The present invention relates to the field of graphic arts and more particularly to die plates employed in stamping machines such as foil stamping machines.
Described in International Patent Publication No. WO 00/67953 and U.S. Pat. No. 5,904,096 are methods and apparatus relating to foil stamping.
The above-discussed publications disclose a magnetic holding device to secure a steel-backed polymer die plate to a foil stamping heating element.
Conventionally, the die plates are rigid, except for silicon rubber dies. Typically, the image layer is provided by magnesium, brass, copper, steel, zinc or a photo-polymer. However, there is required within the process some compressibility to ensure a quality image is applied to the substrate. Conventionally, the compression takes place in the packing, that is, the material behind the substrate.
It is also the practice in foil stamping to correct low points in the die plate by inserting material behind the packing. Typically, this material is paper or plastics and is fastened in position by means of glue or tape. When the die plate is to be replaced or re-positioned the clean-up will generally require the use of a flammable solvent. Accordingly, the conventional mounting of die plates is time-consuming and requires the undesirable use of flammable solvents.
It is the object of the present invention to overcome or substantially ameliorate the above disadvantage.
There is disclosed herein a die plate for a stamping machine, the die plate including:
Preferably, the compressible adhesive is an acrylic polymer.
Preferably, the impression layer is formed of brass, steel, copper, zinc, magnesium, aluminium or photo-polymer.
Preferably, said die plate has iron embedded in the adhesive.
Preferably, the adhesive is an epoxy resin.
In one preferred form, the iron embedded in said adhesive is in a particle form.
In a further preferred form, the iron embedded in said adhesive is in the form of a mesh.
In a further preferred form, the iron embedded in said adhesive is in the form of a perforated plate. Preferably, the plate is 0.25 mm to 1 mm in thickness. Preferably, the thickness is about 0.25 mm or 0.6 mm.
A preferred form of the present invention will now be described by way of example with reference to the accompanying drawings wherein:
In
Secured to the device 16 by magnetic attraction are die plates 14 and 15. To cooperate with the die plates 14 and 15 is a jacket member (packing) 17, which is secured to the platen 12, having image portions 18. Preferably, the member 17 is a non-magnetic stainless steel or other non-magnetic metal. The image portions 18 are typically formed of fibreglass. If a foil image is to be applied to a substrate 19, a foil layer (27,
Each of the die plates 14 and 15 includes a plate steel back 20 to which there are secured image layers 21 and 24 respectively. The layer 21 is secured to the back 20 by means of a compressible adhesive 22. Preferably, the adhesive 22 is an acrylic polymer. The image layer 21 is formed of metal, such as brass, steel, copper, zinc, aluminium, photo-polymer or magnesium, while the layer 24 is formed of a photo-polymer. The above-described preferred embodiments provide the advantage of eliminating the use of having to insert material to “make up” low spots. Accordingly, the above-described preferred embodiment is time-efficient and eliminates the use of flammable solvents.
The above-described preferred embodiment also offers the advantage of substantially ameliorating the crushing and distortion of the substrate, which is of particular interest in security and anti-counterfeiting applications. Preferably, in the case of the die plate 14, the plate steel back 20 would have a thickness of about 0.25 mm and the image layer of a thickness of about 1.50 mm. In respect of the die plate 15, preferably the plate steel back 20 would have a thickness of about 0.6 mm and the image layer (photo-polymer) a thickness of about 1.15 mm.
Accordingly, the die plates 14 and 15 would each have a total thickness of about 1.75 mm.
The above-described preferred embodiment lends itself to the processes of flat-foil stamping, embossing, de-bossing, die-cutting, perforating, top-slitting and a combination of foil stamp embossing and de-bossing.
In
In the embodiment of
In the embodiment of
In the embodiment of
Number | Date | Country | Kind |
---|---|---|---|
PR 9859 | Jan 2002 | AU | national |
PS 1847 | Apr 2002 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU03/00012 | 1/7/2003 | WO |