Diclofenac sublingual spray

Information

  • Patent Grant
  • 9855234
  • Patent Number
    9,855,234
  • Date Filed
    Monday, July 6, 2015
    8 years ago
  • Date Issued
    Tuesday, January 2, 2018
    6 years ago
Abstract
The present invention is directed to diclofenac sublingual spray formulations. The present invention is also directed to methods for treating pain and inflammation by administering the formulations of the present invention to patients in need thereof.
Description
FIELD OF THE INVENTION

The present invention is generally directed to diclofenac sublingual spray formulations, and methods of their use.


BACKGROUND

Diclofenac, [(2,6-dichloro-anilino)-2-phenyl]-2-acetic acid, is a nonsteroidal anti-inflammatory drug (NSAID) with the following structure:




embedded image


Diclofenac also has analgesic and antipyretic properties. Diclofenac works by blocking cyclooxygenase. The blocked cyclooxygenase fails to trigger production of prostaglandins, which are responsible for creating pain, swelling and inflammation in response to injury and certain conditions.


Diclofenac is commercially available as a tablet from Novartis (e.g., Cataflam®; Cataflam is a registered trademark of Novartis Corporation). The Orange Book (The Food and Drug Administration's publication listing drug products approved under section 505 of the Federal Food, Drug, and Cosmetic Act) indicates that diclofenac has also been formulated as a capsule, patch, and gel. Diclofenac has also been administered via injection and rectal suppositories.


Diclofenac has been administered for the treatment of many conditions and disorders including migraines, rheumatoid arthritis, osteoarthritis, actinic keratosis, ankylosing spondylitis, bursitis, tendonitis, soft tissue disorders such as sprains and strains, renal colic, acute gout, dysmenorrhea, and pain following surgery.


U.S. Pat. No. 7,759,394 is directed to methods of treating migraines associated with phonophobia and photophobia that involve administration and ingestion of a liquid 50 milligrams diclofenac formulation in combination with an alkali metal carbonate or bicarbonate. One problem with ingestion of such a formulation is that diclofenac is subject to the hepatic first pass metabolic process that decreases bioavailability. Another disadvantage of such a formulation is that some patients have difficulty swallowing (dysphagia). In addition, drugs that are ingested (e.g. tablets, capsules, solutions) must be absorbed into the blood stream through the stomach or intestine which causes a delay in action.


Patches and gels containing diclofenac may lead to dryness, redness, itching, swelling, irritation, or numbness at the application site(s). Patches and gels are also limited to the treatment of pain or swelling in proximity to the transdermal application site.


Diclofenac has been proven to provide relief from many conditions. While some diclofenac formulations are available to patients in need of diclofenac treatment, there is still a need for new diclofenac formulations with quicker on-set, higher bioavailability, and improved storage stability.


SUMMARY OF THE INVENTION

In one aspect, the present invention is directed to sublingual spray formulations comprising from about 5 to about 40% diclofenac, or a salt thereof, from about 1 to about 50% polar solvent, and from about 5 to about 30% co-solvent.


In another aspect, the present invention is directed to sublingual spray formulations comprising from about 5 to about 40% diclofenac, or a salt thereof, from about 1 to about 50% polar solvent selected from the group consisting of water, ethanol and a combination thereof, and from about 5 to about 30% co-solvent.


In another aspect, the present invention is directed to sublingual spray formulations comprising from about 5 to about 40% diclofenac, or a salt thereof, from about 1 to about 50% polar solvent, and from about 5 to about 30% co-solvent selected from the group consisting of propylene glycol, a low molecular weight polyethylene glycol, and a combination thereof.


In another aspect, the present invention is directed to sublingual spray formulations comprising from about 5 to about 40% diclofenac, or a salt thereof, from about 1 to about 50% polar solvent, from about 5 to about 30% co-solvent, and an excipient selected from the group consisting of one or more permeation enhancers, flavoring agents, sweeteners, sweetness enhancers, taste-masking agents, and a combination thereof.


In another aspect, the present invention is directed to sublingual spray formulations comprising from about 5 to about 40% diclofenac, or a salt thereof, from about 1 to about 50% polar solvent, from about 5 to about 30% co-solvent, and an excipient selected from the group consisting of one or more permeation enhancers, flavoring agents, sweeteners, sweetness enhancers, taste-masking agents, and a combination thereof, wherein the one or more flavoring agents is peppermint oil, the one or more sweeteners is sucralose, the one or more sweetness enhancers is ammonium salt of glycyrrhizic acid, and the one or more taste-masking agents are sodium chloride and polyethoxylated castor oil.


In another aspect, the present invention is directed to sublingual spray formulations comprising from about 5 to about 40% diclofenac, or a salt thereof, from about 1 to about 50% polar solvent, and from about 5 to about 30% co-solvent, wherein the sublingual spray formulation is capable of producing a droplet size distribution wherein greater than 98% of the composition particles are greater than 10 microns in diameter during administration.


In another aspect, the present invention is directed to sublingual spray formulations comprising from about 5 to about 40% diclofenac, or a salt thereof, from about 1 to about 50% polar solvent, and from about 5 to about 30% co-solvent, wherein the sublingual spray formulation is capable of producing a droplet size distribution wherein the mean Dv(10) is from about 10 to about 40 microns during administration; the mean DV(50) is from about 50 to about 180 microns during administration; and the mean DV(90) is from about 300 to about 700 microns during administration.


In another aspect, the present invention is directed to sublingual spray formulations comprising from about 5 to about 40% diclofenac, or a salt thereof, from about 1 to about 50% polar solvent, and from about 5 to about 30% co-solvent, wherein the sublingual spray formulation is capable of producing a spray span ((Dv90−Dv10)/Dv50) of from about 1.5 to about 8.


In another aspect, the present invention is directed to sublingual spray formulations comprising from about 5 to about 40% diclofenac, or a salt thereof, from about 1 to about 50% polar solvent, and from about 5 to about 30% co-solvent, wherein the sublingual spray formulation is capable of producing a spray that has an ovality ratio of from about 1.1 to about 2; a spray plume width that is from about 10 to about 50 millimeters during administration; and a spray plume angle that is from about 20 to about 50 degrees during administration.


In another aspect, the present invention is directed to treating pain, preferably selected from the group consisting of acute migraine, osteoarthritis, rheumatoid arthritis, and inflammation associated pain by administration of the diclofenac formulations of the present invention to patients in need of treatment for pain or inflammation.


In another aspect, the present invention is directed to a method of preventing crystal growth in diclofenac spray formulations comprising adding at least 5% propylene glycol, at least 1% polyethylene glycol, and less than 50% water.







DETAILED DESCRIPTION

Applicant developed new diclofenac formulations that are easy to administer, have quick on-set and high bioavailability. The formulations unexpectedly showed excellent stability at low storage temperatures and at ambient temperature over long periods of time.


In an embodiment, the present invention is directed to sublingual spray formulations comprising from about 5 to about 40% diclofenac, or a salt thereof, from about 1 to about 50% polar solvent, and from about 5 to about 30% co-solvent.


The diclofenac salt may be any pharmaceutically suitable salt. In a preferred embodiment, the salt is potassium or sodium salt. In a more preferred embodiment, the salt is the potassium salt.


In another embodiment, the formulations of the present invention contain from about 15 to about 35% diclofenac, or salt thereof. In a preferred embodiment, the formulations of the present invention contain from about 20 to about 30% diclofenac, or salt thereof. In a more preferred embodiment, the formulations of the present invention contain from about 24 to about 26% diclofenac, or salt thereof.


In an embodiment, the formulations of the present invention contain from about 1 to about 50% polar solvent. In a preferred embodiment, the formulations of the present invention contain from about 10 to about 35% polar solvent. In a more preferred embodiment, the formulations of the present invention contain from about 15 to about 30% polar solvent.


In another embodiment, the polar solvent is selected from the group consisting of water, ethanol and a combination thereof.


In an embodiment, the formulations of the present invention contain from about 5 to about 35% ethanol. In a preferred embodiment, the formulations of the present invention contain from about 10 to about 30% ethanol. In a more preferred embodiment, the formulations of the present invention contain from about 15 to about 25% ethanol.


In an embodiment, the formulations of the present invention contain from about 15 to about 45% water. In a preferred embodiment, the formulations of the present invention contain from about 20 to about 40% water. In a more preferred embodiment, the formulations of the present invention contain from about 25 to about 35% water.


In another embodiment, the formulations of the present invention contain from about 5 to about 30% co-solvent.


In another embodiment, the co-solvent is selected from the group consisting of propylene glycol, a low molecular weight polyethylene glycol, and a combination thereof. As used herein, “co-solvent” does not include water or ethanol.


In another embodiment, the formulations of the present invention contain from about 0.1 to about 40% propylene glycol. In a preferred embodiment, the formulations of the present invention contain from about 5 to about 35% propylene glycol. In a more preferred embodiment, the formulations of the present invention contain from about 5 to about 25% propylene glycol. In a yet more preferred embodiment the formulations of the present invention contain from about 10 to about 20% propylene glycol.


In yet another embodiment, the formulations of the present invention contain from about 0.1 to about 40% of a low molecular weight polyethylene glycol. In a preferred embodiment, the formulations of the present invention contain from about 1 to about 30% of a low molecular weight polyethylene glycol. In a more preferred embodiment, the formulations of the present invention contain from about 1 to about 20% of a low molecular weight polyethylene glycol. In a yet more preferred embodiment, the formulations of the present invention contain from about 5 to about 15% of a low molecular weight polyethylene glycol.


Low molecular weight polyethylene glycols have an average molecular weight of between 200 and 10,000. In a more preferred embodiment, the polyethylene glycol is polyethylene glycol 400 (“PEG400”).


In a further embodiment, the formulations of the present invention contain an excipient selected from the group consisting of one or more permeation enhancers, flavoring agents, sweeteners, sweetener enhancers, taste-masking agents, and a combination thereof.


In another embodiment, the permeation enhancer is oleic acid, polysorbate 80, L-menthol, butylated hydroxyanisole, ethylenediaminetetraacetic acid (EDTA), sodium edetate, cetylpyridinium chloride, sodium lauryl sulfate, citric acid, sodium desoxycholate, sodium deoxyglycolate, glyceryl oleate, L-lysine, or a combination thereof.


In preferred embodiments, the amount of permeation enhancer is from about 0.001% to about 5.0%. In a more preferred embodiment, the formulations contain from about 0.01% to about 1.0% permeation enhancer.


In preferred embodiment, the permeation enhancer is L-menthol. If the permeation enhancer is L-menthol, the preferred amount of L-menthol is from about 0.001% to about 5.0%. In a more preferred embodiment, the formulations contain from about 0.01% to about 1.0% L-menthol.


In another preferred embodiment, the flavoring agent is peppermint oil, spearmint oil, citrus oil, cinnamon oil, orange oil, anise oil, strawberry flavor, cherry flavor, raspberry flavor, anise flavor, mint flavor, cinnamon-mint flavor, peppermint-citrus flavor, fruit punch flavor, bitterness masking flavor, bitterness blocking flavor, or a combination thereof.


In a preferred embodiment, the formulations contain from about 0.001% to about 1% of the flavoring agent. In a more preferred embodiment, the formulations contain from about 0.005% to about 0.5% of the flavoring agent.


In yet another embodiment, the sweetener is sucrose, sucralose, aspartame, saccharin, dextrose, mannitol, glycerin, xylitol, neotame, acesulfame potassium, or a combination thereof.


In an embodiment, the formulations contain from about 0.001% to about 2% of the sweetener. In a more preferred embodiment, the formulations contain from about 0.02% to about 1.0% of the sweetener.


In another embodiment, the formulations contain a sweetness enhancer. The preferred sweetness enhancer is one selected from Magnasweet®'s product line (available from and a registered trademark of Mafco Worldwide Corporation). The Magnasweet® products use the ammonium salt forms of crude and refined glycyrrhizic acid. Glycyrrhizic acid is also available as a pure derivative in the sodium and potassium salt forms. Preferred sweetener enhancers are Magnasweet® 100, Magnasweet® 110, Magnasweet® 100F, Magnasweet® 200, Magnasweet® 300 or a combination thereof.


In an embodiment, the formulations contain from about 0.001% to about 2% of the sweetness enhancer. In a more preferred embodiment, the formulations contain from about 0.05% to about 1% of the sweetness enhancer.


In a preferred embodiment, the formulations contain a taste-masking agent. In a more preferred embodiment, the taste-masking agent is selected from the group consisting of sodium chloride, polyethoxylated castor oil, and a combination thereof. Kolliphor® RH 40 can be used as the source of polyethoxylated castor oil (Kolliphor® is available from and a registered trademark of BASF Corporation).


In an embodiment, the formulations contain from about 0.001% to about 5% of the taste-masking agent. In a more preferred embodiment, the formulations contain from about 0.05% to about 3% of the taste-masking agent.


In another embodiment, the present invention is directed to sublingual spray formulations comprising from about 15 to about 35% diclofenac, or a salt thereof, from about 15 to about 45% water, from about 5 to about 35% ethanol, and from about 6 to about 40% of a co-solvent. In a preferred embodiment, these formulations contain a combination of from about 5 to about 35% propylene glycol and from about 1 to about 30% polyethylene glycol 400 as the co-solvent.


In yet another preferred embodiment, the formulations contain from about 20 to about 30% diclofenac, or a salt thereof, from about 20 to about 40% water, from about 10 to about 30% ethanol, from about 5 to about 25% of propylene glycol, and from about 1 to about 20% polyethylene glycol 400. In a preferred embodiment, these formulations contain from about 25 to about 35% water, from about 15 to about 25% ethanol, from about 10 to about 20% of propylene glycol, and from about 5 to about 15% polyethylene glycol 400.


In an embodiment, the invention is directed to methods for treating pain comprising administering the formulations of the present invention to a patient in need of pain treatment. In a preferred embodiment, the pain is due to migraines, acute migraines, arthritis such as osteoarthritis and rheumatoid arthritis, and pain associated with inflammation.


In an embodiment, the invention is directed to methods for treating inflammation comprising administering the formulations of the present invention to a patient in need of inflammation treatment. In a preferred embodiment, the inflammation is due to an autoimmune disorder such as arthritis. In another preferred embodiment, the pain is due to an injury or a surgery.


In a preferred embodiment, the formulations of the present invention are administered to a patient transmucosally. In a more preferred embodiment, the formulations of the present invention are administered sublingually. In a most preferred embodiment, the formulations are administered sublingually with a spray pump. In a preferred embodiment, no propellant is necessary to administer the formulation.


When formulations of the present invention are administered sublingually with a spray pump, from about 50 to about 200 μL of the formulation is administered to the patient in each dose.


As used herein, “sublingual” means “under the tongue” and refers to administration of a substance via the mouth in such a way that the substance is rapidly absorbed via the blood vessels under the tongue. As discussed above, sublingual formulations are desirable because they bypass the hepatic first pass metabolic process and therefore provide better bioavailability, rapid onset of action, and higher patient compliance. In terms of permeability, the sublingual area of oral cavity is even more permeable than buccal area.


In a further embodiment, the formulations of the present invention are capable of producing a droplet size distribution wherein greater than 98% of the composition particles are greater than 10 microns in diameter during administration.


In another embodiment, the formulations of the present invention are capable of producing a droplet size distribution wherein the mean Dv(10) is from about 10 to about 40 microns during administration.


In yet another embodiment, the formulations of the present invention are capable of producing a droplet size distribution wherein the mean Dv(50) is from about 50 to about 180 microns during administration.


In a further embodiment, the formulations of the present invention are capable of producing a droplet size distribution wherein the mean Dv(90) is from about 300 to about 700 microns during administration.


In another embodiment, the formulations of the present invention are capable of producing a spray span ((Dv90−Dv10)/Dv50) of from about 1.5 to about 8.


In an embodiment, the formulations of the present invention are capable of producing a spray plume that has an ovality ratio of from about 1.1 to about 2.


In a further embodiment, the formulations of the present invention are capable of producing a spray plume width that is from about 10 to about 50 millimeters during administration.


In another embodiment, the formulations of the present invention are capable of producing a spray plume angle that is from about 20 to about 50 degrees during administration.


As used herein, all numerical values relating to amounts, weights, and the like, that are defined as “about” each particular value is plus or minus 10%. For example, the phrase “about 10% w/w” is to be understood as “9% w/w to 11% w/w.” Therefore, amounts within 10% of the claimed value are encompassed by the scope of the claims.


The percentages of the components of the formulations are expressed in percent weight per weight of the formulation.


As used herein the term “effective amount” refers to the amount necessary to treat a patient in need thereof.


As used herein the term “pharmaceutically acceptable” refers to ingredients that are not biologically or otherwise undesirable in an oral dosage form.


As used herein the phrase “propellant free” refers to a formulation that is not administered using compressed gas.


As used herein the term “patient” refers to a single patient and not a patient population.


The disclosed embodiments are simply exemplary embodiments of the inventive concepts disclosed herein and should not be considered as limiting, unless the claims expressly state otherwise.


The following examples are intended to illustrate the present invention and to teach one of ordinary skill in the art how to use the formulations of the invention. They are not intended to be limiting in any way.


All claims, aspects and embodiments of the invention, and specific examples thereof, are intended to encompass equivalents thereof.


EXAMPLES
Example 1

A diclofenac formulation was prepared as follows using the components and amounts listed for Formulation #3 in Table 1 below. All of the solvents were purged with nitrogen before use. The aqueous phase was prepared by dissolving sucralose and sodium chloride in water. The alcohol phase was prepared by dissolving L-menthol in ethanol. Then the aqueous and alcohol phases were mixed together. To this solution propylene glycol and polyethylene glycol 400 were added and mixed thoroughly. A diclofenac salt was added to the excipient solution and mixed until dissolved. Then the flavoring agent, sweetness enhancer and taste masking agents were added and mixed until a homogenous solution was formed.


Diclofenac potassium was used as the source of the diclofenac salt. Peppermint oil was used as the source of flavoring agent. Magnasweet® 110 was used as the source of sweetness enhancer. Kolliphor® RH 40 glyceryl polyethylene glycol oxystearate and fatty acid glyceryl polyglyceryl esters and sodium chloride were used as the sources of the taste masking agents.


Formulations #1, #2, and #4 were prepared in a similar manner.









TABLE 1







Diclofenac Formulations









Formulation












#1
#2
#3
#4
















Diclofenac salt
24
24
23.3
23.3



Polyethylene Glycol 400
10
10
10
10



Propylene Glycol
15
15
15
15



Ethanol
25.5
31
23.4
23.9



Water
25.5
20
23.5
24



Sucralose


2
2



Flavoring agent


0.35
0.35



Taste masking agent-


1.5
1.5



Sodium Chloride







Taste masking agent-


0.5




polyethoxylated castor oil







L-Menthol


0.05




Sweetness enhancer


0.4









Example 2

The formulations listed in Table 1 were subjected to stability at 40° C.±2° C./75%±5% relative humidity and 25° C.±2° C./60%±5% relative humidity. The stability of the formulations were analyzed at specified time points by evaluating their potency (assay value) and impurity levels. Assay and impurities were detected using high-performance liquid chromatography with an ultraviolet detector. The assay was performed at 254 nm and indicated as a % of initial concentration. For all impurities, analysis was performed at 254 nm and expressed as a % area. Amounts of particular impurities are listed in Table 2 to 9 as a percentage of area of each formulation along with amount of total impurities. Relative retention time (“RRT”) is given for each impurity. “ND” indicates that the impurity was not detected.









TABLE 2







Stability Data for Diclofenac Sublingual Spray Formulation #1


stored at 40° C. ± 2° C./75% ± 5% Relative Humidity









Formulation #1











40° C.
RRT
0 month
3 month
6 month





Assay

100.00 
98.48 
97.56 


(% of initial concentration)






% Impurity A
0.39
ND
0.01
0.01


% Unknown Impurity
0.44
0.02
0.02
0.01



0.69
ND
ND
ND



0.71
ND
0.03
0.02



0.78
ND
0.08
0.14



1.08
ND
0.01
0.02


Total % (% Area)

0.02
0.16
0.21
















TABLE 3







Stability Data for Diclofenac Sublingual Spray Formulation #2


stored at 40° C. ± 2° C./75% ± 5% Relative Humidity









Formulation #2











40° C.
RRT
0 month
3 month
6 month














Assay

100.00 
97.98 
97.92


(% of initial concentration)






% Impurity A
0.39
ND
0.01
0.01


% Unknown Impurity
0.44
0.02
0.02
0.01



0.71
ND
0.03
0.03



0.78
ND
0.07
0.14



1.08
ND
ND
0.01


Total % (% Area)

0.02
0.13
0.23
















TABLE 4







Stability Data for Diclofenac Sublingual Spray Formulation #3


stored at 40° C. ± 2° C./75% ± 5% Relative Humidity









Formulation #3












40° C.
RRT
0 month
1 month
3 month
6 month















Assay

100.00 
99.74 
99.08
101.27


(% of initial







concentration)







% Impurity A
0.39
ND
0.02
0.05
0.05


% Unknown Impurity
0.44
0.02
0.02
0.01
0.01



0.69
ND
ND
0.02
0.06



0.71
ND
ND
0.03
0.05



0.81
ND
ND
0.03
0.07



1.07
ND
ND
0.05
0.10


Total % (% Area)

0.02
0.04
0.20
0.34
















TABLE 5







Stability Data for Diclofenac Sublingual Spray Formulation #4


stored at 40° C. ± 2° C./75% ± 5% Relative Humidity









Formulation #4












40° C.
RRT
0 month
1 month
3 month
6 month















Assay

100.00 
99.12 
97.95
101.72


(% of initial







concentration)







% Impurity A
0.39
ND
0.01
0.02
0.01


% Unknown Impurity
0.45
0.02
0.01
0.01
0.01



0.70
ND
ND
0.03
0.03



0.71
ND
ND
0.05
0.10



0.81
ND
ND
0.07
0.12



1.07
ND
ND
0.07
0.14


Total % (% Area)

0.02
0.03
0.24
0.41
















TABLE 6







Stability Data for Diclofenac Sublingual Spray Formulation #1 stored at 25° C. ±


2° C./60% ± 5% Relative Humidity









Formulation #1













25° C.
RRT
0 month
3 month
6 month
9 month
12 month
















Assay

100.00 
99.35 
97.90
97.70
98.15


(% of initial concentration)








% Impurity A
0.39
ND
0.00
0.01
0.01
0.01


% Unknown Impurity
0.44
0.02
0.02
0.01
0.02
0.02



0.78
ND
ND
0.01
0.02
0.04


Total % (% Area)

0.02
0.02
0.03
0.04
0.07
















TABLE 7







Stability Data for Diclofenac Sublingual Spray Formulation #2 stored at 25° C. ±


2° C./60% ± 5% Relative Humidity









Formulation #2













25° C.
RRT
0 month
3 month
6 month
9 month
12 month
















Assay

100.00 
98.37 
100.25 
98.08 
97.05


(% of initial concentration)








% Impurity A
0.39
ND
0.01
0.01
0.01
0.01


% Unknown Impurity
0.44
0.02
0.02
0.02
0.02
0.02



0.70
ND
ND
ND
ND
0.02



0.78
ND
ND
0.01
0.02
0.03


Total % (% Area)

0.02
0.03
0.04
0.05
0.08
















TABLE 8







Stability Data for Diclofenac Sublingual Spray Formulation #3


stored at 25° C. ±‘2° C./60 % ± 5% Relative Humidity









Formulation #3












25° C.
RRT
0 month
1 month
3 month
6 month















Assay

100.00 
99.87 
99.24 
101.27


(% of initial







concentration)







% Impurity A
0.39
ND
ND
0.01
0.02


% Unknown Impurity
0.45
0.02
0.02
0.02
0.02



0.70
ND
ND
ND
0.01


Total % (% Area)

0.02
0.02
0.03
0.05
















TABLE 9







Stability Data for Diclofenac Sublingual Spray Formulation #4


stored at 25° C. ± 2° C./60% ± 5% Relative Humidity









Formulation #4












25° C.
RRT
0 month
1 month
3 month
6 month















Assay

100.00 
99.21 
98.51 
101.72


(% of initial







concentration)







% Impurity A
0.39
ND
ND
0.00
0.01


% Unknown Impurity
0.45
0.02
0.01
0.01
0.01



0.70
ND
ND
ND
0.01



0.71
ND
ND
ND
0.01



0.81
ND
ND
ND
0.01



1.07
ND
ND
ND
0.02


Total % (% Area)

0.02
0.01
0.02
0.06









Formulations #1, #2, #3, and #4 had very low amounts of impurities at both 40° C.±2° C./75%±5% relative humidity and 25° C.±2° C./60%±5% relative humidity. The superior stability characteristics of the formulations of the present invention will allow the formulations to be effective when used by patients.


Example 3

Additional diclofenac salt formulations were prepared according to the procedures of Example 1 and tested for physical stability at 5° C.±3° C., 15° C.±2° C., and 25° C.±2° C. After storage, the formulations were examined for crystal formation. The results of this study can be seen below in Table 10.









TABLE 10







Diclofenac Formulation Physical Stability








% weight













Diclofenac

Dehydrated
Propylene

Physical Stability














salt
Water
Alcohol
Glycol
PEG400
5 ± 3° C.
15 ± 2° C.
25 ± 2° C.

















25
29
36
0
10
Crystals
Clear
Clear


25
27.5
27.5
0
20
Clear
Clear
Clear


25
20
35
0
20
Clear
Clear
Clear


25
25
35
5
10
Crystals
Clear
Clear


25
27.5
27.5
10
10
Crystals
Clear
Clear


25
25
30
10
10
Crystals
Clear
Clear


25
20
35
10
10
Clear
Clear
Clear


25
25
30
15
5
Crystals
Clear
Clear


25
20
35
15
5
Crystals
Clear
Clear


24
35
16
15
10
Crystals
Clear
Clear


24
30
21
15
10
Crystals
Clear
Clear


25
25
25
15
10
Clear
Clear
Clear


25
20
30
15
10
Clear
Clear
Clear


25
22.5
22.5
15
15
Clear
Clear
Clear


25
27.5
27.5
20
0
Crystals
Clear
Clear


25
20
35
20
0
Crystals
Clear
Clear


25
25
25
20
5
Crystals
Clear
Clear


25
22.5
22.5
20
10
Clear
Clear
Clear


25
20
25
20
10
Clear
Clear
Clear


25
20
20
35
0
Clear
Clear
Clear









Hydro-alcoholic sublingual spray formulations of diclofenac are prone to development of crystals. Crystal formation is especially problematic at higher concentrations and/or lower temperatures (i.e. 2 to 8° C.). Based on the results from the physical stability test (see, Table 10), it was found that crystal growth can be prevented by addition of at least 5% propylene glycol and/or at least 5% PEG400 and restricting water to less than 50%.


Example 4

In order to determine the spray profile of Formulation #3, it was subjected to standardized droplet testing. A challenge of creating a diclofenac sublingual spray formulation is that it must be capable of producing spray droplets that are over 10 microns in diameter. Spray droplets of 10 microns or smaller could be inhaled into the lungs.


Droplet analysis was conducted using standard laser analysis procedures known by those of skill in the art. Droplet size distribution (Dv10, Dv50, Dv90, and Span were tested at two distances, 3 cm and 6 cm). Dv10 refers to droplet size for which 10% of the total volume is obtained; Dv50 refers to droplet size for which 50% of the total volume is obtained; Dv90 refers to droplet size for which 90% of the total volume is obtained; Span refers to distribution span (Dv90−Dv10)/Dv50; % RSD refers to the percent relative standard deviation.


Spray pattern, specifically Dmin, Dmax, and ovality ratio were tested at two distances, 3 cm and 6 cm. Dmin refers to the shortest diameter of the spray pattern in mm, Dmax refers to the widest diameter of the spray pattern in mm, and ovality ratio refers to the ratio of Dmax to Dmin. The spay pattern is measured after impact onto an appropriate target upon activation of a spray pump. The ovality ratio is useful as it provides information regarding the shape and density of the spray pump plume.


The results of these tests can be seen below in Tables 11 to 16.









TABLE 11







Droplet size distribution of Diclofenac Sublingual Spray Formulation at 3 cm











DSD 3 cm 25° C.
DV10
DV50
DV90
Span





Min
22.57 μm
83.41 μm
546.5 μm
2.228


Max
26.36 μm
322.1 μm
744.1 μm
6.430


Mean
 24.0 μm
164.2 μm
624.7 μm
4.977
















TABLE 12







Droplet size distribution of Diclofenac Sublingual Spray Formulation at 6 cm











DSD 6 cm 25° C.
DV10
DV50
DV90
Span





Min
24.23 μm
62.17 μm
415.8 μm
5.566


Max
25.92 μm
70.89 μm
  547 μm
7.327


Mean
 25.9 μm
 67.7 μm
478.7 μm
6.706
















TABLE 13







Spray pattern of Diclofenac Sublingual Spray Formulation at 3 cm












SP 3 cm 25° C.
Dmin
Dmax
Ovality ratio






Min
15.6 mm
19.3 mm
1.239



Max
17.5 mm
22.5 mm
1.323



Mean
16.7 mm
21.4 mm
1.282
















TABLE 14







Spray pattern of Diclofenac Sublingual Spray Formulation at 6 cm












SP 6 cm 25° C.
Dmin
Dmax
Ovality ratio






Min
20.5 mm
29.9 mm
1.294



Max
23.1 mm
32.6 mm
1.587



Mean
21.7 mm
31.3 mm
1.447
















TABLE 15







Plume geometry of Diclofenac Sublingual Spray Formulation at 3 cm









Plume Geometry 3 cm 25° C.
Angle
Width





Min
30.9 deg
16.7 mm


Max
47.6 deg
26.6 mm


Mean
41.6 deg
23.0 mm
















TABLE 16







Plume geometry of Diclofenac Sublingual Spray Formulation at 6 cm









Plume Geometry 6 cm 25° C.
Angle
Width





Min
33.2 deg
36.2 mm


Max
33.2 deg
36.2 mm


Mean
33.2 deg
36.2 mm









Applicant found during testing that formulations of the present invention yielded desirable droplet sizes for sublingual administration. The testing also revealed that the formulation dose remains consistent when administered with a spray pump.

Claims
  • 1. A stable sublingual spray formulation comprising from about 20 to about 40% diclofenac, or a salt thereof;from about 15 to about 45% water;from about 5 to about 35% ethanol;from about 5 to about 35% of propylene glycol; andfrom about 1 to about 30% of polyethylene glycol 400.
  • 2. The stable sublingual spray formulation of claim 1 wherein the diclofenac salt is potassium or sodium salt.
  • 3. The stable sublingual spray formulation of claim 1 wherein the polar solvent is selected from the group consisting of water, ethanol, and a combination thereof.
  • 4. The stable sublingual spray formulation of claim 1 wherein the co-solvent is selected from the group consisting of propylene glycol, a low molecular weight polyethylene glycol, and a combination thereof.
  • 5. The stable sublingual spray formulation of claim 1 further comprising an excipient selected from the group consisting of one or more permeation enhancers, flavoring agents, sweeteners, sweetness enhancers, taste-masking agents, and a combination thereof.
  • 6. The stable sublingual spray formulation of claim 5 wherein the one or more flavoring agents is peppermint oil, the one or more sweeteners is sucralose, the one or more sweetness enhancers is ammonium salt of glycyrrhizic acid, and the one or more taste-masking agents are sodium chloride and polyethoxylated castor oil.
  • 7. The stable sublingual spray formulation of claim 1 that is capable of producing a droplet size distribution wherein greater than 98% of the composition particles are greater than 10 microns in diameter during administration.
  • 8. The stable sublingual spray formulation of claim 1 that is capable of producing a droplet size distribution wherein a) the mean Dv(10) is from about 10 to about 40 microns during administration;b) the mean DV(50) is from about 50 to about 180 microns during administration; andc) the mean DV(90) is from about 300 to about 700 microns during administration.
  • 9. The stable sublingual spray formulation of claim 1 that is capable of producing a spray span ((Dv90−Dv10)/Dv50) of from about 1.5 to about 8.
  • 10. The stable sublingual spray formulation of claim 1 that is capable of producing a) a spray that has an ovality ratio of from about 1.1 to about 2;b) a spray plume width that is from about 10 to about 50 millimeters during administration; andc) a spray plume angle that is from about 20 to about 50 degree during administration.
  • 11. A method of treating pain comprising administration of the stable sublingual spray formulation of claim 1 to a patient in need thereof.
  • 12. The method of claim 11 wherein the pain is selected from the group consisting of acute migraine, osteoarthritis, rheumatoid arthritis, and inflammation associated pain.
  • 13. The method of claim 11 wherein from about 50 to about 200 microliters (μL) of the sublingual spray formulation of claim 1 is administered to the patient.
  • 14. A method of treating inflammation comprising administration of the stable sublingual spray formulation of claim 1 to a patient in need thereof.
  • 15. A method of preventing crystal growth in a diclofenac sublingual spray formulation comprising adding at least 5% propylene glycol, at least 1% polyethylene glycol, and less than 50% water.
  • 16. The stable sublingual spray formulation of claim 1 comprising from about 20 to about 35% diclofenac, or a salt thereof.
  • 17. The formulation of claim 16 comprising from about 20 to about 30% diclofenac, or a salt thereof;from about 20 to about 40% water;from about 10 to about 30% ethanol;from about 5 to about 25% of propylene glycol; andfrom about 1 to about 20% polyethylene glycol 400.
  • 18. The formulation of claim 16 comprising from about 25 to about 35% water;from about 15 to about 25% ethanol;from about 10 to about 20% of propylene glycol; andfrom about 5 to about 15% polyethylene glycol 400.
US Referenced Citations (12)
Number Name Date Kind
5785989 Stanley et al. Jul 1998 A
6720001 Chen et al. Apr 2004 B2
6923988 Patel et al. Aug 2005 B2
6932983 Straub et al. Aug 2005 B1
7759394 Reiner et al. Jul 2010 B2
20020142050 Straub et al. Oct 2002 A1
20030138490 Hu et al. Jul 2003 A1
20050266088 Hinrichs et al. Dec 2005 A1
20080103092 Pomytkin May 2008 A1
20090181080 Kottayil Jul 2009 A1
20100086495 Rubinstein Apr 2010 A1
20120003316 Reddy et al. Jan 2012 A1
Related Publications (1)
Number Date Country
20160008306 A1 Jan 2016 US
Provisional Applications (1)
Number Date Country
62022049 Jul 2014 US