Dielectric filter

Information

  • Patent Grant
  • 6566986
  • Patent Number
    6,566,986
  • Date Filed
    Tuesday, October 9, 2001
    23 years ago
  • Date Issued
    Tuesday, May 20, 2003
    21 years ago
Abstract
The present invention provides a small dielectric filter suitable for use in a high frequency band equal to or higher than 3 GHz. an input/output electrode made up of island type of conductive film is formed on one surface of said dielectric located on each end portion; in each of said dielectrics located on each end respectively, an earth electrode is formed on almost of all remaining area of said surface so as to be isolated from said input/output electrode and is also formed on all of the other surfaces with an exception of connecting surfaces; in an intermediate dielectric, an earth electrode is formed on all surfaces other than the connecting surface; and a conductive film connected to the earth electrode is formed on a part of at least one of the connecting surfaces of the dielectrics to be connected. Three or more elements of resonators may be integrally formed on a dielectric block, and, in that case, a through-hole is formed between the resonators.
Description




FIELD OF THE INVENTION




The present invention relates to a dielectric filter and in particular to a small dielectric filter suitable for use in a high frequency band equal to or higher than 3 GHz.




PRIOR ART




With the spread of mobile communication device, a frequency band higher than that in current operation is considered to be made use of. In the conventional mobile communication, the frequency band up to about 2 GHz is used, and a combination of dielectric coaxial resonators has been mainly employed as a filter used in the mobile station.




When the dielectric coaxial-resonator is used, however, in the frequency band equal to or higher than 3 GHz, an axial dimension thereof has to be made shorter due to the frequency, which makes it extremely thinner and also makes it difficult to form an input and output coupling. In addition, to secure high Q, an outer diameter of the dielectric shall be made larger. For example, in order to secure a Q required at a frequency of 5 GHz, 10-odd mm of outer diameter is necessary. This goes against a requirement for making an electronic unit smaller and is not practical. Instead of coaxial TEM mode resonator, TE mode resonator may be considered to be used, which results in larger size of structure and requires a complex structure of input and output coupling.




SUMMARY OF THE INVENTION




The object of the present invention is to provide a dielectric filter, which provides sufficient filtering characteristic at high frequency band, for example, within the range of 3 GHz to 30 GHz, and meets the requirement for high Q, downsizing and thinner thickness.




The present invention solves the problems in the prior art described above by employing an entirely new structure quite different from conventional ones.




That is, the present invention provides a dielectric filter composed of three or more rectangular parallelepiped dielectrics connected in line, said dielectric filter characterized in that:




an input/output electrode made up of island type of conductive film is formed on one surface of said dielectric located on each end portion;




in each of said dielectrics located on each end respectively, an earth electrode is formed on almost of all remaining area of said surface so as to be isolated from said input/output electrode and is also formed on all of the other surfaces with an exception of connecting surfaces;




in an intermediate dielectric, an earth electrode is formed on all surfaces other than the connecting surface; and




a conductive film connected to the earth electrode is formed on a part of at least one of the connecting surfaces of the dielectrics to be connected.




Three or more elements of resonators may be integrally formed on a dielectric block, and, in that case, a through-hole is formed between the resonators.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an exploded perspective view of an embodiment according to the present invention;





FIG. 2

is an explanatory diagram illustrating a characteristic of a dielectric filter according to the present invention;





FIG. 3

is a perspective view of another embodiment according to the present invention;





FIG. 4

is an explanatory diagram illustrating a characteristic of another dielectric filter according to the present invention;





FIG. 5



a


is a plan view of another embodiment according to the present invention





FIG. 5



b


is a perspective view of the embodiment shown in

FIG. 5



a;







FIG. 6

is an explanatory diagram illustrating a characteristic of a dielectric filter shown in

FIG. 5

according to the present invention;





FIG. 7



a


is a plan view of another embodiment according to the present invention





FIG. 7



b


is a perspective view of the embodiment shown in

FIG. 7



a;







FIG. 8

is an explanatory diagram illustrating a characteristic of a dielectric filter shown in

FIG. 7

according to the present invention;





FIG. 9

is a perspective view of another embodiment according to the present invention; and





FIG. 10

is an explanatory diagram illustrating a characteristic of a dielectric filter shown in

FIG. 9

according to the present invention;




wherein, each of reference numerals


11


,


12


,


13


,


51


,


52


and


53


designates a dielectric;


31


designates a dielectric (block); each of


14


,


15


,


34


,


35


,


54


and


55


designates an input/output electrode; each of


16


,


17


,


18


,


36


,


56


,


57


and


58


designates an earth conductor; each of


19


,


20


and


59


designates a conductive strip; each of


39


and


40


designates a through hole; and


99


designates a slit.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Though a resonance mode of a dielectric filter according to the present invention has not been completely analyzed, it is supposed that said dielectric filter operates just like a waveguide. It is supposed that an island type of electrode film formed on one surface of the dielectric is used as an input/output coupling structure and a coupling between the resonators is generated on a connecting surface or inside of the dielectric to make a filtering characteristic.




There will now be described a preferred embodiment of the present invention with reference to the attached drawings.





FIG. 1

is an exploded perspective view of an embodiment of the present invention illustrating a condition of a dielectric filter prior to being assembled. In this embodiment, three dielectric resonators are connected to make a unit. A rectangular parallelepiped dielectric


11


,


13


with a dimension of 6.41×6.0×2.5 mm


3


and a dielectric constant of 37 is disposed on each end side respectively, and an island type of conductive film


14


,


15


with a dimension of 1.4×1.4 mm


2


is formed on a central portion of said 6.41×6.0 mm


2


surfaces respectively. A conductive film


16


,


17


is formed surrounding said conductive film


14


,


15


placing a distance of 0.5 mm therefrom, and a conductive film is also formed on all of other surfaces excepting a connecting surface to form an earth electrode by being connected to said conductive film


16


,


17


.




An intermediate dielectric resonator


12


has a dimension of 5.75×6.0×2.5 mm


3


and a conductive film


18


is formed on all the surfaces thereof excepting connecting surfaces to form an earth electrode. In the connecting portions of the dielectrics


11


,


12


,


13


, though the dielectrics are exposed, conductive strips


19


,


20


are formed thereon extending from the surface on which the input/output electrode being formed to the opposite surface thereof to adjust a coupling between the resonators. In this embodiment, 2 mm width of conductive strip is formed on a central portion of the connecting surface. In each of the connecting portions between the dielectric resonators


11


,


13


each being located on each end respectively and the intermediate dielectric resonator


12


connected thereto, said conductive strip may be formed on either of the connecting surfaces. In this embodiment, for example, said conductive strip may not be formed on the resonator


11


, and may not be formed also on an invisible connecting surface of the resonator


12


. Thus, the conductive film may be formed on at least one of the connecting surfaces.





FIG. 2

is an explanatory diagram illustrating a characteristic of the dielectric filter made up by connecting the dielectrics shown in FIG.


1


. It is shown that the center frequency is in 5.81 GHz, 3 dB bandwidth is 184 MHz, and an insertion loss at a peak point is 0.77 dB.





FIG. 3

is a perspective view of another embodiment of the present invention, in which three dielectric resonators are integrally formed on one dielectric block. In this embodiment, the dielectric block


31


has a dimension of 19.22×6.00×2.50 mm


3


and a dielectric constant of 37, and each of input/output electrodes


34


,


35


is formed on each end portion on a surface of 19.22×6.00 mm


2


respectively, and a dielectric resonator having no input/output electrode is disposed in a central portion, and each of through holes


39


,


40


is formed between said input/output electrodes and said central dielectric resonator for adjusting the coupling between the resonators.




Each of the through holes


39


and


40


is formed by a size of 1.6×0.5 mm


2


at a location of 6.37 mm apart from a longitudinal end surface of the dielectric block


31


respectively. Thereby, the dimension of the central dielectric resonator is defined to be 5.48×6.00 mm


2


. An input/output electrode


34


,


35


having a dimension of 1.4×1.4 mm


2


is formed on the surface of the dielectric on each end portion, and a conductive film


36


is formed on almost of all remaining area of said surface surrounding said input/output electrodes


34


,


35


placing 0.5 mm of distance therefrom and also on all of other surfaces to form an earth electrode.





FIG. 4

is an explanatory diagram illustrating a characteristic of the dielectric filter obtained from the dielectric block shown in FIG.


3


. It is shown that the center frequency is in 5.80 GHz, 3 dB bandwidth is 163 MHz, and an insertion loss at a peak point is 0.82 dB.




Though, in the embodiment shown in

FIG. 3

, the coupling is adjusted by the through hole formed between the resonators, a groove formed on a side surface of the dielectric block may be also employed for adjusting the coupling. Additionally, in case of connection shown in

FIG. 1

, a conductive film may be formed on both sides instead of conductive strip to expose the dielectric on the central portions.




As shown in above embodiments, a dimension of the dielectric forming the resonator located on each end portion shall be different from that of the dielectric forming the resonator located on the central portion. This comes from the difference therebetween in an effective dielectric constant, and thereby the dimension of the dielectric located on each end portion shall be larger than that on the central portion.




An arrangement of the dielectric resonators is not limited to the example shown above, but another structure including a bend therein may be also employed.

FIG. 5

shows another embodiment of the invention, in which

FIG. 5



a


is a plan view and

FIG. 5



b


is an exploded perspective view illustrating a condition of a dielectric filter prior to being assembled. In this embodiment, three dielectric resonators are connected to make a unit. A rectangular parallelepiped dielectric


51


,


52


with a dimension of 11.8×10.0×3.0 mm


3


is disposed on each end side respectively, and a circular island type of conductive film


54


,


55


with a diameter of 4 mm is formed thereon respectively. A conductive film


56


,


57


is formed surrounding said island type conductive film


54


,


55


placing a distance of 0.5 mm therefrom, and a conductive film is also formed on all of other surfaces excepting a connecting surface to form an earth electrode by being connected to said conductive film


56


,


57


.




An intermediate dielectric resonator


53


has a dimension of 10.0×10.0×3.0 mm


3


and a conductive film


58


is formed on all the surfaces thereof excepting connecting surfaces to form an earth electrode. The dielectric resonator


53


is connected using adjacent two end surfaces thereof to the dielectric resonators


51


and


52


respectively. In the connecting portions of the dielectrics


51


,


52


,


53


, the dielectrics are exposed and conductive strips


59


,


60


are formed thereon extending from the surface on which the input/output electrode is formed to the opposite surface thereof to adjust a coupling between the resonators. In this embodiment, 3.40 mm width of conductive strip is formed on a central portion of the connecting surface. In each of the connecting portions between the dielectric resonators


51


,


52


each being located on each end respectively and the intermediate dielectric resonator


53


connected thereto, said conductive strip may be formed on either of the connecting surfaces of two resonators to be connected. In this embodiment, for example, said conductive strip may not be formed on the resonator


51


, and may not be formed also on an invisible connecting surface of the resonator


52


. Thus, the conductive film may be formed on at least one of the connecting surfaces.





FIG. 6

is an explanatory diagram illustrating a characteristic of the dielectric filter made up by connecting the dielectrics shown in FIG.


5


. It is shown that the center frequency is in 3.41 GHz, 3 dB bandwidth is 99.1 MHz, and an insertion loss at a peak point is 0.83 dB.





FIG. 7

includes a plan view and a perspective view of another embodiment of the present invention, in which four dielectric resonators are connected so as for the dielectric resonators on respective input/output ends thereof to be disposed adjacently with each other. In this embodiment, the dielectric resonators on respective input/output ends thereof are formed to be a dimension of 11.2×10.0×3.0 mm


3


and two intermediate ones to be of 10.0×9.5 mm


2


. As for the conductive films for adjusting the coupling, the conductive film between intermediate dielectric resonators is set to be as wide as 3.8 mm and that between the resonator on the input/output end and the intermediate resonator is set to be as wide as 3.4 mm.





FIG. 8

is an explanatory diagram illustrating a characteristic of the dielectric filter made up by connecting the dielectrics shown in FIG.


7


. It is shown that the center frequency is in 3.50 GHz, 3 dB bandwidth is 110.2 MHz, and an insertion loss at a peak point is 1.05 dB.




In

FIG. 9

, four elements of dielectric resonators each having the same dimension as that shown in

FIG. 7

are connected, in which resonators


91


and


92


located on input/output ends are brought into capacitive coupling. That is, a slit


99


exposing the dielectric is formed on the connecting surface of the resonators


91


and


92


each being located on the input/output ends respectively. The characteristic with the slit as wide as 0.005 mm is shown in FIG.


10


. There is no change in the center frequency, 3 dB band width and the insertion loss, but extremes P


1


and P


2


of damping curve are formed on each side of pass band, which provides a steep damping characteristic.




Thus the dielectric resonators are brought into capacitive coupling by this slit


99


to provide polarity. When the structure in which the dielectric resonators are bent and connected is employed, the input and output ends are placed adjacently with each other, so that they may be connected without any additional element.




As shown in above embodiments, a dimension of the dielectric forming the resonator located on each end portion shall be different from that of the dielectric forming the resonator located on the central portion. This comes from the difference therebetween in an effective dielectric constant, and thereby the size of the dielectric located on each end portion shall be larger than that on the central portion. In above embodiment, the dielectric constant of each dielectric is 37.




According to the present invention, a small and thin dielectric filter capable of being used in a frequency band width equal to or more than 3 GHz may be provided. In addition, an easily producible and inexpensive dielectric filter may be provided since it can be made by merely forming a conductive film on a surface of the rectangular parallelepiped dielectric.




Further, the frequency of extreme may be arbitrarily set since the dielectric resonators located on the input/output end portions can be brought into capacitive coupling depending on the arrangement thereof and, in addition, the coupling condition thereof can be easily adjusted.



Claims
  • 1. A dielectric filter in which three or more resonators are integrally formed in a rectangular parallelepiped dielectric block, said dielectric filter characterized in that:in each of the dielectric resonators respectively located on each end portion of said dielectric block with respect a longitudinal direction thereof, and input/output electrode made up of island type of conductive film is formed respectively on the same surface of said dielectric block, and an earth electrode is formed on almost of all remaining area of said same surface so as to be isolated from said input/output electrode and is also formed on all of the other surfaces; in each of the other dielectric resonators, an earth electrode made up of conductive film is formed on all surfaces thereof; and between the dielectric resonators, a through hole extending from the surface on which the input/output electrode is formed to the surface opposite thereto is formed, wherein a longitudinal length of the dielectric resonators respectively located on each end portion of said dielectric block is greater than that of the other resonators.
  • 2. A dielectric filter in which at least three dielectric resonators are integrally formed in a rectangular parallelepiped dielectric block having two end portions and an intermediate portion with respect to a longitudinal direction thereof, said dielectric filter characterized in that:in each of the dielectric resonators respectively located on said end portions of said dielectric block, an island type of conductive film forming an input/output electrode on one surface of such dielectric resonator, and an earth electrode formed on almost all of the remaining area of said one surface so as to be isolated from said input/output electrode, and said earth electrode is also formed on all of the other surfaces of such dielectric resonator; in each of the dielectric resonators located in said intermediate portion, an earth electrode made up of conductive film is formed on all surfaces thereof; and between the dielectric resonators, a through hole extends from the one surface on which the input/output electrode is formed to the surface opposite thereto.
Priority Claims (2)
Number Date Country Kind
11-22002 Jan 1999 JP
11-88220 Mar 1999 JP
Parent Case Info

This is a division of application Ser. No. 09/491,613 filed Jan. 26, 2000, pending.

US Referenced Citations (5)
Number Name Date Kind
4740765 Ishikawa et al. Apr 1988 A
5499004 Noguchi et al. Mar 1996 A
6002307 Arakawa Dec 1999 A
6133808 Arakawa Oct 2000 A
6380824 Nishijima et al. Apr 2002 B1
Foreign Referenced Citations (6)
Number Date Country
0 525 416 Feb 1993 EP
0 856 902 Aug 1998 EP
0 859 423 Aug 1998 EP
11-195905 Jul 1999 JP
11-225004 Aug 1999 JP
02000196305 Jul 2000 JP