The present application is a national phase entry under 35 U.S.C § 371 of International Application No. PCT/CN2017/085005 filed May 19, 2017, which claims priority from Chinese Application No. 201611063025.1 filed Nov. 25, 2016, all of which are hereby incorporated herein by reference.
The present invention relates to the field of communications technology, and in particular, to technology related to impedance matching in communication technology, and in particular, to a dielectric phase shifting unit, dielectric phase shifter and base station antenna.
In the coverage of mobile communication network, a base station antenna is one of key devices for network coverage, and a phase shifter is a core component of the electric adjustable base station antenna. The performance of the phase shifter directly determines the performance of the electric adjustable base station antenna, which in turn affects the coverage quality of the network. Therefore, the importance of the phase shifter in the field of mobile base station antenna is self-evident.
A prior art phase shifter mainly relies on adjusting the phase from an input port to an output port by moving the dielectric in a cavity, thereby changing the phase input to an antenna array, thereby adjusting the beam down-tilt angle of the base station antenna. Here, the technology related to impedance matching in the dielectric phase shifter has a relatively great impact on the performance of various aspects of the phase shifter.
Referring to
Therefore, prior art dielectric phase shifter structure obviously has the above inconveniences and drawbacks in actual use, and it is necessary to adjust the impedance matching manner in the dielectric phase shifter.
The object of the present invention is to solve at least one of the above problems, and to provide a dielectric phase shifting unit, dielectric phase shifter and base station antenna.
To achieve the object, the present invention provides a dielectric phase shifting unit including a feeding network and a dielectric plate for impedance matching and for moving along a predetermined path. An impedance matching portion of the dielectric plate is disposed on one end of the dielectric plate adjacent to an input port on the feeding network.
Optionally, the impedance matching portion includes at least one matching hole.
Optionally, the dielectric plate further includes an extension portion integrally formed with the impedance matching portion; the impedance matching portion having a thickness smaller than that of the extension portion.
Further, the feeding network further includes at least one output port.
Correspondingly, the present invention further provides a dielectric phase shifter, including: a cavity, a dielectric phase shifting unit according to any one of the above implementations, wherein the dielectric plate is disposed between the cavity and the feeding network.
Optionally, there is a plurality of the dielectric phase shifting units, and they are sequentially connected in series to form at least one series group or connected side by side.
Further, every two adjacent dielectric phase shifting units in the series group are misaligned in a shape of a “Z” or an inverse “Z” such that the dielectric plate does not alternatively cover the feeding network when moving.
Optionally, there is a plurality of the series groups, and the series groups are arranged side by side.
Preferably, when the dielectric phase shifting units in the series group are connected in series, the corresponding dielectric plates are integrally connected and the feeding networks are also integrally connected.
Further, the dielectric plate and feeding network form a strip line structure.
Correspondingly, the present invention also provides a base station antenna, including a dielectric phase shifter according to any one of the above technical solutions.
Compared with the prior art, the present invention has the following advantages:
In the dielectric phase shifting unit of the present invention, as the impedance matching portion on the dielectric plate is disposed on one end of the dielectric plate adjacent to the input port on the feeding network, in the phase shifting process, the relevant line segment only needs to perform one discontinuous impedance matching, which not only reduces the impedance change nodes but also reduces impedance mismatch and return loss, which in turn helps to integrate the feeding network in the phase shifter. Of course, the dielectric phase shifting unit can also be applied to the dielectric phase shifter of the present invention to bring these advantages.
In addition, in the dielectric phase shifter of the present invention, there is a plurality of dielectric phase shifting units, and the dielectric phase shifting units are sequentially connected in series to form at least one series group or in parallel; and because a single dielectric phase shifting unit needs only one impedance matching, and therefore, compared with the prior art, it reduces the number of impedance matching and network loss. Moreover, when a plurality of dielectric phase shifting units are sequentially connected in series or in parallel and disposed in the dielectric phase shifter, the electrical length and network loss of the entire network can be greatly reduced, thereby effectively saving cost and improving performance of the phase shifter. At the same time, because the feeding network within the structure of the dielectric phase shifting unit is simple, and because when the dielectric phrase shifting unit is applied to the dielectric phase shifter in the present invention, the installation complexity of related components can be reduced in order to save the limited space of the cavity, and it is convenient to install as many dielectric phase shifting units as possible in the limited space of the cavity, thereby help improve the shape of the antenna.
Correspondingly, every two adjacent dielectric phase shifting units in the series group are misaligned in a shape of a “Z” or an inverse “Z” such that the dielectric plate does not alternatively cover the feeding network when moving. This setting ensures an equal phase relationship among the output ports, thereby realizing the shaping and electric adjustability of the antenna.
Furthermore, when the dielectric phase shifting units in the series group are connected in series, the corresponding dielectric plates are integrally connected and the feeding networks are also integrally connected. This reduces the complexity of disassembly and assembly of the dielectric phase shifting units, improving efficiency in disassembly and assembly; it also effectively ensures the impedance matching and stability of the relevant performance of the dielectric phase shifter.
In summary, the present invention not only reduces the number of impedance matching and network loss but also the equivalent electrical length of the entire network, effectively saving costs, reducing the complexity of disassembly and assembly of related components, and improving disassembly and assembly efficiency. Moreover, it is convenient to install as many dielectric phase shifting units as possible in a limited space in the cavity and to ensure an equal phase relationship between the output ports, thereby improving the performances of the dielectric phase shifter and the electric adjustable base station antenna.
The invention is further described in the following with reference to the drawings and exemplary embodiments; wherein like reference numerals refer to the same parts throughout. Further, if a detailed description of a known technique is unnecessary for showing the features of the present invention, it is omitted.
Reference is made to
It should be noted that the dielectric plate 6b further includes an extension portion integrally formed with the impedance matching portion. The feeding network further includes at least one output port, and preferably, the feeding network includes two output ports (1b, 5b). The two output ports (1b, 5b) form a 2 way phase shifting network through a power divider on the feeding network. One of the output ports 1b is disposed near one end of the input port 2b and its branch network is not covered by the dielectric board 6b. Another output port 5b is provided at one end away from the input port 2b and its branch network is covered by the dielectric plate 6b to achieve a continuous change in phase by moving the dielectric plate 6b to adjust the length covering its branch network.
In this embodiment, the impedance matching portion includes at least one matching hole. Alternatively, the impedance matching portion may have a smaller thickness than the extension portion in place of the matching hole in order to implement an impedance matching function, and the specific number of the matching holes or the thickness of the impedance matching portion may be determined according to the width of the frequency band; and preferably, the impedance matching portion includes two matching holes (3b, 4b).
During operation of the dielectric phase shifting unit, when the down-tilt angle is increased, the dielectric plate 6b is controlled to move away from the input port 2b. At this time, the branch network where the output port 1b near one end of the input port 2b is located and a matching hole area are not covered by the dielectric board 6b. Because the impedance matching portion is at an end close to the input port 2b, the impedance of the output port 5b far away from the input port 2b is the same as that of the network line segment covered by the dielectric plate 6b. There is no need to perform impedance transformation. It can be seen that when the signal is transmitted from the input port 2b to the output port 5b away from the input port 2b, only one discontinuous impedance matching is required. Compared with the prior art, which requires 2-3 times, the dielectric phase shifting unit of present invention can not only reduce impedance change nodes, but also reduce impedance mismatch and return loss.
Applying the dielectric phase shifting unit described in the above embodiments to the dielectric phase shifter, thereby further fully applying the characteristics of the dielectric phase shifting unit to the dielectric phase shifter. Here, the dielectric phase shifter includes a cavity and the dielectric phase shifting unit disposed therein; the dielectric plate is disposed between the cavity and the feeding network.
Please refer to
Here, the feeding network includes an input port 1, a first output port 5 disposed near the input port 1, and a second output port 6 disposed away from the input port 1. A dielectric plate 4 includes a large matching hole 2 and a small matching hole 3. In addition, signal input and output can be achieved by soldering a coaxial cable to an inner core of the corresponding input and output ports on the feeding network.
As can be seen from
On the basis of the dielectric phase shifter described in the above embodiments, a plurality of dielectric phase shifting units can be disposed in the cavity. Specifically, each dielectric phase shifting unit may be connected in series to form at least one series group or in parallel to define a N way (N>3) phase shifting network circuit. Here, when the respective dielectric phase shifting units in the series group are connected in series, the corresponding dielectric plates and the feeding network can be integrally connected.
For example, please refer to
The dielectric phase shifter connects the dielectric plates 4 of the two dielectric phase shifting units together by means of a connection portion 8. The two dielectric phase shifting units are connected end to end. The impedance matching portion (the large matching hole 2 and the small matching hole 3 on a rear dielectric phase shifting unit) in a rear (based on the distance from input port 1 on the right side of
Correspondingly, the above is only an exemplary illustration. According to the actual needs, M (M>2) dielectric phase shifting units may be sequentially connected in series to form one series group which is disposed in the cavity. Alternatively, a plurality of dielectric phase shifting units is disposed side by side in the cavity, or a plurality of series groups is disposed side by side in the cavity. Every two adjacent dielectric phase shifting units in each series group are misaligned in a shape of a “Z” or an inverse “Z” such that the dielectric plate does not alternatively cover the feeding network when moving, and the space inside the cavity is fully utilized.
In summary, the dielectric phase shifter of the present invention can not only have all the features of the dielectric phase shifting unit in the above embodiments, it can also fully utilize the characteristics of the dielectric phase shifting unit. That is to say, because the single phase shifting unit only needs to perform impedance matching once, the number of impedance matching and the network loss are reduced as compared with the prior art. When a plurality of dielectric phase shifting units is sequentially connected in series to form a series group or in parallel and disposed in a dielectric phase shifter, the equivalent electrical length and network loss of the entire network can be significantly reduced, thereby effectively saving cost and ensuring impedance matching, thereby improving performance of the phase shifter. Also, the structure of the feeding network of the dielectric phase shifting unit is simple, the dielectric plate and the feeding network form together a strip line structure, and the plurality of dielectric phase shifting units can be installed in the cavity after integrally formed. These factors reduce the complexity of disassembly and assembly of related components, improves disassembly efficiency, saves limited space in the cavity, and facilitates installation of as many dielectric phase shifting units as possible in a limited space in the cavity, thereby further improving the performance of the phase shifter.
In addition, the dielectric phase shifter of the above embodiments is applied to the base station antenna, thereby further utilizing the characteristics of the dielectric phase shifter in the base station antenna, which not only reduces network loss in the base station antenna, but also effectively ensures impedance matching, stability of the performance of the base station antenna, and installs as many dielectric phase shifting units as possible in a limited space in the cavity, thereby improving the shape of the base station antenna.
Although some exemplary embodiments of the invention have been shown above, those skilled in the art will understand that variations may be made to these exemplary embodiments without departing from the spirit and scope of the invention, and the scope of the invention is defined by the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 1063025 | Nov 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/085005 | 5/19/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/094983 | 5/31/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5905462 | Hampel et al. | May 1999 | A |
20180115297 | Yoshihara | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
1669175 | Sep 2005 | CN |
104681896 | Jun 2015 | CN |
105244568 | Jan 2016 | CN |
105720329 | Jun 2016 | CN |
106129544 | Nov 2016 | CN |
106450763 | Feb 2017 | CN |
WO-2016157374 | Oct 2016 | WO |
Entry |
---|
International Search Report PCT/CN2017/085005, dated Aug. 16, 2017. |
Number | Date | Country | |
---|---|---|---|
20200067159 A1 | Feb 2020 | US |