The present disclosure relates generally to an electromagnetic device, particularly to a dielectric resonator antenna (DRA) system, and more particularly to a DRA system having first and second dielectric portions for enhancing the gain, return loss and isolation associated with a plurality of dielectric structures within the DRA system.
While existing DRA resonators and arrays may be suitable for their intended purpose, the art of DRAs would be advanced with an improved DRA structure for building a high gain DRA system with high directionality in the far field that can overcome existing drawbacks, such as limited bandwidth, limited efficiency, limited gain, limited directionality, or complex fabrication techniques, for example.
An embodiment includes an electromagnetic device having: a dielectric structure that includes: a first dielectric portion, FDP, having a proximal end and a distal end, the FDP having a dielectric material other than air; and a second dielectric portion, SDP, having a proximal end and a distal end, the proximal end of the SDP being disposed proximate the distal end of the FDP, the SDP having a dielectric material other than air; and wherein the dielectric material of the FDP has an average dielectric constant that is greater than the average dielectric constant of the dielectric material of the SDP.
The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.
Referring to the exemplary non-limiting drawings wherein like elements are numbered alike in the accompanying Figures:
Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the claims. Accordingly, the following example embodiments are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
An embodiment, as shown and described by the various figures and accompanying text, provides an electromagnetic device in the form of a dielectric structure having a first dielectric portion and a second dielectric portion strategically disposed with respect to the first dielectric portion so as to provide for improved gain, improved bandwidth, improved return loss, and/or improved isolation, when at least the first dielectric portion is electromagnetically excited to radiate (e.g., electromagnetically resonate and radiate) an electromagnetic field in the far field. In an embodiment, only the first dielectric portion is electromagnetically excited to radiate an electromagnetic field in the far field. In another embodiment, both the first dielectric portion and the second dielectric portion are electromagnetically excited to radiate an electromagnetic field in the far field. In an embodiment where only the first dielectric portion is electromagnetically excited to radiate an electromagnetic field in the far field, the first dielectric portion may be viewed as an electromagnetic dielectric resonator, and the second dielectric portion may be viewed as a dielectric electromagnetic beam shaper. In an embodiment where both the first dielectric portion and the second dielectric portion are electromagnetically excited to radiate an electromagnetic field in the far field, the combination of the first dielectric portion and the second dielectric portion may be viewed as an electromagnetic dielectric resonator, and where the second dielectric portion may also be viewed as a dielectric electromagnetic beam shaper. In an embodiment, the dielectric structure is an all-dielectric structure (absent embedded metal or metal particles, for example).
In an embodiment, the dielectric material of the first dielectric portion 2020 has an average dielectric constant equal to or greater than 10, and the dielectric material of the second dielectric portion 2520 has an average dielectric constant equal to or less than 9. Alternatively, the dielectric the material of the first dielectric portion 2020 has an average dielectric constant equal to or greater than 11, and the dielectric material of the second dielectric portion 2520 has an average dielectric constant equal to or less than 5. Further alternatively, the dielectric material of the first dielectric portion 2020 has an average dielectric constant equal to or greater than 12, and the dielectric material of the second dielectric portion 2520 has an average dielectric constant equal to or less than 3. Further alternatively, the dielectric material of the first dielectric portion 2020 has an average dielectric constant equal to or greater than 10 and equal to or less than 20, and the dielectric material of the second dielectric portion 2520 has an average dielectric constant equal to or greater than 2 and equal to or less than 9. Further alternatively, the dielectric material of the first dielectric portion 2020 has an average dielectric constant equal to or greater than 10 and equal to or less than 15, and the dielectric material of the second dielectric portion 2520 has an average dielectric constant equal to or greater than 2 and equal to or less than 5. Further alternatively, the dielectric material of the second dielectric portion 2520 has an average dielectric constant greater than the dielectric constant of air and equal to or less than 9.
In an embodiment, the second dielectric portion 2520 has an overall maximum height, HS, and an overall maximum width, WS, where HS is greater than WS. In an embodiment, HS is equal to or greater than 1.5 times WS. Alternatively in an embodiment, HS is equal to or greater than 2 times WS.
In an embodiment, the first dielectric portion 2020 has an overall maximum height, HF, and an overall maximum width, WF, where HS is greater than HF, and where WS is greater than WF. In an embodiment, HS is greater than 5 times HF, and WS is greater than 1.2 times WF.
In an embodiment, the second dielectric portion 2520 has a first sub-portion 2519 proximate the proximal end 2540, and a second sub-portion 2521 proximate the distal end 2560, where the second x-y plane cross-section area 2600 is contained within the first sub-portion 2519, and the third x-y cross-section area 2640 is contained within the second sub-portion 2521. In an embodiment, the first sub-portion 2519 has a cylindrical 3D shape with diameter W1, and the second sub-portion 2521 has a frustoconical 3D shape with a lower diameter of W1 expanding to an upper diameter of WS, such that WS is greater than W1. In an embodiment, diameter W1 is greater than diameter WF.
In an embodiment and with reference now to
Reference is now made to
In an embodiment, EM device 1002 depicted in
In an embodiment, EM device 1003 depicted in
By arranging the height to width ratios of the second dielectric portion 2520, 2521, 2522 as disclosed herein, higher TE (transverse electric) modes are supported, which yields a broader far field TE radiation bandwidth.
In an embodiment, the second dielectric portion 2520, 2521, 2522, 2523 is disposed in direct intimate contact with the first dielectric portion 2020. However, the scope of the invention is not so limited. In an embodiment, the second dielectric portion 2520, 2521, 2522, 2523 is disposed at a distance from the distal end 2060 of the first dielectric portion 2020 that is equal to or less than five times λ, where λ is a freespace wavelength at an operating center frequency of the EM device 1000, depicted by dashed lines 2530 in
Reference is now made to
With general reference to the aforementioned figures collectively, and with particular reference to
With further general reference to the aforementioned figures collectively, and with particular reference to
In an embodiment, each respective EM device 1000, 1001, 1002, 1003 includes a signal feed 3120 for electromagnetically exciting a given dielectric structure 2000, where the signal feed 3120 is separated from the metal fence structure 3500 via the dielectric 3140, which in an embodiment is a dielectric medium other than air, and where in an embodiment the signal feed 3120 is a microstrip with slotted aperture 3130 (see
As depicted in
Reference is now made to
As depicted, the array 3003 is a connected array having a connecting structure 4030, the lower Dk material of the second dielectric portion 2520 does not cover all sides of the higher Dk material of the first dielectric portion 2020, as depicted at the proximal end 2040 of the second dielectric portion 2520 where a gap 5014 is present between the proximal end 2040 of the second dielectric portion 2520 and the electrically conductive base 3514 of the metal fence structure 3500 upon which the first dielectric portion 2020 is disposed, and the second dielectric portion 2520 is disposed a distance away from the distal end 2060 of the first dielectric portion 2020, as depicted by gap 5016 in
With reference to
With reference to
As can be seen by the foregoing descriptions of
Reference is now made to
As can be seen by the foregoing descriptions and/or illustrations of
Reference is now made to
Reference is now made to
From the foregoing, it will be appreciated that an embodiment of the invention includes an EM device 1000 where each of the at least one support portion 3020 of the substrate 3200 and the corresponding one of the at least one mount portion 4020, 4120, 4220, 4222, 4320, 4322, 4420, 4520 of the connecting structure 4000, 4030 are attached to each other to define a first attachment zone 4020, 4120, 4220, 4222, 4320, 4322, 4420, 4520, each one of the first dielectric portions 2020 of the array 3000, 3001, 3002, 3003, 3004, 3005, 3006, 3007, 3008, 3009 and the substrate 3200 are attached to each other to define a second attachment zone (aggregate of contact regions between the first dielectric portions 2020 and the substrate 3200), and a zone between the single monolithic structure 5000, 5010 and the substrate 3200 that is other than the first attachment zone or the second attachment zone defines a non-attachment zone 4222. In an embodiment, the first attachment zone at least partially surrounds the second attachment zone. Alternatively in an embodiment, the first attachment zone completely surrounds the second attachment zone.
From the foregoing, it will be appreciated that there are many variations, too many to list exhaustively, for configuring the mount portions and connecting structures, as well as the layout of the dielectric structures, for providing an embodiment consistent with the disclosure herein. Any and all such arrangements consistent with the disclosure herein are contemplated and considered to fall within the scope of an invention disclosed herein.
Reference is now made to
In view of the foregoing, it will be appreciated that an EM device 1000 as disclosed herein is operable having an operating frequency range having at least two resonant modes at different center frequencies, where at least one of the resonant modes is supported by the presence of the second dielectric portion 2520. In an embodiment, the at least two resonant modes are TE modes. It will also be appreciated that an EM device 1000 as disclosed herein is operable having an operating frequency range having at least three resonant modes at different center frequencies, where at least two of the at least three resonant modes are supported by the presence of the second dielectric portion 2520. In an embodiment, the at least three resonant modes are TE modes. In an embodiment, the EM device 1000 is operable having a minimum return loss value in an operating frequency range, and wherein removal of the second dielectric portion 2520 increases the minimum return loss value in the operating frequency range by at least 5 dBi, alternatively by at least 10 dBi, alternatively by at least 20 dBi, alternatively by at least 30 dBi, and further alternatively by at least 40 dBi.
In view of all of the foregoing, while certain combinations of EM device features have been described herein, it will be appreciated that these certain combinations are for illustration purposes only and that any combination of any of the EM device features disclosed herein may be employed in accordance with an embodiment of the invention. Any and all such combinations are contemplated herein and are considered to fall within the ambit of an invention disclosed herein.
With reference back to
In view of the foregoing description of structure of an EM device 1000 as herein disclosed, it will be appreciated that an embodiment also includes a method of making such EM device 1000, which includes: providing a substrate; disposing a plurality of first dielectric portions, FDPs, on the substrate, each FDP of the plurality of FDPs having a proximal end and a distal end and comprising a dielectric material other than air, the proximal end of each FDP being disposed on the substrate; disposing a second dielectric portion, SDP, proximate each FDP, each SDP having a proximal end and a distal end, the proximal end of each SDP being disposed proximate the distal end of a corresponding FDP, each SDP comprising a dielectric material other than air, the dielectric material of each FDP having an average dielectric constant that is greater than the average dielectric constant of the dielectric material of a corresponding SDP, each FDP and corresponding SDP forming a dielectric structure. In an embodiment of the method, each SDP is physically connected to at least one other of the SDPs via a connecting structure formed of a non-gaseous dielectric material, the connecting structure and the connected SDPs forming a single monolithic structure. In an embodiment of the method, the disposing a SDP includes disposing the single monolithic structure proximate each FDP. In an embodiment of the method, the single monolithic structure is a single dielectric material having a seamless and contiguous structure. In an embodiment of the method, the method further includes attaching the single monolithic structure to the substrate. In an embodiment of the method, the attaching includes attaching via bonding, posts of the single monolithic structure onto support platforms of the substrate. In an embodiment of the method, the attaching includes attaching via snap-fitting, snap-fit posts of the single monolithic structure into shouldered holes of the substrate. In an embodiment of the method, the attaching includes attaching stepped-down posts of the single monolithic structure only partially into through holes of the substrate, and applying a bonding material in the through holes to bond the posts to the substrate. In an embodiment of the method, the dielectric structure is an all-dielectric structure.
While an invention has been described herein with reference to example embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the claims. Many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment or embodiments disclosed herein as the best or only mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. In the drawings and the description, there have been disclosed example embodiments and, although specific terms and/or dimensions may have been employed, they are unless otherwise stated used in a generic, exemplary and/or descriptive sense only and not for purposes of limitation, the scope of the claims therefore not being so limited. When an element such as a layer, film, region, substrate, or other described feature is referred to as being “on” another element, it can be directly on the other element, or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. The use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. The use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. The term “comprising” as used herein does not exclude the possible inclusion of one or more additional features. And, any background information provided herein is provided to reveal information believed by the applicant to be of possible relevance to the invention disclosed herein. No admission is necessarily intended, nor should be construed, that any of such background information constitutes prior art against an embodiment of the invention disclosed herein.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/633,256, filed Feb. 21, 2018, which is incorporated herein by reference in its entirety. This application also claims the benefit of U.S. Provisional Application Ser. No. 62/617,358, filed Jan. 15, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2624002 | Bouix | Oct 1952 | A |
3321765 | Peters et al. | May 1967 | A |
4366484 | Weiss et al. | Dec 1982 | A |
4743915 | Rammos et al. | May 1988 | A |
5227749 | Raguenet et al. | Jul 1993 | A |
5453754 | Fray | Sep 1995 | A |
5589842 | Wang et al. | Dec 1996 | A |
5667796 | Otten | Sep 1997 | A |
5854608 | Leisten | Dec 1998 | A |
5940036 | Oliver et al. | Aug 1999 | A |
5952972 | Ittipiboon et al. | Sep 1999 | A |
6031433 | Tanizaki et al. | Feb 2000 | A |
6052087 | Ishikawa et al. | Apr 2000 | A |
6061026 | Ochi et al. | May 2000 | A |
6061031 | Cosenza et al. | May 2000 | A |
6147647 | Tassoudji et al. | Nov 2000 | A |
6181297 | Leisten | Jan 2001 | B1 |
6188360 | Kato et al. | Feb 2001 | B1 |
6198450 | Adachi | Mar 2001 | B1 |
6268833 | Tanizaki et al. | Jul 2001 | B1 |
6292141 | Lim | Sep 2001 | B1 |
6314276 | Hilgers et al. | Nov 2001 | B1 |
6317095 | Teshirogi et al. | Nov 2001 | B1 |
6323808 | Heinrichs et al. | Nov 2001 | B1 |
6323824 | Heinrichs et al. | Nov 2001 | B1 |
6344833 | Lin et al. | Feb 2002 | B1 |
6373441 | Porath et al. | Apr 2002 | B1 |
6437747 | Stoiljkovic et al. | Aug 2002 | B1 |
6476774 | Davidson et al. | Nov 2002 | B1 |
6528145 | Berger et al. | Mar 2003 | B1 |
6552687 | Rawnick et al. | Apr 2003 | B1 |
6556169 | Fukuura et al. | Apr 2003 | B1 |
6621381 | Kundu et al. | Sep 2003 | B1 |
6743744 | Kim et al. | Jun 2004 | B1 |
6794324 | Kim et al. | Sep 2004 | B1 |
6816118 | Kingsley et al. | Nov 2004 | B2 |
6816128 | Jennings | Nov 2004 | B1 |
7161535 | Palmer et al. | Jan 2007 | B2 |
7179844 | Aki et al. | Feb 2007 | B2 |
7183975 | Thomas et al. | Feb 2007 | B2 |
7196663 | Bozer et al. | Mar 2007 | B2 |
7253789 | Kingsley et al. | Aug 2007 | B2 |
7292204 | Chang et al. | Nov 2007 | B1 |
7310031 | Pance et al. | Dec 2007 | B2 |
7379030 | Lier | May 2008 | B1 |
7382322 | Yang et al. | Jun 2008 | B1 |
7443363 | Ying | Oct 2008 | B2 |
7498969 | Paulsen et al. | Mar 2009 | B1 |
7545327 | Iellici et al. | Jun 2009 | B2 |
7570219 | Paulsen et al. | Aug 2009 | B1 |
7595765 | Hirsch et al. | Sep 2009 | B1 |
7636063 | Channabasappa | Dec 2009 | B2 |
7663553 | Chang et al. | Feb 2010 | B2 |
7710325 | Cheng | May 2010 | B2 |
7961148 | Goldberger | Jun 2011 | B2 |
8098197 | Herting et al. | Jan 2012 | B1 |
8498539 | Iichenko et al. | Jul 2013 | B1 |
8736502 | Langfield et al. | May 2014 | B1 |
8773319 | Anderson et al. | Jul 2014 | B1 |
8902115 | Loui et al. | Dec 2014 | B1 |
9112273 | Christie et al. | Aug 2015 | B2 |
9184697 | Sekiguchi et al. | Nov 2015 | B2 |
9225070 | Zeweri et al. | Dec 2015 | B1 |
9608330 | Singleton et al. | Mar 2017 | B2 |
9825373 | Smith | Nov 2017 | B1 |
10355361 | Pance et al. | Jul 2019 | B2 |
10522917 | Pance et al. | Dec 2019 | B2 |
10587039 | Pance et al. | Mar 2020 | B2 |
20010013842 | Ishikawa et al. | Aug 2001 | A1 |
20010043158 | Adachi et al. | Nov 2001 | A1 |
20020000947 | Al-Rawi et al. | Jan 2002 | A1 |
20020057138 | Takagi et al. | May 2002 | A1 |
20020180646 | Kivekas et al. | Dec 2002 | A1 |
20020196190 | Lim | Dec 2002 | A1 |
20030016176 | Kingsley et al. | Jan 2003 | A1 |
20030034922 | Isaacs et al. | Feb 2003 | A1 |
20030043075 | Bit-Babik | Mar 2003 | A1 |
20030122729 | Diaz et al. | Jul 2003 | A1 |
20030151548 | Kingsley et al. | Aug 2003 | A1 |
20030181312 | Mailadil et al. | Sep 2003 | A1 |
20040029709 | Oba et al. | Feb 2004 | A1 |
20040036148 | Block et al. | Feb 2004 | A1 |
20040051602 | Pance et al. | Mar 2004 | A1 |
20040080455 | Lee | Apr 2004 | A1 |
20040113843 | Le Bolzer et al. | Jun 2004 | A1 |
20040119646 | Ohno et al. | Jun 2004 | A1 |
20040127248 | Lin et al. | Jul 2004 | A1 |
20040130489 | Le Bolzer et al. | Jul 2004 | A1 |
20040155817 | Kingsley et al. | Aug 2004 | A1 |
20040233107 | Popov et al. | Nov 2004 | A1 |
20040263422 | Lynch | Dec 2004 | A1 |
20050017903 | Ittipiboon et al. | Jan 2005 | A1 |
20050024271 | Ying et al. | Feb 2005 | A1 |
20050057402 | Ohno et al. | Mar 2005 | A1 |
20050099348 | Pendry | May 2005 | A1 |
20050122273 | Legay et al. | Jun 2005 | A1 |
20050162316 | Thomas et al. | Jul 2005 | A1 |
20050179598 | Legay et al. | Aug 2005 | A1 |
20050200531 | Huang et al. | Sep 2005 | A1 |
20050219130 | Koch et al. | Oct 2005 | A1 |
20050225499 | Kingsley et al. | Oct 2005 | A1 |
20050242996 | Palmer et al. | Nov 2005 | A1 |
20050264449 | Strickland | Dec 2005 | A1 |
20050264451 | Aikawa et al. | Dec 2005 | A1 |
20060022875 | Pidwerbetsky et al. | Feb 2006 | A1 |
20060119518 | Ohmi et al. | Jun 2006 | A1 |
20060145705 | Raja | Jul 2006 | A1 |
20060194690 | Osuzu | Aug 2006 | A1 |
20060232474 | Fox | Oct 2006 | A1 |
20060293651 | Cronin | Dec 2006 | A1 |
20070152884 | Bouche et al. | Jul 2007 | A1 |
20070164420 | Chen et al. | Jul 2007 | A1 |
20070252778 | Ide et al. | Nov 2007 | A1 |
20080036675 | Fujieda | Feb 2008 | A1 |
20080042903 | Cheng | Feb 2008 | A1 |
20080048915 | Chang et al. | Feb 2008 | A1 |
20080094309 | Pance et al. | Apr 2008 | A1 |
20080122703 | Ying | May 2008 | A1 |
20080129616 | Li et al. | Jun 2008 | A1 |
20080129617 | Li et al. | Jun 2008 | A1 |
20080260323 | Jalali et al. | Oct 2008 | A1 |
20080272963 | Chang et al. | Nov 2008 | A1 |
20080278378 | Chang et al. | Nov 2008 | A1 |
20090040131 | Mosallaei | Feb 2009 | A1 |
20090073332 | Irie | Mar 2009 | A1 |
20090102739 | Chang et al. | Apr 2009 | A1 |
20090128262 | Lee et al. | May 2009 | A1 |
20090128434 | Chang et al. | May 2009 | A1 |
20090140944 | Chang et al. | Jun 2009 | A1 |
20090153403 | Chang et al. | Jun 2009 | A1 |
20090179810 | Kato et al. | Jul 2009 | A1 |
20090184875 | Chang et al. | Jul 2009 | A1 |
20090206957 | Hiroshima et al. | Aug 2009 | A1 |
20090262022 | Ying | Oct 2009 | A1 |
20090270244 | Chen et al. | Oct 2009 | A1 |
20090305652 | Boffa et al. | Dec 2009 | A1 |
20100051340 | Yang et al. | Mar 2010 | A1 |
20100103052 | Ying | Apr 2010 | A1 |
20100220024 | Snow et al. | Sep 2010 | A1 |
20110012807 | Sorvala | Jan 2011 | A1 |
20110050367 | Yen et al. | Mar 2011 | A1 |
20110121258 | Hanein et al. | May 2011 | A1 |
20110122036 | Leung et al. | May 2011 | A1 |
20110133991 | Lee et al. | Jun 2011 | A1 |
20110248890 | Lee et al. | Oct 2011 | A1 |
20120092219 | Kim | Apr 2012 | A1 |
20120212386 | Massie et al. | Aug 2012 | A1 |
20120242553 | Leung et al. | Sep 2012 | A1 |
20120245016 | Curry et al. | Sep 2012 | A1 |
20120256796 | Leiba | Oct 2012 | A1 |
20120274523 | Ayatollahi | Nov 2012 | A1 |
20120276311 | Chirila | Nov 2012 | A1 |
20120287008 | Kim | Nov 2012 | A1 |
20120306713 | Raj et al. | Dec 2012 | A1 |
20120329635 | Hill | Dec 2012 | A1 |
20130076570 | Lee et al. | Mar 2013 | A1 |
20130088396 | Han | Apr 2013 | A1 |
20130113674 | Ryu | May 2013 | A1 |
20130120193 | Hoppe et al. | May 2013 | A1 |
20130234898 | Leung et al. | Sep 2013 | A1 |
20130278610 | Stephanou et al. | Oct 2013 | A1 |
20140043189 | Lee et al. | Feb 2014 | A1 |
20140327591 | Kokkinos | Nov 2014 | A1 |
20140327597 | Rashidian et al. | Nov 2014 | A1 |
20150035714 | Zhou | Feb 2015 | A1 |
20150077198 | Yatabe | Mar 2015 | A1 |
20150138036 | Harper | Apr 2015 | A1 |
20150207233 | Kim et al. | Jul 2015 | A1 |
20150207234 | Ganchrow et al. | Jul 2015 | A1 |
20150236428 | Caratelli et al. | Aug 2015 | A1 |
20150244082 | Caratelli et al. | Aug 2015 | A1 |
20150303546 | Rashidian et al. | Oct 2015 | A1 |
20150314526 | Cohen | Nov 2015 | A1 |
20150346334 | Nagaishi et al. | Dec 2015 | A1 |
20150380824 | Tayfeh Aligodarz et al. | Dec 2015 | A1 |
20160111769 | Pance et al. | Apr 2016 | A1 |
20160218437 | Guntupalli et al. | Jul 2016 | A1 |
20160294066 | Djerafi et al. | Oct 2016 | A1 |
20160294068 | Djerafi et al. | Oct 2016 | A1 |
20160322708 | Tayfeh Aligodarz et al. | Nov 2016 | A1 |
20160351996 | Ou | Dec 2016 | A1 |
20160372955 | Fackelmeier et al. | Dec 2016 | A1 |
20170018851 | Henry et al. | Jan 2017 | A1 |
20170040700 | Leung et al. | Feb 2017 | A1 |
20170125901 | Sharawi et al. | May 2017 | A1 |
20170125908 | Pance et al. | May 2017 | A1 |
20170125909 | Pance et al. | May 2017 | A1 |
20170125910 | Pance et al. | May 2017 | A1 |
20170179569 | Kim et al. | Jun 2017 | A1 |
20170188874 | Suhami | Jul 2017 | A1 |
20170271772 | Miraftab et al. | Sep 2017 | A1 |
20170272149 | Michaels | Sep 2017 | A1 |
20180115072 | Pance et al. | Apr 2018 | A1 |
20180309202 | Pance et al. | Oct 2018 | A1 |
20180323514 | Pance et al. | Nov 2018 | A1 |
20190020105 | Pance et al. | Jan 2019 | A1 |
20190214732 | Leung et al. | Jul 2019 | A1 |
20190319357 | Pance et al. | Oct 2019 | A1 |
20190379123 | Leung et al. | Dec 2019 | A1 |
20190393607 | Pance et al. | Dec 2019 | A1 |
20200083609 | Pance et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
068413 | Jan 1992 | EP |
0587247 | Mar 1994 | EP |
0801436 | Oct 1997 | EP |
1783516 | May 2007 | EP |
2905632 | Aug 2015 | EP |
2004112131 | Apr 2004 | JP |
2017075184 | May 2017 | WO |
Entry |
---|
Buerkle, A. et al; “Fabrication of a DRA Array Using Ceramic Stereolithography”; IEEE Antennas and Wireless Popagation Letters; IEEE; vol. 5 No. 1, Jan. 2007; pp. 479-481. |
Guo, Yomg-Xin, et al.,; “Wide-Band Stacked Double Annular-Ring Dielectric Resonator Antenna at the End-Fire Mode Operation”; IEEE Transacions on Antennas and Propagation; vol. 53; No. 10; Oct. 2005; 3394-3397 pages. |
Kakade, A.B., et al; “Analysis of the Rectangular Waveguide Slot Coupled Multilayer hemispherical Dielectric Resonator Antenna”; IET Microwaves, Antennas & Propagation, The Institution of Engineering and Technology; vol. 6; No. 3; Jul. 11, 2011; 338-347 pages. |
Kakade, Anandrao, et al.; Mode Excitation in the Coaxial Probe Coupled Three-Layer Hemispherical Dielectric Resonator Antenna; IEEE Transactions on Antennas and Propagation; vol. 59; No. 12; Dec. 2011; 7 pages. |
Kishk, A. Ahmed, et al.,; “Analysis of Dielectric-Resonator with Emphasis on Hemispherical Structures”; IEEE Antennas & Propagation Magazine; vol. 36; No. 2; Apr. 1994; 20-31 pages. |
Zainud-Deen, S H et al; “Dielectric Resonator Antenna Phased Array for Fixed RFID Reader in Near Field Region”; IEEE; Mar. 6, 2012; pp. 102-107. |
Notification of Transmittal of the International Search Report and the Written Opinion of the Internation Searching Authority, or the Declartion of International Application No. PCT/US2019/013577; Report dated Mar. 27, 2019; Report dated Apr. 3, 2019; 18 pages. |
Petosa, Aldo, et al.; “Dielectric Resonator Antennas: A Historical Review and the Current State of the Art”; IEEE Antennas and Propagation Magazine; vol. 52, No. 5, Oct. 2010; 91-116 pages. |
Ruan, Yu-Feng, et al; “Antenna Effects Consideration for Space-Time Coding UWB-Impulse Radio System in IEEE 802.15 Multipath Channel”; Wireless Communications, Networking and Mobile Computing; 2006; 1-4 pages. |
Wong, Kin-Lu, et al.,; “Analysis of a Hemispherical Dielectric Resonator Antenna with an Airgap”; IEEE Microwave and Guided Wave Letters; vol. 3; No. 9; Oct. 3, 1993; 355-357 pages. |
Number | Date | Country | |
---|---|---|---|
20190221940 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62633256 | Feb 2018 | US | |
62617358 | Jan 2018 | US |