This invention relates to a dielectric barrier discharge lamp.
The majority of the presently known and commercially available low pressure discharge lamps are so-called compact fluorescent lamps. These lamps have a gas fill which also contains small amounts of mercury. Since mercury is a highly poisonous substance, novel types of lamps are being recently developed. One promising candidate to replace mercury-filled fluorescent lamps is the so-called dielectric barrier discharge lamp (shortly DBD lamp). Besides eliminating the mercury, it also offers the advantages of long lifetime and negligible warm-up time.
As explained in detail, for example, in U.S. Pat. No. 6,060,828, the operating principle of DBD lamps is based on a gas discharge in a noble gas (typically Xenon). The discharge is maintained through a pair of electrodes, between which there is at least one dielectric layer. An AC voltage of a few kV with a frequency in the kHz range is applied to the electrode pair. Often, multiple electrodes with a first polarity are associated to a single electrode having the opposite polarity. During the discharge, excimers (excited molecules) are generated in the gas, and electromagnetic radiation is emitted when the meta-stable excimers dissolve. The electromagnetic radiation of the excimers is converted into visible light by suitable phosphors, in a physical process similar to that occurring in mercury-filled fluorescent lamps. This type of discharge is also referred to as dielectrically impeded discharge.
As mentioned above, DBD lamps must have at least one electrode set which is separated from the discharge gas by a dielectric. It is known to employ the wall of the discharge vessel itself as the dielectric. In this manner, a thin film dielectric layer may be avoided. This is advantageous because a thin film dielectric layer is complicated to manufacture and it is prone to deterioration. Various discharge vessel-electrode configurations have been proposed to satisfy this requirement. U.S. Pat. No. 5,994,849 discloses a planar configuration, where the wall of the discharge vessel acts as a dielectric. The electrodes with opposite polarities are positioned alternating to each other. The arrangement has the advantage that the discharge volume is not covered by electrodes from at least one side, but a large proportion of the electric field between the electrodes is outside the discharge vessel. On the other hand, a planar lamp configuration can not be used in the majority of existing lamp sockets and lamp housings, which were designed for traditional incandescent bulbs.
U.S. Pat. Nos. 6,060,828 and No. 5,714,835 disclose substantially cylindrical DBD light sources which are suitable for traditional screw-in sockets. These lamps have a single internal electrode within a discharge volume, which is surrounded on the external surface of a discharge vessel by several external electrodes. It has been found that such an electrode configuration does not provide a sufficiently homogenous light, because the discharge within the relatively large discharge volume tend to be uneven. Certain volume portions are practically completely devoid of an effective discharge, particularly those volume portions which are further away from both electrodes.
U.S. Pat. No. 5,763,999 and U.S. patent application Publication No. US 2002/0067130 A1 disclose DBD light source configurations with an elongated and annular discharge vessel. The annular discharge vessel is essentially a double-walled cylindrical vessel, where the discharge volume is confined between two concentric cylinders having different diameters. A first set of electrodes is surrounded by the annular discharge vessel, 25 so that the first set of electrodes is within the smaller cylinder, while a second set of electrodes is located on the external surface of the discharge vessel, i. e. on the outside of the larger cylinder.
This known arrangement has the advantage that the shape of the lamp is closer to 30 the traditional incandescent and more recent fluorescent lamps. Further, none of the electrode sets need any particular insulation from the discharge volume, because the walls of the discharge vessel provide stable and reliable insulation. However, the annular shape of the discharge vessel causes certain manufacturing problems, and the external electrodes are visually unattractive, and remain visible even if the discharge vessel is covered by a further external translucent envelope.
U.S. Pat. No. 6,049,086 discloses a DBD radiator which comprises multiple parallel arranged gas tubes. The gas tubes act as discharge tubes, and electrodes are placed between the gas tubes, so that the walls of the gas tubes act as the dielectric. This known radiator is used as a high power planar UV source, and the arrangement has been partly proposed to permit the flow of a coolant either in the vicinity of or directly contacting the gas tubes. However, it has not been suggested to arrange the gas tubes to form a light source body that is substantially cylindrical, and resembles usual incandescent or fluorescent light sources.
Accordingly, there is a need for a DBD lamp configuration with an improved discharge vessel-electrode configuration, which disturbs less the aesthetic appearance of the lamp. There is also need for an improved discharge vessel-electrode configuration which ensures that the electric field and the discharge within the available discharge volume is homogenous and strong, and thereby substantially the full volume of a lamp may be used efficiently. It is sought to provide a DBD lamp, which, beside having an improved discharge vessel arrangement, is relatively simple to manufacture, and which does not require expensive thin-film dielectric layer insulations of the electrodes and the associated complicated manufacturing facilities. Further, it is sought to provide a discharge vessel configuration, which readily supports different types of electrode set configurations, according to the characteristics of the used discharge gas, exciting voltage, frequency and exciting signal shape.
In an exemplary embodiment of the present invention, there is provided a dielectric barrier discharge lamp, which comprises multiple tubular discharge vessels of a substantially equivalent size and having a principal axis. Each discharge vessel encloses a discharge volume filled with a discharge gas. The discharge vessels are arranged substantially parallel to their principal axis and adjacent to each other. The lamp also comprises a first set of interconnected electrodes and a second set of interconnected electrodes, and the electrodes are isolated from the discharge volume by at least one dielectric layer. At least one of the dielectric layers is constituted by the wall of the discharge vessel. The electrodes of at least one electrode set are located between the discharge vessels.
In an exemplary embodiment of another aspect of the invention, there is provided a dielectric barrier discharge lamp, which comprises multiple tubular discharge vessels of a substantially equivalent size and having a principal axis. Each discharge vessel encloses a discharge volume filled with discharge gas. The discharge vessels are arranged substantially parallel to their principal axis and adjacent to each other in a lattice. The lamp further comprises a first set of interconnected electrodes and a second set of interconnected electrodes, which are isolated from the discharge volume by at least one dielectric layer. At least one of the dielectric layers is constituted by the wall of the discharge vessel. The first and second electrode sets are located between the discharge vessels in interstitial voids of the lattice.
In an exemplary embodiment of yet another aspect of the invention, there is provided a dielectric barrier discharge lamp, which comprises multiple tubular discharge vessels of a substantially equivalent size and having a principal axis. Each discharge vessel encloses a discharge volume filled with discharge gas. The discharge vessels are arranged substantially parallel to their principal axis and adjacent to each other along the generatrices of a prism. The lamp also comprises a first set of interconnected electrodes and a second set of interconnected electrodes, which are isolated from the discharge volume by at least one dielectric layer. At least one of the dielectric layers is constituted by the wall of the discharge vessel.
The disclosed DBD lamps ensure that the available lamp volume is divided into multiple smaller discharge volumes. These smaller discharge volumes have a substantially equivalent size and shape, and their electrode arrangements are also quite similar. Therefore, all discharge volumes will show very similar radiation characteristics. The arrangement of multiple tubes allow the intermittent placement of electrodes, so that the lines of force of the electric field will extend into the discharge volumes, and the lamp will operate with a good efficiency. If necessary, the electrodes may be located external to the discharge vessel, and yet practically do not cover the external surface of the lamp. Further, no sealed lead-through or any dielectric covering layer film for the electrodes is required. The lamp can provide a uniform and homogenous volume discharge, and a large illuminating surface.
The invention will be now described with reference to the enclosed drawings, where
Referring now to
The structure and the geometrical arrangement of the discharge vessels 10 within the envelope 2 of the DBD lamp 1 is explained with reference to
Each discharge vessel 10 encloses a discharge volume 13, which is filled with discharge gas. The discharge vessels 10 are substantially tubular, in the shown embodiment they are cylindrical, but other suitable cross sections may be selected as well. For example, an even better packing density may be achieved with tubular discharge vessels having a substantially square cross section with slightly rounded corners, to leave room for the electrodes. The discharge vessels 10 are made of glass in the shown embodiments. As shown in
Though the envelope 2 provides a certain means for clamping together the bundle of discharge vessels 10, it is advisable to provide further fastening or clamping means, considering the mechanical properties of the discharge vessels 10. For example, the discharge vessels 10 may be glued together with any suitable and preferably translucent glue, such as GE Silicon IS-5108. Alternatively, a cushion layer, such as a translucent plastic foil may be provided between the touching surfaces 22 of the discharge vessels 10 and/or between the external envelope 2. If no glue is used, a suitable resilient clamping mechanism, such as a rubber or soft plastic band may be also used to keep the discharge vessels 10 in tight contact with each other.
The number of discharge vessels 10 within a lamp 1 may vary according to size or desired power output of the lamp 1. For example, seven, nineteen or thirty-seven discharge vessels 10 may form a hexagonal block. The chosen number is dependent on a number of factors. One of the considerations is the wall thickness of the discharge vessels 10, which also influences the properties of the discharge, but also the mechanical strength of the discharge vessels 10. These factors present contradictory demands, because a thin wall is required for an efficient discharge (when the wall acts as a dielectric layer, as explained below), while a relatively thick wall is desired to have a sufficient mechanical stability. An acceptable compromise for the wall thickness of the discharge vessels 10 is approx. 0.4-0.8 mm, preferably 0.5 mm, when the diameter of the discharge vessels is between 5-15 mm, preferably between 8-10 mm.
The dielectric barrier discharge (also termed as dielectrically impeded discharge) is generated by a first set of interconnected electrodes 16 and a second set of interconnected electrodes 18. The term “interconnected” indicates that the electrodes 16 and 18 are on a common electric potential, i. e. they are connected with each other within a set, as shown in
In the embodiment shown in
On the other hand, the electrodes 16 and 18 are isolated from the discharge volume 13 by the wall of the discharge vessel 10. More precisely, it is the wall of the inner tubular portion, which serves as the dielectric layer. As seen in
As shown in
Therefore, in another preferred embodiment, which is shown in
The first set of the electrodes 16 and the second set of electrodes 18 are formed as elongated conductors. For example, these elongated conductors may be formed of metal stripes or metal bands, which extend along the principal axis of the discharge vessels 10. Such electrodes may be applied onto the glass surface of some or all of the discharge vessels 10 with any suitable method, such as tampon printing or by gluing thin foil strips onto the glass surface. However, the electrodes 16,18 may be formed of thin wires as well, as shown in the embodiments in the figures.
In order to provide a visible light, the internal surface 15 of the discharge vessels 10 is covered with a phosphor layer 25 (not shown in FIGS. 2 to 4). This phosphor layer 25 is within the sealed discharge volume 13. A phosphor layer may also cover the internal surface 21 of the cylindrical envelope 2. In any case, the envelope 2 is preferably not transparent but only translucent. In this manner the relatively thin electrodes 16,18 within the envelope 2 are barely perceptible, and the lamp 1 also provides a more uniform illuminating external surface.
Most preferably, as shown in
In the embodiment of the DBD lamp shown in
Similarly to the embodiments shown in
In the embodiment shown in
In all embodiments shown, it is preferred that the wall thickness of the discharge vessels 10 should be substantially constant, mostly from a manufacturing point of view, and also to ensure an even discharge within the discharge vessel 10 along their full length.
Finally, it must be noted that the parameters of the electric field and the efficiency of the dielectric barrier discharge within the discharge volume 13 also depend on a number of other factors, such as the excitation frequency, exciting signal shape, gas pressure and composition, etc. These factors are well known in the art, and do not form part of the present invention.
The proposed electrode-discharge vessel arrangement has a number of advantages. Firstly, the tubular thin-walled discharge vessels 10 are manufactured more easily than a discharge vessel with a large internal surface and a dielectric layer within the discharge vessel. The voids between the tubular discharge vessels 10 are very suitable for the placement of the electrodes, because the lines of force of the electric field will go through the discharge volume. On the other hand, even if the discharge processes and thereby the light generation within the single discharge volumes 13 are not or not sufficiently homogenous, the overall homogenous light output and general visual appearance of the lamp is still ensured, because each discharge vessel 10 within the envelope 2 will perform more or less equally.
The invention is not limited to the shown and disclosed embodiments, but other elements, improvements and variations are also within the scope of the invention. For example, it is clear for those skilled in the art that a number of other forms of the envelope 2 may be applicable for the purposes of the present invention, for example, the envelope may have a triangular or square cross-section. The general cross-section of the tubular discharge vessels need not be strictly circular either (as with a cylindrical discharge vessel), for example, they may be triangular or rectangular, or simply quadrangular in general. Conversely, the discharge vessels may be arranged in various types of lattices, such as square (cubic) or even non-periodic lattices, though the preferred embodiments foresee the use of periodic lattices with substantially equally shaped, uniformly sized discharge vessels. Also, the shape and material of the electrodes may vary, and not only a single electrode, but also one or more electrode pairs may be within the discharge volume in each discharge vessel.