDY
1342
SWSGGR
1756
APRPKRVSVRYFSTSSNYD





DKK1-109
 929
GLTFSTY
1343
ASNGN
1757
GNGGRAYGYSRARYE





DKK1-110
 930
GRTFSGY
1344
SWSGGS
1758
GNGGRHYGHSRARYD





DKK1-111
 931
GRTFINY
1345
IWTGVS
1759
APRPNRVSVRYFSTNNNYD





DKK1-112
 932
GITFKRY
1346
TSRDGTT
1760
GNGGRNYGHSRSRYE





DKK1-113
 933
GRTFTNY
1347
NRGGST
1761
GNRRRPYGYSHSRYD





DKK1-114
 934
GSTSSLR
1348
SWSLSR
1762
APRPKRVSVSYFSTASNYD





DKK1-115
 935
GRTFSNT
1349
TSGGS
1763
GNGGRHYGHNRPRYD





DKK1-116
 936
GIAFQGY
1350
DTNGGH
1764
EGGYRGTYYYTGDFD





DKK1-117
 937
GFLMYDR
1351
SRTGSS
1765
GNGGRKYGHHRARYD





DKK1-118
 938
SIGIAFSSR
1352
TRSGGK
1766
GNGGRTYGHSRARYE





DKK1-119
 939
GFTFSSS
1353
LRGGS
1767
GNGGRHYGHSRARYD





DKK1-120
 940
GRTFNSR
1354
SSSASS
1768
GNGGRLYGHSRARYD





DKK1-121
 941
GIPFSTR
1355
SSGAT
1769
GNGGRAYGYSRARYE





DKK1-122
 942
GPTVDAY
1356
SWSGSA
1770
APRPKRVSVRYFSTSSNYD





DKK1-123
 943
GIPFSSR
1357
SRSGTG
1771
GNGGRTYGHSRARYD





DKK1-124
 944
GRTFSSK
1358
NWSGGL
1772
GNGGRAYGYSRARYE





DKK1-125
 945
GGIYRVN
1359
NWSGGS
1773
GNGGRKYGHHRARYD





DKK1-126
 946
GRTISNA
1360
RSGGT
1774
GNGGRQYGHSRARYD





DKK1-127
 947
GTSFSIG
1361
SRSGAS
1775
GNGGRTYGHSRARYD





DKK1-128
 948
GRTFSSY
1362
SRSGGS
1776
GNGGRHYGHSRARYD





DKK1-129
 949
GRTFSNY
1363
STSGKT
1777
GNGGRNYGHSRARYE





DKK1-130
 950
GRTFRSY
1364
SMSGKE
1778
GNGGRTYGHSRARYE





DKK1-131
 951
GRTFSSY
1365
NLSSGS
1779
GNGGRNYGHSRARYE





DKK1-132
 952
GRTFSRF
1366
SARGM
1780
GNGGRTYGHSRARYE





DKK1-133
 953
GRTSSAY
1367
SRSGAS
1781
GNGGRSYGHSRARYD





DKK1-134
 954
GFRMYDR
1368
SRSGGR
1782
GNGGRLYGHSRARYD





DKK1-135
 955
GRTFSYN
1369
NRSGKS
1783
GNGGRHYGHSRARYD





DKK1-136
 956
GRTFSSN
1370
SRSGGS
1784
GNGGRTYGHSRARYD





DKK1-137
 957
GRAFSSS
1371
NRGGKI
1785
GNGGRLYGHSRARYD





DKK1-138
 958
GFTVSNY
1372
SWSGGS
1786
APRPKRVSVRYFSTSSNYD





DKK1-139
 959
GRRFSAD
1373
RSGGT
1787
GNGGRQYGHSRARYD





DKK1-140
 960
GSTFSKA
1374
TFSGAR
1788
GNGGRTYGHSRARYD





DKK1-141
 961
GRTFSSL
1375
SSSGGT
1789
GNGGRLYGHSRARYD





DKK1-142
 962
GFTFGDY
1376
DWSGRR
1790
APRPKRVSVSYFSTASNYD





DKK1-143
 963
GFTFDDR
1377
STGGT
1791
GNGGRTYGHSRARYE





DKK1-144
 964
GRTFSSY
1378
SRSGT
1792
GNGGRTYGHSRARYE





DKK1-145
 965
GRTFSIS
1379
SPSGN
1793
GNGGRAYGYSRARYE





DKK1-146
 966
GRTFSTS
1380
NRSGKT
1794
GNGGRAYGYSRARYE





DKK1-147
 967
GRTFSLY
1381
NRSGKS
1795
GNGGRQYGHSRARYD





DKK1-148
 968
GFTFTNY
1382
NWSGRR
1796
APRPKRVSVQYFSTSSNYD





DKK1-149
 969
GRSFGNF
1383
TSGGS
1797
GNGGRSYGHSRARYD





DKK1-150
 970
GRTFSSL
1384
SSGGS
1798
GNGGRTYGHSRARYD





DKK1-151
 971
GRTLSSI
1385
TRAGS
1799
GNGGRYYGHSRARYD





DKK1-152
 972
GRTFSNF
1386
SATGS
1800
GNGGRQYGHSRARYD





DKK1-153

GRG
1387
NRSGKS
1801
GNGGRSYGHSRARYD





DKK1-154
 974
GTSFSVG
1388
SWSGGT
1802
GNGGRQYGHSRARYD





DKK1-155
 975
GRTFSSL
1389
TSGGR
1803
GNGGRTYGHSRARYE





DKK1-156
 976
GRTLSRS
1390
SWSGGS
1804
GNGGRTYGHSRARYE





DKK1-157
 977
GRTISNY
1391
SWRGGS
1805
APRPKYVSVSYFSTSSNYD





DKK1-158
 978
GHTFRGY
1392
SGRSGN
1806
GNGGRLYGHSRARYD





DKK1-159
 979
GSIVRGN
1393
SSSGSS
1807
GNGGRTYGHSRARYE





DKK1-160
 980
GRTFSSY
1394
SRSGGS
1808
GNGGRTYGHSRARYE





DKK1-161
 981
GNIFGVN
1395
SGTGGS
1809
GNGGRTYGHSRARYE





DKK1-162
 982
GHTFRGY
1396
NRSGSS
1810
GNGGRAYGYSRARYE





DKK1-163
 983
GRTLRRY
1397
ISDGN
1811
GNGGRQYGHSRARYD





DKK1-164
 984
GRALSSS
1398
WSGGR
1812
GNGGRYYGHSRARYD





DKK1-165
 985
GRTFSNG
1399
TSTGS
1813
GNGGRLYGHSRARYD





DKK1-166
 986
GLTFGSA
1400
TSGGR
1814
GNGGRQYGHSRARYD





DKK1-167
 987
GFTFGST
1401
NWSGRR
1815
APRPKRVSVSYFYTSSNYD





DKK1-168
 988
GRFTSSS
1402
TSGGR
1816
GNGGRAYGYSRARYE





DKK1-169
 989
GRTFNSR
1403
TSDGS
1817
GNGGRQYGHSRARYD





DKK1-170
 990
GRTLSS
1404
SQRG
1818
GNGGRQYGHSRARYD





DKK1-171
 991
GGTFSRY
1405
NRSGKS
1819
GNGGRQYGHSRARYD





DKK1-172
 992
GRTFNSR
1406
SSGST
1820
GNGGRSYGHSRARYD





DKK1-173
 993
GSTFRGA
1407
TSAGGT
1821
GNGGRQYGHSRARYD





DKK1-174
 994
GSTFSKA
1408
LSSGA
1822
GNGGRHYGHSRARYD





DKK1-175
 995
GTTFRIN
1409
SRSGGS
1823
GNGGRSYGHSRARYD





DKK1-176
 996
GFPVNRY
1410
SRSGGS
1824
GNGGRQYGHSRARYD





DKK1-177
 997
GHTFNTY
1411
TSNGR
1825
GNGGRAYGYSRARYE





DKK1-178
 998
GRTFGRR
1412
NWSGGS
1826
GNGGRHYGHSRARYD





DKK1-179
 999
GFTFSSY
1413
SRSGGT
1827
GNGGRNYGHSRARYD





DKK1-180
1000
GRTFSNF
1414
SSGGR
1828
GNGGRHYGHSRARYD





DKK1-181
1001
GLTTVY
1415
SRTGGS
1829
GNGGRTYGHSRARYE





DKK1-182
1002
GTTFRIN
1416
NRSGKS
1830
GNGGRQYGHSRARYD





DKK1-183
1003
GRTFSTH
1417
TRLGV
1831
GNGGRAYGYSRARYE





DKK1-184
1004
GIPSTLR
1418
NWSGAS
1832
GNGGRQYGHSRARYD





DKK1-185
1005
GRTFSSY
1419
DWSGSR
1833
APRPKRVSVSYFYTSSNYD





DKK1-186
1006
GRTFSDI
1420
NWSGAR
1834
APRPKRVSVQYFSTSSNYD





DKK1-187
1007
GIPFSTR
1421
SWSGGS
1835
GNGGRQYGHSRARYD





DKK1-188
1008
GFTFDEY
1422
DWSGRR
1836
APRPKRISVSYFSTSSNYD





DKK1-189
1009
GFTFSNY
1423
SWSGGS
1837
APRPKRVSFSYFSTSSNYE





DKK1-190
1010
GITFKRY
1424
NWSGAS
1838
GNGGRQYGHSRARYD





DKK1-191
1011
GFTFGHY
1425
SWSLTR
1839
APRPKRVSVQYFSTSSNYD





DKK1-192
1012
GSITSIN
1426
SRSGAS
1840
GNGGRTYGHSRARYE





DKK1-193
1013
GGRIFSNY
1427
SWSGGS
1841
APRPKRVSVSYFSTASNYD





DKK1-194
1014
GRTF
1428
NWRSGGS
1842
GNGGRTYGHSRARYE





DKK1-195
1015
GGTFNGR
1429
SRSGGG
1843
GNGGRQYGHSRARYD





DKK1-196
1016
GFNFDDY
1430
SWSLSR
1844
APRPKRVSVSYFSTASNYD





DKK1-197
1017
SIGIAFSSR
1431
TRSGGK
1845
GNGGRSYGHSRARYD





DKK1-198
1018
GSTFRIN
1432
SASGS
1846
GNGGRTYGHSRARYE





DKK1-199
1019
GGIYRVN
1433
NWSGGS
1847
GNGGRQYGHSRARYD





DKK1-200
1020
GRSLNTY
1434
ISGGS
1848
GNGGRSYGHSRARYD





DKK1-201
1021
GRTFSNY
1435
STSGKT
1849
GNGGRQYGHSRARYD





DKK1-202
1022
GTTVRIR
1436
NGGGN
1850
GNGGRQYGHSRARYD





DKK1-203
1023
GRTFSTY
1437
NWSGSS
1851
GNGGRHYGHSRARYD





DKK1-204
1024
GIPFSTR
1438
SSGAT
1852
GNGGRHYGHSRARYD





DKK1-205
1025
GRTFSRY
1439
RIKDGS
1853
GNGGRQYGHSRARYD





DKK1-206
1026
GHTFNTY
1440
SRSGGK
1854
GNGGRNYGHSRARYE





DKK1-207
1027
GRSFSEY
1441
SRDGAA
1855
GNGGRKYGHHRARYD





DKK1-208
1028
GRTFTTY
1442
SSSGSS
1856
GNGGRQYGHSRARYD





DKK1-209
1029
GRTFSRY
1443
SWSGGS
1857
GNGGRQYGHSRARYD





DKK1-210
1030
GSIFTIN
1444
NWSGSS
1858
GNGGRKYGHHRARYD





DKK1-211
1031
GTSISNR
1445
SSGGNL
1859
GNGGRQYGHSRARYD





DKK1-212
1032
GFTFRRYV
1446
IEGAGSDT
1860
AKQIPGRKWTANGRKDY





DKK1-213
1033
GFTFNKYP
1447
ISPSGKKK
1861
AKYPKNFDY





DKK1-214
1034
GFTFSSAA
1448
ISGGGADT
1862
ARLPKRGPRFDY





DKK1-215
1035
GFTFNKYP
1449
IQQRGLKT
1863
AKGIRGWIGHDTQPFDY





DKK1-216
1036
GFTFDRYR
1450
ISPSGKKK
1864
AKYPKNFDY





DKK1-217
1037
GFTSNNFA
1451
ISGGGADT
1865
AKLQKRGPRFDY





DKK1-218
1038
GFTFGNYA
1452
ISSSGGET
1866
VKAPLRSGGVDY





DKK1-219
1039
GFTFDRYR
1453
ISPSGKKK
1867
AKFPSTHGKFDY





DKK1-220
1040
GLTFPNYG
1454
IDDRGRYT
1868
ARVIAAAGAFDY





DKK1-221
1041
GFTFNKYP
1455
ISNSGST
1869
AKRTRSKFDY





DKK1-222
1042
GFTFTHYS
1456
ITRSGST
1870
AKRTENRGVSFDY





DKK1-223
1043
GFTFEEKE
1457
ISSSGLWT
1871
AKGWRRFDY





DKK1-224
1044
GFTFDRYR
1458
ISPSGKKK
1872
AKYTWNGY





DKK1-225
1045
GFTFHKYG
1459
ISPSGKKK
1873
ASLSRGY





DKK1-226
1046
GFTFGNYA
1460
IWPRGQKT
1874
AKFRGRGFDY





DKK1-227
1047
GFTFAKYK
1461
ISPSGKKK
1875
AKAHNAFDY





DKK1-228
1048
GFTFSSYF
1462
ISGGGADT
1876
ARGNYFDY





DKK1-229
1049
GFTFDRYR
1463
ISGYGSTT
1877
AKFRGRGFDY





DKK1-230
1050
GFTFSRYA
1464
IGANGAPT
1878
AKDKRYRGSQHYFDY





DKK1-231
1051
GFTFRSYT
1465
ISNSGGST
1879
AKAGRKFDY





DKK1-232
1052
GFTFSDYD
1466
IGASGSAT
1880
AKQSGSEDHFDY





DKK1-233
1053
GFTFRRYV
1467
ISPSGKKK
1881
AKWRREGYTGSKFDY





DKK1-234
1054
GGFSLSRY
1468
INQAGLRT
1882
AKSRTGRYFDY





DKK1-235
1055
GFTFHKYG
1469
INPSRGYT
1883
AKGYRHFDY





DKK1-236
1056
GFTFNKYP
1470
ISSSGGET
1884
AKDLGQGFDY





DKK1-237
1057
GFTFNKYP
1471
ISSSGSST
1885
AKRTRSKFDY





DKK1-238
1058
GFTFRRYV
1472
ISGGGADT
1886
AGLPKRGPRFDY





DKK1-239
1059
GFTFSRYA
1473
IGPSGGKT
1887
ARLPKRGPWFDY





DKK1-240
1060
GFTFRRYV
1474
ISGGGADT
1888
AKPSRRFDY





DKK1-241
1061
GFTFSSYV
1475
IQQRGLKT
1889
ARSGPYYFDY





DKK1-242
1062
GFTFEDYQ
1476
ITGTGGET
1890
AKPGHRFDY





DKK1-243
1063
GFTFRRYV
1477
IYPSGGST
1891
AKDRYSQVHYALDY





DKK1-244
1064
GFTFKAYE
1478
ISPSGGIT
1892
ARHRAGSSGWYSDY





DKK1-245
1065
GFTFEVYT
1479
ISGRGDNT
1893
AKRTENRGVSFDY





DKK1-246
1066
GFTFGNYS
1480
IWPRGQKT
1894
AKVTGRGFDY





DKK1-247
1067
GFTFRRYV
1481
VNPNSGTS
1895
AKGPGTRGDY





DKK1-248
1068
GFTFSNYG
1482
ISPSGGWT
1896
ARYGAYFGLDY





DKK1-249
1069
GFTFAHEP
1483
INYAGNT
1897
AKKDYDYVWGSPYFDY





DKK1-250
1070
GFTFHEST
1484
ISSSGGET
1898
ARIRVGPSGGAFDY





DKK1-251
1071
GFTFNKYP
1485
ISPSGKKK
1899
AKFPSSQFRFDY





DKK1-252
1072
GFTFNKYP
1486
ISPSGKKK
1900
AKYPKNFNY





DKK1-253
1073
GFTFHKYG
1487
INYAGNT
1901
AKDKRYRGSQHYFDY





DKK1-254
1074
GLTFPNYG
1488
ISPSGKKK
1902
AREGLWAFDY





DKK1-255
1075
GFTFKAYE
1489
IIPNGGIT
1903
GRHRAGSIGWYSDY





DKK1-256
1076
GFTFRRYV
1490
IGASGSAT
1904
AKRTRSKFDY





DKK1-257
1077
GFTFRRYV
1491
ISGGGADT
1905
AKGRRRFDY





DKK1-258
1078
GFTSNNFA
1492
ISGGGADT
1906
AKLQKRGPRFDY





DKK1-259
1079
GFTFGNYA
1493
IWARGQKT
1907
AHLPGRGFEY





DKK1-260
1080
GFTFEDET
1494
IISSGGLT
1908
AKGFRIFDY





DKK1-261
1081
GFTFSNSY
1495
ITPKGDHT
1909
AKGARRFDY





DKK1-262
1082
GFTFSGYD
1496
IGRHGGRT
1910
AKSLGRFDY





DKK1-263
1083
GFTFRRYV
1497
IEGAGSDT
1911
ARLPKRGPRFDY





DKK1-264
1084
GFTFKSYG
1498
IWPRGQKT
1912
AKSGTRIKQGFDY





DKK1-265
1085
GFTFRRYV
1499
ISGGGADT
1913
ARLPKRGPRFDY





DKK1-266
1086
GFTFVAYN
1500
ISNSGGST
1914
AKNRAKFDY





DKK1-267
1087
GFTFRRYV
1501
ISSSGGET
1915
AKLPKRGPRFDY





DKK1-268
1088
GFTFRRYV
1502
IEGAGSDT
1916
AKFRGRGFDY





DKK1-269
1089
GFTFSRYG
1503
ISYGGSNK
1917
AKGVRKGFDY





DKK1-270
1090
GFTFGNYA
1504
IQQRGLKT
1918
ARGYRGYFDY





DKK1-271
1091
GYSISSGYH
1505
IDDRGRYT
1919
AKSNGRFDY





DKK1-272
1092
GFTFRRYV
1506
ISGSGGGT
1920
AKYFHGKFDY





DKK1-273
1093
GFTFHKYG
1507
ISPSGKKK
1921
AKGRWSIFDY





DKK1-274
1094
GFTFRRYV
1508
VNPNSGAS
1922
AKGPGTRGDY





DKK1-275
1095
GFTFNKYP
1509
IYPSGGST
1923
AKWSSRAFDY





DKK1-276
1096
GFTFRRYV
1510
IEGAGSDT
1924
ARLPKRGPRFDY





DKK1-277
1097
GFTFRRYV
1511
IEGAGSDT
1925
ARLPKRGPRFDY





DKK1-278
1098
GFTFSSYV
1512
ISPSGKKK
1926
AKYPKNFDY





DKK1-279
1099
GFTFRRYV
1513
ISGGGADT
1927
ARLPKRGPRFDY





DKK1-280
1100
GFTSNNFA
1514
INPSRGYT
1928
AKRTENRGVSFDY





DKK1-281
1101
GFTFNKYP
1515
ISPSGKKK
1929
AKFRGRGFDY





DKK1-282
1102
GFTFFPYA
1516
ISGGGADT
1930
ARLPKRGPRFDY





DKK1-283
1103
GFTFDQYD
1517
ITGSGGST
1931
ATAESDDTYDY





DKK1-284
1104
GFTFRRYV
1518
IEGAGSDT
1932
ARLPKRGPRFDY





DKK1-285
1105
GFTFRSYT
1519
ITGTGGET
1933
ARLPKRGPRFDY





DKK1-286
1106
GFTFRRYV
1520
IEARGGGT
1934
AKFRGRGFDY





DKK1-287
1107
GFTFGNYA
1521
IWPSGGQT
1935
AKDKRYRGSQHYFDY





DKK1-288
1108
GFTFNKYP
1522
SNSGST
1936
AKRTRSKFDY





DKK1-289
1109
GFTFHKYG
1523
IGRHGGRT
1937
AKAGSGFDY





DKK1-290
1110
GFTFSSYW
1524
IGPSGTST
1938
AESFRSRYFDY





DKK1-291
1111
GFTFGNYA
1525
IWPRGQKT
1939
ASLSRGY





DKK1-292
1112
GFTFRSYT
1526
ISGGGADT
1940
AKLPKRGPRFDY





DKK1-293
1113
GFTFSRYF
1527
ISGRGDNT
1941
AKRTENRGVSFDY





DKK1-294
1114
GFTFNKYP
1528
IQQRGLKT
1942
ARWTSGLDY





DKK1-295
1115
GFTFSRYF
1529
IDALGTDT
1943
AKGLRRFDY





DKK1-296
1116
GFTFDRYR
1530
ISSTGFKT
1944
AKFRGRGFDY





DKK1-297
1117
GFTFTHYS
1531
INGTGGET
1945
ARLPKRGPRFDY





DKK1-298
1118
GFTFSPYL
1532
IGPSGTST
1946
AKGRRIFDY





DKK1-299
1119
GFTFSNYF
1533
IDDRGRYT
1947
ARGGDYGSGDY





DKK1-300
1120
GFTFRRYV
1534
ISGGGADT
1948
ARPPKRGPRFDY





DKK1-301
1121
GFTFNKYP
1535
ISSSGGET
1949
AKRTRSKFDY





DKK1-302
1122
GFTFKSYG
1536
IGRHGGRT
1950
ARGGDYGSGDY





DKK1-303
1123
GFTFNKYP
1537
IGPSGGKT
1951
AKRTRSKFDY





DKK1-304
1124
GFTFRRYV
1538
ISGGGADT
1952
ARPPKRGPRFDY





DKK1-305
1125
GFTFEDET
1539
IISSGGLT
1953
AKGFRIFDY





DKK1-306
1126
GFTFNKYP
1540
ITRSGST
1954
AKWSSRAFDY





DKK1-307
1127
GFTFRRYV
1541
ISGGGADT
1955
AKHSKSSHRQSFDY





DKK1-308
1128
GFTFNKYP
1542
ISPSGKKK
1956
AKLTGRFDY





DKK1-309
1129
GFTFSRYF
1543
ISPSGKKK
1957
AKSGAYFDY





DKK1-310
1130
GFTFNKYP
1544
IEGRGTET
1958
AKRTRSKFDY





DKK1-311
1131
GFTFHKYG
1545
ISPSGKKK
1959
AKYPKNFDY





DKK1-312
1132
GFTFRRYV
1546
ISPSGKKK
1960
AKGVRKKFDY





DKK1-313
1133
GFTFRRYV
1547
ISGGGADT
1961
ARLPKRGPRFDY





DKK1-314
1134
GFTFGNYA
1548
ISPIGPRT
1962
AKRTENRGVSFDY





DKK1-315
1135
GFTLDYLA
1549
ISPSGKKK
1963
AKYTGRWEPFDY





DKK1-316
1136
GFTFTHYS
1550
ISGGGADT
1964
ARLPKRGPRFDY





DKK1-317
1137
GFTFRRYV
1551
ITGTGGET
1965
ARLPKRGPRFDY





DKK1-318
1138
GFTFRRYV
1552
ISPSGHGT
1966
ARRTGREYGGGWYFDY





DKK1-319
1139
GFTFPVYN
1553
ISESGTTT
1967
AKNRAKFDY





DKK1-320
1140
GFTFRRYV
1554
ISGGGADT
1968
ARLPKRGPRFDY





DKK1-321
1141
GFSFSAYA
1555
ISTSGGST
1969
ARGRAGADY





DKK1-322
1142
GFTFSRFA
1556
ISGSGAYT
1970
ARDIAAASFDY





DKK1-323
1143
GFTFTSYA
1557
VSGSGGTT
1971
AISYHFDYYFDY





DKK1-324
1144
GFTFSSYA
1558
ISGGGGAT
1972
ARECSGGSCSYYYGMDV





DKK1-325
1145
GSTFNNYA
1559
ISGSGSTT
1973
ARLAVSTSDYYYYGMDV





DKK1-326
1146
GFTFGRFA
1560
ITGSGTST
1974
ARDDRVRFSPVRRWFDP





DKK1-327
1147
GFTFSKYA
1561
ISATGGST
1975
ARVRSSSWYGDY





DKK1-328
1148
GFTFSRYA
1562
ISGSGVTT
1976
ARKTGGHYPFDY





DKK1-329
1149
GFTFSRSA
1563
ISASGANT
1977
ARDQARYYGMDV





DKK1-330
1150
GFTFRNYA
1564
ITSSGGST
1978
ASGLRARNGFDI





DKK1-331
1151
GFTFSNYA
1565
ISGSGGST
1979
ARGAILAY





DKK1-332
1152
GFTFSSYA
1566
VSGTGGTT
1980
ARDVGFGELHP





DKK1-333
1153
GFTFSSYA
1567
ISGSGYST
1981
ARGRTGTLYGMDV





DKK1-334
1154
GFSFNNYA
1568
ISGGGSNT
1982
ARVAASGSYYRAFDQ





DKK1-335
1155
GFTFRRYA
1569
ISSSGGNT
1983
ARDRGFGWFDP





DKK1-336
1156
GFTFRSYG
1570
ISGSGGRT
1984
AKVSYDSSGYYYDAFDI





DKK1-337
1157
GFTFANYA
1571
ISGSGGSA
1985
ARSGSFLSFDS





DKK1-338
1158
GFTFGRFA
1572
ISGSGGRT
1986
ARVDYKKKSYYNAMDA





DKK1-339
1159
GFTFRTSA
1573
ISSGGGGT
1987
ARGPRGRGAFDV





DKK1-340
1160
GFTFSSYA
1574
ISGSGGST
1988
ARDDRVRFSPVRRWFDP





DKK1-341
1161
GIHLSSYA
1575
ISGGGGGT
1989
ARGGHVGIRRPFDV





DKK1-342
1162
GFTFSKYA
1576
ISGSGGTT
1990
ARHAHGAGSYPFDY





DKK1-343
1163
GFPFSSYA
1577
ISGSGGRT
1991
GRAPRKYYGMDV





DKK1-344
1164
GFSFSAYA
1578
ISGRDTST
1992
ARVPLRGSGRLSFDY





DKK1-345
1165
GSPFSNYA
1579
ISGSGGST
1993
ARAPRSPILGVRRGLDP





DKK1-346
1166
GFSFSGYA
1580
ISGSSGRT
1994
VRGGTRGLGY





DKK1-347
1167
GFTFRTYG
1581
ISGSGETT
1995
ARLDHDSSGFYEAFDV





DKK1-348
1168
GLTFSRYA
1582
ISGRGGNT
1996
ARGGMRLGKSYYYYGMDV





DKK1-349
1169
GFAFSTSA
1583
ISASGGST
1997
ARLSVARGAYGMDV





DKK1-350
1170
GFTFGAYA
1584
ISGSGART
1998
ARRGRPPQYYFDS





DKK1-351
1171
GFTFRRYA
1585
VSGSGGTT
1999
ARGWEPGIAAN





DKK1-352
1172
GFTFSKHA
1586
ISGSGDTT
2000
ARHQYSGSGSFRY





DKK1-353
1173
GFTFRRSA
1587
IGGSGDNT
2001
AKHRGSFWFDP





DKK1-354
1174
GFSFRSYA
1588
ISGSGGNT
2002
TTMFGSGTFYTGFDF





DKK1-355
1175
GFTFSSSS
1589
ISGSGGTT
2003
ARAGARFVGFDY





DKK1-356
1176
GFTFSRFA
1590
ISGSGRNT
2004
ATFNPVGLFY





DKK1-357
1177
GFSFSTYA
1591
ISGSAVST
2005
ARSGSFLSFDS





DKK1-358
1178
GFTFSRYT
1592
VSGSGGRT
2006
ARSRNGRWFDP





DKK1-359
1179
GLTFRSYA
1593
ISGSGGST
2007
ARGASFDS





DKK1-360
1180
GFTFSNYA
1594
ISGSGART
2008
ARGRQRQRSTPLGRY





DKK1-361
1181
GFNFRDYA
1595
ISGRGSV
2009
ARGGDWVAFDY





DKK1-362
1182
GFTFSGYV
1596
ISGSGGRT
2010
ARRKGPTYGMDV





DKK1-363
1183
GFTFSTFA
1597
LSGSGGRT
2011
ARVTRYQGWLSHFDY





DKK1-364
1184
GFTLSTYA
1598
ISTSGGST
2012
ARVFVSSGWYDGMDV





DKK1-365
1185
GLTFNNYA
1599
ISGSGART
2013
ARGASLDV





DKK1-366
1186
GFTFGRYA
1600
ISGSGTTT
2014
ARAIGGRTAY





DKK1-367
1187
GFSFSAYA
1601
ISGRDTST
2015
ARVPLRGSGRLSFDY





DKK1-368
1188
GFTFGRYA
1602
ITASGGST
2016
ARVVTAMGYYYGMDV





DKK1-369
1189
GFTFSNYG
1603
ISAGGGNT
2017
ARDLGMRGPYYYYYGMDV





DKK1-370
1190
GFTFSYYG
1604
ISGGGAGT
2018
VASRNYLLDF





DKK1-371
1191
GFTFTKYA
1605
ISGRGGST
2019
ARGDLTVTRKYDS





DKK1-372
1192
GFTFRSYG
1606
ISRSGGNT
2020
ARTYSYGSFDY





DKK1-373
1193
GFNFRSYA
1607
ISGSGTTT
2021
ASWRAAPFDY





DKK1-374
1194
GFSFSAYA
1608
ISGRDTST
2022
ARVPLRGSGRLSFDY





DKK1-375
1195
GFTFGNYA
1609
ITGSGGST
2023
AKGKFHLDP





DKK1-376
1196
GFSFSSYA
1610
ISGRGGST
2024
TTDYGAIMDV





DKK1-377
1197
GFTFGRFA
1611
ISGSGTST
2025
ARDSRNYFGMGV





DKK1-378
1198
GFTFGNYA
1612
ISRSGGNT
2026
GRDGTRFGAFDI





DKK1-379
1199
GFTFNKFA
1613
ISGSGSRT
2027
ARGRSWYNH





DKK1-380
1200
GLTFSSYA
1614
ISGSGGNT
2028
ARFQPRPLRLFDY





DKK1-381
1201
GFTLRSYA
1615
ISGSGGYT
2029
ARASYGSGSYPLIH





DKK1-382
1202
GFTFSSFA
1616
VSGSGGST
2030
AGHRSNIGWDV





DKK1-383
1203
GSTFSSYA
1617
ISASGGRT
2031
ARDDRVRFSPVRRWFDP





DKK1-384
1204
GFTFRRSA
1618
ISGSGSGT
2032
ARSARGRWFDP





DKK1-385
1205
GFTFAGYA
1619
ISRSGDRT
2033
AKGQRAHQQLVRGAMDV





DKK1-386
1206
GFTFRTFA
1620
ISASGGTT
2034
AHRRRSKFWSGFGV





DKK1-387
1207
GFTFSRYA
1621
ISGSGVTT
2035
ARKTGGHYPFDY





DKK1-388
1208
GFTFDNYA
1622
ISGSGGSI
2036
VKGAPAGYLDS





DKK1-389
1209
GFRFSSYA
1623
ISGRGGST
2037
ARHNRERRAFDI





DKK1-390
1210
GFTFRSYA
1624
ISGGGGTT
2038
ARDSRVRGTHDYYYYGMDV





DKK1-391
1211
GFTFSKFA
1625
ISASGGRT
2039
ARGSLRFTP





DKK1-392
1212
GFTFSSSG
1626
ISPSGGST
2040
ARLSADRVFAFDI





DKK1-393
1213
GFSFSSFA
1627
ISGSGDVT
2041
AGHRSNIGWDV





DKK1-394
1214
GFTFGRFA
1628
ITGSGTST
2042
ARVPLRGSGRLSFDY





DKK1-395
1215
GFGFSSYA
1629
ITGSGGNT
2043
AKSRRPRYSYGFAFES





DKK1-396
1216
GVTFRNYA
1630
ISASGGSP
2044
ARDTSVGWFDP





DKK1-397
1217
GFTFRNYA
1631
ISGGGGRT
2045
VRDLTRRAAMDV





DKK1-398
1218
GFTFRSSA
1632
ISGSGRST
2046
ARNGAGSHYYAMDV





DKK1-399
1219
GFTFSRFA
1633
ISGSGGRT
2047
ASSKVTRSALDY





DKK1-400
1220
GFTFGNYA
1634
ISGSGSST
2048
GRESGRGSGT





DKK1-401
1221
GFTYSSYA
1635
ISGSGGST
2049
ARERELYYFYYGMDV





DKK1-402
1222
GFTFSTYG
1636
ITGSGGST
2050
ARHHNRRSSLDY





DKK1-403
1223
GFTFSSSG
1637
ISSTGGTT
2051
ARRGRRQLRYYYGMDV





DKK1-404
1224
GFSFSSSA
1638
ISGSGGTT
2052
ARARRRSFDW





DKK1-405
1225
GFTFSRYA
1639
ISGGRVST
2053
ARSLRGNAFDI





DKK1-406
1226
GFTFSGYA
1640
IRGSGGST
2054
AKDLQSRGY





DKK1-407
1227
GFTFNKFA
1641
ISVSGGNT
2055
ARHSRLAALLA





DKK1-408
1228
GFTFSSHV
1642
ISGSGAGT
2056
AVTGTTGWFDP





DKK1-409
1229
GFTFGRYA
1643
ISSSRGST
2057
ARVGIAGRGMDV





DKK1-410
1230
GFTFNTYG
1644
ISGRRT
2058
ARVSRGYPRRSDS





DKK1-411
1231
GFTVSSYA
1645
ISGGGGTT
2059
VRSSNWKFDQ





DKK1-412
1232
GFTFSRSA
1646
ISASGANT
2060
ARDQARYYGMDV





DKK1-413
1233
GFTFRSYD
1647
ISGSGVTT
2061
ARGRRLDY





DKK1-414
1234
GFAFTTYA
1648
ISGSGSTT
2062
ARSGSFLSFDS





DKK1-415
1235
GFTFSSYD
1649
ISGSGRNT
2063
ARGGGASNWFDP





DKK1-416
1236
GFSFSAYA
1650
ISGRDTST
2064
ARVPLRGSGRLSFDY





DKK1-417
1237
GFTFSRFA
1651
ISGTGSST
2065
ARVPGN





DKK1-418
1238
GIPFSSR
1652
SRSGTG
2066
GNGGRTYGHSRARYD





DKK1-419
1239
GGIYRVN
1653
NWSGGS
2067
GNGGRKYGHHRARYD





DKK1-420
1240
GFLMYDR
1654
SRTGSS
2068
GNGGRKYGHHRARYD





DKK1-421
1241
GRTFSRF
1655
SARGM
2069
GNGGRTYGHSRARYE





DKK1-422
1242
GTTFRIN
1656
NWNGGS
2070
GNGGRQYGHSRARYD





DKK1-423
1243
GRTFSNN
1657
LSGGS
2071
GNGGRNYGHSRARYD





DKK1-424
1244
GRTFSDI
1658
NWSGAR
2072
APRPKRVSVQYFSTSSNYD





DKK1-425
1245
GHTYNTY
1659
LRGGS
2073
GNGGRHYGHSRARYD





DKK1-426
1246
GRSLYDR
1660
SRTGSS
2074
GNGGRSYGHSRARYD





DKK1-427
1247
GRTFNNY
1661
SWSTGS
2075
EGGYSGTYYYTGDFD





DKK1-428
1248
GRTLYSY
1662
SWSAGS
2076
GNGGSKYGHSRARYD





DKK1-429
1249
GTFRDY
1663
YGTGGEL
2077
GNGGRQYGHSRARYD





DKK1-430
1250
GGGTFGSY
1664
TWNGTR
2078
APRPKRVSVSYFSTASNYD





DKK1-431
1251
GRTFSNY
1665
SWSGGS
2079
GNGGRTYGHSRARYD





DKK1-432
1252
GRTFTNY
1666
SRGGSA
2080
GNGGRHYGHSRARYD





DKK1-433
1253
GRTFSTH
1667
TRLGV
2081
GNGGRAYGYSRARYE





DKK1-434
1254
GRSFSMY
1668
SRDGAA
2082
GNGGRLYGHSRARYD





DKK1-435
1255
GLTFRNY
1669
SWSLSR
2083
APRPKRASVQYFSTSSNYD





DKK1-436
1256
GFTFDDR
1670
RWSGGI
2084
GNGGRSYGHSRARYD





DKK1-437
1257
GRTFSS
1671
NWSGAS
2085
GNGGRYYNHSRTRYE





DKK1-438
1258
GHTFNTY
1672
NSGGSY
2086
GNGGRNYGHSRARYE





DKK1-439
1259
GRIF
1673
SGSGVY
2087
GNGGRYYGHSRARYD





DKK1-440
1260
GRSFSEY
1674
SRDGAA
2088
GNGGRKYGHHRARYD





DKK1-441
1261
GFNSGSY
1675
SWSLSR
2089
APRPKRVSVSYFSTASNYD





DKK1-442
1262
GGTAY
1676
SWSLTR
2090
APRPKRVSVRYFSTSSNYD





DKK1-443
1263
GRTFTSY
1677
SGSGDD
2091
GNGGRQYGHSRARYD





DKK1-444
1264
GSTFRIN
1678
SASGS
2092
GNGGRTYGHSRARYE





DKK1-445
1265
GGTLNNNPM
1679
NWSGAR
2093
APRPKRISVQYFTTSSNYD





DKK1-446
1266
GRTFSTY
1680
GTRGA
2094
GNGGRQYGHSRARYD





DKK1-447
1267
GRTFNSY
1681
TRLGV
2095
GNGGRYYGHSRARYD





DKK1-448
1268
GIPFSSR
1682
GWYGS
2096
GNGGRQYGHSRARYD





DKK1-449
1269
GIDVNRN
1683
SWSGGR
2097
APRPKRVSVHYFSTSSNYD





DKK1-450
1270
GINFSRY
1684
DWSGSR
2098
APRPKRVSVSYFSTASNYD





DKK1-451
1271
GGTLRGY
1685
DWSGSR
2099
APRPKYVSVRYFSTSSNYD





DKK1-452
1272
GQTF
1686
NWNGDS
2100
GNGGRKYGHHRARYD





DKK1-453
1273
GYTFRAY
1687
TSGGS
2101
GNGGRTYGHSRARYE





DKK1-454
1274
GNIFTLN
1688
NSGGSY
2102
GNGGRKYGHHRARYD





DKK1-455
1275
GFRMYDR
1689
SGRSGN
2103
GNGGRNYGHSRARYD





DKK1-456
1276
GFTFSMW
1690
SRSGGS
2104
GNGGRYYNHSRTRYE





DKK1-457
1277
GFTFRSY
1691
HTGGG
2105
GNGGRNYGHSRARYD





DKK1-458
1278
GLPFSTK
1692
SSGGR
2106
GNGGRHYGHSRARYD





DKK1-459
1279
GNIFRIN
1693
NSGGSS
2107
GNGGRAYGYSRARYE





DKK1-460
1280
GGTFGHY
1694
SWSLTR
2108
APRPKRVSFSYFSTSSNYE





DKK1-461
1281
GRTFNSY
1695
TWGGST
2109
GNGGRSYGHSRARYD





DKK1-462
1282
GITFRRY
1696
NWGGGS
2110
GNGGRAYGYSRARYE





DKK1-463
1283
GRTFSYN
1697
SIGGR
2111
GNGGRSYGHSRARYD





DKK1-464
1284
GRTFSSL
1698
RSSGG
2112
GNGGRTYGHSRARYE





DKK1-465
1285
GPTFSTN
1699
YSGVRSGVS
2113
GNGGRHYGHSRARYD





DKK1-466
1286
GRTFSNY
1700
YGTGGEL
2114
GNGGRKYGHHRARYD





DKK1-467
1287
GRAIGSY
1701
TFSGAR
2115
APRPKRASVQYFSTSSNYD





DKK1-468
1288
GRTLSRN
1702
RSGA
2116
GNGGRHYGHSRARYD





DKK1-469
1289
GRTFIGY
1703
KFSGGT
2117
GNGGRYYGHSRARYD





DKK1-470
1290
GRTISNY
1704
SWRGGS
2118
APRPKYVSVSYFSTSSNYD





DKK1-471
1291
GRTISNY
1705
SWALSR
2119
APRPKRVSFSYFSTSSNYE





DKK1-472
1292
GTFTSY
1706
SWTGGS
2120
GNGGRYYNHSRTRYE





DKK1-473
1293
GRSFSMY
1707
SWSGGS
2121
EGGYSGTYYYTGDFD





DKK1-474
1294
GLTFRNY
1708
NWSGAR
2122
APRPKSISVRYFSTSSNYE





DKK1-475
1295
GFTFSSY
1709
SADGSD
2123
GKRYGYYD





DKK1-476
1296
GRTHSIY
1710
RWGTTD
2124
APRPTRVSVRYFSTRSNYN





DKK1-477
1297
GFSLDYV
1711
KPSGDT
2125
YLSFYSDYEVYD





DKK1-478
1298
GSIFRVN
1712
SMSGAN
2126
GNGGRQYGHSRARYD





DKK1-479
1299
GRTFSSL
1713
NWSGGN
2127
GNGGRKYGHHRARYD





DKK1-480
1300
GFLMYDR
1714
SRTGSS
2128
GNGGRAYGYSRARYE





DKK1-481
1301
GDISSY
1715
TWNGGTH
2129
GNGGRKYGHHRARYD





DKK1-482
1302
GRTHSIY
1716
NWNGDS
2130
GNGGRTYGHSRARYE





DKK1-483
1303
GIPFSSR
1717
SRSGTG
2131
GNGGRAYGYSRARYE





DKK1-484
1304
GRTFSNY
1718
VNGGS
2132
GNGGRAYGYSRARYE





DKK1-485
1305
GMTTIG
1719
SWDGGN
2133
GNGGRQYGHSRARYD





DKK1-486
1306
GRASGDY
1720
SWRGGN
2134
APRPKRVSFSYFSTSSNYE





DKK1-487
1307
GRTFSSY
1721
LSGGS
2135
GNGGRAYGYSRARYE





DKK1-488
1308
GRTFSEV
1722
HWSGGS
2136
GNGGRSYGHSRARYD





DKK1-489
1309
GSTFSIN
1723
TPRGL
2137
GNGGRAYGYSRARYE





DKK1-490
1310
GRTF
1724
IWRGGS
2138
GNGGRQYGHSRARYD





DKK1-491
1311
GGTFSSY
1725
SWSGSA
2139
GNGGRSYGHSRARYD





DKK1-492
1312
GRTFSNF
1726
LRGGS
2140
APRPKRVSVSYFSTASNYD





DKK1-493
1313
GGTFSRY
1727
SWSLTR
2141
APRPKRVSVQYFVTSSNYD





DKK1-494
1314
GRTLSRS
1728
RIKDGS
2142
GNGGRQYGHSRARYD





DKK1-495
1315
GRTFSSG
1729
SRSGTL
2143
APRPKRVSVQYFSTSSNYD





DKK1-496
1316
GRTFNSY
1730
NVGGG
2144
GNGGRTYGHSRARYD





DKK1-497
1317
GYTLKNYY
1731
SRSGGT
2145
APRPKRASVQYFSTSSNYD





DKK1-498
1318
GHTFNTY
1732
SYSG
2146
GNGGRAYGYSRARYE





DKK1-499
1319
GFTFDDR
1733
STSGTR
2147
GNGGRQYGHSRARYD





DKK1-500
1320
GRTLSSY
1734
GTSGP
2148
GNGGRTYGHSRARYE





DKK1-501
1321
GRIFTNT
1735
SWGGGL
2149
GNGGSRYGHSRARYD





DKK1-502
1322
GRIF
1736
SWTAGT
2150
GNGGRNYGHSRARYD





DKK1-503
1323
GNIFTRH
1737
NTGGGS
2151
GNGGRTYGHSRARYE





DKK1-504
1324
GRTFSNY
1738
SWSSGN
2152
GNGGRQYGHSRARYD





DKK1-505
1325
GRTFTSY
1739
GTHGT
2153
GNGGRQYGHSRARYD





DKK1-506

GQT
1740
SRSG
2154
GNGGRAYGYSRARYE





DKK1-507
1327
GRSFSEY
1741
TWSGDM
2155
GNGGRHYGHSRARYD





DKK1-508
1328
GRSFSSY
1742
NTAGW
2156
GNGGRSYGHSRARYD





DKK1-509
1329
GLTFRNY
1743
SWSGGK
2157
APRPKRISVSYFSTTSNYD





DKK1-510
1330
GSTFSSY
1744
HTGG
2158
GNGGRQYGHSRARYD





DKK1-511
1331
GIDVNRN
1745
SWSGGT
2159
APRPKRVSVSYFSTASNYD





DKK1-512
1332
GGTFNVY
1746
NRSGKS
2160
APRPKRVSVRYFSTSSNYD
















TABLE 5







Variable Heavy Chain Domain Sequences









DKK1
SEQ



Variant
ID NO
VH Sequence





DKK1-
295
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRFAMGWFRQAPGKEREGVASITSGGTTNYADSV


 1

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADDGARGSWGQGTLVTVSS





DKK1-
296
EVQLVESGGGLVQPGGSLRLSCAASGSAFSSTVMGWFRQAPGKEREFVATINSLGGTSYADSV


 2

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAYSGHFSGRVSDFLWGQGTLVTVSS





DKK1-
297
EVQLVESGGGLVQPGGSLRLSCAASGSTFSTYAMGWFRQAPGKEREFVASINWGGGNTYYADS


 3

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKKVSFGDWGQGTLVTVSS





DKK1-
298
EVQLVESGGGLVQPGGSLRLSCAASGNIFRINAMGWFRQAPGKERELVAAISRSGGSTNYADSV


 4

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKDKNGPWGQGTLVTVSS





DKK1-
299
EVQLVESGGGLVQPGGSLRLSCAASGGLTFSTYAMGWFRQAPGKEREFVAAVSWSGGNTYYA


 5

DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEIGYYSGGTYYSSEAWGQGTLVTVSS





DKK1-
300
EVQLVESGGGLVQPGGSLRLSCAASGIPFSTRTMGWFRQAPGKEREFVAAISSGATTLYADSVK


 6

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
301
EVQLVESGGGLVQPGGSLRLSCAASGISGSVFSRTPMGWFRQAPGKEREFVAALSKDGARTYY


 7

ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDLVGTDAFDIWGQGTLVTVSS





DKK1-
302
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYAMGWFRQAPGKEREFVAAISWSDGSTYYADS


 8

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEGGYSGTYYYTGDFDWGQGTLVTVSS





DKK1-
303
EVQLVESGGGLVQPGGSLRLSCAASGRSFSMYAMGWFRQAPGKERELVAAISWSGGSTVYAD


 9

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEGGYSGTYYYTGDFDWGQGTLVTVSS





DKK1-
304
EVQLVESGGGLVQPGGSLRLSCAASGRTISNYAMGWFRQAPGKEREFVAAISWRGGSTYYADS


10

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKYVSVSYFSTSSNYDWGQGTLVTVSS





DKK1-
305
EVQLVESGGGLVQPGGSLRLSCAASGPTVDAYAMGWFRQAPGKEREFVSAISWSGSATFYADS


11

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVRYFSTSSNYDWGQGTLVTVSS





DKK1-
306
EVQLVESGGGLVQPGGSLRLSCAASGRTFNSRPMGWFRQAPGKEREFVAAISSSASSTYYADSV


12

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRLYGHSRARYDWGQGTLVTVSS





DKK1-
307
EVQLVESGGGLVQPGGSLRLSCAASGFLMYDRAMGWFRQAPGKEREIVAAISRTGSSIYYADS


13

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
308
EVQLVESGGGLVQPGGSLRLSCAASGSIFSRLAMGWFRQAPGKEREFVAAISSSGISTIYADSVK


14

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGQRGRWLEPLTGWGQGTLVTVSS





DKK1-
309
EVQLVESGGGLVQPGGSLRLSCAASGFTFGTTTMGWFRQAPGKERELVAAITSGGGTTYYADS


15

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKDLAAAGYYYYYGMDVWGQGTLVTVSS





DKK1-
310
EVQLVESGGGLVQPGGSLRLSCAASGNIFTRNVMGWFRQAPGKEREFVGAINWSGGNTVYADS


16

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARHDHNNRGLDYWGQGTLVTVSS





DKK1-
311
EVQLVESGGGLVQPGGSLRLSCAASGGTFSRYAMGWFRQAPGKEREFVAGISWTLGRTYYADS


17

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDPFGKWGQGTLVTVSS





DKK1-
312
EVQLVESGGGLVQPGGSLRLSCAASGITFRFKAMGWFRQAPGKEREFVAAINRSGRSTRYADSV


18

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAESHGSTSPRNPLQYDWGQGTLVTVSS





DKK1-
313
EVQLVESGGGLVQPGGSLRLSCAASGRTYGMGWFRQAPGKEREFVAGISWTLGRTYYADSVK


19

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCASDESDAANWGQGTLVTVSS





DKK1-
314
EVQLVESGGGLVQPGGSLRLSCAASGPTFSIYDMGWFRQAPGKEREFVTGSNTGGTTYADSVK


20

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCATCTDFEYDWGQGTLVTVSS





DKK1-
315
EVQLVESGGGLVQPGGSLRLSCAASGIPSSIRAMGWFRQAPGKEREWVSGISISDSSTYYADSVK


21

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGKRYGYYDWGQGTLVTVSS





DKK1-
316
EVQLVESGGGLVQPGGSLRLSCAASGSTLSINAMGWFRQAPGKERELVAAISWSGGTAYADSV


22

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQSRYRSNYYDHDKYAWGQGTLVTVSS





DKK1-
317
EVQLVESGGGLVQPGGSLRLSCAASGYNFSTFCMGWFRQAPGKEREWVAAISGGGSTMYADS


23

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASKWYGGFGDTDIEWGQGTLVTVSS





DKK1-
318
EVQLVESGGGLVQPGGSLRLSCAASGSSFSAYGMGWFRQAPGKEREFVAGISWTLGRTYYADS


24

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWGQGTLVTVSS





DKK1-
319
EVQLVESGGGLVQPGGSLRLSCAASGSTSRSYGMGWFRQAPGKEREFVAGISWTLGRTYYADS


25

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDPSGKWGQGTLVTVSS





DKK1-
320
EVQLVESGGGLVQPGGSLRLSCAASGFSLDYYGMGWFRQAPGKEREVVASIRWNAKPYYADS


26

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGKRYGYYDWGQGTLVTVSS





DKK1-
321
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYAMGWFRQAPGKEREWVASISTSGKTTYYADS


27

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYEWGQGTLVTVSS





DKK1-
322
EVQLVESGGGLVQPGGSLRLSCAASGLTTVYTMGWFRQAPGKEREFVAAISWYVSTTFYADSV


28

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEGGYSGTYYYTGDFDWGQGTLVTVSS





DKK1-
323
EVQLVESGGGLVQPGGSLRLSCAASGSIGGLNAMGWFRQAPGKEREFVAAINYSGRSTVYADS


29

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGAGRDRGFSRAQYAWGQGTLVTVSS





DKK1-
324
EVQLVESGGGLVQPGGSLRLSCAASGRTFSKYAMGWFRQAPGKEREFVAAISWSGESTYYADS


30

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFYTSSNYDWGQGTLVTVSS





DKK1-
325
EVQLVESGGGLVQPGGSLRLSCAASGRTLSRSAMGWFRQAPGKERELVAAISWSGGSTYYADS


31

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
326
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNGPMGWFRQAPGKEREFVAAISRGGKISHYADS


32

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYYGHSRARYDWGQGTLVTVSS





DKK1-
327
EVQLVESGGGLVQPGGSLRLSCAASGRSLNTYTMGWFRQAPGKERELVAVIISGGSTAYADSV


33

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
328
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDRAMGWFRQAPGKEREFVAAISWSGGSTYYADS


34

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFYTSSNYDWGQGTLVTVSS





DKK1-
329
EVQLVESGGGLVQPGGSLRLSCAASGRTFTTYPMGWFRQAPGKEREFVAAISSSGSSTVYADSV


35

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
330
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVAAINWSGASTVYADS


36

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
331
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYSMGWFRQAPGKEREFIAAINLSSGSTYYADSV


37

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYEWGQGTLVTVSS





DKK1-
332
EVQLVESGGGLVQPGGSLRLSCAASGTSFSIGAMGWFRQAPGKEREWVSSISPGGLFPYYADSV


38

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARDAIVGVTDTSGYRWGQGTLVTVSS





DKK1-
333
EVQLVESGGGLVQPGGSLRLSCAASGTVFSISDMGWFRQAPGKEREWVSAISPGGGYTVYADS


39

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARSSWFDCGVQGRDLGNEYDWGQGTLVTVSS





DKK1-
334
EVQLVESGGGLVQPGGSLRLSCAASGRTISSFRMGWFRQAPGKEREFVAAISRGGNVTPYADSV


40

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAANSDSGFDSYSVWAAYEWGQGTLVTVSS





DKK1-
335
EVQLVESGGGLVQPGGSLRLSCAASGRTLSRSAMGWFRQAPGKERELVAAISWSGGSTYYADS


41

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
336
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSLPMGWFRQAPGKERELVAAITSGGRTYADSVK


42

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
337
EVQLVESGGGLVQPGGSLRLSCAASGTSFSVGAMGWFRQAPGKEREFVGAVSWSGGTTVYAD


43

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
338
EVQLVESGGGLVQPGGSLRLSCAASGRGAMGWFRQAPGKEREFVAAINRSGKSTYYADSVKG


44

RFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
339
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNFAMGWFRQAPGKEREFVAAISATGSTYYADSV


45

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
340
EVQLVESGGGLVQPGGSLRLSCAASGRTLSSITMGWFRQAPGKERELVATITRAGSTNYADSVK


46

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYYGHSRARYDWGQGTLVTVSS





DKK1-
341
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSLPMGWFRQAPGKERELVASISSGGSTYYADSVK


47

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
342
EVQLVESGGGLVQPGGSLRLSCAASGRSFGNFPMGWFRQAPGKERELVAAVTSGGSTYYADSV


48

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
343
EVQLVESGGGLVQPGGSLRLSCAASGFTFTNYAMGWFRQAPGKEREVVAVVNWSGRRTYYA


49

DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVQYFSTSSNYDWGQGTLVTVSS





DKK1-
344
EVQLVESGGGLVQPGGSLRLSCAASGRTFSLYTMGWFRQAPGKEREFVAAINRSGKSTYYADS


50

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
345
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTSAMGWFRQAPGKEREFVAVINRSGKTTYYADS


51

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
346
EVQLVESGGGLVQPGGSLRLSCAASGRTFSISAMGWFRQAPGKEREFVAAISPSGNTYYADSVK


52

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
347
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYPMGWFRQAPGKEREFVASISRSGTTYYADSVK


53

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
348
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDRAMGWFRQAPGKEREFVAAISTGGTTVYADSV


54

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
349
EVQLVESGGGLVQPGGSLRLSCAASGFTFGDYAMGWFRQAPGKEREFVGAIDWSGRRITYADS


55

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS





DKK1-
350
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSLPMGWFRQAPGKERELVARISSSGGTTYYADSV


56

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRLYGHSRARYDWGQGTLVTVSS





DKK1-
351
EVQLVESGGGLVQPGGSLRLSCAASGSTFSKAVMGWFRQAPGKEREFVATITFSGARTHYADS


57

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
352
EVQLVESGGGLVQPGGSLRLSCAASGRRFSADVMGWFRQAPGKEREFVAAIRSGGTTLYADSV


58

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
353
EVQLVESGGGLVQPGGSLRLSCAASGFTVSNYAMGWFRQAPGKEREFVAAISWSGGSTYYADS


59

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVRYFSTSSNYDWGQGTLVTVSS





DKK1-
354
EVQLVESGGGLVQPGGSLRLSCAASGRAFSSSAMGWFRQAPGKEREFVAAINRGGKISHYADS


60

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRLYGHSRARYDWGQGTLVTVSS





DKK1-
355
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSNVMGWFRQAPGKEREFVSAISRSGGSTVYADSV


61

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
356
EVQLVESGGGLVQPGGSLRLSCAASGRTFSYNPMGWFRQAPGKEREFVAAINRSGKSTYYADS


62

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
357
EVQLVESGGGLVQPGGSLRLSCAASGFRMYDRVMGWFRQAPGKEREFVATISRSGGRTYYADS


63

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRLYGHSRARYDWGQGTLVTVSS





DKK1-
358
EVQLVESGGGLVQPGGSLRLSCAASGRTSSAYAMGWFRQAPGKEREFVAAISRSGASAYYADS


64

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
359
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRFAMGWFRQAPGKERELVAAISARGMPAYADSV


65

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
360
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYSMGWFRQAPGKEREFIAAINLSSGSTYYADSV


66

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYEWGQGTLVTVSS





DKK1-
361
EVQLVESGGGLVQPGGSLRLSCAASGRTFRSYPMGWFRQAPGKEREFVAAISMSGKETWYADS


67

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
362
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYAMGWFRQAPGKEREWVASISTSGKTTYYADS


68

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYEWGQGTLVTVSS





DKK1-
363
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYPMGWFRQAPGKEREFVAAISRSGGSTVYADSV


69

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
364
EVQLVESGGGLVQPGGSLRLSCAASGTSFSIGAMGWFRQAPGKERELLAAISRSGASAYYADSV


70

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
365
EVQLVESGGGLVQPGGSLRLSCAASGRTISNAAMGWFRQAPGKERELVAVIRSGGTTLYADSV


71

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
366
EVQLVESGGGLVQPGGSLRLSCAASGGIYRVNTMGWFRQAPGKEREFVAAINWSGGSTIYADS


72

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
367
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSKTMGWFRQAPGKEREFVAAINWSGGLTVYADS


73

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
368
EVQLVESGGGLVQPGGSLRLSCAASGIPFSSRTMGWFRQAPGKEREFVAAISRSGTGTYYADSV


74

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
369
EVQLVESGGGLVQPGGSLRLSCAASGPTVDAYAMGWFRQAPGKEREFVSAISWSGSATFYADS


75

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVRYFSTSSNYDWGQGTLVTVSS





DKK1-
370
EVQLVESGGGLVQPGGSLRLSCAASGIPFSTRTMGWFRQAPGKEREFVAAISSGATTLYADSVK


76

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
371
EVQLVESGGGLVQPGGSLRLSCAASGRTFNSRPMGWFRQAPGKEREFVAAISSSASSTYYADSV


77

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRLYGHSRARYDWGQGTLVTVSS





DKK1-
372
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSSPMGWFRQAPGKERELVAVILRGGSTNYADSVK


78

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
373
EVQLVESGGGLVQPGGSLRLSCAASSIGIAFSSRTMGWFRQAPGKEREFVAAVTRSGGKSYYAD


79

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
374
EVQLVESGGGLVQPGGSLRLSCAASGFLMYDRAMGWFRQAPGKEREIVAAISRTGSSIYYADS


80

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
375
EVQLVESGGGLVQPGGSLRLSCAASGIAFQGYAMGWFRQAPGKERELVAAIDTNGGHTLYADS


81

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEGGYRGTYYYTGDFDWGQGTLVTVSS





DKK1-
376
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNTLMGWFRQAPGKEREWVARITSGGSTHYADNV


82

KGRFTIITDNSKNTAYLLMISLKPQNTAEYYWSAGNGGRHYGHNRPRYDWCHGGLVTVIT





DKK1-
377
EVQLVESGGGLVQPGGSLRLSCAASGSTSSLRTMGWFRQAPGKEREFVAAISWSLSRTHYADS


83

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS





DKK1-
378
EVQLVESGGGLVQPGGSLRLSCAASGRTFTNYPMGWFRQAPGKEREFVAAINRGGSTTYYADS


84

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNRRRPYGYSHSRYDWGQGTLVTVSS





DKK1-
379
EVQLVESGGGLVQPGGSLRLSCAASGITFKRYVMGWFRQAPGKEREFVATITSRDGTTYYYAD


85

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYWAAGNGGRNYGHSRSRYEWGQGTLVTVSS





DKK1-
380
EVQLVESGGGLVQPGGSLRLSCAASGRTFINYAMGWFRQAPGKEREFVAAIIWTGVSTYYADS


86

VKGRFTIIADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPNRVSVRYFSTNNNYDWGQGTLVTVSS





DKK1-
381
EVQLVESGGGLVQPGGSLRLSCAASGRTFSGYTMGWFRQAPGKEREFVAAISWSGGSTYYADS


87

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYHCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
382
EVQLVESGGGLVQPGGSLRLSCAASGLTFSTYPMGWFRQAPGKERELVALIASNGNTHYADSV


88

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
383
EVQLVESGGGLVQPGGSLRLSCAASGFTSDDYAMGWFRQAPGKEREFVAAISWSGGRTYYAD


89

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVRYFSTSSNYDWGQGTLVTVSS





DKK1-
384
EVQLVESGGGLVQPGGSLRLSCAASGRTFRSYAMGWFRQAPGKEREFVAAISWSPGRTHYADS


90

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRISVQYFTTSSNYDWGQGTLVTVSS





DKK1-
385
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSYTMGWFRQAPGKEREFVAAISWSGGRTYYADS


91

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSFSYFSTSSNYEWGQGTLVTVSS





DKK1-
386
EVQLVESGGGLVQPGGSLRLSCAASGFGFGSYNMGWFRQAPGKEREFVAMISWTGGSTYYAD


92

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVRYFNTSSNYDWGQGTLVTVSS





DKK1-
387
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYPMGWFRQAPGKEREFVAAISWSGGSTVYADS


93

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYYNHSRTRYEWGQGTLVTVSS





DKK1-
388
EVQLVESGGGLVQPGGSLRLSCAASGRIFGGYAMGWFRQAPGKEREFVAAISWSGASAIYADS


94

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGSRYGHSRARYDWGQGTLVTVSS





DKK1-
389
EVQLVESGGGLVQPGGSLRLSCAASGSIENINAMGWFRQAPGKEREFVAAISSGGGITIYADSVK


95

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
390
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSFGNFPMGWFRQAPGKEREFVAAINWSSRSTVYA


96

DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
391
EVQLVESGGGLVQPGGSLRLSCAASGNIDRLYAMGWFRQAPGKEREFVAAISWSVSSTYYADS


97

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEGGYSGTYYYTGDFDWGQGTLVTVSS





DKK1-
392
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNFAMGWFRQAPGKEREFVAVILRGGSTNYADSV


98

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS
















TABLE 6







Additional Variable Heavy Chain Domain Sequences










SEQ



DKK1
ID



Variant
NO
VH Sequence












DKK1-
394
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNFAMGWFRQAPGKEREFVAVILRGGSTNYADSVK


99

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS





DKK1-
395
EVQLVESGGGLVQPGGSLRLSCAASGNIDRLYAMGWFRQAPGKEREFVAAISWSVSSTYYADSV


100

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEGGYSGTYYYTGDFDWGQGTLVTVSS





DKK1-
396
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSFGNFPMGWFRQAPGKEREFVAAINWSSRSTVYA


101

DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
397
EVQLVESGGGLVQPGGSLRLSCAASGSIENINAMGWFRQAPGKEREFVAAISSGGGITIYADSVK


102

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
398
EVQLVESGGGLVQPGGSLRLSCAASGRIFGGYAMGWFRQAPGKEREFVAAISWSGASAIYADSV


103

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGSRYGHSRARYDWGQGTLVTVSS





DKK1-
399
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYPMGWFRQAPGKEREFVAAISWSGGSTVYADSV


104

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYYNHSRTRYEWGQGTLVTVSS





DKK1-
400
EVQLVESGGGLVQPGGSLRLSCAASGFGFGSYNMGWFRQAPGKEREFVAMISWTGGSTYYADS


105

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVRYFNTSSNYDWGQGTLVTVSS





DKK1-
401
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSYTMGWFRQAPGKEREFVAAISWSGGRTYYADS


106

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSFSYFSTSSNYEWGQGTLVTVSS





DKK1-
402
EVQLVESGGGLVQPGGSLRLSCAASGRTFRSYAMGWFRQAPGKEREFVAAISWSPGRTHYADS


107

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRISVQYFTTSSNYDWGQGTLVTVSS





DKK1-
403
EVQLVESGGGLVQPGGSLRLSCAASGFTSDDYAMGWFRQAPGKEREFVAAISWSGGRTYYADS


108

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVRYFSTSSNYDWGQGTLVTVSS





DKK1-
404
EVQLVESGGGLVQPGGSLRLSCAASGLTFSTYPMGWFRQAPGKERELVALIASNGNTHYADSVK


109

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
405
EVQLVESGGGLVQPGGSLRLSCAASGRTFSGYTMGWFRQAPGKEREFVAAISWSGGSTYYADS


110

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYHCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
406
EVQLVESGGGLVQPGGSLRLSCAASGRTFINYAMGWFRQAPGKEREFVAAIIWTGVSTYYADSV


111

KGRFTIIADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPNRVSVRYFSTNNNYDWGQGTLVTVSS





DKK1-
407
EVQLVESGGGLVQPGGSLRLSCAASGITFKRYVMGWFRQAPGKEREFVATITSRDGTTYYYADS


112

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYWAAGNGGRNYGHSRSRYEWGQGTLVTVSS





DKK1-
408
EVQLVESGGGLVQPGGSLRLSCAASGRTFTNYPMGWFRQAPGKEREFVAAINRGGSTTYYADSV


113

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNRRRPYGYSHSRYDWGQGTLVTVSS





DKK1-
409
EVQLVESGGGLVQPGGSLRLSCAASGSTSSLRTMGWFRQAPGKEREFVAAISWSLSRTHYADSV


114

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS





DKK1-
410
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNTLMGWFRQAPGKEREWVARITSGGSTHYADNV


115

KGRFTIITDNSKNTAYLLMISLKPQNTAEYYWSAGNGGRHYGHNRPRYDWCHGGLVTVIT





DKK1-
411
EVQLVESGGGLVQPGGSLRLSCAASGIAFQGYAMGWFRQAPGKERELVAAIDTNGGHTLYADS


116

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEGGYRGTYYYTGDFDWGQGTLVTVSS





DKK1-
412
EVQLVESGGGLVQPGGSLRLSCAASGFLMYDRAMGWFRQAPGKEREIVAAISRTGSSIYYADSV


117

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
413
EVQLVESGGGLVQPGGSLRLSCAASSIGIAFSSRTMGWFRQAPGKEREFVAAVTRSGGKSYYAD


118

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
414
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSSPMGWFRQAPGKERELVAVILRGGSTNYADSVK


119

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
415
EVQLVESGGGLVQPGGSLRLSCAASGRTFNSRPMGWFRQAPGKEREFVAAISSSASSTYYADSV


120

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRLYGHSRARYDWGQGTLVTVSS





DKK1-
416
EVQLVESGGGLVQPGGSLRLSCAASGIPFSTRTMGWFRQAPGKEREFVAAISSGATTLYADSVKG


121

RFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
417
EVQLVESGGGLVQPGGSLRLSCAASGPTVDAYAMGWFRQAPGKEREFVSAISWSGSATFYADS


122

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVRYFSTSSNYDWGQGTLVTVSS





DKK1-
418
EVQLVESGGGLVQPGGSLRLSCAASGIPFSSRTMGWFRQAPGKEREFVAAISRSGTGTYYADSVK


123

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
419
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSKTMGWFRQAPGKEREFVAAINWSGGLTVYADS


124

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
420
EVQLVESGGGLVQPGGSLRLSCAASGGIYRVNTMGWFRQAPGKEREFVAAINWSGGSTIYADSV


125

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
421
EVQLVESGGGLVQPGGSLRLSCAASGRTISNAAMGWFRQAPGKERELVAVIRSGGTTLYADSVK


126

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
422
EVQLVESGGGLVQPGGSLRLSCAASGTSFSIGAMGWFRQAPGKERELLAAISRSGASAYYADSV


127

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
423
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYPMGWFRQAPGKEREFVAAISRSGGSTVYADSV


128

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
424
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYAMGWFRQAPGKEREWVASISTSGKTTYYADS


129

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYEWGQGTLVTVSS





DKK1-
425
EVQLVESGGGLVQPGGSLRLSCAASGRTFRSYPMGWFRQAPGKEREFVAAISMSGKETWYADS


130

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
426
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYSMGWFRQAPGKEREFIAAINLSSGSTYYADSVK


131

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYEWGQGTLVTVSS





DKK1-
427
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRFAMGWFRQAPGKERELVAAISARGMPAYADSV


132

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
428
EVQLVESGGGLVQPGGSLRLSCAASGRTSSAYAMGWFRQAPGKEREFVAAISRSGASAYYADSV


133

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
429
EVQLVESGGGLVQPGGSLRLSCAASGFRMYDRVMGWFRQAPGKEREFVATISRSGGRTYYADS


134

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRLYGHSRARYDWGQGTLVTVSS





DKK1-
430
EVQLVESGGGLVQPGGSLRLSCAASGRTFSYNPMGWFRQAPGKEREFVAAINRSGKSTYYADSV


135

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
431
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSNVMGWFRQAPGKEREFVSAISRSGGSTVYADSV


136

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
432
EVQLVESGGGLVQPGGSLRLSCAASGRAFSSSAMGWFRQAPGKEREFVAAINRGGKISHYADSV


137

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRLYGHSRARYDWGQGTLVTVSS





DKK1-
433
EVQLVESGGGLVQPGGSLRLSCAASGFTVSNYAMGWFRQAPGKEREFVAAISWSGGSTYYADS


138

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVRYFSTSSNYDWGQGTLVTVSS





DKK1-
434
EVQLVESGGGLVQPGGSLRLSCAASGRRFSADVMGWFRQAPGKEREFVAAIRSGGTTLYADSV


139

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
435
EVQLVESGGGLVQPGGSLRLSCAASGSTFSKAVMGWFRQAPGKEREFVATITFSGARTHYADSV


140

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
436
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSLPMGWFRQAPGKERELVARISSSGGTTYYADSV


141

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRLYGHSRARYDWGQGTLVTVSS





DKK1-
437
EVQLVESGGGLVQPGGSLRLSCAASGFTFGDYAMGWFRQAPGKEREFVGAIDWSGRRITYADS


142

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS





DKK1-
438
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDRAMGWFRQAPGKEREFVAAISTGGTTVYADSV


143

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
439
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYPMGWFRQAPGKEREFVASISRSGTTYYADSVK


144

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
440
EVQLVESGGGLVQPGGSLRLSCAASGRTFSISAMGWFRQAPGKEREFVAAISPSGNTYYADSVK


145

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
441
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTSAMGWFRQAPGKEREFVAVINRSGKTTYYADSV


146

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
442
EVQLVESGGGLVQPGGSLRLSCAASGRTFSLYTMGWFRQAPGKEREFVAAINRSGKSTYYADSV


147

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
443
EVQLVESGGGLVQPGGSLRLSCAASGFTFTNYAMGWFRQAPGKEREVVAVVNWSGRRTYYAD


148

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVQYFSTSSNYDWGQGTLVTVSS





DKK1-
444
EVQLVESGGGLVQPGGSLRLSCAASGRSFGNFPMGWFRQAPGKERELVAAVTSGGSTYYADSV


149

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
445
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSLPMGWFRQAPGKERELVASISSGGSTYYADSVK


150

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
446
EVQLVESGGGLVQPGGSLRLSCAASGRTLSSITMGWFRQAPGKERELVATITRAGSTNYADSVK


151

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYYGHSRARYDWGQGTLVTVSS





DKK1-
447
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNFAMGWFRQAPGKEREFVAAISATGSTYYADSVK


152

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
448
EVQLVESGGGLVQPGGSLRLSCAASGRGAMGWFRQAPGKEREFVAAINRSGKSTYYADSVKGR


153

FTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
449
EVQLVESGGGLVQPGGSLRLSCAASGTSFSVGAMGWFRQAPGKEREFVGAVSWSGGTTVYADS


154

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
450
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSLPMGWFRQAPGKERELVAAITSGGRTYADSVKG


155

RFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
451
EVQLVESGGGLVQPGGSLRLSCAASGRTLSRSAMGWFRQAPGKERELVAAISWSGGSTYYADS


156

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
452
EVQLVESGGGLVQPGGSLRLSCAASGRTISNYAMGWFRQAPGKEREFVAAISWRGGSTYYADS


157

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKYVSVSYFSTSSNYDWGQGTLVTVSS





DKK1-
453
EVQLVESGGGLVQPGGSLRLSCAASGHTFRGYVMGWFRQAPGKEREFVAAISGRSGNTYYADS


158

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRLYGHSRARYDWGQGTLVTVSS





DKK1-
454
EVQLVESGGGLVQPGGSLRLSCAASGSIVRGNTMGWFRQAPGKEREFVAAISSSGSSTVYADSV


159

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
455
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYPMGWFRQAPGKEREFVAAISRSGGSTLYADSV


160

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
456
EVQLVESGGGLVQPGGSLRLSCAASGNIFGVNPMGWFRQAPGKEREFVAFISGTGGSTYYADSV


161

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
457
EVQLVESGGGLVQPGGSLRLSCAASGHTFRGYAMGWFRQAPGKEREFVAAINRSGSSTVYADS


162

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
458
EVQLVESGGGLVQPGGSLRLSCAASGRTLRRYVMGWFRQAPGKERELVARIISDGNTYYADSVK


163

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
459
EVQLVESGGGLVQPGGSLRLSCAASGRALSSSVMGWFRQAPGKERELVALLWSGGRTLYADSV


164

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYYGHSRARYDWGQGTLVTVSS





DKK1-
460
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNGPMGWFRQAPGKEREWVASITSTGSTYADSVKG


165

RFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRLYGHSRARYDWGQGTLVTVSS





DKK1-
461
EVQLVESGGGLVQPGGSLRLSCAASGLTFGSAPMGWFRQAPGKERELVAAITSGGRTYADSVKG


166

RFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
462
EVQLVESGGGLVQPGGSLRLSCAASGFTFGSTTMGWFRQAPGKEREFVAAVNWSGRRELYADS


167

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFYTSSNYDWGQGTLVTVSS





DKK1-
463
EVQLVESGGGLVQPGGSLRLSCAASGRFTSSSPMGWFRQAPGKERELVASITSGGRTSYADSVK


168

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
464
EVQLVESGGGLVQPGGSLRLSCAASGRTFNSRPMGWFRQAPGKERELVASITSDGSTYYADSVK


169

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
465
EVQLVESGGGLVQPGGSLRLSCAASGRTLSSVMGWFRQAPGKEREFVATISQRGRRYADSVKGR


170

FTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
466
EVQLVESGGGLVQPGGSLRLSCAASGGTFSRYAMGWFRQAPGKEREFVAAINRSGKSTYYADS


171

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
467
EVQLVESGGGLVQPGGSLRLSCAASGRTFNSRPMGWFRQAPGKERELVATISSGSTTYYADSVK


172

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
468
EVQLVESGGGLVQPGGSLRLSCAASGSTFRGAAMGWFRQAPGKEREFVAAITSAGGTTYYADS


173

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
469
EVQLVESGGGLVQPGGSLRLSCAASGSTFSKAVMGWFRQAPGKERELVAGILSSGATVYADSVK


174

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
470
EVQLVESGGGLVQPGGSLRLSCAASGTTFRINVMGWFRQAPGKEREFVGAISRSGGSTYYADSV


175

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
471
EVQLVESGGGLVQPGGSLRLSCAASGFPVNRYSMGWFRQAPGKEREFVAAISRSGGSTYYADSV


176

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
472
EVQLVESGGGLVQPGGSLRLSCAASGHTFNTYPMGWFRQAPGKERELVAAITSNGRPSYADSVK


177

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
473
EVQLVESGGGLVQPGGSLRLSCAASGRTFGRRAMGWFRQAPGKEREFVAAINWSGGSTVYADS


178

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
474
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYPMGWFRQAPGKEREFVALISRSGGTTFYADSVK


179

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYDWGQGTLVTVSS





DKK1-
475
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNFAMGWFRQAPGKERELVAFSSSGGRTIYADSVK


180

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
476
EVQLVESGGGLVQPGGSLRLSCAASGLTTVYTMGWFRQAPGKEREVVAAISRTGGSTYYADSV


181

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
477
EVQLVESGGGLVQPGGSLRLSCAASGTTFRINVMGWFRQAPGKEREFVAAINRSGKSTYYADSV


182

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
478
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTHAMGWFRQAPGKEREFVAHITRLGVTYYADSV


183

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
479
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVAAINWSGASTVYADSV


184

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
480
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYVMGWFRQAPGKEREFVAAIDWSGSRSYYADS


185

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFYTSSNYDWGQGTLVTVSS





DKK1-
481
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDIAMGWFRQAPGKEREFVAAINWSGARTYYADS


186

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVQYFSTSSNYDWGQGTLVTVSS





DKK1-
482
EVQLVESGGGLVQPGGSLRLSCAASGIPFSTRTMGWFRQAPGKEREFVAAISWSGGSTIYADSVK


187

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
483
EVQLVESGGGLVQPGGSLRLSCAASGFTFDEYAMGWFRQAPGKEREFVGAIDWSGRRITYADSV


188

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRISVSYFSTSSNYDWGQGTLVTVSS





DKK1-
484
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYAMGWFRQAPGKEREFVAAISWSGGSTVYADS


189

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSFSYFSTSSNYEWGQGTLVTVSS





DKK1-
485
EVQLVESGGGLVQPGGSLRLSCAASGITFKRYAMGWFRQAPGKEREFVAAINWSGASTVYADS


190

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
486
EVQLVESGGGLVQPGGSLRLSCAASGFTFGHYAMGWFRQAPGKEREFVAAISWSLTRTHYADS


191

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVQYFSTSSNYDWGQGTLVTVSS





DKK1-
487
EVQLVESGGGLVQPGGSLRLSCAASGSITSINPMGWFRQAPGKEREFVAAISRSGASAYYADSVK


192

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
488
EVQLVESGGGLVQPGGSLRLSCAASGGRIFSNYAMGWFRQAPGKEREFVAAISWSGGSTYYADS


193

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS





DKK1-
489
EVQLVESGGGLVQPGGSLRLSCAASGRTFTMGWFRQAPGKEREFVAAINWRSGGSTYYADSVK


194

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
490
EVQLVESGGGLVQPGGSLRLSCAASGGTFNGRAMGWFRQAPGKEREFVAAISRSGGGIYYADSV


195

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
491
EVQLVESGGGLVQPGGSLRLSCAASGFNFDDYAMGWFRQAPGKERELVAAISWSLSRTHYADS


196

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS





DKK1-
492
EVQLVESGGGLVQPGGSLRLSCAASSIGIAFSSRTMGWFRQAPGKEREFVAAVTRSGGKSYYAD


197

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
493
EVQLVESGGGLVQPGGSLRLSCAASGSTFRINVMGWFRQAPGKEREFVAAISASGSALYADSVK


198

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
494
EVQLVESGGGLVQPGGSLRLSCAASGGIYRVNTMGWFRQAPGKEREFVAAINWSGGSTVYADS


199

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
495
EVQLVESGGGLVQPGGSLRLSCAASGRSLNTYTMGWFRQAPGKERELVAVIISGGSTAYADSVK


200

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
496
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYAMGWFRQAPGKEREWVASISTSGKTTYYADS


201

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
497
EVQLVESGGGLVQPGGSLRLSCAASGTTVRIRTMGWFRQAPGKEREFVAAINGGGNTYYADSV


202

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
498
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTYSMGWFRQAPGKEREFVAAINWSGSSTVYADSV


203

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
499
EVQLVESGGGLVQPGGSLRLSCAASGIPFSTRTMGWFRQAPGKEREFVAAISSGATTLYADSVKG


204

RFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
500
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYAMGWFRQAPGKEREFVALIRIKDGSIYYADSV


205

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
501
EVQLVESGGGLVQPGGSLRLSCAASGHTFNTYPMGWFRQAPGKERELVAAISRSGGKLYYADS


206

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYEWGQGTLVTVSS





DKK1-
502
EVQLVESGGGLVQPGGSLRLSCAASGRSFSEYAMGWFRQAPGKEREFLAAISRDGAATYYADSV


207

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
503
EVQLVESGGGLVQPGGSLRLSCAASGRTFTTYPMGWFRQAPGKEREFVAAISSSGSSTVYADSV


208

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
504
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYAMGWFRQAPGKEREFVAAISWSGGSTLYADSV


209

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
505
EVQLVESGGGLVQPGGSLRLSCAASGSIFTINAMGWFRQAPGKERELVAAINWSGSSTVYADSV


210

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
506
EVQLVESGGGLVQPGGSLRLSCAASGTSISNRVMGWFRQAPGKERELVAGISSGGNLKAYADSV


211

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
507
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSAIEGAGSDTYYADS


212

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKQIPGRKWTANGRKDYWGQGTLVTVSS





DKK1-
508
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSEISPSGKKKYYADS


213

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKYPKNFDYWGQGTLVTVSS





DKK1-
509
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSAAMSWVRQAPGKGLEWVAAISGGGADTYYADS


214

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
510
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSAIQQRGLKTAYADS


215

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGIRGWIGHDTQPFDYWGQGTLVTVSS





DKK1-
511
EVQLLESGGGLVQPGGSLRLSCAASGFTFDRYRMMWVRQAPGKGLEWVSEISPSGKKKYYADS


216

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKYPKNFDYWGQGTLVTVSS





DKK1-
512
EVQLLESGGGLVQPGGSLRLSCAASGFTSNNFAMTWVRQAPGKGLEWVAAISGGGADTYYADS


217

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKLQKRGPRFDYWGQGTLVTVSS





DKK1-
513
EVQLLESGGGLVQPGGSLRLSCAASGFTFGNYAMAWVRQAPGKGLEWVSVISSSGGETSYADS


218

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVKAPLRSGGVDYWGQGTLVTVSS





DKK1-
514
EVQLLESGGGLVQPGGSLRLSCAASGFTFDRYRMMWVRQAPGKGLEWVSEISPSGKKKYYADS


219

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFPSTHGKFDYWGQGTLVTVSS





DKK1-
515
EVQLLESGGGLVQPGGSLRLSCAASGLTFPNYGMGWVRQAPGKGLEWVSSIDDRGRYTYYADS


220

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVIAAAGAFDYWGQGTLVTVSS





DKK1-
516
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVGYISNSGSTSYNDSV


221

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKRTRSKFDYWGQGTLVTVSS





DKK1-
517
EVQLLESGGGLVQPGGSLRLSCAASGFTFTHYSMGWVRQAPGKGLEWVSGITRSGSTNYRDSVK


222

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKRTENRGVSFDYWGQGTLVTVSS





DKK1-
518
EVQLLESGGGLVQPGGSLRLSCAASGFTFEEKEMIWVRQAPGKGLEWVSMISSSGLWTYYADSV


223

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGWRRFDYWGQGTLVTVSS





DKK1-
519
EVQLLESGGGLVQPGGSLRLSCAASGFTFDRYRMMWVRQAPGKGLEWVSEISPSGKKKYYADS


224

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKYTWNGYWGQGTLVTVSS





DKK1-
520
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMAWVRQAPGKGLEWVSEISPSGKKKYYADS


225

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASLSRGYWGQGTLVTVSS





DKK1-
521
EVQLLESGGGLVQPGGSLRLSCAASGFTFGNYAMAWVRQAPGKGLEWVSSIWPRGQKTYYADS


226

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFRGRGFDYWGQGTLVTVSS





DKK1-
522
EVQLLESGGGLVQPGGSLRLSCAASGFTFAKYKMWWVRQAPGKGLEWVSEISPSGKKKYYADS


227

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKAHNAFDYWGQGTLVTVSS





DKK1-
523
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYFMSWVRQAPGKGLEWVSAISGGGADTYYADSV


228

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGNYFDYWGQGTLVTVSS





DKK1-
524
EVQLLESGGGLVQPGGSLRLSCAASGFTFDRYRMMWVRQAPGKGLEWVSSISGYGSTTYYADS


229

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFRGRGFDYWGQGTLVTVSS





DKK1-
525
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYAMNWVRQAPGKGLEWVSSIGANGAPTYYADS


230

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDKRYRGSQHYFDYWGQGTLVTVSS





DKK1-
526
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYTMGWVRQAPGKGLEWVSSISNSGGSTYYADSV


231

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKAGRKFDYWGQGTLVTVSS





DKK1-
527
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYDMSWVRQAPGKGLEWVSDIGASGSATSYADSV


232

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKQSGSEDHFDYWGQGTLVTVSS





DKK1-
528
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSEISPSGKKKYYADS


233

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKWRREGYTGSKFDYWGQGTLVTVSS





DKK1-
529
EVQLLESGGGLVQPGGSLRLSCAASGGFSLSRYMHWVRQAPGKGLEWVSTINQAGLRTYYADS


234

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSRTGRYFDYWGQGTLVTVSS





DKK1-
530
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMAWVRQAPGKGLEWVGYINPSRGYTYYADS


235

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGYRHFDYWGQGTLVTVSS





DKK1-
531
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSVISSSGGETSYADS


236

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDLGQGFDYWGQGTLVTVSS





DKK1-
532
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSYISSSGSSTYYADSV


237

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKRTRSKFDYWGQGTLVTVSS





DKK1-
533
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVAAISGGGADTYYADS


238

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGLPKRGPRFDYWGQGTLVTVSS





DKK1-
534
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYAMNWVRQAPGKGLEWVSYIGPSGGKTYYADS


239

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPWFDYWGQGTLVTVSS





DKK1-
535
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVAAISGGGADTYYADS


240

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKPSRRFDYWGQGTLVTVSS





DKK1-
536
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYVMIWVRQAPGKGLEWVSAIQQRGLKTAYADSV


241

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSGPYYFDYWGQGTLVTVSS





DKK1-
537
EVQLLESGGGLVQPGGSLRLSCAASGFTFEDYQMGWVRQAPGKGLEWVSAITGTGGETYYADS


242

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKPGHRFDYWGQGTLVTVSS





DKK1-
538
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSGIYPSGGSTVYADS


243

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRYSQVHYALDYWGQGTLVTVSS





DKK1-
539
EVQLLESGGGLVQPGGSLRLSCAASGFTFKAYEIGWVRQAPGKGLEWVSGISPSGGITTYADSVK


244

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHRAGSSGWYSDYWGQGTLVTVSS





DKK1-
540
EVQLLESGGGLVQPGGSLRLSCAASGFTFEVYTMAWVRQAPGKGLEWVSAISGRGDNTYYADS


245

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKRTENRGVSFDYWGQGTLVTVSS





DKK1-
541
EVQLLESGGGLVQPGGSLRLSCAASGFTFGNYSMAWVRQAPGKGLEWVSNIWPRGQKTYYADS


246

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKVTGRGFDYWGQGTLVTVSS





DKK1-
542
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVADVNPNSGTSIYNDS


247

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGPGTRGDYWGQGTLVTVSS





DKK1-
543
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGKGLEWVSSISPSGGWTEYADSV


248

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYGAYFGLDYWGQGTLVTVSS





DKK1-
544
EVQLLESGGGLVQPGGSLRLSCAASGFTFAHEPMVWVRQAPGKGLEWVGKINYAGNTDYNDSV


249

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKKDYDYVWGSPYFDYWGQGTLVTVSS





DKK1-
545
EVQLLESGGGLVQPGGSLRLSCAASGFTFHESTMTWVRQAPGKGLEWVSVISSSGGETSYADSV


250

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIRVGPSGGAFDYWGQGTLVTVSS





DKK1-
546
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSEISPSGKKKYYADS


251

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFPSSQFRFDYWGQGTLVTVSS





DKK1-
547
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSEISPSGKKKYYADS


252

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKYPKNFNYWGQGTLVTVSS





DKK1-
548
KVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMAWVRQAPGKGLEWVGKINYAGNTDYNDS


253

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDKRYRGSQHYFDYWGQGTLVTVSS





DKK1-
549
EVQLLESGGGLVQPGGSLRLSCAASGLTFPNYGMGWVRQAPGKGLEWVSEISPSGKKKYYADS


254

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGLWAFDYWGQGTLVTVSS





DKK1-
550
EVQLLESGGGLVQPGGSLRLSCAASGFTFKAYEIGWVRQAPGKGVEWGSGIIPNGGITTYADSVK


255

GRFTISRDNSXNTLYLLMNSLIAEDAAVYYCGRHRAGSIGWYSDYWGQGTLVTVSS





DKK1-
551
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSDIGASGSATSYADS


256

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKRTRSKFDYWGQGTLVTVSS





DKK1-
552
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVAAISGGGADTYYADS


257

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGRRRFDYWGQGTLVTVSS





DKK1-
553
EVQLLESGGGLVQPGGSLRLSCAASGFTSNNFAMTWVRQAPGKGLEWVAAISGGGADTYYADS


258

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKLQKRGPRFDYWGQGTLVTVSS





DKK1-
554
EVQLLESGGGLVQPGGSLRLSCAASGFTFGNYAMAWVRQAPGKGLEWVSTIWARGQKTYYAD


259

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAHLPGRGFEYWGRGTRTPVSS





DKK1-
555
EVQLLESGGGLVQPGGSLRLSCAASGFTFEDETMSWVRQAPGKGLEWVSAIISSGGLTYYADSV


260

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGFRIFDYWGQGTLVTVSS





DKK1-
556
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNSYISWVRQAPGKGLEWVSYITPKGDHTYYADSV


261

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGARRFDYWGQGTLVTVSS





DKK1-
557
EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYDMQWVRQAPGKGLEWVSSIGRHGGRTYYADS


262

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSLGRFDYWGQGTLVTVSS





DKK1-
558
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSAIEGAGSDTYYADS


263

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
559
EVQLLESGGGLVQPGGSLRLSCAASGFTFKSYGMHWVRQAPGKGLEWVSSIWPRGQKTYYADS


264

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSGTRIKQGFDYWGQGTLVTVSS





DKK1-
560
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVAAISGGGADTYYADS


265

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
561
EVQLLESGGGLVQPGGSLRLSCAASGFTFVAYNMGWVRQAPGKGLEWVSSISNSGGSTYYADS


266

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKNRAKFDYWGQGTLVTVSS





DKK1-
562
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSVISSSGGETSYADSV


267

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKLPKRGPRFDYWGQGTLVTVSS





DKK1-
563
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSAIEGAGSDTYYADS


268

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFRGRGFDYWGQGTLVTVSS





DKK1-
564
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYGMHWVRQAPGKGLEWVAVISYGGSNKYYADS


269

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGVRKGFDYWGQGTLVTVSS





DKK1-
565
EVQLLESGGGLVQPGGSLRLSCAASGFTFGNYAMAWVRQAPGKGLEWVSAIQQRGLKTAYADS


270

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGYRGYFDYWGQGTLVTVSS





DKK1-
566
EVQLLESGGGLVQPGGSLRLSCAASGYSISSGYHWAWVRQAPGKGLEWVSSIDDRGRYTYYAD


271

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSNGRFDYWGQGTLVTVSS





DKK1-
567
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSAISGSGGGTSYADS


272

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKYFHGKFDYWGQGTLVTVSS





DKK1-
568
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMAWVRQAPGKGLEWVSEISPSGKKKYYADS


273

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGRWSIFDYWGQGTLVTVSS





DKK1-
569
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVADVNPNSGASIYNDS


274

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGPGTRGDYWGQGTLVTVSS





DKK1-
570
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSGIYPSGGSTVYDDS


275

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKWSSRAFDYWGQGTLVTVSS





DKK1-
571
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSAIEGAGSDTYYADS


276

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
572
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSAIEGAGSDTYYADS


277

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
573
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYVMIWVRQAPGKGLEWVSEISPSGKKKYYADSV


278

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKYPKNFDYWGQGTLVTVSS





DKK1-
574
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVAAISGGGADTYYADS


279

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
575
EVQLLESGGGLVQPGGSLRLSCAASGFTSNNFAMTWVRQAPGKGLEWVGYINPSRGYTYYADS


280

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKRTENRGVSFDYWGQGTLVTVSS





DKK1-
576
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSEISPSGKKKYYADS


281

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFRGRGFDYWGQGTLVTVSS





DKK1-
577
EVQLLESGGGLVQPGGSLRLSCAASGFTFFPYAMGWVRQAPGKGLEWVAAISGGGADTYYADS


282

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
578
EVQLLESGGGLVQPGGSLRLSCAASGFTFDQYDMSWVRQAPGKGLEWVSAITGSGGSTYYADS


283

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATAESDDTYDYWGQGTLVTVSS





DKK1-
579
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSAIEGAGSDTYYADS


284

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
580
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYTMVWVRQAPGKGLEWVSAITGTGGETYYADS


285

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
581
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSAIEARGGGTYYADS


286

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFRGRGFDYWGQGTLVTVSS





DKK1-
582
EVQLLESGGGLVQPGGSLRLSCAASGFTFGNYAMAWVRQAPGKGLEWVSSIWPSGGQTWYAD


287

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDKRYRGSQHYFDYWGQGTLVTVSS





DKK1-
583
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVGISNSGSTSYNDSVK


288

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKRTRSKFDYWGQGTLVTVSS





DKK1-
584
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMAWVRQAPGKGLEWVSSIGRHGGRTYYADS


289

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKAGSGFDYWGQGTLVTVSS





DKK1-
585
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYWNHWVRQAPGKGLEWVSTIGPSGTSTYYADSV


290

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAESFRSRYFDYWGQGTLVTVSS





DKK1-
586
EVQLLESGGGLVQPGGSLRLSCAASGFTFGNYAMAWVRQAPGKGLEWVSSIWPRGQKTYYADS


291

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASLSRGYWGQGTLVTVSS





DKK1-
587
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYTMGWVRQAPGKGLEWVAAISGGGADTYYADS


292

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKLPKRGPRFDYWGQGTLVTVSS





DKK1-
588
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYFMGWVRQAPGKGLEWVSAISGRGDNTYYADS


293

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKRTENRGVSFDYWGQGTLVTVSS





DKK1-
589
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVGAIQQRGLKTAYAD


294

SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARWTSGLDYWGQGTLVTVSS





DKK1-
590
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYFMGWVRQAPGKGLEWVSEIDALGTDTYYADS


295

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGLRRFDYWGQGTLVTVSS





DKK1-
591
EVQLLESGGGLVQPGGSLRLSCAASGFTFDRYRMMWVRQAPGKGLEWVSSISSTGFKTYYADS


296

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFRGRGFDYWGQGTLVTVSS





DKK1-
592
EVQLLESGGGLVQPGGSLRLSCAASGFTFTHYSMGWVRQAPGKGLEWVSAINGTGGETYYADS


297

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
593
EVQLLESGGGLVQPGGSLRLSCAASGFTFSPYLMSWVRQAPGKGLEWVSTIGPSGTSTYYADSV


298

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGRRIFDYWGQGTLVTVSS





DKK1-
594
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYFMIWVRQAPGKGLEWVSSIDDRGRYTYYADSV


299

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGGDYGSGDYWGQGTLVTVSS





DKK1-
595
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVAAISGGGADTYYADS


300

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPPKRGPRFDYWGQGTLVTVSS





DKK1-
596
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSVISSSGGETSYADS


301

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKRTRSKFDYWGQGTLVTVSS





DKK1-
597
EVQLLESGGGLVQPGGSLRLSCAASGFTFKSYGMHWVRQAPGKGLEWVSSIGRHGGRTYYADS


302

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGGDYGSGDYWGQGTLVTVSS





DKK1-
598
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSYIGPSGGKTYYADS


303

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKRTRSKFDYWGQGTLVTVSS





DKK1-
599
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVAAISGGGADTYYADS


304

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPPKRGPRFDYWGQGTLVTVSS





DKK1-
600
EVQLLESGGGLVQPGGSLRLSCAASGFTFEDETMSWVRQAPGKGLEWVSAIISSGGLTYYADSV


305

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGFRIFDYWGQGTLVTVSS





DKK1-
601
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSGITRSGSTNYRDSV


306

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKWSSRAFDYWGQGTLVTVSS





DKK1-
602
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVAAISGGGADTYYADS


307

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKHSKSSHRQSFDYWGQGTLVTVSS





DKK1-
603
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSEISPSGKKKYYADS


308

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKLTGRFDYWGQGTLVTVSS





DKK1-
604
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYFMGWVRQAPGKGLEWVSEISPSGKKKYYADSV


309

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSGAYFDYWGQGTLVTVSS





DKK1-
605
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKYPMMWVRQAPGKGLEWVSWIEGRGTETYYADS


310

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKRTRSKFDYWGQGTLVTVSS





DKK1-
606
EVQLLESGGGLVQPGGSLRLSCAASGFTFHKYGMAWVRQAPGKGLEWVSEISPSGKKKYYADS


311

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKYPKNFDYWGQGTLVTVSS





DKK1-
607
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSEISPSGKKKYYADS


312

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGVRKKFDYWGQGTLVTVSS





DKK1-
608
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVAAISGGGADTYYADS


313

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
609
EVQLLESGGGLVQPGGSLRLSCAASGFTFGNYAMAWVRQAPGKGLEWVSYISPIGPRTYYADSV


314

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKRTENRGVSFDYWGQGTLVTVSS





DKK1-
610
EVQLLESGGGLVQPGGSLRLSCAASGFTLDYLAIGWVRQAPGKGLEWVSEISPSGKKKYYADSV


315

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKYTGRWEPFDYWGQGTLVTVSS





DKK1-
611
EVQLLESGGGLVQPGGSLRLSCAASGFTFTHYSMGWVRQAPGKGLEWVAAISGGGADTYYADS


316

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
612
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSAITGTGGETYYADS


317

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
613
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVSTISPSGHGTYYADS


318

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARRTGREYGGGWYFDYWGQGTLVTVSS





DKK1-
614
EVQLLESGGGLVQPGGSLRLSCAASGFTFPVYNMAWVRQAPGKGLEWVSSISESGTTTYYADSV


319

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKNRAKFDYWGQGTLVTVSS





DKK1-
615
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYVMGWVRQAPGKGLEWVAAISGGGADTYYADS


320

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLPKRGPRFDYWGQGTLVTVSS





DKK1-
616
EVQLLESGGGLVQPGGSLRLSCAASGFSFSAYAMNWVRQAPGKGLEWVSSISTSGGSTYYADSV


321

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGRAGADYWGQGTLVTVSS





DKK1-
617
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRFAMSWVRQAPGKGLEWVSAISGSGAYTYYADSV


322

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDIAAASFDYWGQGTLVTVSS





DKK1-
618
EVQLLESGGGLVQPGGSLRLSCAASGFTFTSYAMTWVRQAPGKGLEWVSGVSGSGGTTYYADS


323

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAISYHFDYYFDYWGQGTLVTVSS





DKK1-
619
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSAISGGGGATYYADS


324

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARECSGGSCSYYYGMDVWGQGTLVTVSS





DKK1-
620
EVQLLESGGGLVQPGGSLRLSCAASGSTFNNYAMSWVRQAPGKGLEWVSAISGSGSTTYYADS


325

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLAVSTSDYYYYGMDVWGQGTLVTVSS





DKK1-
621
EVQLLESGGGLVQPGGSLRLSCAASGFTFGRFAMSWVRQAPGKGLEWVSGITGSGTSTYYADSV


326

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDDRVRFSPVRRWFDPWGQGTLVTVSS





DKK1-
622
EVQLLESGGGLVQPGGSLRLSCAASGFTFSKYAMGWVRQAPGKGLEWVSAISATGGSTYYADS


327

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVRSSSWYGDYWGQGTLVTVSS





DKK1-
623
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYAMTWVRQAPGKGLEWVSTISGSGVTTYYADSV


328

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARKTGGHYPFDYWGQGTLVTVSS





DKK1-
624
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRSAMSWVRQAPGKGLEWVSSISASGANTYYADSV


329

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQARYYGMDVRGQGTLVTVSS





DKK1-
625
EVQLLESGGGLVQPGGSLRLSCAASGFTFRNYAMSWVRQAPGKGLEWVSTITSSGGSTYYADSV


330

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASGLRARNGFDIWGQGTLVTVSS





DKK1-
626
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMTWVRQAPGKGLEWVSGISGSGGSTYYADS


331

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGAILAYWGQGTLVTVSS





DKK1-
627
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMIWVRQAPGKGLEWVSAVSGTGGTTYYADS


332

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDVGFGELHPWGQGTLVTVSS





DKK1-
628
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVSGISGSGYSTYYADSV


333

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGRTGTLYGMDVWGQGTLVTVSS





DKK1-
629
EVQLLESGGGLVQPGGSLRLSCAASGFSFNNYAMSWVRQAPGKGLEWVSAISGGGSNTYYADS


334

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVAASGSYYRAFDQWGQGTLVTVSS





DKK1-
630
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYAMSWVRQAPGKGLEWVSGISSSGGNTYYADS


335

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRGFGWFDPWGQGTLVTVSS





DKK1-
631
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYGMTWVRQAPGKGLEWVSTISGSGGRTYYADSV


336

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKVSYDSSGYYYDAFDIWGQGTLVTVSS





DKK1-
632
EVQLLESGGGLVQPGGSLRLSCAASGFTFANYAMSWVRQAPGKGLEWVSAISGSGGSAYYADS


337

VKGRFTISRDNSKNTLYLQMNSLRAEDAAVYYCARSGSFLSFDSWGQGTLVTVSS





DKK1-
633
EVQLLESGGGLVQPGGSLRLSCAASGFTFGRFAISWVRQAPGKGLEWVSTISGSGGRTYYADSV


338

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVDYKKKSYYNAMDAWGQGTLVTVSS





DKK1-
634
EVQLLESGGGLVQPGGSLRLSCAASGFTFRTSAMSWVRQAPGKGLEWVSAISSGGGGTYYADSV


339

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGPRGRGAFDVWGQGTLVTVSS





DKK1-
635
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSV


340

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDDRVRFSPVRRWFDPWGQGTLVTVSS





DKK1-
636
EVQLLESGGGLVQPGGSLRLSCAASGIHLSSYAMSWVRQAPGKGLEWVSTISGGGGGTYYADSV


341

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGGHVGIRRPFDVWGQGTLVTVSS





DKK1-
637
EVQLLESGGGLVQPGGSLRLSCAASGFTFSKYAMSWVRQAPGKGLEWVSIISGSGGTTYYADSV


342

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHAHGAGSYPFDYWGQGTLVTVSS





DKK1-
638
EVQLLESGGGLVQPGGSLRLSCAASGFPFSSYAMGWVRQAPGKGLEWVSVISGSGGRTHYADS


343

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCGRAPRKYYGMDVWGQGTLVTVSS





DKK1-
639
EVQLLESGGGLVQPGGSLRLSCAASGFSFSAYAMSWVRQAPGKGLEWVSAISGRDTSTYYADSV


344

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVPLRGSGRLSFDYWGQGTLVTVSS





DKK1-
640
EVQLLESGGGLVQPGGSLRLSCAASGSPFSNYAMSWVRQAPGKGLEWVSAISGSGGSTFYSDSV


345

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAPRSPILGVRRGLDPWGQGTLVTVSS





DKK1-
641
EVQLLESGGGLVQPGGSLRLSCAASGFSFSGYAMNWVRQAPGKGLEWVSAISGSSGRTYYADS


346

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRGGTRGLGYWGQGTLVTVSS





DKK1-
642
EVQLLESGGGLVQPGGSLRLSCAASGFTFRTYGMSWVRQAPGKGLEWVSAISGSGETTYYADSV


347

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLDHDSSGFYEAFDVWGQGTLVTVSS





DKK1-
643
EVQLLESGGGLVQPGGSLRLSCAASGLTFSRYAMSWVRQAPGKGLEWVSSISGRGGNTYYADS


348

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGGMRLGKSYYYYGMDVWGQGTLVTVSS





DKK1-
644
EVQLLESGGGLVQPGGSLRLSCAASGFAFSTSAMSWVRQAPGKGLEWVSGISASGGSTHYADSV


349

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLSVARGAYGMDVWGQGTLVTVSS





DKK1-
645
EVQLLESGGGLVQPGGSLRLSCAASGFTFGAYAMSWVRQAPGKGLEWVSAISGSGARTYYADS


350

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARRGRPPQYYFDSWGQGTLVTVSS





DKK1-
646
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRYAMSWVRQAPGKGLEWVSTVSGSGGTTYYADS


351

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGWEPGIAANWGQGTLVTVSS





DKK1-
647
EVQLLESGGGLVQPGGSLRLSCAASGFTFSKHAMSWVRQAPGKGLEWVSIISGSGDTTYYADSV


352

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHQYSGSGSFRYWGQGTLVTVSS





DKK1-
648
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRSAMSWVRQAPGKGLEWVSAIGGSGDNTYYADS


353

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKHRGSFWFDPWGQGTLVTVSS





DKK1-
649
EVQLLESGGGLVQPGGSLRLSCAASGFSFRSYAMNWVRQAPGKGLEWVSAISGSGGNTFYADS


354

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTTMFGSGTFYTGFDFWGQGTLVTVSS





DKK1-
650
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSSSMSWIRQAPGKGLEWVSGISGSGGTTYYADSVK


355

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAGARFVGFDYWGQGTLVTVSS





DKK1-
651
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRFAMSWVRQAPGKGLEWVSAISGSGRNTYYADSV


356

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATFNPVGLFYWGQGTLVTVSS





DKK1-
652
EVQLLESGGGLVQPGGSLRLSCAASGFSFSTYAMMWVRQAPGKGLEWVSAISGSAVSTYYADS


357

VKGRFTISRDNSKNTLYLQMNSLRAEDAAVYYCARSGSFLSFDSWGQGTLVTVSS





DKK1-
653
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYTMNWVRQAPGKGLEWVSAVSGSGGRTYYADS


358

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSRNGRWFDPWGQGTLVTVSS





DKK1-
654
EVQLLESGGGLVQPGGSLRLSCAASGLTFRSYAMSWVRQAPGKGLEWVSGISGSGGSTYYADSV


359

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGASFDSWGQGTLVTVSS





DKK1-
655
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMKWVRQAPGKGLEWVSGISGSGARTYYADS


360

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGRQRQRSTPLGRYWGQGTLVTVSS





DKK1-
656
EVQLLESGGGLVQPGGSLRLSCAASGFNFRDYAMSWVRQAPGKGLEWVSAISGRGSVYYADSV


361

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGGDWVAFDYWGQGTLVTVSS





DKK1-
657
EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYVMSWFRQAPGKGLEWVSGISGSGGRTYYADSV


362

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARRKGPTYGMDVWGQGTLVTVSS





DKK1-
658
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTFAMAWVRQAPGKGLEWVSALSGSGGRTYYADS


363

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVTRYQGWLSHFDYWGQGTLVTVSS





DKK1-
659
EVQLLESGGGLVQPGGSLRLSCAASGFTLSTYAMSWVRQAPGKGLEWVSTISTSGGSTYYADSV


364

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVFVSSGWYDGMDVWGQGTLVTVSS





DKK1-
660
EVQLLESGGGLVQPGGSLRLSCAASGLTFNNYAMSWVRQAPGKGLEWVSGISGSGARTYYADS


365

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGASLDVWGQGTLVTVSS





DKK1-
661
EVQLLESGGGLVQPGGSLRLSCAASGFTFGRYAMSWVRQAPGKGLEWVSTISGSGTTTYYADSV


366

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAIGGRTAYWGQGTLVTVSS





DKK1-
662
EVQLLESGGGLVQPGGSLRLSCAASGFSFSAYAMSWVRQAPGKGLEWVSAISGRDTSTYYADSV


367

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVPLRGSGRLSFDYWGQGTLVTVSS





DKK1-
663
EVQLLESGGGLVQPGGSLRLSCAASGFTFGRYAMNWVRQAPGKGLEWVSTITASGGSTYYADS


368

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVVTAMGYYYGMDVWGQGTLVTVSS





DKK1-
664
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGKGLEWVSAISAGGGNTYYADS


369

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLGMRGPYYYYYGMDVWGQGTLVTVSS





DKK1-
665
EVQLLESGGGLVQPGGSLRLSCAASGFTFSYYGMSWVRQAPGKGLEWVSAISGGGAGTYYADS


370

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVASRNYLLDFWGQGTLVTVSS





DKK1-
666
EVQLLESGGGLVQPGGSLRLSCAASGFTFTKYAMSWVRQAPGKGLEWVGAISGRGGSTYYADS


371

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGDLTVTRKYDSWGQGTLVTVSS





DKK1-
667
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYGMTWVRQAPGKGLEWVSAISRSGGNTYYADS


372

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARTYSYGSFDYWGQGTLVTVSS





DKK1-
668
EVQLLESGGGLVQPGGSLRLSCAASGFNFRSYAMNWVRQAPGKGLEWVSAISGSGTTTYYADS


373

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASWRAAPFDYWGQGTLVTVSS





DKK1-
669
EVQLLESGGGLVQPGGSLRLSCAASGFSFSAYAMSWVRQAPGKGLEWVSAISGRDTSTYYADSV


374

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVPLRGSGRLSFDYWGQGTLVTVSS





DKK1-
670
EVQLLESGGGLVQPGGSLRLSCAASGFTFGNYAMTWVRQAPGKGLEWVSSITGSGGSTYYADS


375

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGKFHLDPWGQGTLVTVSS





DKK1-
671
EVQLLESGGGLVQPGGSLRLSCAASGFSFSSYAMSWVRQAPGKGLEWVGAISGRGGSTYYADS


376

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTTDYGAIMDVWGQGTLVTVSS





DKK1-
672
EVQLLESGGGLVQPGGSLRLSCAASGFTFGRFAMSWVRQAPGKGLEWVSGISGSGTSTYYADSV


377

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDSRNYFGMGVWGQGTLVTVSS





DKK1-
673
EVQLLESGGGLVQPGGSLRLSCAASGFTFGNYALSWVRQAPGKGLEWVSAISRSGGNTYYADSV


378

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCGRDGTRFGAFDIWGQGTLVTVSS





DKK1-
674
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKFAMTWVRQAPGKGLEWVSTISGSGSRTYYADSV


379

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGRSWYNHWGQGTLVTVSS





DKK1-
675
EVQLLESGGGLVQHGGSLRLSCAASGLTFSSYALSWVRQAPGKGLEWVSDISGSGGNTYYADSV


380

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARFQPRPLRLFDYWGQGTLVTVSS





DKK1-
676
EVQLLESGGGLVQPGGSLRLSCAASGFTLRSYAMTWVRQAPGKGLEWVSAISGSGGYTYYADS


381

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARASYGSGSYPLIHWGQGTLVTVSS





DKK1-
677
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSFAMSWVRQAPGKGLEWVSTVSGSGGSTYYADSV


382

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGHRSNIGWDVWGQGTLVTVSS





DKK1-
678
EVQLLESGGGLVQPGGSLRLSCAASGSTFSSYAMSWVRQAPGKGLEWVSTISASGGRTYYADSV


383

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDDRVRFSPVRRWFDPWGQGTLVTVSS





DKK1-
679
EVQLLESGGGLVQPGGSLRLSCAASGFTFRRSAMSWVRQAPGKGLEWVSAISGSGSGTYYADSV


384

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSARGRWFDPWGQGTLVTVSS





DKK1-
680
EVQLLESGGGLVQPGGSLRLSCAASGFTFAGYAMSWVRQALGKGLEWVSAISRSGDRTYYADS


385

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGQRAHQQLVRGAMDVWGQGTLVTVSS





DKK1-
681
EVQLLESGGGLVQPGGSLRLSCAASGFTFRTFAMSWVRQAPGKGLEWVSGISASGGTTYYADSV


386

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAHRRRSKFWSGFGVWGQGTLVTVSS





DKK1-
682
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYAMTWVRQAPGKGLEWVSTISGSGVTTYYADSV


387

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARKTGGHYPFDYWGQGTLVTVSS





DKK1-
683
EVQLLESGGGLVQPGGSLRLSCAASGFTFDNYAMTWVRQAPGKGLEWVSGISGSGGSIYYADSV


388

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVKGAPAGYLDSWGQGTLVTVSS





DKK1-
684
EVQLLESGGGLVQPGGSLRLSCAASGFRFSSYAMSWVRQAPGKGLEWVSTISGRGGSTDYADSV


389

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHNRERRAFDIWGQGTLVTVSS





DKK1-
685
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYAMGWVRQAPGKGLEWVSGISGGGGTTYYADS


390

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDSRVRGTHDYYYYGMDVWGQGTLVTVSS





DKK1-
686
EVQLLESGGGLVQPGGSLRLSCAASGFTFSKFAMNWVRQAPGKGLEWVSGISASGGRTYYADS


391

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGSLRFTPWGQGTLVTVSS





DKK1-
687
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSSGMSWVRQAPGKGLEWVSAISPSGGSTYYADSV


392

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLSADRVFAFDIWGQGTLVTVSS





DKK1-
688
EVQLLESGGGLVQPGGSLRLSCAASGFSFSSFAMAWVRQAPGKGLEWVSTISGSGDVTYYADSV


393

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGHRSNIGWDVWGQGTLVTVSS





DKK1-
689
EVQLLESGGGLVQPGGSLRLSCAASGFTFGRFAMSWVRQAPGKGLEWVSGITGSGTSTYYADSV


394

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVPLRGSGRLSFDYWGQGTLVTVSS





DKK1-
690
EVQLLESGGGLVQPGGSLRLSCAASGFGFSSYAMSWVRQAPGKGLEWVSGITGSGGNTYYADS


395

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSRRPRYSYGFAFESWGQGTLVTVSS





DKK1-
691
EVQLLESGGGLVQPGGSLRLSCAASGVTFRNYAMSWVRQAPGKGLEWVSAISASGGSPYYADS


396

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTSVGWFDPWGQGTLVTVSS





DKK1-
692
EVQLLESGGGLVQPGGSLRLSCAASGFTFRNYAMSWVRQAPGKGLEWVSSISGGGGRTYYADS


397

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRDLTRRAAMDVWGQGTLVTVSS





DKK1-
693
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSSAMSWVRQAPGKGLEWVSVISGSGRSTYYADSV


398

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARNGAGSHYYAMDVWGQGTLVTVSS





DKK1-
694
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRFAMGWVRQAPGKGLEWVSSISGSGGRTYYADSV


399

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASSKVTRSALDYWGQGTLVTVSS





DKK1-
695
EVQLLESGGGLVQPGGSLRLSCAASGFTFGNYALSWVRQAPGKGLEWVSAISGSGSSTFYADSV


400

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCGRESGRGSGTWGQGTLVTVSS





DKK1-
696
EVQLLESGGGLVQPGGSLRLSCAASGFTYSSYAMTWVRQAPGKGLEWVSVISGSGGSTYHADS


401

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARERELYYFYYGMDVWGQGTLVTVSS





DKK1-
697
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYGMGWVRQAPGKGLEWVSTITGSGGSTYYADSV


402

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHHNRRSSLDYWGQGTLVTVSS





DKK1-
698
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSSGMSWVRQAPGKGLEWVSGISSTGGTTYYADSV


403

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARRGRRQLRYYYGMDVWGQGTLVTVSS





DKK1-
699
EVQLLESGGGLVQPGGSLRLSCAASGFSFSSSAMNWVRQAPGKGLEWVAAISGSGGTTYYADSV


404

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARARRRSFDWWGQGTLVTVSS





DKK1-
700
EVQLLESGGDLVQPGGSLRLSCAASGFTFSRYAMSWVRQAPGKGLEWVSAISGGRVSTYYADS


405

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSLRGNAFDIWGQGTLVTVSS





DKK1-
701
EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYAMSWVRQAPGKGLEWVSSIRGSGGSTYYADSV


406

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDLQSRGYWGQGTLVTVSS





DKK1-
702
EVQLLESGGGLVQPGGSLRLSCAASGFTFNKFAMSWVRQAPGKGLEWVSGISVSGGNTYYADS


407

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHSRLAALLAWGQGTLVTVSS





DKK1-
703
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSHVMGWVRQAPGKGMEWVSGISGSGAGTYYADS


408

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAVTGTTGWFDPWGQGTLVTVSS





DKK1-
704
EVQLLESGGGLVQPGGSLRLSCAASGFTFGRYAMSWVRQAPGKGLEWVSGISSSRGSTYYADSV


409

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVGIAGRGMDVWGQGTLVTVSS





DKK1-
705
EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYGMSWVRQAPGKGLEWVSAISGRRTYYADSVK


410

GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVSRGYPRRSDSWGQGTLVTVSS





DKK1-
706
EVQLLESGGGLVQPGGSLRLSCAASGFTVSSYAMSWVRQAPGKGLEWVSGISGGGGTTYYADS


411

VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRSSNWKFDQWGQGTLVTVSS





DKK1-
707
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRSAMSWVRQAPGKGLEWVSSISASGANTYYADSV


412

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQARYYGMDVRGQGTLVTVSS





DKK1-
708
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYDMTWVRQAPGKGLEWVSSISGSGVTTYYADSV


413

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGRRLDYWGQGTLVTVSS





DKK1-
709
EVQLLESGGGLVQPGGSLRLSCAASGFAFTTYAMGWVRQAPGKGLEWVSAISGSGSTTYYADS


414

VKSRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSGSFLSFDSWGQGTLVTVSS





DKK1-
710
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYDMIWVRQAPRKGLEWVSAISGSGRNTYYADSV


415

KGRFTISRDNSKNTLYLQMNSLRAEDTTVYYCARGGGASNWFDPWGQGTLVTISS





DKK1-
711
EVQLLESGGGLVQPGGSLRLSCAASGFSFSAYAMSWVRQAPGKGLEWVSAISGRDTSTYYADSV


416

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVPLRGSGRLSFDYWGQGTLVTVSS





DKK1-
712
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRFAMSWVRQAPGKGLEWVSSISGTGSSTYYADSV


417

KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVPGNWGQGTLVTVSS





DKK1-
2164
EVQLVESGGGLVQPGGSLRLSCAASGIPFSSRTMGWFRQAPGKEREFVAAISRSGTGTYYADSVK


418

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
2165
EVQLVESGGGLVQPGGSLRLSCAASGGIYRVNTMGWFRQAPGKEREFVAAINWSGGSTIYADSV


419

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
2166
EVQLVESGGGLVQPGGSLRLSCAASGFLMYDRAMGWFRQAPGKEREIVAAISRTGSSIYYADSV


420

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
2167
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRFAMGWFRQAPGKERELVAAISARGMPAYADSV


421

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
2168
EVQLVESGGGLVQPGGSLRLSCAASGTTFRINVMGWFRQAPGKEREFVAVVNWNGGSTIYADS


422

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2169
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNNVMGWFRQAPGKEREMVAAMLSGGSTNYADS


423

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYDWGQGTLVTVSS





DKK1-
2170
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDIAMGWFRQAPGKEREFVAAINWSGARTYYADS


424

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVQYFSTSSNYDWGQGTLVTVSS





DKK1-
2171
EVQLVESGGGLVQPGGSLRLSCAASGHTYNTYPMGWFRQAPGKERELVAVILRGGSTVYADSV


425

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
2172
EVQLVESGGGLVQPGGSLRLSCAASGRSLYDRAMGWFRQAPGKEREIVAAISRTGSSIYYADSV


426

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
2173
EVQLVESGGGLVQPGGSLRLSCAASGRTFNNYAMGWFRQAPGKERELVAAISWSTGSTYYADS


427

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEGGYSGTYYYTGDFDWGQGTLVTVSS





DKK1-
2174
EVQLVESGGGLVQPGGSLRLSCAASGRTLYSYPMGWFRQAPGKEREFVAAISWSAGSTYYADS


428

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGSKYGHSRARYDWGQGTLVTVSS





DKK1-
2175
EVQLVESGGGLVQPGGSLRLSCAASGTFRDYAMGWFRQAPGKERELVAAIYGTGGELVYYADS


429

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2176
EVQLVESGGGLVQPGGSLRLSCAASGGGTFGSYAMGWFRQAPGKEREFVSAITWNGTRTYYAD


430

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS





DKK1-
2177
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYPMGWFRQAPGKEREFVAATSWSGGSKYYADS


431

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
2178
EVQLVESGGGLVQPGGSLRLSCAASGRTFTNYAMGWFRQAPGKEREFVATISRGGSATYYADSV


432

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
2179
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTHAMGWFRQAPGKEREFVAHITRLGVTYYADSV


433

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
2180
EVQLVESGGGLVQPGGSLRLSCAASGRSFSMYAMGWFRQAPGKEREFVAAISRDGAATYYADS


434

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRLYGHSRARYDWGQGTLVTVSS





DKK1-
2181
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKEREFVAAVSWSLSRTHYADS


435

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRASVQYFSTSSNYDWGQGTLVTVSS





DKK1-
2182
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDRAMGWFRQAPGKERELVAAIRWSGGITWYADS


436

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
2183
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSVMGWFRQAPGKEREFVAAINWSGASTVYADSV


437

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYYNHSRTRYEWGQGTLVTVSS





DKK1-
2184
EVQLVESGGGLVQPGGSLRLSCAASGHTFNTYPMGWFRQAPGKEREFVAAINSGGSYTYYADS


438

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYEWGQGTLVTVSS





DKK1-
2185
EVQLVESGGGLVQPGGSLRLSCAASGRIFTMGWFRQAPGKEREFVAAISGSGVYTYYADSVKGR


439

FTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYYGHSRARYDWGQGTLVTVSS





DKK1-
2186
EVQLVESGGGLVQPGGSLRLSCAASGRSFSEYAMGWFRQAPGKEREFLAAISRDGAATYYADSV


440

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
2187
EVQLVESGGGLVQPGGSLRLSCAASGFNSGSYTMGWFRQAPGKEREFVAAISWSLSRTFYADSV


441

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS





DKK1-
2188
EVQLVESGGGLVQPGGSLRLSCAASGGTAYAMGWFRQAPGKEREFVAAISWSLTRTHYADSVK


442

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVRYFSTSSNYDWGQGTLVTVSS





DKK1-
2189
EVQLVESGGGLVQPGGSLRLSCAASGRTFTSYPMGWFRQAPGKEREFVAAISGSGDDTYYADSV


443

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2190
EVQLVESGGGLVQPGGSLRLSCAASGSTFRINVMGWFRQAPGKEREFVAAISASGSALYADSVK


444

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
2191
EVQLVESGGGLVQPGGSLRLSCAASGGTLNNNPMAMGWFRQAPGKEREFVASINWSGARAYYADS


445

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRISVQYFTTSSNYDWGQGTLVTVSS





DKK1-
2192
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTYPMGWFRQAPGKEREFVAGIGTRGAPVYADSVK


446

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2193
EVQLVESGGGLVQPGGSLRLSCAASGRTFNSYPMGWFRQAPGKEREFVAHITRLGVTYYADSVK


447

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYYGHSRARYDWGQGTLVTVSS





DKK1-
2194
EVQLVESGGGLVQPGGSLRLSCAASGIPFSSRTMGWFRQAPGKEREFVAAVGWYGSTYYADSV


448

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2195
EVQLVESGGGLVQPGGSLRLSCAASGIDVNRNAMGWFRQAPGKERELVAAISWSGGRTYYADS


449

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVHYFSTSSNYDWGQGTLVTVSS





DKK1-
2196
EVQLVESGGGLVQPGGSLRLSCAASGINFSRYGMGWFRQAPGKEREFVAAIDWSGSRSYYADSV


450

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS





DKK1-
2197
EVQLVESGGGLVQPGGSLRLSCAASGGTLRGYGMGWFRQAPGKEREFVAAIDWSGSRSYYADS


451

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKYVSVRYFSTSSNYDWGQGTLVTVSS





DKK1-
2198
EVQLVESGGGLVQPGGSLRLSCAASGQTFNMGWFRQAPGKEREFVAAVNWNGDSTYYADSVK


452

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
2199
EVQLVESGGGLVQPGGSLRLSCAASGYTFRAYVMGWFRQAPGKEREWVARITSGGSTIYADSV


453

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
2200
EVQLVESGGGLVQPGGSLRLSCAASGNIFTLNVMGWFRQAPGKEREFVAAINSGGSYTYYADSV


454

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
2201
EVQLVESGGGLVQPGGSLRLSCAASGFRMYDRAMGWFRQAPGKEREFVAAISGRSGNTYYADS


455

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYDWGQGTLVTVSS





DKK1-
2202
EVQLVESGGGLVQPGGSLRLSCAASGFTFSMWPMGWFRQAPGKEREFVAAISRSGGSTIYADSV


456

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYYNHSRTRYEWGQGTLVTVSS





DKK1-
2203
EVQLVESGGGLVQPGGSLRLSCAASGFTFRSYPMGWFRQAPGKEREFVALIHTGGGTYYADSVK


457

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYDWGQGTLVTVSS





DKK1-
2204
EVQLVESGGGLVQPGGSLRLSCAASGLPFSTKSMGWFRQAPGKERELVAFSSSGGRTIYADSVK


458

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
2205
EVQLVESGGGLVQPGGSLRLSCAASGNIFRINAMGWFRQAPGKEREWVARINSGGSSTYYADSV


459

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
2206
EVQLVESGGGLVQPGGSLRLSCAASGGTFGHYAMGWFRQAPGKEREFVAVISWSLTRTHYADS


460

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSFSYFSTSSNYEWGQGTLVTVSS





DKK1-
2207
EVQLVESGGGLVQPGGSLRLSCAASGRTFNSYPMGWFRQAPGKEREFVAAITWGGSTTLYADSV


461

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGNLVTVSS





DKK1-
2208
EVQLVESGGGLVQPGGSLRLSCAASGITFRRYPMGWFRQAPGKEREFVAGVNWGGGSTKYADS


462

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
2209
EVQLVESGGGLVQPGGSLRLSCAASGRTFSYNPMGWFRQAPGKEREMVATISIGGRTSYADSVK


463

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
2210
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSLPMGWFRQAPGKEREFVAAIRSSGGLFYADSVK


464

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
2211
EVQLVESGGGLVQPGGSLRLSCAASGPTFSTNTMGWFRQAPGKEREFVAAIYSGVRSGVSAIYA


465

DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
2212
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYPMGWFRQAPGKEREFVAAIYGTGGELVYYAD


466

SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
2213
EVQLVESGGGLVQPGGSLRLSCAASGRAIGSYAMGWFRQAPGKEREFVATITFSGARTHYADSV


467

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRASVQYFSTSSNYDWGQGTLVTVSS





DKK1-
2214
EVQLVESGGGLVQPGGSLRLSCAASGRTLSRNTMGWFRQAPGKEREFVATIRSGAPVYADSVKG


468

RFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
2215
EVQLVESGGGLVQPGGSLRLSCAASGRTFIGYHMGWFRQAPGKERELVAIKFSGGTTNYADSVK


469

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYYGHSRARYDWGQGTLVTVSS





DKK1-
2216
EVQLVESGGGLVQPGGSLRLSCAASGRTISNYAMGWFRQAPGKEREFVAAISWRGGSTYYADS


470

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKYVSVSYFSTSSNYDWGQGTLVTVSS





DKK1-
2217
EVQLVESGGGLVQPGGSLRLSCAASGRTISNYAMGWFRQAPGKEREFVAAISWALSRTHYADSV


471

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSFSYFSTSSNYEWGQGTLVTVSS





DKK1-
2218
EVQLVESGGGLVQPGGSLRLSCAASGTFTSYPMGWFRQAPGKEREFVAAISWTGGSTVYADSVK


472

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYYNHSRTRYEWGQGTLVTVSS





DKK1-
2219
EVQLVESGGGLVQPGGSLRLSCAASGRSFSMYAMGWFRQAPGKERELVAAISWSGGSTVYADS


473

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEGGYSGTYYYTGDFDWGQGTLVTVSS





DKK1-
2220
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKEREFVAAINWSGARTYYADS


474

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKSISVRYFSTSSNYEWGQGTLVTVSS





DKK1-
2221
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMGWFRQAPGKEREWVSAISADGSDKRYADS


475

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGKRYGYYDWGQGTLVTVSS





DKK1-
2222
EVQLVESGGGLVQPGGSLRLSCAASGRTHSIYPMGWFRQAPGKEREFVATIRWGTTDTYYADSV


476

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPTRVSVRYFSTRSNYNWGQGTLVTVSS





DKK1-
2223
EVQLVESGGGLVQPGGSLRLSCAASGFSLDYVGMGWFRQAPGKEREGVSTIKPSGDTTNYADSV


477

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKYLSFYSDYEVYDWGQGTLVTVSS





DKK1-
2224
EVQLVESGGGLVQPGGSLRLSCAASGSIFRVNVMGWFRQAPGKEREFVGAISMSGANTYYADSV


478

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2225
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSLPMGWFRQAPGKERELVAALNWSGGNTYYADS


479

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQGTLVTVSS





DKK1-
2226
EVQLVESGGGLVQPGGSLRLSCAASGFLMYDRAMGWFRQAPGKEREIVAAISRTGSSIYYADSV


480

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
2227
EVQLVESGGGLVQPGGSLRLSCAASGDISSYVMGWFRQAPGKEREFVARITWNGGTHTYYADS


481

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRKYGHHRARYDWGQSTLVTVSS





DKK1-
2228
EVQLVESGGGLVQPGGSLRLSCAASGRTHSIYPMGWFRQAPGKERELVAAVNWNGDSTYYADS


482

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
2229
EVQLVESGGGLVQPGGSLRLSCAASGIPFSSRTMGWFRQAPGKEREFVAAISRSGTGTYYADSVK


483

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
2230
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYPMGWFRQAPGKERELVAIIVNGGSTYADSVKG


484

RFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
2231
EVQLVESGGGLVQPGGSLRLSCAASGMTTIGPMGWFRQAPGKEREFVAAISWDGGNTYYADSV


485

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2232
EVQLVESGGGLVQPGGSLRLSCAASGRASGDYAMGWFRQAPGKEREFVAAISWRGGNTYYADS


486

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSFSYFSTSSNYEWGQGTLVTVSS





DKK1-
2233
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYPMGWFRQAPGKEREWVAHLLSGGSTVYADSV


487

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
2234
EVQLVESGGGLVQPGGSLRLSCAASGRTFSEVVMGWFRQAPGKERELVAVAHWSGGSTFYADS


488

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
2235
EVQLVESGGGLVQPGGSLRLSCAASGSTFSINRMGWFRQAPGKEREFVARITPRGLTEYADSVKG


489

RFTISADNSKNTTYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
2236
EVQLVESGGGLVQPGGSLRLSCAASGRTFSFGWFRQAPGKEREFVAAVIWRGGSTYYADSVKG


490

RFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2237
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSYPMGWFRQAPGKEREFVAAISWSGSATFYADSV


491

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
2238
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNFAMGWFRQAPGKEREFVAVILRGGSTYADSVKG


492

RFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS





DKK1-
2239
EVQLVESGGGLVQPGGSLRLSCAASGGTFSRYAMGWFRQAPGKEREFVAAISWSLTRTHYADS


493

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVQYFVTSSNYDWGQGTLVTVSS





DKK1-
2240
EVQLVESGGGLVQPGGSLRLSCAASGRTLSRSNMGWFRQAPGKEREHVALIRIKDGSIYYADSV


494

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2241
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSGTMGWFRQAPGKERELVAAISRSGTLKAYADSV


495

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVQYFSTSSNYDWGQGTLVTVSS





DKK1-
2242
EVQLVESGGGLVQPGGSLRLSCAASGRTFNSYPMGWFRQAPGKEREFVAAINVGGGTYYADSV


496

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYDWGQGTLVTVSS





DKK1-
2243
EVQLVESGGGLVQPGGSLRLSCAASGYTLKNYYAMGWFRRAPGKEREFVAAISRSGGTTFYADS


497

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRASVQYFSTSSNYDWGQGTLVTVSS





DKK1-
2244
EVQLVESGGGLVQPGGSLRLSCAASGHTFNTYPMGWFRQAPGKEREFVAAVSYSGSYYADSVK


498

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
2245
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDRAMGWFRQAPGKEREFVASISTSGTRTLYADSV


499

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2246
EVQLVESGGGLVQPGGSLRLSCAASGRTLSSYAMGWFRQAPGKEREWVATIGTSGPPRYADSV


500

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
2247
EVQLVESGGGLVQPGGSLRLSCAASGRIFTNTAMGWFRQAPGKEREFVAAISWGGGLTVYADS


501

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGSRYGHSRARYDWGQGTLVTVSS





DKK1-
2248
EVQLVESGGGLVQPGGSLRLSCAASGRIFTMGWFRQAPGKEREFVAAISWTAGTTYYADSVKGR


502

FTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARYDWGQGTLVTVSS





DKK1-
2249
EVQLVESGGGLVQPGGSLRLSCAASGNIFTRHIMGWFRQAPGKEREWVARINTGGGSTFYADSV


503

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS





DKK1-
2250
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYPMGWFRQAPGKEREFVAAISWSSGNAYYADS


504

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2251
EVQLVESGGGLVQPGGSLRLSCAASGRTFTSYPMGWFRQAPGKEREWVATIGTHGTPLYADSV


505

KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2252
EVQLVESGGGLVQPGGSLRLSCAASGQTFNGWFRQAPGKEREFVATISRSGVLYADSVKGRFTIS


506

ADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRAYGYSRARYEWGQGTLVTVSS





DKK1-
2253
EVQLVESGGGLVQPGGSLRLSCAASGRSFSEYPMGWFRQAPGKEREFVAAITWSGDMSVYADS


507

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRHYGHSRARYDWGQGTLVTVSS





DKK1-
2254
EVQLVESGGGLVQPGGSLRLSCAASGRSFSSYPMGWFRQAPGKEREFVATINTAGWTTYADSVK


508

GRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRSYGHSRARYDWGQGTLVTVSS





DKK1-
2255
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKEREFVAAISWSGGKLYYADS


509

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRISVSYFSTTSNYDWGQGTLVTVSS





DKK1-
2256
EVQLVESGGGLVQPGGSLRLSCAASGSTFSSYPMGWFRQAPGKERELVALIHTGGTYYADSVKG


510

RFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRQYGHSRARYDWGQGTLVTVSS





DKK1-
2257
EVQLVESGGGLVQPGGSLRLSCAASGIDVNRNAMGWFRQAPGKEREFVGAVSWSGGTTVYADS


511

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVSYFSTASNYDWGQGTLVTVSS





DKK1-
2258
EVQLVESGGGLVQPGGSLRLSCAASGGTFNVYAMGWFRQAPGKEREFVAAINRSGKSTYYADS


512

VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAPRPKRVSVRYFSTSSNYDWGQGTLVTVSS
















TABLE 7







Variable Light Chain Domain Sequences










SEQ



DKK1
ID



Variant
NO
VH Sequence





DKK1-
713
DIQMTQSPSSLSASVGDRVTITCSGDKLRNKYASWYQQKPGKAPKLLIYGASTLQSGVPSRFSGSG


212

SGTDFTLTISSLQPEDFATYYCQSYDDHDRIVFGQGTKVEIK





DKK1-
714
DIQMTQSPSSLSASVGDRVTITCRASQPIGPDLLWYQQKPGKAPKLLIYSASVLQSGVPSRFSGSGS


213

GTDFTLTISSLQPEDFATYYCQQSYSTPTFGQGTKVEIK





DKK1-
715
DIQMTQSPSSLSASVGDRVTITCRASQSISSYVNWYQQKPGKAPKLVIYGRNKRPSGVPSRFSGSGS


214

GTDFTLTISSLQPEDFATYYCQQSYSSPLTFGQGTKVEIK





DKK1-
716
DIQMTQSPSSLSASVGDRVTITCRTSQDISNYLNWYQQKPGKAPKLLIYAASDLESGVPSRFSGSGS


215

GTDFTLTISSLQPEDFATYYCQQYYNLPWTFGQGTKVEIK





DKK1-
717
DIQMTQSPSSLSASVGDRVTITCRASQDIYQNLDWYQQKPGKAPKLLIYAASGLPSGVPSRFSGSG


216

SGTDFTLTISSLQPEDFATYYCASRDRSGHGVFGQGTKVEIK





DKK1-
718
DIQMTQSPSSLSASVGDRVTITCRASQPIGPDLLWYQQKPGKAPKLLIYGASSRATGVPSRFSGSGS


217

GTDFTLTISSLQPEDFATYYCQQSYNTPLTFGQGTKVEIK





DKK1-
719
DIQMTQSPSSLSASVGDRVTITCRASQSIRRYLNWYQQKPGKAPKLLIYGRNKRPSGVPSRFSGSGS


218

GTDFTLTISSLQPEDFATYYCQHSYRSGRAFGQGTKVEIK





DKK1-
720
DIQMTQSPSSLSASVGDRVTITCRASQDVSSGVAWYQQKPGKAPKLLIYDASSLHTGVPSRFSGSG


219

SGTDFTLTISSLQPEDFATYYCKQSYTLRTFGQGTKVEIK





DKK1-
721
DIQMTQSPSSLSASVGDRVTITCRPSQRISRYLNWYQQKPGKAPKLLIYGKKNRPSGVPSRFSGSGS


220

GTDFTLTISSLQPEDFATYYCQQSYSPPLTFGQGTKVEIK





DKK1-
722
DIQMTQSPSSLSASVGDRVTITCRASQTIGDYLNWYQQKPGKAPKLLIYHTSRLHSGVPSRFSGSGS


221

GTDFTLTISSLQPEDFATYYCGQDYTSPRTFGQGTKVEIK





DKK1-
723
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYQDFKRPSGVPSRFSGSGS


222

GTDFTLTISSLQPEDFATYYCQQSRTFGQGTKVEIK





DKK1-
724
DIQMTQSPSSLSASVGDRVTITCRASQSIRRYLNWYQQKPGKAPKLLIYGKKNRPSGVPSRFSGSG


223

SGTDFTLTISSLQPEDFATYYCQQSYSTPSFGQGTKVEIK





DKK1-
725
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYGNNNRPSGVPSRFSGSGS


224

GTDFTLTISSLQPEDFATYYCSSWAGSRSGTVFGQGTKVEIK





DKK1-
726
DIQMTQSPSSLSASVGDRVTITCRASQNIRSYLNWYQQKPGKAPKLLIYATSNLASGVPSRFSGSGS


225

GTDFTLTISSLQPEDFATYYCNSRDTSINHPVIFGQGTKVEIK





DKK1-
727
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYDNTNRPSGVPSRFSGSG


226

SGTDFTLTISSLQPEDFATYYCQQSYSTPTFGQGTKVEIK





DKK1-
728
DIQMTQSPSSLSASVGDRVTITCSGDRLGEKYVSWYQQKPGKAPKLLIYDNTNRPSGVPSRFSGSG


227

SGTDFTLTISSLQPEDFATYYCLAWDTRTSGAVFGQGTKVEIK





DKK1-
729
DIQMTQSPSSLSASVGDRVTITCRASQSISSYVNWYQQKPGKAPKLLIYAKNNRPSGVPSRFSGSGS


228

GTDFTLTISSLQPEDFATYYCQSYGSHSNFVVFGQGTKVEIK





DKK1-
730
DIQMTQSPSSLSASVGDRVTITCRASQTIGDYLNWYQQKPGKAPKLLIYAASSLYSGVPSRFSGSGS


229

GTDFTLTISSLQPEDFATYYCQSYDLRYSHVFGQGTKLEIK





DKK1-
731
DIQMTQSPSSLSASVGDRVTITCRASQDIKNYLNWYQQKPGKAPKLLIYGTSYRYSGVPSRFSGSG


230

SGTDFTLTISSLQPEDFATYYCASRSSKGNPHVLFGQGTKVEIK





DKK1-
732
DIQMTQSPSSLSASVGDRVTITCRASQNIRSYLNWYQQKPGKAPKLLIYGKNIRPSGVPSRFSGSGS


231

GTDFTLTISSLQPEDFATYYCQQRARHPHTFGQGTKVEIK





DKK1-
733
DIQMTQSPSSLSASVGDRVTITCSGDNLRSYYVHWYQQKPGKAPKLLIYQDFKRPSGVPSRFSGSG


232

SGTDFTLTISSLQPEDFATYYCQSYDDHDRIVFGQGTKVEIK





DKK1-
734
DIQMTQSPSSLSASVGDRVTITCTGDKLAEKYVSWYQQKPGKAPKLLIYDNNIRPSGVPSRFSGSG


233

SGTDFTLTISSLQPEDFATYYCLAWDTRTSGAVFGQGTKVEIK





DKK1-
735
DIQMTQSPSSLSASVGDRVTITCRASSSVSYMHWYQQKPGKAPKLLIYAASTLQRGVPSRFSGSGS


234

GTDFTLTISSLQPEDFATYYCQQGKTLPLTFGQGTKVEIK





DKK1-
736
DIQMTQSPSSLSASVGDRVTITCRASQSISSYVNWYQQKPGKAPKLLIYAVTSLASGVPSRFSGSGS


235

GTDFTLTISSLQPEDFATYYCQQSTILPLTFGQGTKVEIK





DKK1-
737
DIQMTQSPSSLSASVGDRVTITCRASQSIRRYLNWYQQKPGKAPKLLIYGRNKRPSGVPSRFSGSGS


236

GTDFTLTISSLQPEDFATYYCQQRARHPHTFGQGTKVEIK





DKK1-
738
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYDDIDRPSGVPSRFSGSGS


237

GTDFTLTISSLQPEDFATYYCQQGSSLPLTFGQGTKVEIK





DKK1-
739
DIQMTQSPSSLSASVGDRVTITCSGGSGSYGWYQQKPGKAPKLLIYGNNNRPSGVPSRFSGSGSGT


238

DFTLTISSLQPEDFATYYCNSRDTSGNHRVFGQGTKVEIK





DKK1-
740
DIQMTQSPSSLSASVGDRVTITCRTSQDISNYLNWYQQKPGKAPKLLIYQNDKRPSGVPSRFSGSG


239

SGTDFTLTISSLQPEDFATYYCNSRDTSGNHLVFGQGTKVEIK





DKK1-
741
DIQMTQSPSSLSASVGDRVTITCRASQDIYQNLDWYQQKPGKAPKLLIYQNDKRPSGVPSRFSGSG


240

SGTDFTLTISSLQPEDFATYYCQQTYSTRTFGQGTKVEIK





DKK1-
742
DIQMTQSPSSLSASVGDRVTITCRASQSISSYVNWYQQKPGKAPKLLIYGRNKRPSGVPSRFSGSGS


241

GTDFTLTISSLQPEDFATYYCQAWGSSTVIFGQGTKVEIK





DKK1-
743
DIQMTQSPSSLSASVGDRVTITCRASQSIRRYLNWYQQKPGKAPKLLIYRKSNRPSGVPSRFSGSGS


242

GTDFTLTISSLQPEDFATYYCQQRARHPHTFGQGTKVEIK





DKK1-
744
DIQMTQSPSSLSASVGDRVTITCTSSQSLFNVRSQKNYLAWYQQKPGKAPKLLIYDTSKVASGVPS


243

RFSGSGSGTDFTLTISSLQPEDFATYYCSSRDNSDNHLVVFGQGTKVEIK





DKK1-
745
DIQMTQSPSSLSASVGDRVTITCRASQSIRRYLNWYQQKPGKAPKLLIYGKNIRPSGVPSRFSGSGS


244

GTDFTLTISSLQPEDFATYYCQQSYSAPLTFGQGTKVEIK





DKK1-
746
DIQMTQSPSSLSASVGDRVTITCTGDKLAEKYVSWYQQKPGKAPKLLIYHTSRLQSGVPSRFSGSG


245

SGTDFTLTISSLQPEDFATYYCQVWDTGTVVFGQGTKVEIK





DKK1-
747
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYDNNNRPSGVPSRFSGSG


246

SGTDFTLTISSLQPEDFATYYCQQSYSTPTFGQGTKVEIK





DKK1-
748
DIQMTQSPSSLSASVGDRVTITCRASQPIAYFLSWYQQKPGKAPKLLIYGKNIRPSGVPSRFSGSGS


247

GTDFTLTISSLQPEDFATYYCASRSSKGNPHVLFGQGTKVEIK





DKK1-
749
DIQMTQSPSSLSASVGDRVTITCKASDHIGKFLTWYQQKPGKAPKLLIYAASTLQRGVPSRFSGSG


248

SGTDFTLTISSLQPEDFATYYCQQSYETPLTFGQGTKVEIK





DKK1-
750
DIQMTQSPSSLSASVGDRVTITCRASQSISSYVNWYQQKPGKAPKLLIYAVTSLASGVPSRFSGSGS


249

GTDFTLTISSLQPEDFATYYCQQSTIMPLTFGQGTKVEIK





DKK1-
751
DIQMTQSPSSLSASVGDRVTITCRASQSIRRYLNWYQQKPGKAPKLLIYRKSNRPSGVPSRFSGSGS


250

GTDFTLTISSLQPEDFATYYCQQSYSTPTFGQGTKVEIK





DKK1-
752
DIQMTQSPSSLSASVGDRVTITCQASQSISSYLAWYQQKPGKAPKLLIYQNDKRPSGVPSRFSGSGS


251

GTDFTLTISSLQPEDFATYYCQQRDTTPWTFGQGTKVEIK





DKK1-
753
DIQMTQSPSSLSASVGDRVTITCRASQDIKNYYKWYQQKPGKAPKLLIYENNNRPSGVPSRFSGSG


252

SGTDFTLTISSLQPEDFATYYCQARDRNTYVAFGQGTKVEIK





DKK1-
754
DIQMTQSPSSLSASVGDRVTITCRASQYIGTALNWYQQKPGKAPKLLIYDNNIRPSGVPSRFSGSGS


253

GTDFTLTISSLQPEDFATYYCNSRDTSGLHYVFGQGTKVEIK





DKK1-
755
DIQMTQSPSSLSASVGDRVTITCRASQSISGYLNWYQQKPGKAPKLLIYGQHNRPSGVPSRFSGSGS


254

GTDFTLTISSLQPEDFATYYCQQYDAYPPTFGQGTKVEIK





DKK1-
756
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYMNWYQQKPGKAPKLLIYGKNIRPSGVPSRFSGSGS


255

GTDFTLTISSLQPEDFATYYCQQSYSAPLTFGQGTKVEIK





DKK1-
757
DIQMTQSPSSLSASVGDRVTITCRASQDIYQNLDWYQQKPGKAPKLLIYEDTKRPSGVPSRFSGSG


256

SGTDFTLTISSLQPEDFATYYCLQYASSPFTFGQGTKVEIK





DKK1-
758
DIQMTQSPSSLSASVGDRVTITCRASQPIGPDLLWYQQKPGKALKLLIYAVTSLASGVPSRFSGSGF


257

GTDFTLTISSLQPEDFATYYCQQSFSVPAFGQGTKVEIK





DKK1-
759
DIQMTQSPSSLSASVGDRVTITCRASQPIGPDLLWYQQKPGKAPKLLIYGASSRATGVPSRFSGSGS


258

GTDFTLTISSLQPEDFATYYCQQSYNTPLTFGQGTKVEIK





DKK1-
760
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAHKLMIYDNNNRPSGVPSRFSGS


259

GCGTDFTLTISSLQPEDFATYYCQQSYSTPTFGQGTKVEIK





DKK1-
761
DIQMTQSPSSLSASVGDRVTITCRASQRISSFLNWYQQKPGKAPKLLIYRKSNRPSGVPSRFSGSGS


260

GTDFTLTISSLQPEDFATYYCSQSTRVPPTFGQGTKVEIK





DKK1-
762
DIQMTQSPSSLSASVGDRVTITCRPNQNIATYINWYQQKPGKAPKLLIYHTSRLQSGVPSRFSGSGS


261

GTDFTLTISSLQPEDFATYYCSSWAGSRSGTVFGQGTKVEIK





DKK1-
763
DIQMTQSPSSLSASVGDRVTITCSGDLRNKYASWYQQKPGKAPKLLIYGQHNRPSGVPSRFSGSGS


262

GTDFTLTISSLQPEDFATYYCSSGSRSGTVFGQGTKVEIK





DKK1-
764
DIQMTQSPSSLSASVGDRVTITCRASQPIGPDLLWYQQKPGKAPKLLIYANTNGPSGVPSRFSGSGS


263

GTDFTLTISSLQPEDFATYYCQQSYSAPYTFGQGTKVEIK





DKK1-
765
DIQMTQSPSSLSASVGDRVTITCQASQSIYSFLSWYQQKPGKAPKLLIYRKSNRPSGVPSRFSGSGS


264

GTDFTLTISSLQPEDFATYYCQQTATWPFTFGQGTKVEIK





DKK1-
766
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYDNTNRPSGVPSRFSGSG


265

SGTDFTLTISSLQPEDFATYYCQQSYSTPTFGQGTKVEIK





DKK1-
767
DIQMTQSPSSLSASVGDRVTITCKASDHIGKFLTWYQQKPGKAPKLLIYHTSRLHSGVPSRFSGSGS


266

GTDFTLTISSLQPEDFATYYCQQSYKYPLTFGQGTKVEIK





DKK1-
768
DIQMTQSPSSLSASVGDRVTITCRASHNINSYLNWYQQKPGKAPKLLIYQDFKRPSGVPSRFSGSGS


267

GTDFTLTISSLQPEDFATYYCQQSYSSPLTFGQGTKVEIK





DKK1-
769
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYDNTNRPSGVPSRFSGSG


268

SGTDFTLTISSLQPEDFATYYCQQSYSTPTFGQGTKVEIK





DKK1-
770
DIQMTQSPSSLSASVGDRVTITCRTSQDISNYLNWYQQKPGKAPKLLIYGTSYRYSGVPSRFSGSGS


269

GTDFTLTISSLQPEDFATYYCQQGYTLPWTFGQGTKVEIK





DKK1-
771
DIQMTQSPSSLSASVGDRVTITCRANQNIGNFLNWYQQKPGKAPKLLIYHTSRLHSGVPSRFSGSG


270

SGTDFTLTISSLQPEDFATYYCQQSYSAPLTFGQGTKVEIK





DKK1-
772
DIQMTQSPSSLSASVGDRVTITCSASSSVTYMHWYQQKPGKAPKLLIYHDNKRPSGVPSRFSGSGS


271

GTDFTLTISSLQPEDFATYYCQQSYDNPLTFGQGTKVEIK





DKK1-
773
DIQMTQSPSSLSASVGDRVTITCRASQDIYQNLDWYQQKPGKAPKLLIYQNDKRPSGVPSRFSGSG


272

SGTDFTLTISSLQPEDFATYYCLQFDHTPFTFGQGTKVEIK





DKK1-
774
DIQMTQSPSSLSASVGDRVTITCRTSQDIGNYLNWYQQKPGKAPKLLIYHTSRLHSGVPSRFSGSGS


273

GTDFTLTISSLQPEDFATYYCQQGYRFPLTFGQGTKVEIK





DKK1-
775
DIQMTQSPSSLSASVGDRVTITCRASQPIAYFLSWYQQKPGKAPKLLIYGKNIRPSGVPSRFSGSGS


274

GTDFTLTISSLQPEDFATYYCASRSSKGNPHVLFGQGTKVEIK





DKK1-
776
DIQMTQSPSSLSASVGDRVTITCSGDNLRGYYASWYQQKPGKAPKLLIYQDFKRPSGVPSRFSGSG


275

SGTDFTLTISSLQPEDFATYYCQQSYSPLTFGQGTKVEIK





DKK1-
777
DIQMTQSPSSLSASVGDRVTITCRSSQLVHSTGNTYLHWYQQKPGKAPKLLIYGASSRATGVPSRF


276

SGSGSGTDFTLTISSLQPEDFATYYCSQSTHVPTFGQGTKVEIK





DKK1-
778
DIQMTQSPSSLSASVGDRVTITCQGASLRNYYASWYQQKPGKAPKLLIYENNNRPSGVPSRFSGSG


277

SGTDFTLTISSLQPEDFATYYCSTRSRKGNPHVLFGQGTKVEIK





DKK1-
779
DIQMTQSPSSLSASVGDRVTITCRASQDIKNYLNWYQQKPGKAPKLLIYQASSLQSGVPSRFSGSG


278

SGTDFTLTISSLQPEDFATYYCQQSYSPPLTFGQGTKVEIK





DKK1-
780
DIQMTQSPSSLSASVGDRVTITCRASQDVSSGVAWYQQKPGKAPKLLIYDDIDRPSGVPSRFSGSG


279

SGTDFTLTISSLQPEDFATYYCHQRSSYPWTFGQGTKVEIK





DKK1-
781
DIQMTQSPSSLSASVGDRVTITCRASQGVRTSLAWYQQKPGKAPKLLIYSASVLQSGVPSRFSGSG


280

SGTDFTLTISSLQPEDFATYYCQAWDNSAVIFGQGTKVEIK





DKK1-
782
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYDNTNRPSGVPSRFSGSG


281

SGTDFTLTISSLQPEDFATYYCQQSYSTPTFGQGTKVEIK





DKK1-
783
DIQMTQSPSSLSASVGDRVTITCTGDKLAEKNVSWYQQKPGKAPKLLIYQNDKRPSGVPSRFSGSG


282

SGTDFTLTISSLQPEDFATYYCQQTYSTPLTFGQGTKVEIK





DKK1-
784
DIQMTQSPSSLSASVGDRVTITCRASQTIGDYLNWYQQKPGKAPKLLIYAASGLQSGVPSRFSGSG


283

SGTDFTLTISSLQPEDFATYYCQQSNSWPYTFGQGTKVEIK





DKK1-
785
DIQMTQSPSSLSASVGDRVTITCRASQSISSYVNWYQQKPGKAPKLLIYLSSDLQSGVPSRFSGSGS


284

GTDFTLTISSLQPEDFATYYCAQTGTHPTTFGQGTKVEIK





DKK1-
786
DIQMTQSPSSLSASVGDRVTITCRTSQSLSSYLHWYQQKPGKAPKLLIYEDTKRPSGVPSRFSGSGS


285

GTDFTLTISSLQPEDFATYYCHTWHHNPHTGETNHFGQGTKVEIK





DKK1-
787
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYDNTNRPSGVPSRFSGSG


286

SGTDFTLTISSLQPEDFATYYCQQSYSTPTFGQGTKVEIK





DKK1-
788
DIQMTQSPSSLSASVGDRVTITCRASQDVSSGVAWYQQKPGKAPKLLIYGASRLQRGVPSRFSGSG


287

SGTDFTLTISSLQPEDFATYYCNSRDTSGLHYVFGQGTKVEIK





DKK1-
789
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYENNNRPSGVPSRFSGSGS


288

GTDFTLTISSLQPEDFATYYCQQTYSPPLTFGQGTKVEIK





DKK1-
790
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYGASSRATGVPSRFSGSG


289

SGTDFTLTISSLQPEDFATYYCQQSYSSPLTFGQGTKVEIK





DKK1-
791
DIQMTQSPSSLSASVGDRVTITCRATQSIRSFLNWYQQKPGKAPKLLIYGQHNRPSGVPSRFSGSGS


290

GIDFTLTISSLQPEDFATYYCQQYYDWPLTFGQGTKVEIK





DKK1-
792
DIQMTQSPSSLSASVGDRVTITCRASQDIYQNLDWYQQKPGKAPKLLIYGKNIRPSGVPSRFSGSGS


291

GTDFTLTISSLQPEDFATYYCQQYYSGWTFGQGTKVEIK





DKK1-
793
DIQMTQSPSSLSASVGDRVTITCRTSQSLSSYLHWYQQKPGKAPKLLIYGRNKRPSGVPSRFSGSGS


292

GTDFTLTISSLQPEDFATYYCQNVLSTPYTFGQGTKVEIK





DKK1-
794
DIQMTQSPSSLSASVGDRVTITCSGDLRNKYASWYQQKPGKAPKLLIYGTSNLESGVPSRFSGSGS


293

GTDFTLTISSLQPEDFATYYCQAWVSSTVVFGQGTKVEIK





DKK1-
795
DIQMTQSPSSLSASVGDRVTITCRASQSVDRYFNWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSG


294

SGTDFTLTISSLQPEDFATYYCSQSTHVPLTFGQGTKVEIK





DKK1-
796
DIQMTQSPSSLSASVGDRVTITCRASQFIGRYFNWYQQKPGKAPKLLIYGRNKRPSGVPSRFSGSGS


295

GTDFTLTISSLQPEDFATYYCQQSYSTPTFGQGTKVEIK





DKK1-
797
DIQMTQSPSSLSASVGDRVTITCRASQPIGPDLLWYQQKPGKAPKLLIYGKKNRPSGVPSRFSGSGS


296

GTDFTLTISSLQPEDFATYYCQQSYSTPRTFGQGTKVEIK





DKK1-
798
DIQMTQSPSSLSASVGDRVTITCRASQTIGDYLNWYQQKPGKAPKLLIYGASRLQRGVPSRFSGSG


297

SGTDFTLTISSLQPEDFATYYCSQSTHVPTFGQGTKVEIK





DKK1-
799
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYGQHNRPSGVPSRFSGSGS


298

GTDFTLTISSLQPEDFATYYCQQYHSYPPTFGQGTKVEIK





DKK1-
800
DIQMTQSPSSLSASVGDRVTITCRASQSIRRFLNWYQQKPGKAPKLLIYGASSRATGVPSRFSGSGS


299

GTDFTLTISSLQPEDFATYYCQQSFSVPAFGQGTKVEIK





DKK1-
801
DIQMTQSPSSLSASVGDRVTITCRASQDIYQNLDWYQQKPGKAPKLLIYGNNNRPSGVPSRFSGSG


300

SGTDFTLTISSLQPEDFATYYCQQSYSAPLTFGQGTKVEIK





DKK1-
802
DIQMTQSPSSLSASVGDRVTITCRPNQNIATYINWYQQKPGKAPKLLIYHDNKRPSGVPSRFSGSGS


301

GTDFTLTISSLQPEDFATYYCLQDYNYPLTFGQGTKVEIK





DKK1-
803
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYGRNKRPSGVPSRFSGSG


302

SGTDFTLTISSLQPEDFATYYCQQTYNVPPTFGQGTKVEIK





DKK1-
804
DIQMTQSPSSLSASVGDRVTITCRANQNIGNFLNWYQQKPGKAPKLLIYNAKTLPEGVPSRFSGSG


303

SGTDFTLTISSLQPEDFATYYCASRDRSGHGVFGQGTKVEIK





DKK1-
805
DIQMTQSPSSLSASVGDRVTITCRASQTIERRLNWYQQKPGKAPKLLIYQNDKRPSGVPSRFSGSGS


304

GTDFTLTISSLQPEDFATYYCSSRDRSGNHRVFGQGTKVEIK





DKK1-
806
DIQMTQSPSSLSASVGDRVTITCRASQRISSFLNWYQQKPGKAPKLLIYQNDKRPSGVPSRFSGSGS


305

GTDFTLTISSLQPEDFATYYCQQSYSTPTFGQGTKVEIK





DKK1-
807
DIQMTQSPSSLSASVGDRVTITCRASQSISSYVNWYQQKPGKAPKLLIYHDNKRPSGVPSRFSGSGS


306

GTDFTLTISSLQPEDFATYYCAQNLEIPRTFGQGTKVEIK





DKK1-
808
DIQMTQSPSSLSASVGDRVTITCSGDKLGDKYAYWYQQKPGKAPKLLIYHDNKRPSGVPSRFSGS


307

GSGTDFTLTISSLQPEDFATYYCQPSFYFPYTFGQGTKVEIK





DKK1-
809
DIQMTQSPSSLSASVGDRVTITCRASQDIYQNLDWYQQKPGKAPKLLIYGKNIRPSGVPSRFSGSGS


308

GTDFTLTISSLQPEDFATYYCQQYYSGWTFGQGTKVEIK





DKK1-
810
DIQMTQSPSSLSASVGDRVTITCQASQSISSYLAWYQQKPGKAPKLLIYGASTLQSGVPSRFSGSGS


309

GTDFTLTISSLQPEDFATYYCQQYWAFPVTFGQGTKVEIK





DKK1-
811
DIQMTQSPSSLSASVGDRVTITCRASQSISGYLNWYQQKPGKAPKLLIYAKNNRPSGVPSRFSGSGS


310

GTDFTLTISSLQPEDFATYYCQQSYSSPRTFGQGTKVEIK





DKK1-
812
DIQMTQSPSSLSASVGDRVTITCSASQDINKYLNWYQQKPGKAPKLLIYDTSKVASGVPSRFSGSG


311

SGTDFTLTISSLQPEDFATYYCQQSYSTPNTFGQGTKVEIK





DKK1-
813
DIQMTQSPSSLSASVGDRVTITCRASQNIRSYLNWYQQKPGKAPKLLIYDNNIRPSGVPSRFSGSGS


312

GTDFTLTISSLQPEDFATYYCLQDYNLWTFGQGTKVEIK





DKK1-
814
DIQMTQSPSSLSASVGDRVTITCRASQSIREYLHWYQQKPGKAPKLLIYATSNLASGVPSRFSGSGS


313

GTDFTLTISSLQPEDFATYYCQAWDTSTAVFGQGTKVEIK





DKK1-
815
DIQMTQSPSSLSASVGDRVTITCSGDLGEKYVSWYQQKPGKAPKLLIYATSTLQSGVPSRFSGSGS


314

GTDFTLTISSLQPEDFATYYCQAWASSTVVFGQGTKVEIK





DKK1-
816
DIQMTQSPSSLSASVGDRVTITCRPNQNIATYINWYQQKPGKAPKLLIYGNNNRPSGVPSRFSGSGS


315

GTDFTLTISSLQPEDFATYYCSTRSSKGNPHVLFGQGTKVEIK





DKK1-
817
DIQMTQSPSSLSASVGDRVTITCRASKVSTSGYVYMHWYQQKPGKAPKLLIYENNNRPSGVPSRF


316

SGSGSGTDFTLTISSLQPEDFATYYCQQYWAFPVTFGQGTKVEIK





DKK1-
818
DIQMTQSPSSLSASVGDRVTITCRASSSVSYMHWYQQKPGKAPKLLIYGENSRPSGVPSRFSGSGS


317

GTDFTLTISSLQPEDFATYYCQQSYSTPWTFGQGTKVEIK





DKK1-
819
DIQMTQSPSSLSASVGDRVTITCRASQDVSSGVAWYQQKPGKAPKLLIYGSSLQSGVPSRFSGSGS


318

GTDFTLTISSLQPEDFATYYCQQYHSYPPTFGQGTKVEIK





DKK1-
820
DIRMTQSPSSLSASVGDRVTITCRASQSVDRYFNWYQQKPGKAPKLLIYHTSRLHSGVPSRFSGSG


319

SGTDFTLTISSLQPEDFATYYCQAWDNRAVVFGQGTKVEIK





DKK1-
821
DIQMTQSPSSLSASVGDRVTITCQSSQSVYSNNELSWYQQKPGKAPKLLIYGNNNRPSGVPSRFSG


320

SGSGTDFTLTISSLQPEDFATYYCQQSYSTPTFGQGTKVEIK





DKK1-
822
DIQMTQSPSSLSASVGDRVTITCRSSQSISTYLNWYQQKPGKAPKLLIYAASRSQSGVPSRFSGSGS


321

GTDFTLTISSLQPEDFATYYCQQNYIIPWTFGGGTKVEIK





DKK1-
823
DIQMTQSPSSLSASVGDRVTITCRASHSISSYLNWYQQKPGKAPKLLIYTASRLRSGVPSRFSGSGS


322

GTDFTLTISSLQPEDFATYYCQQNYNTPFTFGGGTKVEIK





DKK1-
824
DIQMTQSPSSLSASVGDRVTITCRASQSIHSYLNWYQQKPGKAPKLLIYTASALQTGVPSRFSGSGS


323

GTDFTLTISSLQPEDFATYYCQQSFSSPLTFGQGTKVEIK





DKK1-
825
DIQMTQSPSSLSASVGDRVTITCRAGQSVSRFLNWYQQKPGKAPKLLIYAAATLQSGVPSRFSGSG


324

SGTDFTLTISSLQPEDFATYYCQQSYDTPFTFGGGTKVEIK





DKK1-
826
DIQMTQSPSSLSASVGDRVTITCRTSQSIGTYLNWYQQKPGKSPKLLIYDASILQSGVPSRFSGSGS


325

GTDFTLTISSLQPEDFATYYCQQNYNTPLTFGGGTKVEIK





DKK1-
827
DIQMTQSPSSLSASVGDRVTITCRASQSIGIHLNWYQQKPGKAPKLLIYGATSLESGVPSRFSGSGS


326

GTDFTLTISSLQPEDFATYYCQQSYNTPPYTFGGGTKVEIK





DKK1-
828
DIQMTQSPSSLSASVGDRVTITCRASQSIRSYLNWYQQKPGKAPKLLIYATSRLESGVPSRFSGSGS


327

GTDFTLTISSLQPEDFATYYCQQGYTSPLTFGGGTKVEIK





DKK1-
829
DIQMAQSPSSLSASVGDRVTITCRASQGIATYLNWYQQKPGKAPKLLIYGASTLRTGVPSRFSGSG


328

SGTDFTLTISSLQPEDFATYYCQQTFTNTPLTFGGGTKVEIK





DKK1-
830
DIQMTQSPSSLSASVGDRVTITCRASQSIGSYLNWYQQKPGKAPKLLIYAASSLKSGVPSRFSGSGS


329

GTDFTLTISSLQPEDFATYYCQQSHNIPRTFGGGTKVEIK





DKK1-
831
DIQMTQSPSSLSASVGDRVTITCRASQSISRNLNWYQQKPGKAPKLLIYGASRLHSGVPSRFSGSGS


330

GTDFTLTISSLQPEDFATYYCQQGYITPQTFGGGTKVEIK





DKK1-
832
DIQMTQSPSSLSASVGDRVTITCRASQSVRTYLNWYQQKPGKAPKLLIYRASRLQSGVPSRFSGSG


331

SGTDFTLTISSLQPEDFATYYCQQSFTTPLTFGGGTKVEIK





DKK1-
833
DIQMTQSPSSLSASVGDRVTITCRASQSIGSHLSWYQQKPGKAPKLLIYRASRLQSGVPSRFSGSGS


332

GTDFTLTISSLQPEDFATYYCQQSYSPPITFGGGTKVEIK





DKK1-
834
DIQMTQSPSSLSASVGDRVTITCRASQSISRYLNWYQQKPGKAPKLLIYGASKLQRGVPSRFSGSGS


333

GTDFTLTISSLQPEDFATYYCQQSSSVPWTFGGGTKVEIK





DKK1-
835
DIQMTQSPSSLSASVGDRVTITCRASQNIGNYLNWYQQKPGKAPKLLIYAASTLASGVPSRFSGSG


334

SGTDFTLTISSLQPEDFATYYCQQNYNTPLTFGGGTKVEIK





DKK1-
836
DIQMTQSPSSLSASVGDRVTITCRSSQSISTYLNWYQQKPGKAPKLLIYAASRLESGVPSRFSGSGS


335

GTDFTLTISSLQPEDFATYYCQQSYTPPITFGGGTKVEIK





DKK1-
837
DIQMTQSPSSLSASVGDRVTITCRASQNIGSYLNWYQQKPGKAPKLLIYAASKLHSGVPSRFSGSG


336

SGTDFTLTISSLQPEDFATYYCQQSYNTPVTFGGGTKVEIK





DKK1-
838
DIQMTQSPSSLSASVGDRVTITCRASQSISRFLNWYQQKPGKAPKLLIYGASALQTGVPSRFSGSGS


337

GTDFTLTISSLQPEDFATYYCQQSYIPPLTFGGGTKVEIK





DKK1-
839
DIQMTQSPSSLSASVGDRVTITCRASESITTYLNWYQQKPGKAPKLLIYTASSLQSGVPSRFSGSGS


338

GTDFTLTISSLQPEDFATYYCQQNYITPLTFGGGTKVEIK





DKK1-
840
DIQMTQSPSSLSASVGDRVTITCRASQSISTYLHWYQQKPGKAPKLLIYAASTLHSGVPSRFSGSGS


339

GTDFTLTISSLQPEDFATYYCQQSYNSITFGGGTKVEIK





DKK1-
841
DIQMTQSPSSLSASVGDRVTITCRSSQSIGSNLNWYQQKPGKAPKLLIYATSNLQSGVPSRFSGSGS


340

GTDFTLTISSLQPEDFATYYCQQSYRIPRTFGGGTKVEIK





DKK1-
842
DIQMTQSPSSLPASVGDRVTITCRASQSISRYLSWYQQKPGKAPKLLIYAASRLRSGVPSRFSGSGS


341

GTDFTLTISSLQPEDFATYYCQQSYSTPTTFGGGTKVEIK





DKK1-
843
DIQMTQSPSSLSASVGDRVTITCRASQYIGTYLNWYQQKPGKAPKLLIYAASNLQRGVPSRFSGSG


342

SGTDFTLTISSLQPEDFATYYCQQSYSDLTFGGGTKVEIK





DKK1-
844
DIQMTQSPSSLSASVGDRVTITCRASESISRNLNWYQQKPGKAPKLLIYAASSLRSGVPSRFSGSGS


343

GTDFTLTISSLQPEDFATYYCQQSYSGPPYTFGGGTKVEIK





DKK1-
845
DIQMTQSPSSLSASVGDRVTITCRSSQSISTYLNWYQQKPGKAPKLLIYAASRSQSGVPSRFSGSGS


344

GTDFTLTISSLQPEDFATYYCQQNYIIPWTFGGGTKVEIK





DKK1-
846
DIQMTQSPSSLSASVGDRVTITCRASQSVSNFLNWYQQKPGKAPKLLIYGASNLHSGVPSRFSGSG


345

SGTDFTLTISSLQPEDFATYYCQQSYSFPFSFGGGTKVEIK





DKK1-
847
DIQMTQSPSSLSASVGDRVTITCRASRNIRTYLNWYQQKPGKAPKLLIYRASTLQSGVPSRFSGSGS


346

GTDFTLTISSLQPEDFATYYCQQSYKTPVTFGGGTKVEIK





DKK1-
848
DIQMTQSPSSLSASVGDRVTITCRASQSIGNFLNWYQQKPGKAPKLLIYRASRLQSGVPSRFSGSGS


347

GTDFTLTISSLQPEDFATYYCQQSYNTPITFGGGTKVEIK





DKK1-
849
DIQMTQSPSSLSASVGDRVTITCRASQSIRSYLNWYQQKPGKAPKLLIYGATNLQSGVPSRFSGSGS


348

GTDFTLTISSLQPEDFATYYCQQSYSTLPFTFGGGTKVEIK





DKK1-
850
DIQMTQSPSSLSASVGDRVTITCRASQSIRTYLNWYQQKPGKAPKLLIYGAVNLQSGVPSRFSGSG


349

SGTDFTLTISSLQPEDFATYYCQQRDTFGGGTKVEIK





DKK1-
851
DIQMTQSPSSLSASVGDRVTITCRASQNIYTYLNWYQQKPGKAPKPLIYLASSLQSGVPSRFSGSGS


350

GTDFTLTISSLQPEDFATYYCQQSYSTRFTFGGGTKVEIK





DKK1-
852
DIQMTQSPSSLSASVGDRVTITCRASQSISRYLSWYQQKPGKAPKLLIYGSSNLQSGVPSRFSGSGS


351

GTDFTLTISSLQPEDFATYYCQQSYSSPTFGGGTKVEIK





DKK1-
853
DIQMTQSPSSLSASVGDRVTITCRASQNIGRYLNWYQQKPGKAPKLLIYSASKLQSGVPSRFSGSG


352

SGTDFTLTISSLQPEDFATYYCQQTYSPPLTFGGGTKVEIK





DKK1-
854
DIQMTQSPSSLSASVGDRVTITCRASQTISAYLNWYQQKPGKAPKLLIYGASSVQSGVPSRFSGSGS


353

GTDFTLTISSLQPEDFATYYCQQSYSGLTFGGGTKVEIK





DKK1-
855
DIQMTQSPSSLSASVGDRVTITCRASQSIRGYLNWYQQKPGKAPKLLIYSTSSLQSGVPSRFSGSGS


354

GTDFTLTISSLQPEDFATYYCQQNYNTPLTFGGGTKVEIK





DKK1-
856
DIQMTQYPSSLSASVGDRVTITCRASQSVSYYLNWYQQKPGKAPKLLIYGSSNLQSGVPSRFSGSGS


355

GTDFTLTISSLQPEDFATYYCQQTYSSPVTFGGGTKVEIK





DKK1-
857
DIQMTQSPSSLSASVGDRVTITCRASQPISSYLNWYQQKPGKAPKLLIYSASSLRSGVPSRFSGSGS


356

GTDFTLTISSLQPEDFATYYCQQGYSAPLTFGGGTKVEIK





DKK1-
858
DIQMTQSPSSLSASVGDRVTITCQTSQSIGKYLNWYQQKPGKAPKLLIYGASRVQSGVPSRFSGSGS


357

GTDFTLTISSLQPEDFATYYCQQTYSTPLTFGGGTKVEIK





DKK1-
859
DIQMTQSPSSLSASVGDRVTITCRASQSIGAYLNWYQQKPGKAPKLLIYGTSSLQGGVPSRFSGSGS


358

GTDFTLTISSLQPEDFATYYCQQSYGTLITFGGGTKVEIK





DKK1-
860
DIQMTQSPSSLSASVGDRVTITCRASQTISTFLNWYQQKPGKAPKLLIYGASRLQGGVPSRFSGSGS


359

GTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIK





DKK1-
861
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAVSNLRSGVPSRFSGSGS


360

GTDFTLTISSLQPEDFATYYCQQSYSTPSFGGGTKVEIK





DKK1-
862
DIQMTQSPSSLSASVGDRVTITCRSSQSISNYLNWYQQKPGKAPKLLIYGASRLESGVPSRFSGSGS


361

GTDFTLTISSLQPEDFATYYCQQSYSLPLTFGGGTKVEIK





DKK1-
863
DIQMTQSPSSLSASVGDRVTITCRASQTISRSLNWYQQKPGKAPKLLIYGASRLQSGVPSRFSGSGS


362

GTDFTLTISSLQPEDFATYYCQQSFTTPYTFGGGTKVEIK





DKK1-
864
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLDWYQQKPGKAPKLLIYAASRLQSGVPSRFSGSGS


363

GTDFTLTISSLQPEDFATYYCQQNYRSPLTFGGGTKVEIK





DKK1-
865
DIQMTQSPSSLSASVGDRVTITCRASRSIGTYLNWYQQKPGKAPKLLIYAASKLQSGVPSRFSGSGS


364

GTDFTLTISSLQPEDFATYYCQQNYITPLTFGGGTKVEIK





DKK1-
866
DIQMTQSPSSLSASVGDRVTITCRASQNINRYLNWYQQKPGKAPKLLIYASSRLQSGVPSRFSGSGS


365

GTDFTLTISSLQPEDFATYYCQQSYSSPITFGGGTKVEIK





DKK1-
867
DIQMTQSPSSLSASVGDRVTITCRASQSVSSYLSWYQQKPGKAPKLLIYATSNLQRGVPSRFSGSGS


366

GTDFTLTISSLQPEDFATYYCHQTYSTPRTFGGGTKVEIK





DKK1-
868
DIQMTQSPSSLSASVGDRVTITCRASQSIGIHLNWYQQKPGKAPKLLIYGATSLESGVPSRFSGSGS


367

GTDFTLTISSLQPEDFATYYCQQSYNTPPYTFGGGTKVEIK





DKK1-
869
DIQMTQSPSSLSASVGDRVTITCRASRSISTYLNWYQQKPGKAPKLLIYEVSSLQSGVPSRFSGSGS


368

GTDFTLTISSLQPEDFATYYCQQNYITPLTFGGGTKVEIK





DKK1-
870
DIQMTQSPSSLSASVGDRVTITCRASQSISRYLSWYQQKPGKAPKLLIYAASRLQRGVPSRFSGSGS


369

GTDFTLTISSLQPEDFATYYCQQGYSSPLTFGGGTKVEIK





DKK1-
871
DIQMTQSPSSLSASVGDRVTITCRASQSISNFLSWYQQKPGKAPKLLIYGTSSLQGGVPSRFSGSGS


370

GTDFTLTISSLQPEDFATYYCQQSYSIPFTFGGGTKVEIK





DKK1-
872
DIQMTQSPSSLSASVGDRVTITCRASQGISFYLNWYQQKPGKAPKLLIYAASRLQRGVPSRFSGSGS


371

GTDFTLTISSLQPEDFATYYCQQSYSTPQITFGGGTKVEIK





DKK1-
873
DIQMTQSPSSLSASVGDRVTITCRASQNIKTYLNWYQQKPGKAPKLLIYGASSLESGVPSRFSGSGS


372

GTDFTLTISSLQPEDFATYYCLQTYSVPLTFGGGTKVEIK





DKK1-
874
DIQMTQSPSSLSASVGDRVTITCRASQYISNYLNWYQQKPGKAPKLLIYGASSIQNGVPSRFSGSGS


373

GTDFTLTISSLQPEDFATYYCQQTYSLPLTFGGGTKVEIK





DKK1-
875
DIQMTQSPSSLSASVGDRVTITCRASQTISTFLNWYQQKPGKAPKLLIYGASRLQGGVPSRFSGSGS


374

GTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIK





DKK1-
876
DIQMTQSPSSLSASVGDRVTITCRASQSISRFLNWYQQKPGKAPKLLIYGASRLESGVPSRFSGSGS


375

GTDFTLTISSLQPEDFATYYCQQSYKTPRTFGGGTKVEIK





DKK1-
877
DIQMTQSPSSLSASVGDRVTITCRASESIDNYLNWYQQKPGKAPKLLIYGATSLESGVPSRFSGSGS


376

GTDFTLTISSLQPEDFATYYCQQNYNIPFTFGGGTKVEIK





DKK1-
878
DIQMTQSPSSLSASVGDRVTITCRTSQSISNFLNWYQQKPGKAPKLLIYTASKLQSGVPSRFSGSGS


377

GTDFTLTISSLQPEDFATYYCQQSYRVPRTFGGGTKVEIK





DKK1-
879
DIQMTQSPSSLSASVGDRVTITCRASQSIGTNLNWYQQKPGKAPKLLIYAASALQGGVPSRFSGSG


378

SGTDFTLTISSLQPEDFATYYCQQSYSIPLTFGGGTKVEIK





DKK1-
880
DIQMTQSPSSLSASVGDRVTITCRASQTITRYLNWYQQKPGKAPKLLIYAATSLHSGVPSRFSGSGS


379

GTDFTLTISSLQPEDFATYYCQQSYSTPETFGGGTKVEIK





DKK1-
881
DIQMTQSPSSLSASVGDRVTITCRASQSIGNFLNWYQQKPGKAPKLLIYDASSLQSGVPSRFSGSGS


380

GTDFTLTISSLQPEDFATYYCQQSYSIPPTFGGGTKVEIK





DKK1-
882
DIQMTQSPSSLSASVGDRVTITCRASHSISRYLNWYQQKPGKAPKLLIYGASNLPSGVPSRFSGSGS


381

GTDFTLTISSLQPEDFATYYCQQSYSTHTFGGGTKVEIK





DKK1-
883
DIQMTQSPSSLSASVGDRVTITCRASQGISFYLNWYQQKPGKAPKLLIYGASILQTGVPSRFSGSGS


382

GTDFTLTISSLQPEDFATYYCQQSYSPPLTFGGGTKVEIK





DKK1-
884
DIQMTQSPSSLSASVGDRVTITCRASQSVSNYLNWYQQKPGKAPKLLIYGASTLQAGVPSRFSGSG


383

SGTDFTLTISSLQPEDFATYYCQQSYVTPPTFGGGTKVEIK





DKK1-
885
DIQMTQSPSSLSASVGDRVTITCRASQSIGSFLNWYQQKPGKAPKLLIYAAFRLQSGVPSRFSGSGS


384

GTDFTLTISSLQPEDFATYYCQQTYSPPFTFGGGTKVEIK





DKK1-
886
DIQMTQSPSSLSASVGDRVTITCRASQSITRHLNWYQQKPGKAPKLLIYAASRLQTGVPSRFSGSGS


385

GTDFTLTISSLQPEDFATYYCQQSYSTPGTFGGGTKVEIK





DKK1-
887
DIQMTQSPSSLSASVGDRVTITCRASQRISRYLNWYQQKPGKAPKLLIYGASNLQGGVPSRFSGSG


386

SGTDFTLTISSLQPEDFATYYCQQSYRTPITFGGGTKVEIK





DKK1-
888
DIQMTQSPSSLSASVGDRVTITCRASQYIGNYLNWYQQKPGKAPKLLIYAVSRLQSGVPSRFSGSG


387

SGTDFTLTISSLQPEDFATYYCQQSFSAPYTFGGGTKVEIK





DKK1-
889
DIQMTQSPSSLSASVGDRVTITCRASQYISTFLNWYQQKPGKAPKLLIYSASRLQNGVPSRFSGSGS


388

GTDFTLTISSLQPEDFATYYCQQSYSPLTFGGGTKVEIK





DKK1-
890
DIQMTQSPSSLSASVGDRVTITCRASRSISRYLNWYQQKPGKAPKLLIYGASILQTGVPSRFSGSGS


389

GTDFTLTISSLQPEDFATYYCQQSYTPPRTFGGGTKVETK





DKK1-
891
DIQMTQSPSSLSASVGDRVTITCRASQSISRSLNWYQQKPGKAPKLLIYGASSLRSGVPSRFSGSGS


390

GTDFTLTISSLQPEDFATYYCQQSFTIPWTFGGGTKVEIK





DKK1-
892
DIQMTQSPSSLSASAGDRVTITCRASQSITSYLNWYQQKPGKAPKLLIYAASRLRSGVPSRFSGSGS


391

GTDFTLTISSLQPEDFATYYCQQSYNTPVTFGGGTKVEIK





DKK1-
893
DIQMTQSPSSLSASVGDRVTITCRASQNIAGYLNWYQQKPGKAPKLLIYAASRLHSGVPSRFSGSG


392

SGTDFTLTISSLQPEDFATYYCQQSSSTPITFGGGTKVEIK





DKK1-
894
DIQMTQSPSSLSASVGDRVTITCRASQTIRTYLNWYQQKPGKAPKLLIYATSSLQTGVPSRFSGSGS


393

GTDFTLTISSLQPEDFATYYCQQSYRPPLTFGGGTKVEIK





DKK1-
895
DIQMTQSPSSLSASVGDRVTITCRASQSIGIHLNWYQQKPGKAPKLLIYGATSLESGVPSRFSGSGS


394

GTDFTLTISSLQPEDFATYYCQQSYNTPPYTFGGGTKVEIK





DKK1-
896
DIQMTQSPSSLSASVGDRVTITCRSSQSISTYLHWYQQKPGKAPKLLIYGASKLQSGVPSRFSGSGS


395

GTDFTLTISSLQPEDFATYYCQQTYSAPRTFGGGTKVEIK





DKK1-
897
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYGASRLQSGVPSRFSGSGS


396

GTDFTLTISSLQPEDFATYYCQQSYRTPLTFGGGTKVEIK





DKK1-
898
DIQMTQSPSSLSASVGDRVTITCRASHTISRYLNWYQQKPGKAPRLLIYAASDLQTGVPSRFSGGG


397

SGTDFTLTISSLQPEDFATYYCQQSFTAPDTFGGGTKVEIK





DKK1-
899
DIQMTQSPSSLSASVGDRVTITCRTSQSISRYLNWYQQKPGKAPKLLIYTTSDLQSGVPSRFSGSGS


398

GTDFTLTISSLQPEDFATYYCQQSYSDLTFGGGTKVEIK





DKK1-
900
DIQMTQSPSSLSASVGDRVTITCRASQRINTYLNWYQQKPGKAPKLLIYGAFRLQSGVPSRFSGSG


399

SGTDFTLTISSLQPEDFATYYCQQSYRVPRTFGGGTKVEIK





DKK1-
901
DIQMTQSPSSLSASVGDRVTITCRASQSINHYLNWYQQKPGKAPKLLIYGASRLQSGVPSRFSGSG


400

SGTDFTLTISSLQPEDFATYYCQQSYSLPRTFGGGTKVEIK





DKK1-
902
DIQMTQSPSSLSASVGDRVTITCRASQTIGRYLNWYQQKPGKAPKLLIYATSSLRSGVPSRFSGSGS


401

GTDFTLTISSLQPEDFATYYCQQTYSTPYTFGGGTKVEIK





DKK1-
903
DIQMTQSPSSLSASVGDRVTITCRASQSIGEYLNWYQQKPGKAPKLLIYAASRLQRGVPSRFSGSG


402

SGTDFTLTISSLQPEDFATYYCQQNYRSPLTFGGGTKVEIK





DKK1-
904
DIQMTQSPSSLSASVGDRVTITCRASQSIYRYLNWYQQKPGKAPKLLIYAATTLQSGVPSRFSGSGS


403

GTDFTLTISSLQPEDFATYYCQQSYSPPLTFGGGTKVEIK





DKK1-
905
DIQMTQSPSSLSASVGDRVTITCRASQNIGRYLNWYQQKPGKAPKLLIYEVSSLRSGVPSRFSGSGS


404

GTDFTLTISSLQPEDFATYYCQQSYRTPGTFGGGTKVEIK





DKK1-
906
DIQMTQSPSSLSASVGDRVTITCRAGQSIRNYLNWYQQKPGKAPKLLIYAATTLQSGVPSRFSGSG


405

SGTDFTLTISSLQPEDFATYYCQQSFLTPWTFGGGTKVEIK





DKK1-
907
DIQMTQSPSSLSASVGDRVTITCRASQSISRHLNWYQQKPGKAPKLLIYGATRLQSGVPSRFSGSGS


406

GTDFTLTISSLQPEDFATYYCQQSYSKPYTFGGGTKVEIK





DKK1-
908
DIQMTQSPSSLSASVGDRVTITCRASQSISRYLHWYQQKPGKAPKLLIYAATSLQSGVPSRFSGSGS


407

GTDFTLTISSLQPEDFATYYCQQSYSTPLSFGGGTKVEIK





DKK1-
909
DIQMTQSPSSLSASVGDRVTITCRTSQSIGTYLNWYQQKPGKAPKLLIYDTSNLQGGVPSRFSGSGS


408

GTDFTLAISSLQPEDFATYYCQQSFTSPLTFGGGTKVEIK





DKK1-
910
DIQMTQSPSSLSASVGDRVTITCRASQGIATYLNWYQQKPGKAPKLLIYAASSLQRGVPSRFSGSG


409

SGTDFTLTISSLQPEDFATYYCQQTHSTPLTFGGGTKVEIK





DKK1-
911
DIQMTQSPSSLSASVGDRVTITCRASQNIGGYLNWYQQKPGKAPKLLIYRASRLQSGVPSRFSGSG


410

SGTDFTLTISSLQPEDFATYYCQQSYSTPLLTFGGGTKVEIK





DKK1-
912
DIQMTQSPSSLSASVGDRVTITCRASQYIGNYLNWYQQKPGKAPKLLIYASSTLQRGVPSRFSGSG


411

SGTDFTLTISSLQPEDFATYYCQQTSSTPLTFGGGTKVEIK





DKK1-
913
DIQMTQSPSSLSASVGDRVTITCRTSQSIGTYLNWYQQKPGKSPKLLIYDASILQSGVPSRFSGSGS


412

GTDFTLTISSLQPEDFATYYCQQNYNTPLTFGGGTKVEIK





DKK1-
914
DIQMTQSPSSLSASVGDRVTITCQASQNIGRYLNWYQQKPGKAPKLLIYAASALQGGVPSRFSGSG


413

SGTDFTLTISSLQPEDFATYYCQQSYTPPRTFGGGTKVEIK





DKK1-
915
DIQMTQSPSSLSASVGDRVTITCRASQSISRHLNWYQQKPGKAPKLLIYGASSLQSGVPSRFSGSGS


414

GTDFTLTISSLQPEDFATYYCQQTYRTPLTFGGGTKVEIK





DKK1-
916
DIQMTQSPSSLSASVGDRVTITCRASQSIHNYLNWYQQKPGKAPKLLIYAASSLHDGVPSRFSGSG


415

SGTDFTLTISSLQPEDFATYYCQQSYSTPYTFGGGTKVEIK





DKK1-
917
DIQMAQSPSSLSASVGDRVTITCRASQGIATYLNWYQQKPGKAPKFLIYGASTLRTGVPSRFSGSG


416

SGTDFTLTISSLQPEDFATYYCQQTFTNTPLTFGGGTKVEIK





DKK1-
918
DIQMTQSPSSLSASVGDRVTITCRASQTITKYLNWYQQKPGKAPKLLIYATSNLQTGVPSRFSGSGS


417

GTDFTLTISSLQPEDFATYYCQQSYSAPVTFGGGTKVEIK
















TABLE 8







Variable Light Chain CDRs














SEQ

SEQ
CDR2
SEQ



DKK1
ID
CDR1
ID
Se-
ID
CDR3


Variant
NO
Sequence
NO
quence
NO
Sequence





DKK1-212
2259
KLRNKY

GAS
2522
QSYDDHDRIV





DKK1-213
2260
QPIGPD

SAS
2523
QQSYSTPT





DKK1-214
2261
QSISSY

GRN
2524
QQSYSSPLT





DKK1-215
2262
QDISNY

AAS
2525
QQYYNLPWT





DKK1-216
2263
QDIYQN

AAS
2526
ASRDRSGHGV





DKK1-217
2264
QPIGPD

GAS
2527
QQSYNTPLT





DKK1-218
2265
QSIRRY

GRN
2528
QHSYRSGRA





DKK1-219
2266
QDVSSG

DAS
2529
KQSYTLRT





DKK1-220
2267
QRISRY

GKK
2530
QQSYSPPLT





DKK1-221
2268
QTIGDY

HTS
2531
GQDYTSPRT





DKK1-222
2269
QTIERR

QDF
2532
QQSRT





DKK1-223
2270
QSIRRY

GKK
2533
QQSYSTPS





DKK1-224
2271
QTIERR

GNN
2534
SSWAGSRSGTV





DKK1-225
2272
QNIRSY

ATS
2535
NSRDTSINHPVI





DKK1-226
2273
QDINKY

DNT
2536
QQSYSTPT





DKK1-227
2274
DRLGEKY

DNT
2537
LAWDTRTSGAV





DKK1-228
2275
QSISSY

AKN
2538
QSYGSHSNFVV





DKK1-229
2276
QTIGDY

AAS
2539
QSYDLRYSHV





DKK1-230
2277
QDIKNY

GTS
2540
ASRSSKGNPHVL





DKK1-231
2278
QNIRSY

GKN
2541
QQRARHPHT





DKK1-232
2279
DNLRSYY

QDF
2542
QSYDDHDRIV





DKK1-233
2280
KLAEKY

DNN
2543
LAWDTRTSGAV





DKK1-234
2281
SSVSY

AAS
2544
QQGKTLPLT





DKK1-235
2282
QSISSY

AVT
2545
QQSTILPLT





DKK1-236
2283
QSIRRY

GRN
2546
QQRARHPHT





DKK1-237
2284
QTIERR

DDI
2547
QQGSSLPLT





DKK1-238
2285
SGS

GNN
2548
NSRDTSGNHRV





DKK1-239
2286
QDISNY

QND
2549
NSRDTSGNHLV





DKK1-240
2287
QDIYQN

QND
2550
QQTYSTRT





DKK1-241
2288
QSISSY

GRN
2551
QAWGSSTVI





DKK1-242
2289
QSIRRY

RKS
2552
QQRARHPHT





DKK1-243
2290
QSLFNVRS 

DTS
2553
SSRDNSDNHLVV




QKNY









DKK1-244
2291
QSIRRY

GKN
2554
QQSYSAPLT





DKK1-245
2292
KLAEKY

HTS
2555
QVWDTGTVV





DKK1-246
2293
QDINKY

DNN
2556
QQSYSTPT





DKK1-247
2294
QPIAYF

GKN
2557
ASRSSKGNPHVL





DKK1-248
2295
DHIGKF

AAS
2558
QQSYETPLT





DKK1-249
2296
QSISSY

AVT
2559
QQSTIMPLT





DKK1-250
2297
QSIRRY

RKS
2560
QQSYSTPT





DKK1-251
2298
QSISSY

QND
2561
QQRDTTPWT





DKK1-252
2299
QDIKNY

ENN
2562
QARDRNTYVA





DKK1-253
2300
QYIGTA

DNN
2563
NSRDTSGLHYV





DKK1-254
2301
QSISGY

GQH
2564
QQYDAYPPT





DKK1-255
2302
QSIGRY

GK
2565
QQSYSAPLT





DKK1-256
2303
QDIYQN

EDT
2566
LQYASSPFT





DKK1-257
2304
QPIGPD

AVT
2567
QQSFSVPA





DKK1-258
2305
QPIGPD

GAS
2568
QQSYNTPLT





DKK1-259
2306
QDINKY

DNN
2569
QQSYSTPT





DKK1-260
2307
QRISSF

RKS
2570
SQSTRVPPT





DKK1-261
2308
QNIATY

HTS
2571
SSWAGSRSGTV





DKK1-262
2309
GDLRNKY

GQH
2572
SSGSRSGTV





DKK1-263
2310
QPIGPD

ANT
2573
QQSYSAPYT





DKK1-264
2311
QSIYSF

RKS
2574
QQTATWPFT





DKK1-265
2312
QDINKY

DNT
2575
QQSYSTPT





DKK1-266
2313
DHIGKF

HTS
2576
QQSYKYPLT





DKK1-267
2314
HNINSY

QDF
2577
QQSYSSPLT





DKK1-268
2315
QDINKY

DNT
2578
QQSYSTPT





DKK1-269
2316
QDISNY

GTS
2579
QQGYTLPWT





DKK1-270
2317
QNIGNF

HTS
2580
QQSYSAPLT





DKK1-271
2318
SSVTY

HDN
2581
QQSYDNPLT





DKK1-272
2319
QDIYQN

QND
2582
LQFDHTPFT





DKK1-273
2320
QDIGNY

HTS
2583
QQGYRFPLT





DKK1-274
2321
QPIAYF

GKN
2584
ASRSSKGNPHVL





DKK1-275
2322
DNLRGYY

QDF
2585
QQSYSPLT





DKK1-276
2323
QLVHSTG

GAS
2586
SQSTHVPT




NTY









DKK1-277
2324
SLRNYY

ENN
2587
STRSRKGNPHVL





DKK1-278
2325
QDIKNY

QAS
2588
QQSYSPPLT





DKK1-279
2326
QDVSSG

DDI
2589
HQRSSYPWT





DKK1-280
2327
QGVRTS

SAS
2590
QAWDNSAVI





DKK1-281
2328
QDINKY

DNT
2591
QQSYSTPT





DKK1-282
2329
KLAEKN

QND
2592
QQTYSTPLT





DKK1-283
2330
QTIGDY

AAS
2593
QQSNSWPYT





DKK1-284
2331
QSISSY

LSS
2594
AQTGTHPTT





DKK1-285
2332
QSLSSY

EDT
2595
HTWHHNPHTGE








TNH





DKK1-286
2333
QDINKY

DNT
2596
QQSYSTPT





DKK1-287
2334
QDVSSG

GAS
2597
NSRDTSGLHYV





DKK1-288
2335
QTIERR

ENN
2598
QQTYSPPLT





DKK1-289
2336
QDINKY

GAS
2599
QQSYSSPLT





DKK1-290
2337
QSIRSF

GQH
2600
QQYYDWPLT





DKK1-291
2338
QDIYQN

GKN
2601
QQYYSGWT





DKK1-292
2339
QSLSSY

GRN
2602
QNVLSTPYT





DKK1-293
2340
GDLRNKY

GTS
2603
QAWVSSTVV





DKK1-294
2341
QSVDRY

SAS
2604
SQSTHVPLT





DKK1-295
2342
QFIGRY

GRN
2605
QQSYSTPT





DKK1-296
2343
QPIGPD

GKK
2606
QQSYSTPRT





DKK1-297
2344
QTIGDY

GAS
2607
SQSTHVPT





DKK1-298
2345
QTIERR

GQH
2608
QQYHSYPPT





DKK1-299
2346
QSIRRF

GAS
2609
QQSFSVPA





DKK1-300
2347
QDIYQN

GNN
2610
QQSYSAPLT





DKK1-301
2348
QNIATY

HDN
2611
LQDYNYPLT





DKK1-302
2349
QDINKY

GRN
2612
QQTYNVPPT





DKK1-303
2350
QNIGNF

NAK
2613
ASRDRSGHGV





DKK1-304
2351
QTIERR

QND
2614
SSRDRSGNHRV





DKK1-305
2352
QRISSF

QND
2615
QQSYSTPT





DKK1-306
2353
QSISSY

HDN
2616
AQNLEIPRT





DKK1-307
2354
DKLGDKY

HDN
2617
QPSFYFPYT





DKK1-308
2355
QDIYQN

GKN
2618
QQYYSGWT





DKK1-309
2356
QSISSY

GAS
2619
QQYWAFPVT





DKK1-310
2357
QSISGY

AKN
2620
QQSYSSPRT





DKK1-311
2358
QDINKY

DTS
2621
QQSYSTPNT





DKK1-312
2359
QNIRSY

DNN
2622
LQDYNLWT





DKK1-313
2360
QSIREY

ATS
2623
QAWDTSTAV





DKK1-314
2361
GDLGEKY

ATS
2624
QAWASSTVV





DKK1-315
2362
QNIATY

GNN
2625
STRSSKGNPHVL





DKK1-316
2363
KVSTSGYVY

ENN
2626
QQYWAFPVT





DKK1-317
2364
SSVSY

GEN
2627
QQSYSTPWT





DKK1-318
2365
QDVSSG

GS
2628
QQYHSYPPT





DKK1-319
2366
QSVDRY

HTS
2629
QAWDNRAVV





DKK1-320
2367
QSVYSNNE

GNN
2630
QQSYSTPT





DKK1-321
2368
QSISTY

AAS
2631
QQNYIIPWT





DKK1-322
2369
HSISSY

TAS
2632
QQNYNTPFT





DKK1-323
2370
QSIHSY

TAS
2633
QQSFSSPLT





DKK1-324
2371
QSVSRF

AAA
2634
QQSYDTPFT





DKK1-325
2372
QSIGTY

DAS
2635
QQNYNTPLT





DKK1-326
2373
QSIGIH

GAT
2636
QQSYNTPPYT





DKK1-327
2374
QSIRSY

ATS
2637
QQGYTSPLT





DKK1-328
2375
QGIATY

GAS
2638
QQTFTNTPLT





DKK1-329
2376
QSIGSY

AAS
2639
QQSHNIPRT





DKK1-330
2377
QSISRN

GAS
2640
QQGYITPQT





DKK1-331
2378
QSVRTY

RAS
2641
QQSFTTPLT





DKK1-332
2379
QSIGSH

RAS
2642
QQSYSPPIT





DKK1-333
2380
QSISRY

GAS
2643
QQSSSVPWT





DKK1-334
2381
QNIGNY

AAS
2644
QQNYNTPLT





DKK1-335
2382
QSISTY

AAS
2645
QQSYTPPIT





DKK1-336
2383
QNIGSY

AAS
2646
QQSYNTPVT





DKK1-337
2384
QSISRF

GAS
2647
QQSYIPPLT





DKK1-338
2385
ESITTY

TAS
2648
QQNYITPLT





DKK1-339
2386
QSISTY

AAS
2649
QQSYNSIT





DKK1-340
2387
QSIGSN

ATS
2650
QQSYRIPRT





DKK1-341
2388
QSISRY

AAS
2651
QQSYSTPTT





DKK1-342
2389
QYIGTY

AAS
2652
QQSYSDLT





DKK1-343
2390
ESISRN

AAS
2653
QQSYSGPPYT





DKK1-344
2391
QSISTY

AAS
2654
QQNYIIPWT





DKK1-345
2392
QSVSNF

GAS
2655
QQSYSFPFS





DKK1-346
2393
RNIRTY

RAS
2656
QQSYKTPVT





DKK1-347
2394
QSIGNF

RAS
2657
QQSYNTPIT





DKK1-348
2395
QSIRSY

GAT
2658
QQSYSTLPFT





DKK1-349
2396
QSIRTY

GAV
2659
QQRDT





DKK1-350
2397
QNIYTY

LAS
2660
QQSYSTRFT





DKK1-351
2398
QSISRY

GSS
2661
QQSYSSPT





DKK1-352
2399
QNIGRY

SAS
2662
QQTYSPPLT





DKK1-353
2400
QTISAY

GAS
2663
QQSYSGLT





DKK1-354
2401
QSIRGY

STS
2664
QQNYNTPLT





DKK1-355
2402
QSVSYY

GSS
2665
QQTYSSPVT





DKK1-356
2403
QPISSY

SAS
2666
QQGYSAPLT





DKK1-357
2404
QSIGKY

GAS
2667
QQTYSTPLT





DKK1-358
2405
QSIGAY

GTS
2668
QQSYGTLIT





DKK1-359
2406
QTISTF

GAS
2669
QQSYSTPLT





DKK1-360
2407
QSIGRY

AVS
2670
QQSYSTPS





DKK1-361
2408
QSISNY

GAS
2671
QQSYSLPLT





DKK1-362
2409
QTISRS

GAS
2672
QQSFTTPYT





DKK1-363
2410
QSISSY

AAS
2673
QQNYRSPLT





DKK1-364
2411
RSIGTY

AAS
2674
QQNYITPLT





DKK1-365
2412
QNINRY

ASS
2675
QQSYSSPIT





DKK1-366
2413
QSVSSY

ATS
2676
HQTYSTPRT





DKK1-367
2414
QSIGIH

GAT
2677
QQSYNTPPYT





DKK1-368
2415
RSISTY

EVS
2678
QQNYITPLT





DKK1-369
2416
QSISRY

AAS
2679
QQGYSSPLT





DKK1-370
2417
QSISNF

GTS
2680
QQSYSIPFT





DKK1-371
2418
QGISFY

AAS
2681
QQSYSTPQIT





DKK1-372
2419
QNIKTY

GAS
2682
LQTYSVPLT





DKK1-373
2420
QYISNY

GAS
2683
QQTYSLPLT





DKK1-374
2421
QTISTF

GAS
2684
QQSYSTPLT





DKK1-375
2422
QSISRF

GAS
2685
QQSYKTPRT





DKK1-376
2423
ESIDNY

GAT
2686
QQNYNIPFT





DKK1-377
2424
QSISNF

TAS
2687
QQSYRVPRT





DKK1-378
2425
QSIGTN

AAS
2688
QQSYSIPLT





DKK1-379
2426
QTITRY

AAT
2689
QQSYSTPET





DKK1-380
2427
QSIGNF

DAS
2690
QQSYSIPPT





DKK1-381
2428
HSISRY

GAS
2691
QQSYSTHT





DKK1-382
2429
QGISFY

GAS
2692
QQSYSPPLT





DKK1-383
2430
QSVSNY

GAS
2693
QQSYVTPPT





DKK1-384
2431
QSIGSF

AAF
2694
QQTYSPPFT





DKK1-385
2432
QSITRH

AAS
2695
QQSYSTPGT





DKK1-386
2433
QRISRY

GAS
2696
QQSYRTPIT





DKK1-387
2434
QYIGNY

AVS
2697
QQSFSAPYT





DKK1-388
2435
QYISTF

SAS
2698
QQSYSPLT





DKK1-389
2436
RSISRY

GAS
2699
QQSYTPPRT





DKK1-390
2437
QSISRS

GAS
2700
QQSFTIPWT





DKK1-391
2438
QSITSY

AAS
2701
QQSYNTPVT





DKK1-392
2439
QNIAGY

AAS
2702
QQSSSTPIT





DKK1-393
2440
QTIRTY

ATS
2703
QQSYRPPLT





DKK1-394
2441
QSIGIH

GAT
2704
QQSYNTPPYT





DKK1-395
2442
QSISTY

GAS
2705
QQTYSAPRT





DKK1-396
2443
QSIGRY

GAS
2706
QQSYRTPLT





DKK1-397
2444
HTISRY

AAS
2707
QQSFTAPDT





DKK1-398
2445
QSISRY

TTS
2708
QQSYSDLT





DKK1-399
2446
QRINTY

GAF
2709
QQSYRVPRT





DKK1-400
2447
QSINHY

GAS
2710
QQSYSLPRT





DKK1-401
2448
QTIGRY

ATS
2711
QQTYSTPYT





DKK1-402
2449
QSIGEY

AAS
2712
QQNYRSPLT





DKK1-403
2450
QSIYRY

AAT
2713
QQSYSPPLT





DKK1-404
2451
QNIGRY

EVS
2714
QQSYRTPGT





DKK1-405
2452
QSIRNY

AAT
2715
QQSFLTPWT





DKK1-406
2453
QSISRH

GAT
2716
QQSYSKPYT





DKK1-407
2454
QSISRY

AAT
2717
QQSYSTPLS





DKK1-408
2455
QSIGTY

DTS
2718
QQSFTSPLT





DKK1-409
2456
QGIATY

AAS
2719
QQTHSTPLT





DKK1-410
2457
QNIGGY

RAS
2720
QQSYSTPLLT





DKK1-411
2458
QYIGNY

ASS
2721
QQTSSTPLT





DKK1-412
2459
QSIGTY

DAS
2722
QQNYNTPLT





DKK1-413
2460
QNIGRY

AAS
2723
QQSYTPPRT





DKK1-414
2461
QSISRH

GAS
2724
QQTYRTPLT





DKK1-415
2462
QSIHNY

AAS
2725
QQSYSTPYT





DKK1-416
2463
QGIATY

GAS
2726
QQTFTNTPLT





DKK1-417
2464
QTITKY

ATS
2727
QQSYSAPVT









Example 5: DKK1 Variants

In this experiment, the antibodies were tested for their yield, SPR affinity, and enrichment from eluted phage (Tables 9-10).


Variable heavy chain and light chain domains of anti-DKK1 antibodies were reformatted to IgG2, or VHH-Fc based on IgG2 Fc for nanobody leads. Reformatted leads were then DNA back-translated, synthesized, and cloned into mammalian expression vector pTwist CMV BG WPRE Neo. Light chain variable domains were reformatted into kappa and lambda frameworks accordingly. Clonal genes were delivered as purified plasmid DNA ready for transient transfection in HEK Expi293 cells (Thermo Fisher Scientific). Cultures in a volume of 1.2 mL were grown to four days, harvested, and purified using Protein A resin (PhyNexus) on the Hamilton Microlab STAR platform into 43 mM Citrate 148 mM HEPES, pH 6. 1.2 ml. Yield was calculated by measuring absorbance at 280 nm on Lunatic instrumentation (UNCLE). Results are depicted in FIG. 10A.


SPR experiments were performed on a Carterra LSA SPR biosensor equipped with a HC30M chip at 25° C. in HBS-TE. Antibodies were diluted to 10 μg/mL and amine-coupled to the sensor chip by EDC/NHS activation, followed by ethanolamine HCl quenching. Increasing concentrations of analyte were flowed over the sensor chip in HBS-TE with 0.5 mg/mL BSA with 5-minute association and 15-minute dissociation. Following each injection cycle the surface was regenerated with 2×30-second injections of IgG elution buffer (Thermo). Data were analyzed in Carterra's Kinetics Tool software with 1:1 binding model. Results are depicted in FIGS. 10B-C and 11A-B.


Long-read NGS sequencing was performed by submitting PCR amplicons of DNA corresponding to the scFv or VHH of each clone to Loop Genomics for processing. Returned contiguous FASTQ files were processed by the AIRR Python API to extract and annotate antibody sequences. “NGS enrichment” refers to the number of instances that specific antibody appeared in round 4 sequencing. “Cluster enrichment” refers to the number of instances that the exact antibody appeared in round 4 or a variant within a Levenshtein distance of 3 appeared in round 4 sequencing. “Cluster rank” lists the antibody rank order of the antibody belonging to the largest size cluster enrichment to the lowest. Results can be seen in FIGS. 9A-C









TABLE 9







Antibody Yield, SPR Affinity, and Enrichment of Antibodies















DKK1
1.2 ml
ka (M−1
kd
KD
Rmax
NGS
Cluster
Cluster


Variant
yield (ug)
s−1)
(s−1)
(M)
(RU)
Enrichment
Enrichment
Rank


















DKK1-1
73.0









DKK1-2
166.0









DKK1-3
56.0









DKK1-4
98.0









DKK1-5
147.0









DKK1-6
96.0
2.24E+05
8.60E−04
3.84E−09
 90.1
48
53
 5


DKK1-7
131.0









DKK1-8
232.0




3




DKK1-9
n/a
n/a
n/a
n/a
n/a
3




DKK1-10
105.0
4.51E+05
4.02E−04
8.92E−10
 32.5
16
17
41


DKK1-11
56.0




46
49
 6


DKK1-12
82.0




44
53
 4


DKK1-13
267.0




53
62
 1


DKK1-14
119.0




2




DKK1-15
117.0




2




DKK1-16
243.0




2




DKK1-17
51.0




2




DKK1-18
131.0
3.76E+04
1.29E−04
3.42E−09
 18.5





DKK1-19
96.0




5




DKK1-20
5.0









DKK1-21
307.0




1




DKK1-22
211.0




1




DKK1-23
89.0









DKK1-24
40.0
4.21E+05
3.00E−04
7.13E−10
126.5
1




DKK1-25
129.0









DKK1-26
77.0
8.82E+05
1.00E−06
1.13E−12
 18.8





DKK1-27
192.0




33
40
13


DKK1-28
84.0
6.27E+05
1.00E−05
1.59E−11
 68.7
2




DKK1-29
47.0









DKK1-30
37.0
4.15E+05
3.03E−04
7.29E−10
 95.1
3




DKK1-31
42.0




9
17
40


DKK1-32
157.0




8




DKK1-33
68.0




12
13
84


DKK1-34
180.0
3.46E+05
6.04E−04
1.75E−09
163.7
3




DKK1-35
89.0




4
12
92


DKK1-36
370.0




7
13
68


DKK1-37
260.0
9.13E+04
9.16E−05
1.00E−09
 42.5
24
30
15


DKK1-38
61.0









DKK1-39
28.0









DKK1-40
7.0
1.10E+05
6.43E−04
5.86E−09
 47.3





DKK1-41
140.4
1.02E+05
8.28E−04
8.13E−09
224.6
9
17
40


DKK1-42
124.0
8.91E+04
2.59E−03
2.91E−08
 81.1
3
17
39


DKK1-43
147.4
2.01E+05
3.93E−03
1.96E−08
230.7
10
17
38


DKK1-44
110.0
1.78E+05
1.24E−04
6.93E−10
173.7
13
17
37


DKK1-45
142.7
6.63E+04
1.72E−03
2.60E−08
218.5
12
18
36


DKK1-46
124.0
1.27E+05
2.90E−03
2.27E−08
186.7
13
18
35


DKK1-47
88.9
2.73E+05
6.68E−03
2.45E−08
161.5
11
19
34


DKK1-48
72.5
9.94E+04
3.06E−03
3.08E−08
202.1
6
19
33


DKK1-49
28.1
4.11E+04
3.18E−03
7.75E−08
 88.4
16
19
32


DKK1-50
138.1
9.14E+04
1.74E−03
1.90E−08
 80.7
12
19
31


DKK1-51
107.6
4.91E+04
4.25E−03
8.66E−08
161.0
18
19
30


DKK1-52
152.1
8.29E+04
2.99E−03
3.60E−08
120.4
15
20
29


DKK1-53
154.4
8.72E+04
3.54E−03
4.05E−08
187.4
15
20
28


DKK1-54
152.1
1.06E+05
3.72E−04
3.51E−09
486.9
19
20
27


DKK1-55
131.0
2.29E+05
8.89E−04
3.89E−09
535.3
16
21
26


DKK1-56
163.8
4.34E+04
2.05E−03
4.72E−08
114.9
15
22
25


DKK1-57
128.7
9.24E+04
3.06E−03
3.31E−08
232.1
11
22
24


DKK1-58
79.6
9.61E+04
3.31E−03
3.44E−08
249.1
18
22
23


DKK1-59
67.9
1.29E+05
1.40E−02
1.08E−07
230.6
9
23
22


DKK1-60
42.1
1.02E+05
1.79E−03
1.75E−08
213.3
22
25
21


DKK1-61
32.8
7.00E+04
4.39E−03
6.26E−08
170.1
13
25
20


DKK1-62
65.5
1.26E+05
2.19E−03
1.74E−08
 93.5
20
26
19


DKK1-63
28.1
n.b.
n.b.
n.b.
n.b.
24
27
18


DKK1-64
49.1
n.b.
n.b.
n.b.
n.b.
22
28
17


DKK1-65
124.0
3.61E+04
2.26E−03
6.27E−08
133.1
23
28
16


DKK1-66
49.1
1.23E+05
4.92E−03
3.99E−08
4450.4 
24
30
15


DKK1-67
81.9
2.17E+05
1.47E−03
6.77E−09
180.3
29
34
14


DKK1-68
58.5
5.61E+04
2.42E−03
4.31E−08
 77.9
33
40
13


DKK1-69
51.5
1.08E+05
7.22E−04
6.68E−09
237.0
19
40
12


DKK1-70
37.4
2.05E+05
2.14E−03
1.04E−08
333.0
29
42
11


DKK1-71
42.1
1.13E+05
3.45E−03
3.06E−08
292.4
29
42
10


DKK1-72
100.6
2.06E+05
3.62E−03
1.76E−08
133.7
35
42
 9


DKK1-73
51.5
1.03E+05
1.77E−03
1.71E−08
 45.7
41
44
 8


DKK1-74
63.2
1.65E+05
4.31E−03
2.61E−08
205.2
34
16
 7


DKK1-75
74.9
1.05E+06
8.32E−03
7.90E−09
118.5
46
49
 6


DKK1-76
51.5
1.23E+05
2.03E−03
1.66E−08
240.7
48
53
 5


DKK1-77
28.1
1.26E+05
1.26E−03
1.00E−08
197.8
44
53
 4


DKK1-78
39.8
2.09E+05
3.52E−03
1.68E−08
290.0
43
54
 3


DKK1-79
53.8
1.58E+05
1.19E−03
7.55E−09
148.7
50
55
 2


DKK1-80
81.9
4.40E+05
7.60E−05
1.73E−10
190.9
53
62
 1


DKK1-81
79.6









DKK1-82
7.0









DKK1-83
98.3









DKK1-84
67.9









DKK1-85
4.7









DKK1-86
16.4









DKK1-87
149.8









DKK1-88
238.7
5.94E+04
1.81E−03
3.06E−08
637.9
5




DKK1-89
126.4
5.09E+04
4.35E−03
8.55E−08
405.5





DKK1-90
322.9
3.73E+04
3.07E−03
8.23E−08
359.2





DKK1-91
114.7
8.07E+04
1.03E−02
1.27E−07
439.7





DKK1-92
152.1
9.36E+04
3.62E−03
3.87E−08
142.0





DKK1-93
117.0
6.25E+04
4.13E−04
6.62E−09
422.2





DKK1-94
98.3
7.24E+04
2.01E−03
2.78E−08
418.1





DKK1-95
133.4
9.41E+04
2.69E−03
2.85E−08
491.0





DKK1-96
163.8
6.03E+04
1.54E−03
2.54E−08
661.4





DKK1-97
156.8
6.57E+04
1.00E−05
1.52E−10
411.3





DKK1-98
154.4
1.34E+05
2.02E−01
1.50E−06
 83.7



















TABLE 10







Antibody Yield, SPR Affinity, and Enrichment of Antibodies




















100 nM
EC50


TSLP

kon
koff
KD
Rmax
FACS (MFI
FACS


Variant
yield
(M−1 s−1)
(s−1)
(M)
(RU)
Ratio)
(nM)

















DKK1-99
154.44
1.34E+05
2.02E−01
1.50E−06
 83.7
1.70



DKK1-100
156.78
6.57E+04
1.00E−05
1.52E−10
411.3
5.30


DKK1-101
163.8
6.03E+04
1.54E−03
2.54E−08
661.4
16.90


DKK1-102
133.38
9.41E+04
2.69E−03
2.85E−08
491.0
8.00


DKK1-103
98.28
7.24E+04
2.01E−03
2.78E−08
418.1
9.10


DKK1-104
117
6.25E+04
4.13E−04
6.62E−09
422.2
6.90


DKK1-105
152.1
9.36E+04
3.62E−03
3.87E−08
142.0
2.10


DKK1-106
114.66
8.07E+04
1.03E−02
1.27E−07
439.7
4.20


DKK1-107
322.92
3.73E+04
3.07E−03
8.23E−08
359.2
1.30


DKK1-108
126.36
5.09E+04
4.35E−03
8.55E−08
405.5
1.10


DKK1-109
238.68
5.94E+04
1.81E−03
3.06E−08
637.9
15.50


DKK1-110
149.76




6.50


DKK1-111
16.38


DKK1-112
4.68


DKK1-113
67.86




2.20


DKK1-114
98.28




4.40


DKK1-115
7.02


DKK1-116
79.56




3.50


DKK1-117
81.9
4.40E+05
7.60E−05
1.73E−10
190.9
45.10


DKK1-118
53.82
1.58E+05
1.19E−03
7.55E−09
148.7


DKK1-119
39.78
2.09E+05
3.52E−03
1.68E−08
290.0


DKK1-120
28.08
1.26E+05
1.26E−03
1.00E−08
197.8


DKK1-121
51.48
1.23E+05
2.03E−03
1.66E−08
240.7


DKK1-122
74.88
1.05E+06
8.32E−03
7.90E−09
118.5


DKK1-123
63.18
1.65E+05
4.31E−03
2.61E−08
205.2


DKK1-124
51.48
1.03E+05
1.77E−03
1.71E−08
 45.7


DKK1-125
100.62
2.06E+05
3.62E−03
1.76E−08
133.7


DKK1-126
42.12
1.13E+05
3.45E−03
3.06E−08
292.4


DKK1-127
37.44
2.05E+05
2.14E−03
1.04E−08
333.0


DKK1-128
51.48
1.08E+05
7.22E−04
6.68E−09
237.0


DKK1-129
58.5
5.61E+04
2.42E−03
4.31E−08
 77.9


DKK1-130
81.9
2.17E+05
1.47E−03
6.77E−09
180.3
30.00


DKK1-131
49.14
1.23E+05
4.92E−03
3.99E−08
4450.4 


DKK1-132
124.02
3.61E+04
2.26E−03
6.27E−08
133.1


DKK1-133
49.14
n.b.
n.b.
n.b.
n.b.


DKK1-134
28.08
n.b.
n.b.
n.b.
n.b.


DKK1-135
65.52
1.26E+05
2.19E−03
1.74E−08
 93.5


DKK1-136
32.76
7.00E+04
4.39E−03
6.26E−08
170.1


DKK1-137
42.12
1.02E+05
1.79E−03
1.75E−08
213.3


DKK1-138
67.86
1.29E+05
1.40E−02
1.08E−07
230.6


DKK1-139
79.56
9.61E+04
3.31E−03
3.44E−08
249.1


DKK1-140
128.7
9.24E+04
3.06E−03
3.31E−08
232.1


DKK1-141
163.8
4.34E+04
2.05E−03
4.72E−08
114.9


DKK1-142
131.04
2.29E+05
8.89E−04
3.89E−09
535.3
4.20


DKK1-143
152.1
1.06E+05
3.72E−04
3.51E−09
486.9
22.40


DKK1-144
154.44
8.72E+04
3.54E−03
4.05E−08
187.4


DKK1-145
152.1
8.29E+04
2.99E−03
3.60E−08
120.4


DKK1-146
107.64
4.91E+04
4.25E−03
8.66E−08
161.0


DKK1-147
138.06
9.14E+04
1.74E−03
1.90E−08
 80.7


DKK1-148
28.08
4.11E+04
3.18E−03
7.75E−08
 88.4


DKK1-149
72.54
9.94E+04
3.06E−03
3.08E−08
202.1


DKK1-150
88.92
2.73E+05
6.68E−03
2.45E−08
161.5


DKK1-151
124.02
1.27E+05
2.90E−03
2.27E−08
186.7


DKK1-152
142.74
6.63E+04
1.72E−03
2.60E−08
218.5


DKK1-153
109.98
1.78E+05
1.24E−04
6.93E−10
173.7
7.20


DKK1-154
147.42
2.01E+05
3.93E−03
1.96E−08
230.7


DKK1-155
124.02
8.91E+04
2.59E−03
2.91E−08
 81.1


DKK1-156
140.4
1.02E+05
8.28E−04
8.13E−09
224.6


DKK1-157
180.18
1.23E+04
3.73E−03
3.03E−07
196.2


DKK1-158
58.5
4.77E+05
1.01E−02
2.12E−08
175.5


DKK1-159
72.54
8.09E+04
1.93E−03
2.39E−08
266.8


DKK1-160
93.6
1.02E+05
3.08E−04
3.03E−09
295.9


DKK1-161
58.5
2.61E+05
4.68E−03
1.79E−08
231.9


DKK1-162
105.3
6.41E+04
2.95E−03
4.60E−08
224.6


DKK1-163
44.46
1.38E+02
1.77E−02
1.28E−04
16396.4 


DKK1-164
168.48
2.00E+04
2.14E−03
1.07E−07
293.9


DKK1-165
163.8
1.55E+05
2.83E−03
1.83E−08
 70.4


DKK1-166
152.1
9.84E+04
2.58E−03
2.62E−08
321.8


DKK1-167
39.78
1.65E+04
2.83E−02
1.71E−06
950.7


DKK1-168
74.88
1.88E+05
7.97E−03
4.23E−08
165.5


DKK1-169
140.4
7.50E+04
4.68E−03
6.23E−08
261.2


DKK1-170
128.7
n.b.
n.b.
n.b.
n.b.


DKK1-171
18.72
5.83E+04
2.06E−03
3.54E−08
 67.4


DKK1-172
86.58
2.29E+04
3.05E−03
1.33E−07
264.4


DKK1-173
147.42
1.59E+05
2.62E−03
1.65E−08
217.9


DKK1-174
42.12
9.10E+04
3.53E−03
3.88E−08
250.0


DKK1-175
65.52
1.74E+05
3.45E−03
1.98E−08
129.8


DKK1-176
51.48
6.53E+04
4.68E−03
7.17E−08
154.3


DKK1-177
100.62
5.92E+04
1.70E−02
2.87E−07
178.9


DKK1-178
156.78
1.93E+05
1.27E−03
6.61E−09
277.4
7.00


DKK1-179
77.22
6.18E+04
5.17E−03
8.36E−08
213.3


DKK1-180
42.12
6.27E+04
3.49E−03
5.56E−08
164.6


DKK1-181
35.1
1.66E+05
7.46E−03
4.48E−08
181.8


DKK1-182
65.52
3.44E+05
3.24E−03
9.40E−09
231.3


DKK1-183
35.1
7.32E+04
2.53E−03
3.46E−08
 41.7


DKK1-184
65.52
1.12E+05
2.35E−04
2.11E−09
386.0
13.80


DKK1-185
49.14
1.56E+05
5.80E−03
3.73E−08
245.3


DKK1-186
67.86
9.26E+04
4.76E−03
5.14E−08
194.5


DKK1-187
86.58
2.06E+05
3.44E−03
1.67E−08
168.1


DKK1-188
49.14
1.37E+05
1.49E−03
1.08E−08
435.0


DKK1-189
49.14
2.64E+05
9.14E−03
3.47E−08
231.2


DKK1-190
65.52
8.99E+04
8.75E−04
9.74E−09
149.6


DKK1-191
70.2
1.10E+05
5.76E−05
5.26E−10
378.2
4.40


DKK1-192
91.26
4.78E+04
1.76E−03
3.68E−08
167.7


DKK1-193
74.88
2.03E+05
7.54E−03
3.71E−08
183.7


DKK1-194
79.56
n.b.
n.b.
n.b.
n.b.


DKK1-195
70.2
4.34E+04
3.05E−03
7.04E−08
271.6


DKK1-196
149.76
9.80E+04
2.01E−03
2.05E−08
438.6


DKK1-197
124.02
2.81E+05
2.41E−03
8.58E−09
112.5


DKK1-198
86.58
1.15E+05
3.42E−03
2.97E−08
228.1


DKK1-199
63.18
7.56E+04
5.46E−03
7.23E−08
200.8


DKK1-200
133.38
4.66E+04
1.63E−03
3.49E−08
112.0


DKK1-201
58.5
1.45E+05
9.81E−03
6.74E−08
141.5


DKK1-202
58.5
1.57E+05
1.09E−02
6.92E−08
248.8


DKK1-203
112.32
6.07E+04
6.57E−04
1.08E−08
317.8


DKK1-204
114.66
8.36E+04
1.95E−03
2.33E−08
280.2


DKK1-205
105.3
n.b.
n.b.
n.b.
n.b.


DKK1-206
147.42
n.b.
n.b.
n.b.
n.b.


DKK1-207
147.42
3.42E+05
2.46E−03
7.19E−09
158.5


DKK1-208
154.44
9.36E+04
2.24E−04
2.39E−09
310.2


DKK1-209
159.12
1.82E+05
1.03E−03
5.64E−09
260.8
18.00


DKK1-210
128.7
n.b.
n.b.
n.b.
n.b.


DKK1-211
91.26
n.b.
n.b.
n.b.
n.b.


DKK1-212
9.36


DKK1-213
0




0.70


DKK1-214
7.02




0.20


DKK1-215
28.08




0.20


DKK1-216
7.02




0.10


DKK1-217
44.46




0.20


DKK1-218
7.02


DKK1-219
7.02




0.60


DKK1-220
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-221
18.72
n.b.
n.b.
n.b.
n.b.
1.00


DKK1-222
18.72
n.b.
n.b.
n.b.
n.b.
1.60


DKK1-223
14.04
n.b.
n.b.
n.b.
n.b.
2.20


DKK1-224
21.06


DKK1-225
16.38




1.20


DKK1-226
14.04
1.25E+05
8.99E−02
7.17E−07
 42.1
2.60


DKK1-227
25.74




0.40


DKK1-228
11.7
4.50E+05
1.06E−02
2.35E−08
 94.0
1.10


DKK1-229
25.74
n.b.
n.b.
n.b.
n.b.
1.50


DKK1-230
18.72




0.20


DKK1-231
4.68


DKK1-232
56.16




36.50


DKK1-233
2.34
n.b.
n.b.
n.b.
n.b.


DKK1-234
25.74




1.30


DKK1-235
35.1




6.50


DKK1-236
9.36




0.10


DKK1-237
21.06
n.b.
n.b.
n.b.
n.b.
4.10


DKK1-238
14.04
n.b.
n.b.
n.b.
n.b.
0.30


DKK1-239
11.7




0.70


DKK1-240
4.68


DKK1-241
102.96




0.70


DKK1-242
4.68


DKK1-243
35.1




10.30


DKK1-244
7.02




2.90


DKK1-245
11.7
n.b.
n.b.
n.b.
n.b.
319.70


DKK1-246
4.68




0.30


DKK1-247
4.68
1.83E+04
8.02E−03
4.39E−07
 58.1
0.20


DKK1-248
112.32
3.73E+05
4.63E−03
1.24E−08
541.0
26.00


DKK1-249
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-250
9.36




0.70


DKK1-251
4.68
n.b.
n.b.
n.b.
n.b.


DKK1-252
4.68


DKK1-253
18.72
n.b.
n.b.
n.b.
n.b.
0.20


DKK1-254
53.82
1.39E+05
2.36E−02
1.70E−07
256.8
2.50


DKK1-255
2.34


DKK1-256
49.14
n.b.
n.b.
n.b.
n.b.
0.10


DKK1-257
11.7
n.b.
n.b.
n.b.
n.b.
0.10


DKK1-258


DKK1-259
0


DKK1-260
16.38
n.b.
n.b.
n.b.
n.b.


DKK1-261
4.68
n.b.
n.b.
n.b.
n.b.


DKK1-262
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-263
18.72
n.b.
n.b.
n.b.
n.b.


DKK1-264
4.68
n.b.
n.b.
n.b.
n.b.


DKK1-265
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-266
4.68
n.b.
n.b.
n.b.
n.b.


DKK1-267
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-268
42.12
n.b.
n.b.
n.b.
n.b.


DKK1-269
14.04
n.b.
n.b.
n.b.
n.b.


DKK1-270
25.74
n.b.
n.b.
n.b.
n.b.


DKK1-271
21.06
n.b.
n.b.
n.b.
n.b.


DKK1-272
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-273
18.72
n.b.
n.b.
n.b.
n.b.


DKK1-274
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-275
2.34
n.b.
n.b.
n.b.
n.b.


DKK1-276
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-277
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-278
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-279
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-280
21.06
n.b.
n.b.
n.b.
n.b.


DKK1-281
16.38
n.b.
n.b.
n.b.
n.b.


DKK1-282
18.72
n.b.
n.b.
n.b.
n.b.


DKK1-283
25.74
1.30E+05
3.35E−03
2.58E−08
355.6


DKK1-284
51.48
n.b.
n.b.
n.b.
n.b.


DKK1-285
49.14
n.b.
n.b.
n.b.
n.b.


DKK1-286
16.38
n.b.
n.b.
n.b.
n.b.


DKK1-287
14.04
n.b.
n.b.
n.b.
n.b.


DKK1-288
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-289
70.2
n.b.
n.b.
n.b.
n.b.


DKK1-290
35.1
9.25E+04
2.42E−03
2.61E−08
123.8


DKK1-291
25.74
n.b.
n.b.
n.b.
n.b.


DKK1-292
2.34
n.b.
n.b.
n.b.
n.b.


DKK1-293
28.08
n.b.
n.b.
n.b.
n.b.


DKK1-294
23.4
2.23E+04
4.74E−03
2.12E−07
135.9


DKK1-295
18.72
n.b.
n.b.
n.b.
n.b.


DKK1-296
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-297

n.b.
n.b.
n.b.
n.b.


DKK1-298

n.b.
n.b.
n.b.
n.b.


DKK1-299

n.b.
n.b.
n.b.
n.b.


DKK1-300

n.b.
n.b.
n.b.
n.b.


DKK1-301

n.b.
n.b.
n.b.
n.b.


DKK1-302
21.06
n.b.
n.b.
n.b.
n.b.


DKK1-303
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-304
14.04
n.b.
n.b.
n.b.
n.b.


DKK1-305
53.82
n.b.
n.b.
n.b.
n.b.


DKK1-306

n.b.
n.b.
n.b.
n.b.


DKK1-307

n.b.
n.b.
n.b.
n.b.


DKK1-308

n.b.
n.b.
n.b.
n.b.


DKK1-309

n.b.
n.b.
n.b.
n.b.


DKK1-310

n.b.
n.b.
n.b.
n.b.


DKK1-311

n.b.
n.b.
n.b.
n.b.


DKK1-312
4.68
n.b.
n.b.
n.b.
n.b.


DKK1-313

n.b.
n.b.
n.b.
n.b.


DKK1-314
32.76
n.b.
n.b.
n.b.
n.b.


DKK1-315
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-316
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-317
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-318
32.76
n.b.
n.b.
n.b.
n.b.


DKK1-319
23.4
n.b.
n.b.
n.b.
n.b.


DKK1-320
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-321
63.18
3.72E+05
3.04E−03
8.17E−09
154.1
92.00


DKK1-322
74.88
4.82E+05
8.51E−03
1.77E−08
387.2
38.70


DKK1-323
56.16
n.b.
n.b.
n.b.
n.b.
3.40


DKK1-324
79.56
n.b.
n.b.
n.b.
n.b.
0.80


DKK1-325
21.06
5.04E+05
4.22E−03
8.39E−09
 93.7
17.90


DKK1-326
58.5
3.34E+05
2.98E−03
8.92E−09
 58.8


DKK1-327
32.76
4.66E+05
4.80E−03
1.03E−08
 75.1


DKK1-328
21.06
n.b.
n.b.
n.b.
n.b.


DKK1-329
18.72
n.b.
n.b.
n.b.
n.b.


DKK1-330
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-331
16.38
n.b.
n.b.
n.b.
n.b.


DKK1-332
28.08
1.55E+05
6.92E−04
4.48E−09
619.7
13.30


DKK1-333
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-334
16.38
1.31E+05
7.03E−03
5.36E−08
144.8


DKK1-335
70.2
1.01E+05
1.37E−03
1.36E−08
 48.7


DKK1-336
44.46
5.67E+04
1.75E−01
3.10E−06
 76.9


DKK1-337
30.42
4.83E+05
1.74E−03
3.61E−09
314.7
3.30


DKK1-338
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-339
35.1
4.23E+05
4.81E−03
1.14E−08
 60.1


DKK1-340
42.12
n.b.
n.b.
n.b.
n.b.


DKK1-341
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-342
9.36
4.85E+05
1.98E−03
4.09E−09
 72.2
1.90


DKK1-343
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-344
23.4
n.b.
n.b.
n.b.
n.b.


DKK1-345
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-346
4.68
3.28E+06
4.85E−02
1.48E−08
 51.5


DKK1-347
4.68
n.b.
n.b.
n.b.
n.b.


DKK1-348
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-349
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-350
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-351
16.38
n.b.
n.b.
n.b.
n.b.


DKK1-352
2.34
n.b.
n.b.
n.b.
n.b.


DKK1-353
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-354
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-355
11.7
2.26E+05
1.31E−02
5.79E−08
127.4


DKK1-356
4.68
n.b.
n.b.
n.b.
n.b.


DKK1-357
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-358
30.42
4.66E+04
2.22E−03
4.77E−08
 94.2


DKK1-359
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-360
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-361
7.02
3.93E+05
5.20E−03
1.32E−08
 53.5


DKK1-362
16.38
n.b.
n.b.
n.b.
n.b.


DKK1-363
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-364
7.02
2.36E+05
3.16E−03
1.34E−08
 47.4


DKK1-365
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-366
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-367
14.04
n.b.
n.b.
n.b.
n.b.


DKK1-368
7.02
4.23E+03
2.53E−02
5.97E−06
2264.0 


DKK1-369
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-370
4.68
n.b.
n.b.
n.b.
n.b.


DKK1-371
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-372
7.02
5.47E+04
3.29E−03
6.01E−08
 71.5


DKK1-373
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-374
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-375
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-376
9.36
3.77E+05
3.05E−03
8.08E−09
286.0
4.00


DKK1-377
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-378
4.68
n.b.
n.b.
n.b.
n.b.


DKK1-379
18.72
n.b.
n.b.
n.b.
n.b.


DKK1-380
18.72
n.b.
n.b.
n.b.
n.b.


DKK1-381
2.34
n.b.
n.b.
n.b.
n.b.


DKK1-382
46.8
4.16E+05
1.10E−03
2.65E−09
301.7
7.10


DKK1-383
63.18
n.b.
n.b.
n.b.
n.b.


DKK1-384
14.04
n.b.
n.b.
n.b.
n.b.


DKK1-385
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-386
25.74
n.b.
n.b.
n.b.
n.b.


DKK1-387
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-388
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-389
2.34
n.b.
n.b.
n.b.
n.b.


DKK1-390
18.72
n.b.
n.b.
n.b.
n.b.


DKK1-391
4.68
1.25E+06
4.17E−02
3.34E−08
 86.0


DKK1-392
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-393
16.38
3.34E+05
1.97E−03
5.92E−09
190.4
15.90


DKK1-394
7.02
n.b.
n.b.
n.b.
n.b.


DKK1-395
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-396
37.44
6.22E+05
9.97E−03
1.60E−08
121.9


DKK1-397
63.18
n.b.
n.b.
n.b.
n.b.


DKK1-398
39.78
n.b.
n.b.
n.b.
n.b.


DKK1-399
18.72
n.b.
n.b.
n.b.
n.b.


DKK1-400
51.48
n.b.
n.b.
n.b.
n.b.


DKK1-401
39.78
n.b.
n.b.
n.b.
n.b.


DKK1-402
39.78
n.b.
n.b.
n.b.
n.b.


DKK1-403
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-404
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-405
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-406
9.36
n.b.
n.b.
n.b.
n.b.


DKK1-407
35.1
n.b.
n.b.
n.b.
n.b.


DKK1-408
32.76
2.04E+05
3.91E−03
1.91E−08
405.1


DKK1-409
25.74
n.b.
n.b.
n.b.
n.b.


DKK1-410
4.68
n.b.
n.b.
n.b.
n.b.


DKK1-411
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-412
32.76
n.b.
n.b.
n.b.
n.b.


DKK1-413
2.34
n.b.
n.b.
n.b.
n.b.


DKK1-414
18.72
9.75E+04
1.82E−03
1.87E−08
126.3


DKK1-415
14.04
n.b.
n.b.
n.b.
n.b.


DKK1-416
11.7
n.b.
n.b.
n.b.
n.b.


DKK1-417
28.08
n.b.
n.b.
n.b.
n.b.









Example 5: Panning and Screening for Identification of Antibodies for DKK1

This example describes identification of antibodies for DKK1. Phage displayed libraries were panned for biding to DKK1. Panning was performed as shown in FIG. 21.


Carterra kinetics results showed that VHH-Fc hits bind with high affinity to DKK1 (FIGS. 12A-12D).



FIG. 13 shows the results of a TCF/LEF reporter (Wnt signaling) assay. Wnt signaling activation was plotted with SPR binding affinity.



FIGS. 14A-14B show the results of an immune cell activation assay.


A tumor cell killing assay was performed as depicted in FIG. 15A. Results showed that high affinity binders that were also Wnt signaling activators were not always the same as strong immune cell activators and tumor killers (FIGS. 15B-15G).



FIG. 16 depicts antibody yield results from 1 mL Expi293 cell culture. It took 31 days to create 113 anti DKK1 VHH-Fc from DNA synthesis to antibody production.


Example 6: Testing DKK1 Antibodies

This example describes assays used to determine the efficacy of anti-DKK1 leads identified in Example 5.


As seen in FIG. 17A, two epitope bins were apparent among top anti-DKK1 leads. These leads bound to two distinct cysteine-rich domains (CRDs) in hDKK1 (CRD1 or CRD2), resulting in different activation pathways (FIGS. 17B-17C).


Anti-DKK1 VHH leads were found to block DKK1 binding to the receptor (FIGS. 18A-18C) DKK1 binding to LRP5/6 blocks Wnt TCF/LEF signaling; however anti-DKK1 leads blocked DKK1 binding to the receptor, which resulted in TCF/LEF signal activation.


Dual functional activity of DKK1-100 and DKK1-99 was tested in signaling assays, immune cell activation, and tumor cell killing (FIGS. 19A-19C). FIGS. 22A-22C showed that antagonism of DKK1 inhibition of WNT in TCF/LEF assays is biphasic. Transient and cell line TCF/LEF reporter rankings were found to match in functional assays (FIGS. 23A-23B).


DKK1 antibodies were tested for binding to LRP6 (FIG. 24 and FIGS. 25A-25C) and for activation of immune cells (FIGS. 26A-26B and FIGS. 27A-27C). Signaling titration assays were used to identify antagonists (FIGS. 28A-28D). Additional immune assays were also performed (FIGS. 28A-28B).


Example 7: In Vivo Efficacy of DKK1 Antibodies

Preclinical studies in tumor regression are described in FIG. 20A, using a mouse model. Results of in vivo efficacy in PC3 tumor regression in SCID mice is shown in FIG. 20B-20D.


Lung tumor organoid killing by immune cells with DKK1 inhibition is shown in FIG. 30.


While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the disclosure. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1-9. (canceled)
  • 10. An antibody or antibody fragment comprising a variable domain, heavy chain region (VH) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 295-392, 394-712, or 2164-2258.
  • 11. The antibody or antibody fragment of claim 10, wherein the antibody or antibody fragment binds to a spike glycoprotein.
  • 12. The antibody or antibody fragment of claim 10, wherein the antibody or antibody fragment binds to a receptor binding domain of the spike glycoprotein.
  • 13. The antibody or antibody fragment of claim 10, wherein the antibody or antibody fragment comprises a KD of less than 50 nM.
  • 14. The antibody or antibody fragment of claim 10, wherein the antibody or antibody fragment comprises a KD of less than 25 nM.
  • 15. The antibody or antibody fragment of claim 10, wherein the antibody or antibody fragment comprises a KD of less than 10 nM.
  • 16. The antibody or antibody fragment of claim 10, wherein the antibody or antibody fragment comprises a KD of less than 5 nM.
  • 17. The antibody or antibody fragment of claim 10, wherein the antibody is a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv), a single chain antibody, a Fab fragment, a F(ab′)2 fragment, a Fd fragment, a Fv fragment, a single-domain antibody, an isolated complementarity determining region (CDR), a diabody, a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof.
  • 18. The antibody or antibody fragment of claim 10, wherein the antibody is a single domain antibody.
  • 19. A nucleic acid composition comprising: a first nucleic acid encoding a variable domain, heavy chain region (VH) comprising complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein (a) an amino acid sequence of CDRH1 is as set forth in any one of SEQ ID NOs: 1-98 or 919-1332; (b) an amino acid sequence of CDRH2 is as set forth in any one of SEQ ID NOs: 99-196 or 1333-1746; and (c) an amino acid sequence of CDRH3 is as set forth in any one of SEQ ID NOs: 197-294 or 1747-2160; and an excipient.
  • 20-29. (canceled)
  • 30. An antibody or antibody fragment comprising a variable domain, light chain region (VL) comprising an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 713-918.
  • 31. The antibody or antibody fragment of claim 30, wherein the antibody or antibody fragment binds to a spike glycoprotein.
  • 32. The antibody or antibody fragment of claim 30, wherein the antibody or antibody fragment binds to a receptor binding domain of the spike glycoprotein.
  • 33. The antibody or antibody fragment of claim 30, wherein the antibody or antibody fragment comprises a KD of less than 50 nM.
  • 34. The antibody or antibody fragment of claim 30, wherein the antibody or antibody fragment comprises a KD of less than 25 nM.
  • 35. The antibody or antibody fragment of claim 30, wherein the antibody or antibody fragment comprises a KD of less than 10 nM.
  • 36. The antibody or antibody fragment of claim 30, wherein the antibody or antibody fragment comprises a KD of less than 5 nM.
  • 37. The antibody or antibody fragment of claim 30, wherein the antibody is a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv), a single chain antibody, a Fab fragment, a F(ab′)2 fragment, a Fd fragment, a Fv fragment, a single-domain antibody, an isolated complementarity determining region (CDR), a diabody, a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof.
  • 38. The antibody or antibody fragment of claim 30, wherein the antibody is a single domain antibody.
  • 39. (canceled)
  • 40. (canceled)
  • 41. The nucleic acid composition of claim 19, further comprising a second nucleic acid encoding a variable domain, light chain region (VL) comprising complementarity determining regions CDRL1, CDRL2, and CDRL3, and wherein (a) an amino acid sequence of CDRL1 is as set forth in any one of SEQ ID NOs: 2259-2464; (b) an amino acid sequence of CDRL2 is as set forth in any one of SEQ ID NOs: 2465-2521; and (c) an amino acid sequence of CDRL3 is as set forth in any one of SEQ ID NOs: 2522-2727.
CROSS REFERENCE

This application claims the benefit of U.S. Provisional Patent Application No. 63/280,840, filed on Nov. 18, 2021, U.S. Provisional Patent Application No. 63/286,522, filed on Dec. 6, 2021, U.S. Provisional Patent Application No. 63/374,497, filed on Sep. 2, 2022, and U.S. Provisional Patent Application No. 63/379,634, filed on Oct. 14, 2022, which is each incorporated by reference in its entirety.

Provisional Applications (4)
Number Date Country
63280840 Nov 2021 US
63286522 Dec 2021 US
63374497 Sep 2022 US
63379634 Oct 2022 US