The present invention relates to dielectrically heating a foamable composition. In particular, radio frequency (RF) heating is used to heat the foamable composition to provide insulation in the manufacture of an article.
A more environmentally-sound disposable food packages and containers are sought after than traditional closed-cell extruded polystyrene foam packages. Packages made entirely out of plastic typically do not biodegrade in less than 400 years, or if ever, and some regulations have banned the use of such packages and containers.
Alternative packages that are recyclable biodegradable and/or compostable are in demand. One such package includes cellulose-based substrates, sourced from renewal materials that can be recycled and/or compostable. The package is made by joining two cellulosic substrates with an air gap interposed in between the two. Some drawbacks to these alternative packages include low insulation and poor structural integrity over the plastic packages. As the package is handled and flexed, the air gap between the two substrates become compressed and the insulation is decreased in those compressed areas. Insulation can be improved by increasing the air gap between the cellulose substrate layers, increasing the thickness of the cellulose substrates or inserting a cellulose medium in between the two layers.
Some of the above mentioned improved packages are described in U.S. Pat. Nos. 9,580,629, 8,747,603, 9,273,230, 9,657,200, US 20140087109, US 20170130399, US 20170130058, and US 20160263876. The packages are formed with an air gap in the coating/adhesive sandwiched between two substrates, which provides insulation. Conventional heating requires prolonged time and large space for water evaporation and curing/coalescing the polymer. Moreover, as the size of the packages vary, the insulative gap is not always uniform. While microwave heating provides strict controls for level of moisture and uniform air gaps, the depth of penetration is limited only to about 1.5 inches. Thus, any substrate that has a thickness greater than about 1.5 inches may result in non-uniform packages.
There is a need in the art for methods to provide uniform insulation for all sizes of packages. The present invention provides methods to produce environmentally and economically sound package that provides uniform thermal insulation for various sizes of packages.
The present invention relates to methods for foaming and coalescing a microsphere-filled, waterborne composition.
One embodiment is directed to a method for foaming and coalescing a composition comprising:
Another embodiment is directed to a process for forming an article comprising the steps of:
The dielectric heating provides uniform heating throughout the composition and forms substantially a uniform thickness of air gap throughout the composition and article.
The present invention provides a method for foaming a plurality of microspheres and coalescing and locking in the foamed microspheres a waterborne composition. The waterborne composition comprises a polymer and a plurality of microspheres, and is applied onto a cellulosic substrate(s) to form a package. Once expanded and locked in place, the air gap in the foamed microspheres provides insulation and structural integrity to the package. This package is more environmentally sound than traditional extruded polystyrene foam packages.
Conventional heating requires ovens with long belts that require large space and massive heat output. Temperatures ranges of about 212° F. (100° C.) to about 450° F. (177° C.) is typically used in conventional heaters.
Microwave heating is another method. Microwave heating provides uniformity in drying and moisture control, and can control the moisture to about 1%. Microwave energy, however, dissipates and cannot penetrate a depth greater than about 1.5 inches (4 cm). Moreover, microwave is a known radiation hazard and exposure to such harmful radiation should be minimized workers. To minimize health risks, industrial microwave machines typically have small openings, and thus, fitting large and odd shape containers into the small orifice is challenging.
Dielectric heating, electronic heating, radio frequency (RF) heating, and high-frequency heating, all interchangeably used herein, is the process in which high-frequency alternating electric field or radio wave heats a dielectric material. RF heating is distinguishable from microwave heating. Industrial radio frequencies operate between approximately 2 MHz and 300 MHz with typical wavelengths of about 141 to about 24 feet (43 to 7.3 meters). Industrial microwave systems use frequencies over 300 MHz with typical wavelengths of about 13 to about 5 inches (33 and 12 cm). The efficiency of power utilization is far lower in an RF generator than a microwave unit, and thus, microwave unit is often the preferred source of heating.
The present invention provides dielectric heating, particularly RF heating, a foamable waterborne composition. RF creates an alternating electric field between a dielectric material, in this invention, polar water molecules. The article is conveyed between the electrodes causing the water molecules in the composition to continuously reorient to face opposite electrodes. Friction from this molecular movement causes the rapid heating. RF operates at much lower frequency than microwave heating, and is associated with lower health risks than microwaves. RF is also suitable for heating bulkier and odd-shaped containers due to its higher depth of penetration.
In addition, the inventive process may include a combination of dielectric heating and direct heating applications. For example, expansion of the microspheres may be achieved through dielectric heating, while the removal of excess moisture after expansion may be achieved through direct heat.
RF heating a composition comprising a water-based polymer and a plurality of expandable microspheres provides uniform heating and drying of the water and expanded microspheres.
The present invention is also based on the discovery that RF heating the composition, comprising a water-based polymer and a plurality of expandable microspheres, applied on an article provides improved and uniform thermal insulation for the article.
One embodiment is directed to a method for foaming and coalescing a composition comprising:
The RF heating concurrently drives the water away from the composition to coalesce the water-based polymer and expands the microspheres as the temperature reaches the activation state of the microspheres. Heating at RF frequencies of about 14, 27 and 41 MHz, are particularly preferred. The RF devices can be designed with operational amplifiers for optimal heating.
The compositions described herein may be useful in multilayer substrates, particularly for cellulosic substrates. Using the composition, a greater insulation space may be provided between the two substrates, which it is attached at the point of adhesion. The insulating products useful herein include paper products for consumer use, such as for hot drinking cups and lids, cold drinking cups and lids, hot food containers and lids, cold food containers and lids, freezer cartons and cases, envelopes, bags, and the like.
The composition may be formed as an adhesive or as a coating, herein used interchangeably. The composition is prepared by forming a mixture of a water-based polymer, a plurality of expandable microspheres and optionally, additive.
The water-based polymer is prepared by emulsion polymerization, and may be a single grade or a mixture of synthetic emulsion polymer or polymers of a natural origin. The water-based polymer prepared by emulsion polymerization may include any desired polymer components, including starch, vinyl acetate ethylene dispersion, polyvinyl acetate, polyvinyl acetate polyvinyl alcohol, dextrin stabilized polyvinyl acetate, polyvinyl acetate copolymers, vinyl acetate ethylene copolymers, vinylacrylic, styrene acrylic, acrylic, styrene butyl rubber, polyurethane, starch and mixtures thereof. Particularly preferred emulsion polymer components are vinyl acetate ethylene dispersion, polyvinyl acetate and starch. Preferably, the emulsion polymer is stabilized by hydrophilic protective colloids.
The water-based polymer may be present in the composition in any amount, and desirably is present in an amount of from about 60% to about 99.5 wt %, preferably from about 65% to about 95 wt %, by weight of the composition prior to setting of the composition. Depending on the emulsion polymer, the solid levels vary from about 40 wt % to about 65 wt %, based on the emulsion polymer.
The expandable microspheres useful in the present invention can expand in size in the presence of heat and/or RF radiation. The microspheres useful in the present invention include, for example, heat expandable polymeric microspheres, including those having a hydrocarbon core and a polyacrylonitrile shell (such as those sold under the trade name DUALITE®) and other similar microspheres (such as those sold under the trade name EXPANCEL®). The expandable microspheres may have any unexpanded size, including from about 5 microns to about 30 microns in diameter. In the presence of heat or radiation, the expandable microspheres of the present invention can increase in diameter by about 3 times to about 10 times the original size. Upon expansion of the microspheres in the composition, the composition becomes a foam-like material, which has improved insulation properties. The microspheres are typically made of plastic or polymeric shells and a blowing agent is inside the shell, designed to activate upon reaching specific temperatures.
The expandable microspheres have a particular temperature at which they begin to expand and a second temperature at which they have reached maximum expansion. Microsphere grades are typically sold with specific expansion (Texp) temperatures and maximum expansion temperatures (Tmax). The initial expansion temperature (Texp) is the typical temperature at which the microspheres start to expand (Texp), and the maximum expansion temperature (Tmax) is the temperature at which the about 80% of the microspheres have expanded. If the microspheres are exposed to temperature far greater than Tmax, the microspheres start to explode and deflate.
One particularly useful microsphere has a Texp of about 80° C. to about 105° C. The temperature at which the microspheres have reached maximum expansion (Tmax) is desirably from about 90° C. to about 140° C.
The choice of the particular microspheres and their respective Texp and Tmax is critical to the invention. While any particular grade of microspheres may be used in the present invention, the Texp and Tmax of the microspheres should be taken into account when formulating and activating in RF conditions. The RF radiation evaporates the water from the composition, but the temperature of the composition is limited to about less than about 100° C. Supercritical heating can occur during the RF heating if additives and/or salts are present in the composition, pushing the temperature up to above 100° C. However, the preferable Texp and Tmax of the expandable microspheres are less than about 100° C. and less than about 140° C., respectively. Microspheres with higher temperatures will not activate during the RF heating. Once the composition coalesces, the microspheres are substantially locked in place, making expansion thereof difficult, if not impossible. Surprisingly, the RF heating allows for a more robust expansion of the microspheres. The use of the RF activation allows for a self-limiting of microsphere expansion, and less explosion and deflation when compared to conventional convection heating.
In preferred embodiments, it is desirable that the expandable microspheres be present in the composition in an amount of from about 0.1% to about 70% by weight of the composition prior to setting of the composition, and more desirably from about 0.5% to about 60% by weight of the composition prior to setting of the composition, and most desirably at about 1% to about 50% by weight of the composition prior to setting of the composition. The expansion ratio of the expandable microspheres and the loading level of the microspheres will be related to each other.
Depending on the amount of the microspheres and the type of the polymer, the coalesced composition can have adhesive properties. High levels of micropsheres will lead to lower or no adhesive property, whereas low levels, about less than about 30 wt % based on the total weight of the composition, will lead to adhesive property of the composition.
Depending on the fully expanded size of the microspheres, the amount of the expandable microspheres in the composition can be adjusted. Depending upon the particular expandable microspheres used in the composition, the desired amount of the microspheres in the composition may be modified.
The microspheres further increase the structural integrity of the coalesced composition after they are expanded. While introducing voids in a matrix typically decrease mechanical integrity, the microspheres in the polymeric matrix provide stiffness when applied onto substrates. This is particularly useful for packaging fragile contents.
In another embodiment, the microsphere may be pre-expanded. If pre-expanded microspheres are added in the composition, the pre-expanded microspheres should be chosen so the RF heating will not start to decompose the microspheres. Yet in another embodiment, the microspheres may be a mixture of pre-expanded and expandable microspheres.
The composition optionally further includes any plasticizers, tackifiers, humectants, accelerators, fillers, pigments, dyes, stabilizers, rheology modifiers, polyvinyl alcohols, preservatives, e.g., antioxidant, biocide; and mixtures thereof. These components can be included in an amount of from about 0.05% to about 15% by weight of the composition.
Exemplary plasticizers are dibenzoates available as BENZOFLEX®, such as diethylene glycol dibenzoate, dipropylene glycol dibenzoate, and the like.
The accelerator is a multivalent cation from water-soluble salts, including commonly available aluminum nitrate (Al(NO3) 3), zirconium acetate, ammonium zirconyl carbonate (available as Bacote 20 from Zirconium Chemicals). The addition of the multivalent water-soluble salt shortens the time required for radiation during the expansion of the composition. When added, from about 0.05 to about 1, preferably from about 0.1 to 0.3 wt % based on the total weight of the composition, may be used.
Exemplary preservatives include 1,2-benzisothiazolin-3-one, 5-chloro-2-methyl-4-isothiazolin-3-one and 2-Methyl-4-isothiazolin-3-one. Typically, preservatives may be used in an amount of from about 0.05% to about 0.5% by weight of the composition prior to setting of the composition.
Exemplary fillers include pearl starch, physically modified starch, and chemically modified starch.
Other materials that do not adversely affect the composition and insulating properties of the composition may be used as desired. Other additives and/or salts may be included in the composition to increase the coalescence of the composition, is desired.
Although the composition can start to coalesce at room temperature, the high moisture content and will be substantially fluid until the moisture content is about 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 wt %, based on the total weight. Preferably, the moisture content should be maintained at levels greater than about 20 wt % to prevent premature coalescence. Premature coalescence can lead to uneven drying, leading to uneven thickness of the dried composition on substrates.
RF heating also allows for fast throughput of making articles. The composition must be designed to accommodate this fast throughput method to maximize solid contents in the composition. It is preferable that the water molecules to be efficiently driven off without leaving unsightly wrinkles or unevenness on the substrates.
Surprisingly, RF heating provides a uniform and even activation of microspheres and faster egress of water from the composition, at a faster throughput. The uniform and evenness of the coalesced coating provides uniform thermal insulation to the article and minimizes unsightly wrinkles on the substrates, while increasing the production.
Another embodiment is directed to a process for forming an article comprising the steps of:
The articles are suitable as protective packages, shipping packages, impact resistant packages, and insulative packages. The packages include cups, food containers, cases, cartons, bags, lids, boxes, envelopes, shipping bags, wraps, clamshells, and the like.
The substrates include fibreboards, chipboards, corrugated boards, corrugated mediums, solid bleached boards (SBB), solid bleached sulphite boards (SBS), solid unbleached board (SLB), white lined chipboards (WLC), kraft papers, kraft boards, coated papers and binder boards.
The composition may be applied to the first substrate in any configuration desired, including in a series of dots, stripes, waves, checkerboard patterns, any general polyhedron shapes that have substantially flat bases, and combinations thereof. Further, the composition may be applied to the first surface in a series of cylinders. In addition, if desired, the composition may be applied to the first surface as a substantially flat sheet, covering the entire first surface (full lamination) or covering a portion of the first surface. A second substrate applied to the top surface of the composition, forming a sandwiched configuration of: first substrate—composition with expandable microspheres—second substrate.
Yet in another embodiment, the insulated article comprises a substantially flat substrate and a non-flat, rounded substrate. The composition is applied either to the substantially flat substrate, the non-flat substrate, or to both substrates, to form the insulated article. The composition may be applied to completely coat the surface of the substrate(s) or to selectively coat portions of the surface of the substrate(s). The pattern can be random or various ordered designs. The resulting article thus has an insulating space between the liner surfaces. The articles with patterned composition mimic a divider interposed between the two substrates. The space between the two substrates are generated and maintained by the expanded microspheres.
Optionally, a different adhesive may be applied in between the two substrates. This is especially useful to bind the two substrates together if the composition has low or no adhesive properties. The different adhesive may be applied before, concurrently or after the composition is applied onto the first substrate. In another embodiment, the different adhesive may be applied on the second substrate, and the two substrates are joined together with the composition, and the different adhesive sandwiched between the two substrates. Exemplary different adhesive includes hot melt adhesive, pressure sensitive adhesive, waterborne adhesive, and solvent-based adhesives.
The wet composition is applied in between the two substrates to form an article, and then exposed to dielectric heating to coalesce the composition and to expand the microspheres. The heating therefore locks in the components, including the plurality of expanded microspheres, in place to the surface of the substrates. The dielectric heating creates an alternating electric field between the polar water molecule and causes rapid heating. With the presence of water, the temperature rises to 100° C., and the water is evaporated away while the microspheres expand. The microsphere grades with a Texp of about 80° C. to about 100° C. and Tmax of about 90° C. to about 140° C. expands with the dielectric heating.
The use of dielectric heating, particularly RF heating, allows rapid processing. Therefore, the RF process allows for fast throughput, and smaller area is warranted than convection heating process. Moreover, bulkier and odd-shaped packages can be manufactured with RF processing since the depth of penetration is higher and the oven aperture is more flexible than microwave ovens.
Multilayer substrate packages formed with the composition containing microspheres improve the ability of the package to withstand strain under a constant stress at elevated and/or reduced temperatures. It is expected to those skilled in the art that the strain of the composition increases with the addition of microspheres at elevated temperature.
The present invention may be better understood through analysis of the following examples, which are non-limiting and are intended only to help explain the invention.
The compositions were prepared with the following components. Each resin emulsion was used to make the following compositions.
Each composition was made by mixing the components in a vessel.
Composition 4 with Resin Emulsion 3 composition, in its wet state, was applied on a paper substrates (20 and 24 lb paper, Golden Kraft) in a series of dot pattern. Each substrate was activated with convention heating, microwave or RF dielectric heating (40 MHz and 55-62 Amps). The initial height of the coating and the final height after activation were recorded in Table 3. Percent wetness immediately after activation was visually measured by calculating the amount the non-expanded segments of the coatings.
Activation with RF had superior percent increase in microsphere expansion and evenness than the other two heating methods. Also, RF heating provided much faster drying, as the percent wetness was significantly lower than convection and microwave heating.
The photographs the activated composition on paper are shown in
To understand the speed throughput, a package was formed by coating Composition 4 (Resin Emulsion 3) on a first substrate and a second substrate was placed atop of the first substrate. The package was then left outside in ambient temperature (ranging from about 72° F. to about 90° F.) for less than 1, 2 or 5 minutes before activating with RF at 40 MHz and 55-62 Amps.
The package appearance on the reverse side of the coated substrate are shown in
While high solids content allows for faster throughput of manufacturing, the surface of the high solids content composition can form a skin on the surface of the composition preventing egress of moisture. To minimize wrinkles and uneven foaming, the composition should be activated with RF under 1 minute. A fast throughput process comprising coating and activating the coating in under 1 minute allows for maximum benefit.
Number | Name | Date | Kind |
---|---|---|---|
2147689 | Chaffee | Feb 1939 | A |
2998501 | Edberg et al. | Aug 1961 | A |
3152749 | Young | Oct 1964 | A |
3253064 | Buonaiuto | May 1966 | A |
3300360 | Williams et al. | Jan 1967 | A |
3342613 | Schelhorn | Sep 1967 | A |
3401475 | Morehouse et al. | Sep 1968 | A |
3563851 | Armour et al. | Feb 1971 | A |
3615972 | Morehouse, Jr. et al. | Oct 1971 | A |
3732975 | Poncy | May 1973 | A |
3904429 | Eastman et al. | Sep 1975 | A |
4005033 | Georgeau et al. | Jan 1977 | A |
4006273 | Wolinski et al. | Feb 1977 | A |
4038762 | Swan | Aug 1977 | A |
4087002 | Bambara et al. | May 1978 | A |
4094685 | Ester et al. | Jun 1978 | A |
4193499 | Lookholder | Mar 1980 | A |
4350788 | Shimokawa et al. | Sep 1982 | A |
4483889 | Andersson | Nov 1984 | A |
4531038 | Lillibridge | Jul 1985 | A |
4661401 | Akao | Apr 1987 | A |
4690843 | Inagaki | Sep 1987 | A |
4708896 | Akao | Nov 1987 | A |
4720410 | Lundquist et al. | Jan 1988 | A |
4900594 | Quick et al. | Feb 1990 | A |
4925711 | Akao et al. | May 1990 | A |
5030302 | Jud et al. | Jul 1991 | A |
5082744 | Akao et al. | Jan 1992 | A |
5100721 | Akao | Mar 1992 | A |
5114509 | Johnston et al. | May 1992 | A |
5236977 | Eden et al. | Aug 1993 | A |
5264467 | DiStefano | Nov 1993 | A |
5277737 | Li et al. | Jan 1994 | A |
5288765 | Bastioli et al. | Feb 1994 | A |
5325781 | Dupont et al. | Jul 1994 | A |
5342467 | Corey | Aug 1994 | A |
5356683 | Egolf et al. | Oct 1994 | A |
5387626 | Boehme-Kovac et al. | Feb 1995 | A |
5393336 | Foran et al. | Feb 1995 | A |
5415339 | Howard | May 1995 | A |
5451437 | Insley et al. | Sep 1995 | A |
5542599 | Sobol | Aug 1996 | A |
5612385 | Ceaser et al. | Mar 1997 | A |
5636493 | Weder | Jun 1997 | A |
5685480 | Choi | Nov 1997 | A |
5759624 | Neale | Jun 1998 | A |
5881883 | Siegelman | Mar 1999 | A |
5928741 | Andersen et al. | Jul 1999 | A |
6139961 | Blakenship et al. | Oct 2000 | A |
6231970 | Andersen et al. | May 2001 | B1 |
6255369 | Philbin et al. | Jul 2001 | B1 |
6312713 | Korol et al. | Nov 2001 | B1 |
6352769 | Mori | Mar 2002 | B1 |
6379497 | Sandstrom et al. | Apr 2002 | B1 |
6648955 | Swiezkowski et al. | Nov 2003 | B1 |
6740373 | Swoboda et al. | May 2004 | B1 |
6740706 | Ohrbom et al. | May 2004 | B2 |
6749705 | Skrzyniarz et al. | Jun 2004 | B2 |
6838187 | Figiel et al. | Jan 2005 | B2 |
6951677 | Ishikawa et al. | Oct 2005 | B2 |
7335279 | Mohan et al. | Feb 2008 | B2 |
7718751 | Orpin | May 2010 | B2 |
7799968 | Chen et al. | Sep 2010 | B2 |
8568029 | Kannankeril et al. | Oct 2013 | B2 |
8568283 | Broering et al. | Oct 2013 | B2 |
8574698 | Fung et al. | Nov 2013 | B2 |
8747603 | Huang et al. | Jun 2014 | B2 |
9260633 | Hoa et al. | Feb 2016 | B2 |
9273230 | Huang et al. | Mar 2016 | B2 |
9522772 | Fu et al. | Dec 2016 | B2 |
9580228 | Fu et al. | Feb 2017 | B2 |
9580629 | Huang et al. | Feb 2017 | B2 |
9591937 | Fu et al. | Mar 2017 | B2 |
9657200 | Huang et al. | May 2017 | B2 |
9771499 | Huang et al. | Sep 2017 | B2 |
9865551 | Takano et al. | Jan 2018 | B2 |
10099459 | Huang et al. | Oct 2018 | B2 |
10100231 | Huang et al. | Oct 2018 | B2 |
10144573 | Fu et al. | Dec 2018 | B2 |
10183458 | Fu et al. | Jan 2019 | B2 |
10208429 | Huang et al. | Feb 2019 | B2 |
10259151 | Kiiskinen et al. | Apr 2019 | B2 |
10815397 | Thompson et al. | Oct 2020 | B2 |
11193048 | Thompson et al. | Dec 2021 | B2 |
11427963 | Huang et al. | Aug 2022 | B2 |
20010049007 | Jones | Dec 2001 | A1 |
20020068139 | Polak et al. | Jun 2002 | A1 |
20020071947 | Soane et al. | Jun 2002 | A1 |
20020094403 | Ishikawa et al. | Jul 2002 | A1 |
20020115785 | Weitzel et al. | Aug 2002 | A1 |
20020182347 | DeBraal | Dec 2002 | A1 |
20030003197 | Berlin et al. | Jan 2003 | A1 |
20030034117 | Thomas et al. | Feb 2003 | A1 |
20040033343 | Comeau et al. | Feb 2004 | A1 |
20040065539 | Sosnowski | Apr 2004 | A1 |
20040191438 | Cosentino et al. | Sep 2004 | A1 |
20050067095 | Hasenoehrl et al. | Mar 2005 | A1 |
20050163974 | Geeroms | Jul 2005 | A1 |
20070009723 | Ogawa et al. | Jan 2007 | A1 |
20070155859 | Song et al. | Jul 2007 | A1 |
20070224395 | Rowitsch et al. | Sep 2007 | A1 |
20070228134 | Cook et al. | Oct 2007 | A1 |
20070287776 | Nordin et al. | Dec 2007 | A1 |
20080017338 | Nordin et al. | Jan 2008 | A1 |
20080055380 | Regan et al. | Mar 2008 | A1 |
20080118693 | Bilski et al. | May 2008 | A1 |
20090280322 | Daniels et al. | Nov 2009 | A1 |
20090306255 | Patel et al. | Dec 2009 | A1 |
20090321508 | Fu et al. | Dec 2009 | A1 |
20100012712 | Swoboda et al. | Jan 2010 | A1 |
20100068544 | Huang et al. | Mar 2010 | A1 |
20100119741 | Cimecioglu et al. | May 2010 | A1 |
20100136269 | Andersen et al. | Jun 2010 | A1 |
20100139878 | Nicolucci | Jun 2010 | A1 |
20100181015 | Kohler | Jul 2010 | A1 |
20110019121 | Mo et al. | Jan 2011 | A1 |
20110033398 | Gauvin et al. | Feb 2011 | A1 |
20110064926 | Babinsky et al. | Mar 2011 | A1 |
20110248076 | Bentmar et al. | Oct 2011 | A1 |
20120015162 | Lion et al. | Jan 2012 | A1 |
20120043373 | Babinsky et al. | Feb 2012 | A1 |
20120048450 | Fu et al. | Mar 2012 | A1 |
20120100289 | Egan et al. | Apr 2012 | A1 |
20130160945 | Huang et al. | Jun 2013 | A1 |
20130303351 | Fu et al. | Nov 2013 | A1 |
20140004563 | Paripati et al. | Jan 2014 | A1 |
20140087109 | Huang et al. | Mar 2014 | A1 |
20140087177 | Huang et al. | Mar 2014 | A1 |
20140131367 | Bordary et al. | May 2014 | A1 |
20140154492 | Traser et al. | Jun 2014 | A1 |
20140243442 | Coles et al. | Aug 2014 | A1 |
20150322301 | Ellis et al. | Nov 2015 | A1 |
20160050722 | Fu et al. | Feb 2016 | A1 |
20160194828 | Chang | Jul 2016 | A1 |
20160221233 | Kiiskinen et al. | Aug 2016 | A1 |
20160263876 | Huang et al. | Sep 2016 | A1 |
20170130058 | Huang et al. | May 2017 | A1 |
20170130399 | Huang et al. | May 2017 | A1 |
20170341847 | Chase et al. | Nov 2017 | A1 |
20170361573 | Malmgren et al. | Dec 2017 | A1 |
20180072032 | Huang et al. | Mar 2018 | A1 |
20180148246 | Fu et al. | May 2018 | A1 |
20190031415 | Kumar | Jan 2019 | A1 |
20190062028 | Getty et al. | Feb 2019 | A1 |
20190106263 | Fu et al. | Apr 2019 | A1 |
20190136456 | Huang et al. | May 2019 | A1 |
20190152183 | Fu et al. | May 2019 | A1 |
20190218419 | Mcleod et al. | Jul 2019 | A1 |
20190218429 | Thompson et al. | Jul 2019 | A1 |
20190218720 | Huang et al. | Jul 2019 | A1 |
20190284438 | Mcleod et al. | Sep 2019 | A1 |
20200247105 | Getty et al. | Aug 2020 | A1 |
20210214581 | Mcleod et al. | Jul 2021 | A1 |
20220073787 | Mcleod et al. | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
2078476 | Mar 1993 | CA |
2145938 | Oct 1995 | CA |
1354085 | Jun 2002 | CN |
1449913 | Oct 2003 | CN |
1643100 | Jul 2005 | CN |
101263184 | Sep 2008 | CN |
101476265 | Jul 2009 | CN |
103079791 | May 2013 | CN |
103189460 | Jul 2013 | CN |
103717690 | Apr 2014 | CN |
104685125 | Jun 2015 | CN |
105765023 | Jul 2016 | CN |
3685819 | Jan 1993 | DE |
60107070 | Nov 2005 | DE |
202011109020 | Jan 2012 | DE |
0526396 | Feb 1993 | EP |
0890625 | Jan 1999 | EP |
0804331 | Mar 2000 | EP |
1142801 | Oct 2001 | EP |
1216146 | Oct 2005 | EP |
1634897 | Mar 2006 | EP |
1669490 | Jun 2006 | EP |
1674543 | Jun 2006 | EP |
1780250 | May 2007 | EP |
2611588 | Jul 2013 | EP |
2614124 | Jul 2013 | EP |
3215674 | Sep 2017 | EP |
1486328 | Sep 1977 | GB |
2303630 | Feb 1997 | GB |
990023 | Nov 2000 | IT |
S5085483 | Jul 1975 | JP |
S6144965 | Mar 1986 | JP |
H05208597 | Aug 1993 | JP |
H05239423 | Sep 1993 | JP |
S06144965 | May 1994 | JP |
H06313163 | Nov 1994 | JP |
H08175576 | Jul 1996 | JP |
H09164621 | Jun 1997 | JP |
H09217050 | Aug 1997 | JP |
S63146945 | Jun 1998 | JP |
H10329297 | Dec 1998 | JP |
2000006285 | Jan 2000 | JP |
2000159268 | Jun 2000 | JP |
2001191436 | Jul 2001 | JP |
2001207146 | Jul 2001 | JP |
2002241450 | Aug 2002 | JP |
2003072854 | Mar 2003 | JP |
2003154589 | May 2003 | JP |
2004511616 | Apr 2004 | JP |
2005097816 | Apr 2005 | JP |
2006517238 | Jul 2006 | JP |
2009179894 | Aug 2009 | JP |
2010202996 | Sep 2010 | JP |
2013067070 | Apr 2013 | JP |
2014024583 | Feb 2014 | JP |
2015524856 | Aug 2015 | JP |
2015196773 | Nov 2015 | JP |
2017039523 | Feb 2017 | JP |
20140090995 | Jul 2014 | KR |
20160090800 | Aug 2016 | KR |
2216495 | Nov 2003 | RU |
2252825 | May 2005 | RU |
2011129597 | Jan 2013 | RU |
2519451 | Jun 2014 | RU |
2015135327 | Mar 2017 | RU |
9014223 | Nov 1990 | WO |
9633923 | Oct 1996 | WO |
9854004 | Dec 1998 | WO |
0069747 | Nov 2000 | WO |
0110635 | Feb 2001 | WO |
0154828 | Aug 2001 | WO |
0154988 | Aug 2001 | WO |
200162986 | Aug 2001 | WO |
0200800 | Jan 2002 | WO |
0231077 | Apr 2002 | WO |
2005110737 | Nov 2005 | WO |
2007091961 | Aug 2007 | WO |
2007126783 | Nov 2007 | WO |
2007135451 | Nov 2007 | WO |
2007142593 | Dec 2007 | WO |
2008084372 | Jul 2008 | WO |
2010069451 | Jun 2010 | WO |
2010129493 | Nov 2010 | WO |
2012033998 | Mar 2012 | WO |
2013192572 | Dec 2013 | WO |
2014015060 | Jan 2014 | WO |
2014051876 | Apr 2014 | WO |
2015036901 | Mar 2015 | WO |
2015066806 | May 2015 | WO |
2015081097 | Jun 2015 | WO |
2016014486 | Jan 2016 | WO |
2019018523 | Jan 2019 | WO |
2019040624 | Feb 2019 | WO |
Entry |
---|
Jiao, Shunshan et al., “Principles of Radio-Frequency and Microwave Heating”, Radio-Frequency Heating in Food Processing, CRC Press, 2015, p. 4. Month of Publication Unknown. (Year: 2015). |
Bermesheva, E.V. “Zavisimost mezhdu vyazkouprugimi I adgezivnymi svoistvami polimernykh adgezivov. Dopolneni kriteriya liplosti Dalkkuista”, 25 Sipozium Po Reologii, G.Ostashkov, Sep. 5-10, 2010, pp. 61-62. |
Popil, Roman E. et al. “Adhesive level effect on corrugated board strength—experiment and FE modeling.” Abstract submitted for the 2007 International Progress in Paper Physics Seminars, pp. 1-6. |
Radio Frequency (RF) vs. Microwave (MW). Retrieved from http://www.stalam.com/en/technologies/radio-frequency-and-micro-wawes. htm I. |
NXP, FTF 2016 Technology Forum, “Advantages of Solid State RF Power Over Vacuum Tubes in Industrial Applications”, May 18, 2016. (Year: 2016). |
International Search Report and Written Opinion, International Application No. PCT/US2018/047526, dated Jan. 18, 2019. |
Industrial Pharmaceutics, Editor-in-chief: Rongfeng HU, Beijing: China Press of Traditional Chinese Medicine, Aug. 2010, p. 396., China Press of Traditional Chinese Medicine. |
Skylighter, “Kraft Paper Weights and Thickness Comparison Chart”, Feb. 14, 2018. (Year: 2018). |
European Search Results Under Rule 164(2)(b) Epc Ep 18769557 Completed: May 27, 2021; dated Jun. 2, 2021 7 Pages. |
https://www.vttresearch.com/en/ourservices/foam-forming-platform. |
https://cris.vtt.fi/en/publications/foam-forming-tech nology-enables-new-possibilities-for-paper-indus. |
Number | Date | Country | |
---|---|---|---|
20220073787 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62533957 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16359190 | Mar 2019 | US |
Child | 17219224 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17219224 | Mar 2021 | US |
Child | 17454864 | US | |
Parent | 16359084 | Mar 2019 | US |
Child | 16359190 | US | |
Parent | PCT/US2018/042683 | Jul 2018 | US |
Child | 16359084 | US |