The present disclosure relates generally to a dielectric lens, particularly to a dielectric lens having at least three distinct focusing or defocusing sections, and more particularly to an electromagnetic, EM, device having a phased array antenna arranged and configured for EM communication with a dielectric lens having at least three distinct focusing or defocusing sections.
Phased array antennas are useful for steering an EM wavefront in one or two directions along a direction of propagation of EM radiation. In a typical planar phased array, the steering capability may be limited due to the effective aperture decreasing as the steering angle increases. To improve the steering capability, existing systems have employed more phased array antenna base station segments, and/or Luneburg lenses. As will be appreciated, an increase in the number of phased array antenna base station segments results in additional cost and hardware real estate, and the use of Luneburg lenses requires the use of non-planar arrays.
While existing EM phased array communication systems may be suitable for their intended purpose, the art relating to such systems would be advanced with a dielectric lens, or combination of dielectric lens and phased array antenna that overcomes the drawbacks of the existing art.
An embodiment includes a dielectric lens having: a three-dimensional, 3D, body of dielectric material having a spatially varying dielectric constant, Dk; the 3D body having at least three regions R(i) with local maxima of dielectric constant values Dk(i) relative to surrounding regions of respective ones of the at least three regions R(i), locations of the at least three regions R(i) being defined by local coordinates of: azimuth angle(i), zenith angle(i), and radial distance(i), relative to a particular common point of origin associated with the 3D body, where (i) is an index that ranges from 1 to at least 3; wherein the spatially varying Dk of the 3D body is configured to vary as a function of the zenith angle between a first region R(1) and a second region R(2) at a given azimuth angle and a given radial distance.
An embodiment includes a dielectric lens having: a three-dimensional, 3D, body of dielectric material having a spatially varying Dk that varies along at least three different rays having different directions and a particular common point of origin, from the particular common point of origin to an outer surface of the 3D body, the particular common point of origin being enveloped by the 3D body; wherein the at least three different rays define locations of corresponding ones of at least three regions R(i) of the 3D body with local maxima of dielectric constant values Dk(i) relative to the dielectric material of immediate surrounding regions of corresponding ones of the at least three regions R(i), where (i) is an index that ranges from 1 to at least 3; wherein the dielectric material of the 3D body has a spatially varying Dk from each of the at least three regions R(i) to any other one of the at least three regions R(i) along any path within the 3D body.
An embodiment includes an electromagnetic, EM, device having: a phased array antenna; and a dielectric lens according to any one of the foregoing lenses; wherein the respective dielectric lens is configured and disposed to be in EM communication with the phased array antenna when electromagnetically excited.
The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.
Referring to the exemplary non-limiting drawings wherein like elements are numbered alike in the accompanying Figures:
Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the appended claims. Accordingly, the following example embodiments are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention disclosed herein.
An embodiment, as shown and described by the various figures and accompanying text, provides a three-dimensional, 3D, dielectric lens having at least three distinct focusing or defocusing sections strategically located within the body of the lens that are structurally and electromagnetically configured to cooperate with a phased array antenna for facilitating beam steering of an EM wavefront +/−90 degrees relative to a direction of propagation of the EM radiation wavefront, which provides for increased signal coverage without the need for increased base station segments. Each of the at least three distinct focusing/defocusing sections of the 3D dielectric lens are formed by corresponding regions having a local maxima of dielectric constant, Dk, values, which is discussed in detail below. As used herein the term dielectric lens means a 3D body of dielectric material that serves to alter the spatial distribution of radiated EM energy, and as disclosed herein more particularly serves to alter the spatial distribution of radiated EM energy via the at least three focusing/defocusing sections, as opposed to serving as a radiating antenna per se.
While embodiments described or illustrated herein may depict a particular geometry or analytical model as an exemplary dielectric lens, it will be appreciated that an embodiment disclosed herein is also applicable to other geometries or structures suitable for a purpose disclosed herein and falling within an ambit of the appended claims. As such, it should be appreciated that the illustrations provided herewith are for illustration purposes only and should not be construed as the only constructs possible for a purpose disclosed herein. For example, several figures described herein below refer to an example analytical block element 104 (see
Reference is now made to
As can be seen in the several figures, both an orthogonal x-y-z coordinate system and a spherical coordinate system are depicted, and both will be referred to herein below for a more complete understanding of the subject matter disclosed herein. With respect to
An example dielectric lens 100 includes a three-dimensional, 3D, body 200 of dielectric material having a spatially varying Dk, where the 3D body 200 has at least three regions R(i) 300 (first, second, and third, regions R(1), R(2), and R(3), individually enumerated by reference numerals 301, 302, and 303, respectively) with local maxima of dielectric constant (relative permittivity) values Dk(i) relative to surrounding regions of respective ones of the at least three regions R(i) 300, where locations of the at least three regions R(i) 300 may be defined by local spherical coordinates of: azimuth angle(i), zenith angle(i), and radial distance(i), relative to a particular common point of origin 202 associated with the 3D body 200, where (i) is an index that ranges from 1 to at least 3 (illustration of a local spherical coordinate system best seen with reference to
As used herein the phrase “relative to surrounding regions” means relative to the Dk of the dielectric medium of the 3D body 200 in close proximity to the respective region of local maxima of Dk, where the Dk of a corresponding surrounding region is lower than the associated region of local maxima of Dk, hence the term “local” maxima. In an embodiment, the corresponding surrounding region, in close proximity to the associated region of local maxima of Dk, completely surrounds the associated region of local maxima of Dk.
As used herein the phrase “a particular common point of origin 202” means a point relative to the 3D body 200 of the dielectric lens 100 that may suitably serve as a reference origin of a spherical coordinate system whereby the local coordinates of azimuth angle(i), zenith angle(i), and radial distance(i), of the at least three regions R(i) 300 may be determinable (see
In an embodiment and with particular reference to
The above description of the spatially varying Dk values of the 3D body 200 has been described for zenith angles between 0 and 90 degrees and an azimuth angle of +90 degrees. However, and as can be seen in
As can be seen in
As can be seen in
As used herein the term “gradually” does not necessarily mean absent any step changes, such as may exist with the presence of layered shells of dielectric materials for example, but does mean at a rate across what may be a layered shell interface (or a transition zone) that does not exceed a change in Dk value of +/−1.9, more particularly +/−1.5, and even more particularly +/−1.0, from one region to an adjacent region of the 3D body 200 across the transition zone. As used herein, the distance across a transition zone from one region to an adjacent region of the 3D body 200 is measured relative to an operational wavelength of 1λ, and in an embodiment is measured relative to an operational wavelength of 0.5λ, where λ, is the operational wavelength in free space of an operational electromagnetic radiating signal having a defined operational frequency. That is, in an embodiment the distance across a transition zone from one region to an adjacent region of the 3D body 200 is 1λ, and in another embodiment is λ/2. In an embodiment, the defined operational frequency is 40 GHz.
Regarding the central region rc 308 and with reference to
In the embodiments depicted in
With reference back to at least
In another embodiment and with reference still to at least
As described herein above, the at least three regions R(i) 300 of the 3D body 200 with local maxima of dielectric constant values Dk(i) may include regions R(i) 300 in excess of three. For example and with particular reference to
With particular reference to
In view of the foregoing and with reference to the several figures, particularly the Dk scale 102, it will be appreciated that an embodiment includes an arrangement where the spatially varying Dk of the 3D body 200 varies between greater than 1 and equal to or less than 15, alternatively varies between greater than 1 and equal to or less than 10, further alternatively varies between greater than 1 and equal to or less than 5, further alternatively varies between greater than 1 and equal to or less than 4. It will also be appreciated that an embodiment includes an arrangement where each region R(i) 300 having a corresponding local maxima of dielectric constant values Dk(i) has a Dk equal to or greater than 2 and equal to or less than 15, alternatively equal to or greater than 3 and equal to or less than 12, further alternatively equal to or greater than 3 and equal to or less than 9, further alternatively equal to or greater than 3 and equal to or less than 5. In an embodiment, the spatially varying Dk of the 3D body 200 of dielectric material varies gradually as a function of the azimuth angle(i), the zenith angle(i), and the radial distance(i). In an embodiment, the gradually varying Dk of the 3D body 200 of dielectric material changes at no more than a defined maximum Dk value per ¼ wavelength of the operating frequency, alternatively changes at no more than a defined maximum Dk value per ½ wavelength of the operating frequency, further alternatively changes at no more than a defined maximum Dk value per wavelength of the operating frequency. In an embodiment, the defined maximum Dk value is +/−1.9, more particularly +/−1.5, and even more particularly +/−1.0.
Reference is now made to
From all of the foregoing it will be appreciated that the various illustrated embodiments herein depicting various quantities and arrangements of regions R(i) 300 having local maxima of dielectric constant values Dk(i), are just a few examples of the many arrangements possible that are far too many to describe ad infinitum, yet are well within the purview of one skilled in the art. As such, all such embodiments of regions R(i) 300 falling within a scope of the appended claims are contemplated and considered to be fully and/or inherently disclosed herein by the representative examples presented herein.
Additionally, it will also be appreciated that while certain embodiments of the dielectric lens 100, 100′ have been described and/or depicted having certain 2D and 3D shapes (rectangular block in
In view of all of the foregoing, it will be appreciated that an alternative way of describing the dielectric lens 100 is by a dielectric lens 100 comprising: a three-dimensional, 3D, body 200 of dielectric material having a spatially varying Dk that varies along at least three different rays having different directions and a particular common point of origin 202, from the common point of origin 202 to an outer surface 206 of the 3D body 200, the particular common point of origin 202 being enveloped by the 3D body 200; wherein the at least three different rays (see
Reference is now made back to
In an embodiment, the dielectric lens 100 is centrally disposed on top of the phased array antenna 600, as depicted in at least
In an embodiment, the dielectric lens 100 has a footprint as observed in a top-down plan view that is larger than a corresponding footprint of the phased array antenna 600, as depicted in at least
In an embodiment, portions of the dielectric lens 100 at a zenith angle of 90 degrees have a Dk value that increases then decreases then increases again along a specified radial direction from the common point of origin 202 outward beyond the edges 602 of the phased array antenna 600, such as along the +/−x axis (best seen with reference to
As described herein above, an embodiment of an EM device 500 includes the phased array antenna 600 being a planar phased array antenna, which is not only depicted in
While embodiments described herein above refer to and illustrate a planar phased array antenna 600, it will be appreciated that embodiments disclosed herein are not so limited, and also encompass non-planar arrangements of phased array antennas, which will now be discussed with reference to
In an embodiment, each of the antenna elements 650 in the phased array antenna 600 can be operated with phase angle control or amplitude control, or alternatively operated with both phase angle control and amplitude control of the energizing signal so as to achieve optimum antenna system performance across the entire +/−90 degrees relative to a direction of propagation of the EM wavefront. In an embodiment, the +/−90 degree control relative to a direction of propagation may be relative to a horizontal axis or a vertical axis (see lens 100 in
Accordingly, it will be appreciated that an embodiment includes a phased array antenna that is a non-planar phased array antenna, where the non-planar phased array antenna has or is disposed on a spherical surface or a cylindrical surface. In an embodiment, the phased array antenna is configured to emit EM radiation from a convex side, a concave side, or both the convex side and the concave side, of the spherical surface toward the dielectric lens. In an embodiment, the phased array antenna is configured to emit EM radiation from a convex side, a concave side, or both the convex side and the concave side, of the cylindrical surface toward the dielectric lens.
While the foregoing description of a non-planar phased array antenna is made with reference to either a spherical or a cylindrical surface, it will be appreciated that a scope of the disclosure herein is not so limited, and also encompasses other non-planar surfaces, such as but not limited to a spheroidal, ellipsoidal, or hyperbolic surface for example. Any and all surfaces falling within an ambit of the appended claims are contemplated and considered to be inherently disclosed herein.
With respect to any of the foregoing descriptions of an EM device 500 having any form of substrate 620, 622, 624, with any arrangement of antenna elements 650 disposed thereon, and with any form of dielectric lens 100, 100′ configured and disposed as disclosed herein, an embodiment of the EM device 500 is configured such that the phased array antenna 600 is configured and adapted to operate at a frequency range of equal to or greater than 1 GHz and equal to or less than 300 GHz, further alternatively equal to or greater than 10 GHz and equal to or less than 90 GHz, further alternatively equal to or greater than 20 GHz and equal to or less than 60 GHz, further alternatively equal to or greater than 20 GHz and equal to or less than 40 GHz. In an embodiment, the phased array antenna 600 is configured and adapted to operate at millimeter wave frequencies, and in an embodiment the millimeter wave frequencies are 5G millimeter wave frequencies.
While certain combinations of individual features have been described and illustrated herein, it will be appreciated that these certain combinations of features are for illustration purposes only and that any combination of any of such individual features may be employed in accordance with an embodiment, whether or not such combination is explicitly illustrated, and consistent with the disclosure herein. Any and all such combinations of features as disclosed herein are contemplated herein, are considered to be within the understanding of one skilled in the art when considering the application as a whole, and are considered to be within the scope of the invention disclosed herein, as long as they fall within the scope of the invention defined by the appended claims, in a manner that would be understood by one skilled in the art.
In view of all of the foregoing, it will be appreciated that some of the embodiments disclosed herein may provide one or more of the following advantages: an EM beam steering device that allows for beam steering of plus/minus 90 degrees with minimal drop in gain when place over a planar phased array antenna up to and including 5G mm wave frequencies; an EM beam steering device that allows for a radiation field coverage area to be increased with a decrease of ⅓ to ½ of the number of base station segments being needed; and, an EM dielectric lens having multiple separate focusing regions where there is a local maxima of dielectric constant value such that the lens refracts incident EM radiation constructively in conjunction with other focusing regions of the lens to achieve a given desired angle of radiation.
While an invention has been described herein with reference to example embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the claims. Many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment or embodiments disclosed herein as the best or only mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. In the drawings and the description, there have been disclosed example embodiments and, although specific terms and/or dimensions may have been employed, they are unless otherwise stated used in a generic, exemplary and/or descriptive sense only and not for purposes of limitation, the scope of the claims therefore not being so limited. When an element such as a layer, film, region, substrate, or other described feature is referred to as being “on” another element, it can be directly on the other element, or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. The use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. The use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. The term “comprising” as used herein does not exclude the possible inclusion of one or more additional features. And, any background information provided herein is provided to reveal information believed by the applicant to be of possible relevance to the invention disclosed herein. No admission is necessarily intended, nor should be construed, that any of such background information constitutes prior art against an embodiment of the invention disclosed herein.
This application claims the benefit of U.S. Provisional Application Ser. No. 63/006,976, filed Apr. 8, 2020, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2624002 | Bouix | Oct 1952 | A |
3212454 | Ringenbach | Oct 1965 | A |
3255453 | Horst | Jun 1966 | A |
3321765 | Peters et al. | May 1967 | A |
3321821 | Horst | May 1967 | A |
4274097 | Krall et al. | Jun 1981 | A |
4288795 | Shelton | Sep 1981 | A |
4366484 | Weiss et al. | Dec 1982 | A |
4458249 | Valentino | Jul 1984 | A |
4575330 | Hull | Mar 1986 | A |
4743915 | Rammos et al. | May 1988 | A |
4929402 | Hull | May 1990 | A |
5104592 | Hull et al. | Apr 1992 | A |
5184307 | Hull et al. | Feb 1993 | A |
5192559 | Hull et al. | Mar 1993 | A |
5227749 | Raguenet et al. | Jul 1993 | A |
5234636 | Hull et al. | Aug 1993 | A |
5236637 | Hull | Aug 1993 | A |
5273691 | Hull et al. | Dec 1993 | A |
5453754 | Fray | Sep 1995 | A |
5476749 | Steinmann et al. | Dec 1995 | A |
5589842 | Wang et al. | Dec 1996 | A |
5667796 | Otten | Sep 1997 | A |
5677796 | Zimmerman et al. | Oct 1997 | A |
5828271 | Stitzer | Oct 1998 | A |
5854608 | Leisten | Dec 1998 | A |
5867120 | Ishikawa et al. | Feb 1999 | A |
5940036 | Oliver et al. | Aug 1999 | A |
5943005 | Tanizaki et al. | Aug 1999 | A |
5952972 | Ittipiboon et al. | Sep 1999 | A |
6008755 | Ishikawa et al. | Dec 1999 | A |
6031433 | Tanizaki et al. | Feb 2000 | A |
6052087 | Ishikawa et al. | Apr 2000 | A |
6061026 | Ochi et al. | May 2000 | A |
6061031 | Cosenza et al. | May 2000 | A |
6075485 | Lilly et al. | Jun 2000 | A |
6075492 | Schmidt et al. | Jun 2000 | A |
6133887 | Tanizaki et al. | Oct 2000 | A |
6147647 | Tassoudji et al. | Nov 2000 | A |
6181297 | Leisten | Jan 2001 | B1 |
6188360 | Kato et al. | Feb 2001 | B1 |
6198450 | Adachi et al. | Mar 2001 | B1 |
6268833 | Tanizaki et al. | Jul 2001 | B1 |
6292141 | Lim | Sep 2001 | B1 |
6314276 | Hilgers et al. | Nov 2001 | B1 |
6317095 | Teshirogi et al. | Nov 2001 | B1 |
6323808 | Heinrichs et al. | Nov 2001 | B1 |
6323824 | Heinrichs et al. | Nov 2001 | B1 |
6344833 | Lin et al. | Feb 2002 | B1 |
6373441 | Porath et al. | Apr 2002 | B1 |
6437747 | Stoiljkovic et al. | Aug 2002 | B1 |
6476774 | Davidson et al. | Nov 2002 | B1 |
6528145 | Berger et al. | Mar 2003 | B1 |
6552687 | Rawnick et al. | Apr 2003 | B1 |
6556169 | Fukuura et al. | Apr 2003 | B1 |
6621381 | Kundu et al. | Sep 2003 | B1 |
6743744 | Kim et al. | Jun 2004 | B1 |
6794324 | Kim et al. | Sep 2004 | B1 |
6816118 | Kingsley et al. | Nov 2004 | B2 |
6816128 | Jennings | Nov 2004 | B1 |
6855478 | DeVoe et al. | Feb 2005 | B2 |
7161535 | Palmer et al. | Jan 2007 | B2 |
7179844 | Aki et al. | Feb 2007 | B2 |
7183975 | Thomas et al. | Feb 2007 | B2 |
7196663 | Bozer et al. | Mar 2007 | B2 |
7253789 | Kingsley et al. | Aug 2007 | B2 |
7279030 | Kurowski | Oct 2007 | B2 |
7292204 | Chang et al. | Nov 2007 | B1 |
7310031 | Pance et al. | Dec 2007 | B2 |
7355560 | Nagai | Apr 2008 | B2 |
7379030 | Lier | May 2008 | B1 |
7382322 | Yang et al. | Jun 2008 | B1 |
7405698 | De Rochemont | Jul 2008 | B2 |
7443363 | Ying | Oct 2008 | B2 |
7498969 | Paulsen et al. | Mar 2009 | B1 |
7534844 | Lee et al. | May 2009 | B2 |
7545327 | Iellici et al. | Jun 2009 | B2 |
7550246 | Fukuzumi et al. | Jun 2009 | B2 |
7570219 | Paulsen et al. | Aug 2009 | B1 |
7595765 | Hirsch et al. | Sep 2009 | B1 |
7636063 | Channabasappa | Dec 2009 | B2 |
7649029 | Kolb et al. | Jan 2010 | B2 |
7663553 | Chang et al. | Feb 2010 | B2 |
7688263 | Oxley | Mar 2010 | B1 |
7710325 | Cheng | May 2010 | B2 |
7767728 | Lu et al. | Aug 2010 | B2 |
7796080 | Lynch et al. | Sep 2010 | B1 |
7824839 | Ober et al. | Nov 2010 | B2 |
7835600 | Yap et al. | Nov 2010 | B1 |
7876283 | Bouche et al. | Jan 2011 | B2 |
7935476 | Teng | May 2011 | B2 |
7961148 | Goldberger | Jun 2011 | B2 |
8018397 | Jow et al. | Sep 2011 | B2 |
8098187 | Lynch et al. | Jan 2012 | B1 |
8098197 | Herting et al. | Jan 2012 | B1 |
8119214 | Schwantes et al. | Feb 2012 | B2 |
8232043 | Williamson et al. | Jul 2012 | B2 |
8497804 | Haubrich et al. | Jul 2013 | B2 |
8498539 | Iichenko et al. | Jul 2013 | B1 |
8736502 | Langfield et al. | May 2014 | B1 |
8773319 | Anderson et al. | Jul 2014 | B1 |
8902115 | Loui et al. | Dec 2014 | B1 |
9112273 | Christie et al. | Aug 2015 | B2 |
9184697 | Sekiguchi et al. | Nov 2015 | B2 |
9205601 | Desimone et al. | Dec 2015 | B2 |
9225070 | Zeweri et al. | Dec 2015 | B1 |
9455488 | Chirila | Sep 2016 | B2 |
9608330 | Singleton et al. | Mar 2017 | B2 |
9825373 | Smith | Nov 2017 | B1 |
9917044 | Zhou et al. | Mar 2018 | B2 |
9930668 | Barzegar et al. | Mar 2018 | B2 |
10355361 | Pance et al. | Jul 2019 | B2 |
10476164 | Pance et al. | Nov 2019 | B2 |
10522917 | Pance et al. | Dec 2019 | B2 |
10587039 | Pance et al. | Mar 2020 | B2 |
10601137 | Pance et al. | Mar 2020 | B2 |
11108159 | Pance et al. | Aug 2021 | B2 |
20010013842 | Ishikawa et al. | Aug 2001 | A1 |
20010043158 | Adachi et al. | Nov 2001 | A1 |
20020000947 | Al-Rawi et al. | Jan 2002 | A1 |
20020057138 | Takagi et al. | May 2002 | A1 |
20020067317 | Sakurada | Jun 2002 | A1 |
20020180646 | Kivekas et al. | Dec 2002 | A1 |
20020196190 | Lim | Dec 2002 | A1 |
20030016176 | Kingsley et al. | Jan 2003 | A1 |
20030034922 | Isaacs et al. | Feb 2003 | A1 |
20030043075 | Bit-Babik et al. | Mar 2003 | A1 |
20030043086 | Schaffner | Mar 2003 | A1 |
20030122729 | Diaz et al. | Jul 2003 | A1 |
20030151548 | Kingsley et al. | Aug 2003 | A1 |
20030181312 | Mailadil et al. | Sep 2003 | A1 |
20040029709 | Oba et al. | Feb 2004 | A1 |
20040029985 | Aki et al. | Feb 2004 | A1 |
20040036148 | Block et al. | Feb 2004 | A1 |
20040051602 | Pance et al. | Mar 2004 | A1 |
20040080455 | Lee | Apr 2004 | A1 |
20040113843 | Le Bolzer et al. | Jun 2004 | A1 |
20040119646 | Ohno et al. | Jun 2004 | A1 |
20040127248 | Lin et al. | Jul 2004 | A1 |
20040130489 | Le Bolzer et al. | Jul 2004 | A1 |
20040155817 | Kingsley et al. | Aug 2004 | A1 |
20040233107 | Popov et al. | Nov 2004 | A1 |
20040257176 | Pance et al. | Dec 2004 | A1 |
20040263422 | Lynch | Dec 2004 | A1 |
20050017903 | Ittipiboon et al. | Jan 2005 | A1 |
20050024271 | Ying et al. | Feb 2005 | A1 |
20050057402 | Ohno et al. | Mar 2005 | A1 |
20050099348 | Pendry | May 2005 | A1 |
20050122273 | Legay et al. | Jun 2005 | A1 |
20050162316 | Thomas et al. | Jul 2005 | A1 |
20050162733 | Cho et al. | Jul 2005 | A1 |
20050179598 | Legay et al. | Aug 2005 | A1 |
20050200531 | Huang et al. | Sep 2005 | A1 |
20050219130 | Koch et al. | Oct 2005 | A1 |
20050225499 | Kingsley et al. | Oct 2005 | A1 |
20050242996 | Palmer et al. | Nov 2005 | A1 |
20050264449 | Strickland | Dec 2005 | A1 |
20050264451 | Aikawa et al. | Dec 2005 | A1 |
20050264452 | Fujishima et al. | Dec 2005 | A1 |
20060022875 | Pidwerbetsky et al. | Feb 2006 | A1 |
20060119518 | Ohmi et al. | Jun 2006 | A1 |
20060145705 | Raja | Jul 2006 | A1 |
20060194690 | Osuzu | Aug 2006 | A1 |
20060220958 | Saegrov | Oct 2006 | A1 |
20060232474 | Fox | Oct 2006 | A1 |
20060293651 | Cronin | Dec 2006 | A1 |
20070067058 | Miyamoto et al. | Mar 2007 | A1 |
20070152884 | Bouche et al. | Jul 2007 | A1 |
20070164420 | Chen et al. | Jul 2007 | A1 |
20070252778 | Ide et al. | Nov 2007 | A1 |
20080036675 | Fujieda | Feb 2008 | A1 |
20080042903 | Cheng | Feb 2008 | A1 |
20080048915 | Chang et al. | Feb 2008 | A1 |
20080079182 | Thompson et al. | Apr 2008 | A1 |
20080094309 | Pance et al. | Apr 2008 | A1 |
20080122703 | Ying | May 2008 | A1 |
20080129616 | Li et al. | Jun 2008 | A1 |
20080129617 | Li et al. | Jun 2008 | A1 |
20080019195 | Tokoro et al. | Aug 2008 | A1 |
20080193749 | Thompson et al. | Aug 2008 | A1 |
20080260323 | Jalali et al. | Oct 2008 | A1 |
20080272963 | Chang et al. | Nov 2008 | A1 |
20080278378 | Chang et al. | Nov 2008 | A1 |
20090040131 | Mosallaei | Feb 2009 | A1 |
20090073332 | Irie | Mar 2009 | A1 |
20090102739 | Chang et al. | Apr 2009 | A1 |
20090128262 | Lee et al. | May 2009 | A1 |
20090128434 | Chang et al. | May 2009 | A1 |
20090140944 | Chang et al. | Jun 2009 | A1 |
20090153403 | Chang et al. | Jun 2009 | A1 |
20090179810 | Kato et al. | Jul 2009 | A1 |
20090184875 | Chang et al. | Jul 2009 | A1 |
20090206957 | Hiroshima et al. | Aug 2009 | A1 |
20090262022 | Ying | Oct 2009 | A1 |
20090270244 | Chen et al. | Oct 2009 | A1 |
20090305652 | Boffa et al. | Dec 2009 | A1 |
20100002312 | Duparre et al. | Jan 2010 | A1 |
20100051340 | Yang et al. | Mar 2010 | A1 |
20100103052 | Ying | Apr 2010 | A1 |
20100156754 | Kondou | Jun 2010 | A1 |
20100220024 | Snow et al. | Sep 2010 | A1 |
20100231452 | Babakhani et al. | Sep 2010 | A1 |
20110012807 | Sorvala | Jan 2011 | A1 |
20110050367 | Yen et al. | Mar 2011 | A1 |
20110121258 | Hanein et al. | May 2011 | A1 |
20110122036 | Leung et al. | May 2011 | A1 |
20110133991 | Lee et al. | Jun 2011 | A1 |
20110204531 | Hara et al. | Aug 2011 | A1 |
20110248890 | Lee et al. | Oct 2011 | A1 |
20120045619 | Ando et al. | Feb 2012 | A1 |
20120092219 | Kim | Apr 2012 | A1 |
20120212386 | Massie et al. | Aug 2012 | A1 |
20120242553 | Leung et al. | Sep 2012 | A1 |
20120245016 | Curry et al. | Sep 2012 | A1 |
20120256796 | Leiba | Oct 2012 | A1 |
20120274523 | Ayatollahi | Nov 2012 | A1 |
20120276311 | Chirila | Nov 2012 | A1 |
20120280380 | Kamgaing | Nov 2012 | A1 |
20120287008 | Kim | Nov 2012 | A1 |
20120306713 | Raj et al. | Dec 2012 | A1 |
20120329635 | Hill | Dec 2012 | A1 |
20130076570 | Lee et al. | Mar 2013 | A1 |
20130088396 | Han | Apr 2013 | A1 |
20130113674 | Ryu | May 2013 | A1 |
20130120193 | Hoppe et al. | May 2013 | A1 |
20130234898 | Leung et al. | Sep 2013 | A1 |
20130278610 | Stephanou et al. | Oct 2013 | A1 |
20140043189 | Lee et al. | Feb 2014 | A1 |
20140091103 | Neitzel | Apr 2014 | A1 |
20140327591 | Kokkinos | Nov 2014 | A1 |
20140327597 | Rashidian et al. | Nov 2014 | A1 |
20150035714 | Zhou | Feb 2015 | A1 |
20150070230 | Bradley et al. | Mar 2015 | A1 |
20150077198 | Yatabe | Mar 2015 | A1 |
20150138036 | Harper | Apr 2015 | A1 |
20150183167 | Molinari et al. | Jul 2015 | A1 |
20150207233 | Kim et al. | Jul 2015 | A1 |
20150207234 | Ganchrow et al. | Jul 2015 | A1 |
20150236428 | Caratelli et al. | Aug 2015 | A1 |
20150244082 | Caratelli et al. | Aug 2015 | A1 |
20150266244 | Page | Sep 2015 | A1 |
20150303546 | Rashidian et al. | Oct 2015 | A1 |
20150314526 | Cohen | Nov 2015 | A1 |
20150346334 | Nagaishi et al. | Dec 2015 | A1 |
20150380824 | Tayfeh Aligodarz et al. | Dec 2015 | A1 |
20160036132 | Rumpf et al. | Feb 2016 | A1 |
20160107290 | Bajaj et al. | Apr 2016 | A1 |
20160111769 | Pance et al. | Apr 2016 | A1 |
20160218437 | Guntupalli et al. | Jul 2016 | A1 |
20160219976 | Guyan | Aug 2016 | A1 |
20160294066 | Djerafi et al. | Oct 2016 | A1 |
20160294068 | Djerafi et al. | Oct 2016 | A1 |
20160313306 | Ingber et al. | Oct 2016 | A1 |
20160314431 | Quezada | Oct 2016 | A1 |
20160322708 | Tayfeh Aligodarz et al. | Nov 2016 | A1 |
20160351996 | Ou | Dec 2016 | A1 |
20160372955 | Fackelmeier et al. | Dec 2016 | A1 |
20170018851 | Henry et al. | Jan 2017 | A1 |
20170040700 | Leung et al. | Feb 2017 | A1 |
20170062944 | Zimmerman et al. | Mar 2017 | A1 |
20170125901 | Sharawi et al. | May 2017 | A1 |
20170125908 | Pance et al. | May 2017 | A1 |
20170125909 | Pance et al. | May 2017 | A1 |
20170125910 | Pance et al. | May 2017 | A1 |
20170179569 | Kim et al. | Jun 2017 | A1 |
20170188874 | Suhami | Jul 2017 | A1 |
20170201026 | Werner et al. | Jul 2017 | A1 |
20170225395 | Boydston et al. | Aug 2017 | A1 |
20170256847 | Vollmer et al. | Sep 2017 | A1 |
20170271772 | Miraftab et al. | Sep 2017 | A1 |
20170272149 | Michaels | Sep 2017 | A1 |
20170324171 | Shehan | Nov 2017 | A1 |
20170360534 | Sun | Dec 2017 | A1 |
20180054234 | Stuckman et al. | Feb 2018 | A1 |
20180069594 | Henry et al. | Mar 2018 | A1 |
20180090815 | Shirinfar et al. | Mar 2018 | A1 |
20180115072 | Pance et al. | Apr 2018 | A1 |
20180183150 | Sienkiewicz et al. | Jun 2018 | A1 |
20180241129 | Pance et al. | Aug 2018 | A1 |
20180282550 | Burgess et al. | Oct 2018 | A1 |
20180309202 | Pance et al. | Oct 2018 | A1 |
20180323514 | Pance et al. | Nov 2018 | A1 |
20190020105 | Pance et al. | Jan 2019 | A1 |
20190115668 | Coward | Apr 2019 | A1 |
20190128624 | Cohen et al. | May 2019 | A1 |
20190214732 | Leung et al. | Jul 2019 | A1 |
20190221926 | Pance et al. | Jul 2019 | A1 |
20190221939 | George et al. | Jul 2019 | A1 |
20190221940 | Pance et al. | Jul 2019 | A1 |
20190319357 | Pance et al. | Oct 2019 | A1 |
20190319358 | Pance et al. | Oct 2019 | A1 |
20190379123 | Leung et al. | Dec 2019 | A1 |
20190393607 | Pance et al. | Dec 2019 | A1 |
20200083602 | Sethumadhavan et al. | Mar 2020 | A1 |
20200083609 | Pance et al. | Mar 2020 | A1 |
20200083610 | Pance et al. | Mar 2020 | A1 |
20200099136 | Pance et al. | Mar 2020 | A1 |
20200122387 | Polidore et al. | Apr 2020 | A1 |
20200194881 | Pance et al. | Jun 2020 | A1 |
20200227827 | Vollmer et al. | Jul 2020 | A1 |
20210328356 | Polidore et al. | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
104037505 | Sep 2014 | CN |
110380230 | Oct 2019 | CN |
216288983 | Apr 2022 | CN |
0468413 | Jan 1992 | EP |
0587247 | Mar 1994 | EP |
0801436 | Oct 1997 | EP |
1783516 | May 2007 | EP |
2905632 | Aug 2015 | EP |
2050231 | Jan 1981 | GB |
H0665334 | Mar 1994 | JP |
2004112131 | Apr 2004 | JP |
2013211841 | Oct 2010 | JP |
2660385 | Jul 2018 | RU |
9513565 | May 1995 | WO |
WO-0076028 | Dec 2000 | WO |
2012129968 | Oct 2012 | WO |
2014100462 | Jun 2014 | WO |
2014126837 | Aug 2014 | WO |
2015102938 | Jul 2015 | WO |
2016153711 | Sep 2016 | WO |
2017040883 | Mar 2017 | WO |
2017075177 | May 2017 | WO |
2017075184 | May 2017 | WO |
2017090401 | Jun 2017 | WO |
2018010443 | Jan 2018 | WO |
2017075186 | May 2018 | WO |
2018226657 | Dec 2018 | WO |
Entry |
---|
Buerkle, A. et al; “Fabrication of a DRA Array Using Ceramic Stereolithography”; IEEE Antennas and Wireless Popagation Letters; IEEE; vol. 5,, No. 1, Jan. 2007; pp. 479-481. |
Guo, Yomg-Xin, et al.,; “Wide-Band Stacked Double Annular-Ring Dielectric Resonator Antenna at the End-Fire Mode Operation”; IEEE Transacions on Antennas and Propagation; vol. 53; No. 10; Oct. 2005; 3394-3397 pages. |
Kakade, A.B., et al; “Analysis of the Rectangular Waveguide Slot Coupled Multilayer hemispherical Dielectric Resonator Antenna”; IET Microwaves, Antennas & Propagation, The Institution of Engineering and Technology; vol. 6; No. 3; Jul. 11, 2011; 338-347 pages. |
Kakade, Anandrao, et al.; Mode Excitation in the Coaxial Probe Coupled Three-Layer Hemispherical Dielectric Resonator Antenna; IEEE Transactions on Antennas and Propagation; vol. 59; No. 12; Dec. 2011; 7 pages. |
Kishk, A. Ahmed, et al.,; “Analysis of Dielectric-Resonator with Emphasis on Hemispherical Structures”; IEEE Antennas & Propagation Magazine; vol. 36; No. 2; Apr. 1994; 20-31 pages. |
Petosa, Aldo, et al.; “Dielectric Resonator Antennas: A Historical Review and the Current State of the Art”; IEEE Antennas and Propagation Magazine; vol. 52, No. 5, Oct. 2010; 91-116 pages. |
Raghvendra Kumar Chaudhary et al; Variation of Permittivity in Radial Direction in Concentric Half-Split Cylindrical Dielectric Resonator Antenna for Wideband Application: Permittivity Variation in R-Dir. in CDRA; International Journal of RF and Microwave Computer-Aided Engineering; vol. 25; No. 4; May 1, 2015; pp. 321-329. |
Ruan, Yu-Feng, et al; “Antenna Effects Consideration for Space-Time Coding UWB-Impulse Radio System in IEEE 802.15 Multipath Channel”; Wireless Communications, Networking and Mobile Computing; 2006; 1-4 pages. |
Wong, Kin-Lu, et al.,; “Analysis of a Hemispherical Dielectric Resonator Antenna with an Airgap”; IEEE Microwave and Guided Wave Letters; vol. 3; No. 9; Oct. 3, 1993; 355-357 pages. |
Zainud-Deen, S H et al; “Dielectric Resonator Antenna Phased Array for Fixed RFID Reader in Near Field Region”; IEEE; Mar. 6, 2012; pp. 102-107. |
Zhang Shiyu et al.; “3D-Printed Graded Index Lenses for RF Applications”; ISAP 2016 International Symposium on Antennas and Propagation, Okinawa, Japan.; pp. 1-27. |
Zainud-Deen SH et al: “High Directive Dielectric resonator antenna over curved ground plane using metamaterials”, National Radio Science Conference IEEE, Apr. 26, 2011 pp. 1-9. |
“New 3D Printed Electromagnetic Lense from OmniPreSense”; URL: http://www.microwavejournal.com/articles/31133-new-3d-printed-electromagnetic-lens-from-omnipresense; Date of Access: Oct. 16, 2018; 8 pages. |
“Photoacid Generator Selection Guide for the electronics industry and energy curable coatings” (BASF 2010). |
Atabak Rashidian et al; “Photoresist-Based Polymer Resonator Antennas: Lithography Fabrication, Strip-Fed Excitation, and Multimode Operation”, IEEE Antennas and Propagation Magazine, IEEE Service Center; vol. 53, No. 4, Aug. 1, 2011; 16-27 pages. |
Boriskin et al. “Integrated Lens Antennas” In: “Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications”, Sep. 8, 2017, International Publishing, pp. 3-36. |
Elboushi A. et al., “High Gain Hybrid DRA/Horn antenna for MMW Applications”, Concordia Universitiy; 2014 IEEE; 2 pages. |
Hesselbarth et al., “Millimeter-wave front-end integration concept using beam-switched lens antenna”, 2016 10th European Conference on Antennas and Propagation, European Assoc. of Antennas and Propagation, Apr. 10, 2016; pp. 1-5. |
Keysight Technologies; “Split Post Dielectric Resonators for Dielectric Measurements of Substrates”; Keysight Technologies, Dec. 2, 2017; 5989-5384EN, pp. 1-11. |
Krupka et al.; “Split post dielectric resonator technique for precise measurements of laminar dielectric specimens—Measurement uncertainties”; IEEE Xplore Conference Paper Feb. 2000, pp. 305-308. |
Krupka J., Gregory A.P., Rochard O.C., Clarke R.N., Riddle B., Baker-Jarvis J., Uncertainty of Complex Permittivity Measurement by Split-Post Dielectric Resonator Techniques, Journal of the European Ceramic Society, No. 10, pp. 2673-2676, 2001. |
Krupka, J., Geyer, R.G., Baker-Jarvis, J., Ceremuga, J., Measurements of the complex permittivity of microwave circuit board substrates using split dielectric resonator and reentrant cavity tech¬niques, Seventh International Conference on Dielectric Materials, Measurements and Applications, (Conf. Publ. No. 430), pp. 21-24, Sep. 1996. |
Lei, Juan et al., “Experimental demonstration of conformal phased array antenna via transformation optics,” Scientific Reports, vol. 8, No. 1, Feb. 28, 2018, 14 pages. |
Liang, M. et al.; “A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping,” IEEE Transactions on Antennas and Propagation, 62(4), Apr. 2014, 1799-1807. |
Tang, W. et al., “Discrete Coordinate Transformation for Designing All-Dielectric Flat Antennas”, IEEE Transactions on Antennas and Propagation, vol. 58, No. 12, Dec. 2010 pp. 3795-3804. |
Thornton et al., “Introduction” In: “Modern Lens Antennas for Communications Engineering”, Jan. 1, 2013 John Wiley & Sons, Inc. pp. 1-48. |
Number | Date | Country | |
---|---|---|---|
20210328356 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
63006976 | Apr 2020 | US |