Dielectric resonator antenna having first and second dielectric portions

Information

  • Patent Grant
  • 11616302
  • Patent Number
    11,616,302
  • Date Filed
    Monday, January 14, 2019
    5 years ago
  • Date Issued
    Tuesday, March 28, 2023
    a year ago
Abstract
An electromagnetic device includes: a first electromagnetic, EM, signal feed; a second EM signal feed disposed adjacent to the first EM signal feed; and, an elevated electrically conductive region disposed between and elevated relative to the first and second EM signal feeds.
Description
BACKGROUND OF THE INVENTION

The present disclosure relates generally to an electromagnetic device, particularly to a dielectric resonator antenna (DRA) system, and more particularly to a DRA system having first and second dielectric portions for enhancing the gain, return loss and isolation associated with a plurality of dielectric structures within the DRA system.


While existing DRA resonators and arrays may be suitable for their intended purpose, the art of DRAs would be advanced with an improved DRA structure for building a high gain DRA system with high directionality in the far field that can overcome existing drawbacks, such as limited bandwidth, limited efficiency, limited gain, limited directionality, or complex fabrication techniques, for example.


BRIEF DESCRIPTION OF THE INVENTION

An embodiment includes an electromagnetic device, having: a first electromagnetic, EM, signal feed; a second EM signal feed disposed adjacent to the first EM signal feed; and, an elevated electrically conductive region disposed between and elevated relative to the first and second EM signal feeds.


The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Referring to the exemplary non-limiting drawings wherein like elements are numbered alike in the accompanying Figures:



FIG. 1A depicts a rotated perspective view of a unit cell of an electromagnetic, EM, device, in accordance with an embodiment;



FIG. 1B depicts a side view of the unit cell of FIG. 1A, in accordance with an embodiment;



FIG. 1C depicts a rotated perspective view of a unit cell alternative to that depicted in FIG. 1A, in accordance with an embodiment;



FIG. 1D depicts a side view of the unit cell of FIG. 1C, in accordance with an embodiment;



FIG. 2 depicts a side view of a unit cell similar but alternative to that of FIGS. 1B and 1D, in accordance with an embodiment;



FIG. 3 depicts a side view of a unit cell similar but alternative to that of FIGS. 1B, 1D and 2, in accordance with an embodiment;



FIG. 4 depicts a side view of an M×N array, where M=6, of a plurality of units cells of FIG. 1B, in accordance with an embodiment;



FIG. 5A depicts a side view of an M×N array, where M=2, of a plurality of unit cells of FIG. 1B, in accordance with an embodiment;



FIG. 5B depicts a side view of a disassembled assembly of the M×N array of FIG. 5A, in accordance with an embodiment;



FIG. 6A depicts a side view of an M×N array, where M=2, of a plurality of unit cells similar but alternative to that of FIG. 5A, in accordance with an embodiment;



FIG. 6B depicts a side view of a disassembled assembly of the M×N array of FIG. 6A, in accordance with an embodiment;



FIG. 7A depicts a side view of an M×N array, where M=2, of a plurality of unit cells similar but alternative to that of FIGS. 5A and 6A, in accordance with an embodiment;



FIG. 7B depicts a side view of a disassembled assembly of the M×N array of FIG. 7A, in accordance with an embodiment;



FIG. 8A depicts a side view of an M×N array, where M=2, of a plurality of unit cells similar but alternative to that of FIG. 6A, in accordance with an embodiment;



FIG. 8B depicts a side view of an M×N array, where M=2, of a plurality of unit cells similar but alternative to that of FIG. 7A, in accordance with an embodiment;



FIG. 9A depicts a side view of an M×N array, where M=2, of a plurality of unit cells similar but alternative to that of FIG. 8A, in accordance with an embodiment;



FIG. 9B depicts an enlarged view of Detail 9B of FIG. 9A;



FIG. 10 depicts a side view of an M×N array, where M=2, of a plurality of unit cells similar but alternative to that of FIG. 9A, in accordance with an embodiment;



FIG. 11 depicts a side view of an M×N array, where M=2, of a plurality of unit cells similar but alternative to that of FIG. 5A, in accordance with an embodiment;



FIG. 12 depicts a side view of an M×N array, where M=2, of a plurality of unit cells similar but alternative to that of FIG. 11, in accordance with an embodiment;



FIG. 13 depicts a plan view of an M×N array, where M=2 and N=2, of a plurality of first dielectric portions on a substrate, in accordance with an embodiment;



FIG. 14A depicts a plan view of a monolithic structure including an M×N array, where M=2 and N=2, of a plurality of second dielectric portions, and a plurality of mount portions, interconnected via a connecting structure, in accordance with an embodiment;



FIG. 14B depicts a plan view of a monolithic structure similar but alternative to that of FIG. 14A, in accordance with an embodiment;



FIG. 15 depicts a plan view of a monolithic structure similar but alternative to that of FIGS. 14A-14B, in accordance with an embodiment;



FIG. 16 depicts a plan view of a monolithic structure similar but alternative to that of FIGS. 14A-15, in accordance with an embodiment;



FIG. 17 depicts a plan view of a monolithic structure similar but alternative to that of FIGS. 14A-16, in accordance with an embodiment;



FIG. 18 depicts a plan view of a monolithic structure similar but alternative to that of FIGS. 14A-17, in accordance with an embodiment;



FIG. 19 depicts a plan view of a monolithic structure similar but alternative to that of FIGS. 14A-18, in accordance with an embodiment;



FIG. 20 depicts a plan view of a monolithic structure similar but alternative to that of FIGS. 14A-19, in accordance with an embodiment;



FIG. 21 depicts a plan view of a monolithic structure similar but alternative to that of FIGS. 14A-20, in accordance with an embodiment;



FIG. 22 depicts mathematical modeling performance characteristics a single unit cell, in accordance with an embodiment;



FIG. 23 depicts mathematical performance characteristics comparing the S(1, 1) return loss performance characteristics of a unit cell according to an embodiment, with a similar unit cell but absent an element according to the embodiment, in accordance with an embodiment



FIGS. 24A, 24B, and 24C, depict, respectively, a transparent rotated perspective view, a transparent side elevation view, and a transparent top down plan view, of an EM device, in accordance with an embodiment;



FIGS. 25, 26, 27, and 28, depict analytical modeling data associated with the embodiment of FIGS. 24A, 24B, and 24C, in accordance with an embodiment;



FIGS. 29A, 29B, and 29C, depict, respectively, a transparent rotated perspective view, a transparent side elevation view, and a transparent top down plan view, of an array of the EM device of FIGS. 24A, 24B, and 24C, with additional signal isolation features incorporated, in accordance with an embodiment;



FIGS. 30A, 30B, and 30C, depict, respectively, a transparent rotated perspective view, a transparent side elevation view, and a transparent top down plan view, of an alternative array to that of FIGS. 29A, 29B, and 29C, in accordance with an embodiment; and



FIG. 31 depicts a transparent rotated perspective view of an EM device that is a portion of the array depicted in FIGS. 29A, 29B, and 29C, or of the array depicted in FIGS. 30A, 30B, and 30C, in accordance with an embodiment.





DETAILED DESCRIPTION OF THE INVENTION

Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the claims. Accordingly, the following example embodiments are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.


An embodiment, as shown and described by the various figures and accompanying text, provides an electromagnetic device in the form of a dielectric structure having a first dielectric portion and a second dielectric portion strategically disposed with respect to the first dielectric portion so as to provide for improved gain, improved bandwidth, improved return loss, and/or improved isolation, when at least the first dielectric portion is electromagnetically excited to radiate (e.g., electromagnetically resonate and radiate) an electromagnetic field in the far field. In an embodiment, only the first dielectric portion is electromagnetically excited to radiate an electromagnetic field in the far field. In another embodiment, both the first dielectric portion and the second dielectric portion are electromagnetically excited to radiate an electromagnetic field in the far field. In an embodiment where only the first dielectric portion is electromagnetically excited to radiate an electromagnetic field in the far field, the first dielectric portion may be viewed as an electromagnetic dielectric resonator, and the second dielectric portion may be viewed as a dielectric electromagnetic beam shaper. In an embodiment where both the first dielectric portion and the second dielectric portion are electromagnetically excited to radiate an electromagnetic field in the far field, the combination of the first dielectric portion and the second dielectric portion may be viewed as an electromagnetic dielectric resonator, and where the second dielectric portion may also be viewed as a dielectric electromagnetic beam shaper. In an embodiment, the dielectric structure is an all-dielectric structure (absent embedded metal or metal particles, for example).



FIGS. 1A and 1B depict an electromagnetic, EM, device 1000 having a dielectric structure 2000 composed of a first dielectric portion 2020 and a second dielectric portion 2520. The first dielectric portion 2020 has a proximal end 2040 and a distal end 2060, and a three-dimensional, 3D, shape 2080 having a direction of protuberance from the proximal end 2040 to the distal end 2060 oriented parallel with a z-axis of an orthogonal x, y, z coordinate system. For purposes disclosed herein, the z-axis of the orthogonal x, y, z coordinate system is aligned with and is coincidental with a central vertical axis of an associated first dielectric portion 2020, with the x-z, y-z and x-y planes being oriented as depicted in the various figures, and with the z-axis orthogonal to a substrate of the EM device 1000. That said, it will be appreciated that a rotationally translated orthogonal x′, y′, z′ coordinate system may be employed, where the z′-axis is not orthogonal to a substrate of the EM device 1000. Any and all such orthogonal coordinate systems suitable for a purpose disclosed herein are contemplated and considered fall within the scope of an invention disclosed herein. The first dielectric portion 2020 comprises a dielectric material, Dk material, that is other than air, but in an embodiment may include an internal region of air, vacuum, or other gas suitable for a purpose disclosed herein, when the first dielectric portion 2020 is hollow. In an embodiment, the first dielectric portion 2020 has a 3D shape in the form of a hemispherical dome, or in the form of an elongated dome with vertical side walls and a dome shaped top or distal end 2060, or generally in the form having a convex distal end 2060. In an embodiment, the first dielectric portion 2020 may comprise a layered arrangement of dielectric shells to form the hemispherical dome, with each successive outwardly disposed layer substantially embedding and being in direct contact with an adjacent inwardly disposed layer. The second dielectric portion 2520 has a proximal end 2540 and a distal end 2560, with the proximal end 2540 of the second dielectric portion 2520 being disposed proximate the distal end 2060 of the first dielectric portion 2020 to form the dielectric structure 2000. The second dielectric portion 2520 comprises a dielectric material other than air. The second dielectric portion 2520 has a 3D shape having a first x-y plane cross-section area 2580 proximate the proximal end 2540 of the second dielectric portion 2520, and a second x-y plane cross-section area 2600 between the proximal end 2540 and the distal end 2560 of the second dielectric portion 2520, where the second x-y plane cross section area 2600 is greater than the first x-y plane cross-section area 2580. In an embodiment, the first x-y plane cross-section area 2580 and the second x-y plane cross-section area 2600 are circular, but in some other embodiments may be ovaloid, or any other shape suitable for a purpose disclosed herein. In an embodiment, the second dielectric portion 2520 has a third x-y plane cross-section area 2640 disposed between the second x-y plane cross-section area 2600 and the distal end 2560, where the third x-y plane cross-section area 2640 is greater than the second x-y plane cross-section area 2600. In an embodiment, the distal end 2560 of the second dielectric portion 2520 has is planar. In an embodiment, the dielectric material of the first dielectric portion 2020 has an average dielectric constant that is greater than the average dielectric constant of the dielectric material of the second dielectric portion 2520. In an embodiment, the dielectric structure 2000 is an all-dielectric structure absent embedded metal or metal particles, for example. In an embodiment, the first dielectric portion 2020 is a single dielectric material.


In an embodiment, the dielectric material of the first dielectric portion 2020 has an average dielectric constant equal to or greater than 10, and the dielectric material of the second dielectric portion 2520 has an average dielectric constant equal to or less than 9. Alternatively, the dielectric the material of the first dielectric portion 2020 has an average dielectric constant equal to or greater than 11, and the dielectric material of the second dielectric portion 2520 has an average dielectric constant equal to or less than 5. Further alternatively, the dielectric material of the first dielectric portion 2020 has an average dielectric constant equal to or greater than 12, and the dielectric material of the second dielectric portion 2520 has an average dielectric constant equal to or less than 3. Further alternatively, the dielectric material of the first dielectric portion 2020 has an average dielectric constant equal to or greater than 10 and equal to or less than 20, and the dielectric material of the second dielectric portion 2520 has an average dielectric constant equal to or greater than 2 and equal to or less than 9. Further alternatively, the dielectric material of the first dielectric portion 2020 has an average dielectric constant equal to or greater than 10 and equal to or less than 15, and the dielectric material of the second dielectric portion 2520 has an average dielectric constant equal to or greater than 2 and equal to or less than 5. Further alternatively, the dielectric material of the second dielectric portion 2520 has an average dielectric constant equal to or greater than air and equal to or less than 9.


In an embodiment, the second dielectric portion 2520 has an overall maximum height, HS, and an overall maximum width, WS, where HS is greater than WS. In an embodiment, HS is equal to or greater than 1.5 times WS. Alternatively in an embodiment, HS is equal to or greater than 2 times WS.


In an embodiment, the first dielectric portion 2020 has an overall maximum height, HF, and an overall maximum width, WF, where HS is greater than HF, and where WS is greater than WF. In an embodiment, HS is greater than 5 times HF, and WS is greater than 1.2 times WF.


In an embodiment, the second dielectric portion 2520 has a first sub-portion 2519 proximate the proximal end 2540, and a second sub-portion 2521 proximate the distal end 2560, where the second x-y plane cross-section area 2600 is contained within the first sub-portion 2519, and the third x-y cross-section area 2640 is contained within the second sub-portion 2521. In an embodiment, the first sub-portion 2519 has a cylindrical 3D shape with diameter W1, and the second sub-portion 2521 has a frustoconical 3D shape with a lower diameter of W1 expanding to an upper diameter of WS, such that WS is greater than W1. In an embodiment, diameter W1 is greater than diameter WF.


In an embodiment and with reference now to FIGS. 1C and 1D, an EM device 1001, similar to EM device 1000 where like features are numbered alike, has a second dielectric portion 2550 similar to the second dielectric portion 2520 of FIGS. 1A and 1B, but with an inner region 2700 within the second dielectric portion 2550 that is made from a material having a dielectric constant that is less than the dielectric constant of the remaining outer body portion of the second dielectric portion 2550. In an embodiment, the inner region 2700 is air. Stated generally, the outer body portion of the second dielectric portion 2550 is made from a dielectric material having a first dielectric constant, and the inner region 2700 is made from a dielectric material having a second dielectric constant that is less than the first dielectric constant. Other features of EM device 1001 are similar or identical to those of EM device 1000.


Reference is now made to FIGS. 2 and 3, where FIG. 2 depicts an EM device 1002, and FIG. 3 depicts and EM device 1003, and where both EM devices 1002, 1003 are similar to EM device 1000 where like features are numbered alike.


In an embodiment, EM device 1002 depicted in FIG. 2 has a second dielectric portion 2522 similar to the second dielectric portion 2520 of FIGS. 1A and 1B, but with a cylindrical shape having a diameter W1 that extends over the entire height HS of the second dielectric portion 2522. That is, the second dielectric portion 2522 is similar to an extended version of the first sub-portion 2519 of the second dielectric portion 2520 of EM device 1000. In an embodiment, the second dielectric portion 2522 has an overall maximum height, HS, and an overall maximum width, W1, where HS is greater than W1. In an embodiment, HS is equal to or greater than 1.5 times W1. Alternatively in an embodiment, HS is equal to or greater than 2 times W1.


In an embodiment, EM device 1003 depicted in FIG. 3 has a second dielectric portion 2523 having a similar maximum overall width W1 and maximum overall height HS as the second dielectric portion 2522 of EM device 1002, but with a 3D shape a lower portion 2524 with substantially vertical sidewalls, and an upper portion 2525 having a truncated ellipsoidal shape. Comparing FIG. 3 with FIGS. 1A, 1B, 1C, 1D and 2, it can be seen that not only may the first dielectric portion 2020 have a convex distal end 2060, but the second dielectric portion 2523 may also have a convex distal end 2560. In an embodiment, the second dielectric portion 2523 has an overall maximum height, HS, and an overall maximum width, W1, where HS is greater than W1. In an embodiment, HS is equal to or greater than 1.5 times W1. Alternatively in an embodiment, HS is equal to or greater than 2 times W1.


By arranging the height to width ratios of the second dielectric portion 2520, 2521, 2522 as disclosed herein, higher TE (transverse electric) modes are supported, which yields a broader far field TE radiation bandwidth.


In an embodiment, the second dielectric portion 2520, 2521, 2522, 2523 is disposed in direct intimate contact with the first dielectric portion 2020. However, the scope of the invention is not so limited. In an embodiment, the second dielectric portion 2520, 2521, 2522, 2523 is disposed at a distance from the distal end 2060 of the first dielectric portion 2020 that is equal to or less than five times λ, where λ is a freespace wavelength at an operating center frequency of the EM device 1000, depicted by dashed lines 2530 in FIG. 1B. Alternatively, in an embodiment, the second dielectric portion 2520, 2521, 2522, 2523 is disposed at a distance from the distal end 2060 of the first dielectric portion 2020 that is equal to or less than three times λ. Alternatively, in an embodiment, the second dielectric portion 2520, 2521, 2522, 2523 is disposed at a distance from the distal end 2060 of the first dielectric portion 2020 that is equal to or less than two times λ. Alternatively, in an embodiment, the second dielectric portion 2520, 2521, 2522, 2523 is disposed at a distance from the distal end 2060 of the first dielectric portion 2020 that is equal to or less than one times λ. Alternatively, in an embodiment, the second dielectric portion 2520, 2521, 2522, 2523 is disposed at a distance from the distal end 2060 of the first dielectric portion 2020 that is equal to or less than one-half times λ. Alternatively, in an embodiment, the second dielectric portion 2520, 2521, 2522, 2523 is disposed at a distance from the distal end 2060 of the first dielectric portion 2020 that is equal to or less than one-tenth times λ.


Reference is now made to FIG. 4, which depicts a plurality of any of the dielectric structures 2000 disclosed herein in an array 3000, where each second dielectric portion 2520, 2521, 2522, 2523 of respective ones of the plurality of dielectric structures 2000 is physically connected to at least one other of the respective second dielectric portions 2520, 2521, 2522, 2523 via a connecting structure 4000. In an embodiment, each connecting structure 4000 is relatively thin (in the plane of the page) as compared to an overall outside dimension, WS or HS for example, of one of the plurality of dielectric structures 2000. In an embodiment, each connecting structure 4000 is formed from a non-gaseous dielectric material, and has a cross sectional overall height HC that is less than an overall height HS of a respective connected dielectric structure 2000. In an embodiment, each connecting structure 4000 and the associated second dielectric portion 2520, 2521, 2522, 2523 forms a single monolithic structure 5000. In an embodiment, each connecting structure 4000 has a cross sectional overall height HC that is less than a free space wavelength λ of a corresponding operating center frequency at which the associated EM device 1000 is operational. In an embodiment, the connecting structure 4000 is formed of a dielectric material that is the same as the dielectric material of the corresponding second dielectric portions 2520, 2521, 2522, 2523. In an embodiment, the connecting structure 4000 and the corresponding second dielectric portions 2520, 2521, 2522, 2523 form the aforementioned single monolithic structure 5000 as a contiguous seamless structure.


With general reference to the aforementioned figures collectively, and with particular reference to FIG. 4, an embodiment of the EM device 1000, 1001, 1002, 1003, or the array 3000 of dielectric structures 2000, further includes a substrate 3200 upon which the individual or the array of dielectric structures 2000 are disposed. In an embodiment, the substrate 3200 includes a dielectric 3140 and a metal fence structure 3500 disposed on the dielectric 3140. With respect to the array 3000 of FIG. 4, the substrate 3200 has at least one support portion 3020, and the connecting structure 4000 has at least one mount portion 4020. In an embodiment, each of the at least one mount portion 4020 is disposed in a one-to-one corresponding relationship with the at least one support portion 3020.


With further general reference to the aforementioned figures collectively, and with particular reference to FIG. 4, an embodiment of the EM device 1000, 1001, 1002, 1003, or the array 3000 of dielectric structures 2000, the metal fence structure 3500 includes a plurality of electrically conductive electromagnetic reflectors 3510 that surround a recess 3512 with an electrically conductive base 3514, each of the plurality of reflectors 3510 being disposed in one-to-one relationship with corresponding ones of the plurality of dielectric structures 2000, and being disposed substantially surrounding each corresponding one of the plurality of dielectric structures 2000. In an embodiment, the metal fence structure 3500 is a unitary metal fence structure, and the plurality of electrically conductive electromagnetic reflectors 3510 are integrally formed with the unitary metal fence structure 3500.


In an embodiment, each respective EM device 1000, 1001, 1002, 1003 includes a signal feed 3120 for electromagnetically exciting a given dielectric structure 2000, where the signal feed 3120 is separated from the metal fence structure 3500 via the dielectric 3140, which in an embodiment is a dielectric medium other than air, and where in an embodiment the signal feed 3120 is a microstrip with slotted aperture 3130 (see FIG. 1A for example). However, excitation of a given dielectric structure 2000 may be provided by any signal feed suitable for a purpose disclosed herein, such as a copper wire, a coaxial cable, a microstrip (e.g., with slotted aperture), a stripline (e.g., with slotted aperture), a waveguide, a surface integrated waveguide, a substrate integrated waveguide, or a conductive ink, for example, that is electromagnetically coupled to the respective dielectric structure 2000. As will be appreciated by one skilled in the art, the phrase electromagnetically coupled is a term of art that refers to an intentional transfer of electromagnetic energy from one location to another without necessarily involving physical contact between the two locations, and in reference to an embodiment disclosed herein more particularly refers to an interaction between a signal source having an electromagnetic resonant frequency that coincides with an electromagnetic resonant mode of the associated dielectric structure 2000. A single one of the combination of a dielectric structure 2000 and a corresponding electromagnetically reflective metal fence structure 3500, as depicted in FIG. 1A for example, is herein referred to as a unit cell 1020.


As depicted in FIG. 4, the dielectric 3140 and the metal fence structure 3500 each have axially aligned through holes 3030, 3530, respectively, that define a location of the at least one support portion 3020 of the substrate 3200. In an embodiment, each of the at least one mount portion 4020 is disposed in a one-to-one correspondence with each of the at least one support portion 3020. In an embodiment, each of the at least one mount portion 4020 is adhered or otherwise fixed to a corresponding one of the at least one support portion 3020. FIG. 4 depicts and M×N array 3000 having a six-wide plurality of dielectric structures 2000 where M=6. In an embodiment, N may equal 6 also, or may equal any number of dielectric structures 2000 suitable for a purpose disclosed herein. Furthermore, it will be appreciated that the number of M×N dielectric structures in a given array as disclosed herein is merely for illustration purposes, and that the values for both M and N may be any number suitable for a purpose disclosed herein. As such, any M×N array falling within the scope of the invention disclosed herein is contemplated.


Reference is now made to FIG. 5A through FIG. 10.



FIG. 5A depicts an M×N array 3001 where M=2 and N is unrestricted, similar to the array 3000 of FIG. 4, where the dielectric 3140 and the metal fence structure 3500 each have axially aligned through holes 3030, 3530, respectively, that define a location of the respective support portions 3020 of the substrate 3200, and the respective mount portions 4020 are disposed within the corresponding through holes 3030, 3530 of the dielectric 3140 and metal fence structure 3500, respectively. FIG. 5B depicts the array 3001 of FIG. 5A prior to assembly of the monolithic structure 5010, similar to monolithic structure 5000 described herein above, to the substrate 3200. As depicted, the array 3001 is a connected array having a connecting structure 4000, the lower Dk material of the second dielectric portion 2520 covers all sides of the higher Dk material of the first dielectric portion 2020, as depicted at the proximal end 2040 of the second dielectric portion 2520, and the second dielectric portion 2520 is in direct intimate contact with the first dielectric portion 2020, as depicted by dashed lines 5012 in FIG. 5A.



FIG. 6A depicts an M×N array 3002 where M=2 and N is unrestricted, similar to the array 3001 of FIG. 5A, where the dielectric 3140 and the metal fence structure 3500 each have axially aligned through holes 3030, 3530, respectively, that define a location of the at least one support portion 3020 of the substrate 3200, and the respective mount portions 4020 are disposed within the corresponding through holes 3530 of the metal fence structure 3500, but not the through holes 3030 the dielectric 3140. In an embodiment, the through holes 3030 of the dielectric 3140 are filled with a bonding material 3012, such as an adhesive, that secures the mount portions 4020 of the monolithic structure 5020, similar to monolithic structure 5010 depicted in FIG. 5A, to the substrate 3200. FIG. 6B depicts the array 3002 of FIG. 6A prior to assembly of the monolithic structure 5020 to the substrate 3200. As depicted, the array 3002 is a connected array having a connecting structure 4000, the lower Dk material of the second dielectric portion 2520 does not cover all sides of the higher Dk material of the first dielectric portion 2020, as depicted at the proximal end 2040 of the second dielectric portion 2520 where a gap 5014 is present between the proximal end 2040 of the second dielectric portion 2520 and the electrically conductive base 3514 of the metal fence structure 3500 upon which the first dielectric portion 2020 is disposed, and the second dielectric portion 2520 is in direct intimate contact with the first dielectric portion 2020, as depicted by dashed lines 5012 in FIG. 5A.



FIG. 7A depicts an M×N array 3003 where M=2 and N is unrestricted, similar to the arrays 3001, 3002 of FIGS. 5A and 6A, respectively, but with some alternative features. As depicted in FIG. 7A, the dielectric 3140 is absent a through hole in the region of the mount portions 4020 of the connecting structure 4030, similar but alternative to connecting structure 4000, and the metal fence structure 3500 has recessed support surfaces 3540 upon which the mount portions 4020 are seated, forming the at least one support portion 3020. In an embodiment, a bonding material 3012 secures the mount portions 4020 of the monolithic structure 5030, similar to monolithic structures 5010, 5020, to the recessed support surfaces 3540. FIG. 7B depicts the array 3003 of FIG. 7A prior to assembly of the monolithic structure 5030 to the substrate 3200. Stated alternatively, each support portion 3020 of the substrate 3200 includes an upward facing support surface 3540, and each mount portion 4020 of the connecting structure 4030 includes a downward facing mount surface 4024 disposed in face-to-face engagement with a corresponding one of the upward facing support surface 3540.


As depicted, the array 3003 is a connected array having a connecting structure 4030, the lower Dk material of the second dielectric portion 2520 does not cover all sides of the higher Dk material of the first dielectric portion 2020, as depicted at the proximal end 2040 of the second dielectric portion 2520 where a gap 5014 is present between the proximal end 2040 of the second dielectric portion 2520 and the electrically conductive base 3514 of the metal fence structure 3500 upon which the first dielectric portion 2020 is disposed, and the second dielectric portion 2520 is disposed a distance away from the distal end 2060 of the first dielectric portion 2020, as depicted by gap 5016 in FIG. 7A. In comparing the connecting structure 4030 of FIG. 7A with the connecting structure 4000 of FIG. 5A, the connecting structure 4000 has a cross sectional overall height HC, and the connecting structure 4030 has a cross sectional overall height HCl, where HCl is less than HC. In an embodiment, HCl is equal to or less than one times λ, where λ is a freespace wavelength at an operating center frequency of the EM device 1000. Alternatively, in an embodiment, HCl is equal to or less than one-half times λ. Alternatively, in an embodiment, HCl is equal to or less than one-quarter times λ. Alternatively, in an embodiment, HCl is equal to or less than one-fifth times λ. Alternatively, in an embodiment, HCl is equal to or less than one-tenth times λ.



FIG. 8A depicts an M×N array 3004 where M=2 and N is unrestricted, similar to the array 3004 of FIG. 6A, but where the height of the connecting structure is HCl as opposed to HC. Other like features in FIGS. 8 and 6A are numbered alike.



FIG. 8B depicts an M×N array 3005 where M=2 and N is unrestricted, similar to the combination of the array 3003 of FIG. 7A having gaps 5014 and 5016, and the array 3004 of 8A having bonding material 3012, but with alternative mount features. In an embodiment, each supporting portion 3020 of the substrate 3200 includes an upward facing shoulder 3024 formed in the metal fence structure 3500, and each mount portion 4020 of the monolithic structure 5020 includes a downward facing shoulder 4024 disposed on a corresponding one of the upward facing shoulder 3024, with a reduced cross section distal end 4026 of the mount portion 4020 that engages with an opening, or through hole, 3534 in the metal fence structure 3500. A void 3536 formed in the metal fence structure 3500 below the distal end 4026 of the mount portion 4020 is filled with the bonding material 3012 to secure the monolithic structure 5020 to the substrate 3200.


With reference to FIGS. 6A, 8A and 8B, it can be seen that an embodiment includes an arrangement where the corresponding mount portion 4020 is disposed only partially within a corresponding one of the through holes 3030, 3530, 3534 of the metal fence structure 3500, and a bonding material 3012 is disposed at least partially in the remaining through hole portions of the metal fence structure 3500 and the corresponding through holes of the substrate 3200.


With reference to FIG. 8B, it can be seen that an embodiment includes an arrangement where the mount portions 4020 of the connecting structure 4030 forms a post (referred to by reference numeral 4020) with a stepped-down post end 4021, and the stepped-down post end 4021 is disposed partially within the corresponding through hole 3534 of the metal fence structure 3500. In an embodiment, the post 4020 and the stepped-down post end 4021 are cylindrical.



FIG. 9A depicts an M×N array 3006 where M=2 and N is unrestricted, similar to the array 3004 of FIG. 8A, but with alternative mount features, and FIG. 9B Detail-9B shown in FIG. 9A. In an embodiment, each support portion 3020 of the substrate 3200 includes a downward facing undercut shoulder 3022 formed in the metal fence structure 3500, and each mount portion 4020 of the connecting structure 4030 includes an upward facing snap-fit shoulder 4022 disposed in snap-fit engagement with the corresponding downward facing undercut shoulder 3022 via an opening 3532 in the metal fence structure 3500. While FIGS. 9A and 9B depict a through holes 3030 in the dielectric 3140, it will be appreciated that such a through holes 3030 may not be necessary depending on the dimensions of the snap-fit leg 4050 of the connecting structure 4030. In an embodiment, the snap-fit leg 4050 includes an open central region 4052, which permits the side portions 4054 to flex inward to facilitate the aforementioned snap-fit engagement. A tapered nose 4056 on the distal end of the mount portion 4020 facilitates entry of the mount portion 4020 into the opening 3532.



FIG. 10 depicts an M×N array 3007 where M=2 and N is unrestricted, which is similar to the combination of array 3003 of FIG. 7A having gaps 5014 and 5016, and array 3005 of FIG. 9A having snap-fit legs 4050. Other like features between FIGS. 10, 9A and 7A are numbered alike.


As can be seen by the foregoing descriptions of FIGS. 1-4 in combination with FIGS. 5A-10, many EM device features disclosed herein are interchangeable and usable with other EM device features disclosed herein. As such, it will be appreciated that while not all combinations of EM device features are illustrated and specifically described herein, one skilled in the art would appreciate that substitutions of one EM device feature for another EM device feature may be employed without detracting from the scope of an invention disclosed herein. Accordingly, any and all combinations of EM device features as disclosed herein are contemplated and considered to fall within the ambit of an invention disclosed herein.


Reference is now made to FIGS. 11-12.



FIG. 11 depicts an M×N array 3008 where M=2 and N is unrestricted, similar to the array 3001 of FIG. 5A, but absent the connecting structure 4000 depicted in FIG. 5A. Other like features between FIGS. 11 and 5A are numbered alike.



FIG. 12 depicts an M×N array 3009 where M=2 and N is unrestricted, similar to the array 3007 of FIG. 11, absent a connecting structure 4000, and having a second dielectric portion 2523 similar to that depicted in FIG. 3. Other like features between FIGS. 12 and 11 are numbered alike.


As can be seen by the foregoing descriptions and/or illustrations of FIGS. 1-12, embodiments of the invention may or may not include a connecting structure 4000, and still perform in accordance with an embodiment of an invention disclosed herein. As such, it is contemplated that any embodiment disclosed herein including a connecting structure may be employed absent such connecting structure, and any embodiment disclosed herein absent a connecting structure may be employed with such connecting structure.


Reference is now made to FIG. 13, which depicts an example plan view embodiment of M×N array 3040 where M=2 and N=2, but where the invention is not so limited to a 2×2 array. The array 3040 is representative of any of the foregoing arrays 3001, 3002, 3003, 3004, 3005, 3006, 3007, depicted in FIGS. 5A, 6A, 7A, 8A, 8B, 9A, 10, respectively, absent the corresponding second dielectric portion 2520, 2523, connecting structure 4000, 4030, and/or monolithic structure 5020. As depicted, the array 3040 includes the substrate 3200 with the metal fence structure 3500 having the electrically conductive electromagnetic reflectors 3510 and the electrically conductive base 3514 (the dielectric 3140 being hidden from view), the first dielectric portion 2020, a slotted feed aperture 3130 (which could be replaced with any of the foregoing feed structures), and support portions 3020. Reference is now made to FIG. 14A in combination with FIG. 13, where FIG. 14A depicts the monolithic structure 5010 prior to assembly to the substrate 3200. As depicted, the monolithic structure 5010 has a plurality of second dielectric portions 2520, a plurality of mount portions 4020, and the connecting structure 4000, 4030. While the connecting structure 4000, 4030 is illustrated as completely filling the space between the second dielectric portions 2520 and the mount portions 4020, it will be appreciated that this is for illustration purposes only, and that the connecting structure 4000, 4030 need only have connection branches that interconnect the second dielectric portions 2520 and the mount portions 4020 to form the monolithic structure 5010. See for example FIG. 14B depicting the same second dielectric portions 2520 and mount portions 4020 as those depicted in FIG. 14A, but with the connecting structure 4000, 4030 being a plurality of interconnected ribs, where the combination forms the monolithic structure 5010. A comparison between FIG. 14A and at least FIGS. 5A and 7A will show that the connecting structure 4000, 4030 is disposed at a distance away from the substrate 3200, which may be occupied by air or some non-gaseous dielectric material. Those portions of the monolithic structure 5010 that are disposed a distance away for the substrate 3200 are also herein referred to as a non-attachment zone 4222.


Reference is now made to FIGS. 15-21, which depict alternative arrangements for the mount portions 4020, the array layout of the dielectric structures 2000 where only the second dielectric portions 2520 of the dielectric structures 2000 are depicted in FIGS. 15-21, and the resulting connecting structure 4000, 4030. In FIG. 15 the second dielectric portions 2520 are arranged in a rectilinear layout, and the mount portions 4120 are arranged to completely surround the second dielectric portions 2520 (and the resulting dielectric structures 2000). In FIG. 16 the second dielectric portions 2520 are arranged in a rectilinear layout, and the mount portions 4220 are arranged to partially surround the second dielectric portions 2520, with at least one non-attachment region 4222 being present between the monolithic and the substrate. In FIG. 17 the second dielectric portions 2520 are arranged in a non-rectilinear layout, and the mount portions 4120 are arranged to completely surround the second dielectric portions 2520, similar to that of FIG. 15. In FIG. 18 the second dielectric portions 2520 are arranged in a non-rectilinear layout, and the mount portions 4320 are arranged to completely surround the second dielectric portions 2520, similar to that of FIGS. 15 and 17, but with additional thicker mount portions 4322 placed in strategic locations such as the corners of the array for example. In FIG. 19 the second dielectric portions 2520 are arranged in a non-rectilinear layout, and the mount portions 4322 are formed via the additional thicker mount portions 4322 depicted in FIG. 18 absent the surrounding mount portions 4320 depicted in FIG. 18, resulting in at least one non-attachment region 4222 being present between the monolithic and the substrate. In FIG. 20 the second dielectric portions 2520 are arranged in a non-rectilinear layout, and the mount portions 4420 are formed via the additional thicker mount portions 4322 depicted in FIG. 18 with just a portion of the surrounding mount portions 4320 depicted in FIG. 18, resulting in at least one non-attachment region 4222 being present between the monolithic and the substrate. In FIG. 21 the second dielectric portions 2520 are arranged in a non-rectilinear layout, and the mount portions 4520 are formed via the additional thicker mount portions 4322 depicted in FIG. 18 with additional portions of the surrounding mount portions 4320 depicted in FIG. 18, resulting in at least one non-attachment region 4222 being present between the monolithic and the substrate. The connecting structures 4000, 4030 of FIGS. 15-21 may be formed to interconnect the corresponding mount portions 4120, 4220, 4222, 4320, 4322, 4420, 4520 and the second dielectric portions 2520 in any manner consistent with the disclosure herein.


From the foregoing, it will be appreciated that an embodiment of the invention includes an EM device 1000 where each of the at least one support portion 3020 of the substrate 3200 and the corresponding one of the at least one mount portion 4020, 4120, 4220, 4222, 4320, 4322, 4420, 4520 of the connecting structure 4000, 4030 are attached to each other to define a first attachment zone 4020, 4120, 4220, 4222, 4320, 4322, 4420, 4520, each one of the first dielectric portions 2020 of the array 3000, 3001, 3002, 3003, 3004, 3005, 3006, 3007, 3008, 3009 and the substrate 3200 are attached to each other to define a second attachment zone (aggregate of contact regions between the first dielectric portions 2020 and the substrate 3200), and a zone between the single monolithic structure 5000, 5010 and the substrate 3200 that is other than the first attachment zone or the second attachment zone defines a non-attachment zone 4222. In an embodiment, the first attachment zone at least partially surrounds the second attachment zone. Alternatively in an embodiment, the first attachment zone completely surrounds the second attachment zone.


From the foregoing, it will be appreciated that there are many variations, too many to list exhaustively, for configuring the mount portions and connecting structures, as well as the layout of the dielectric structures, for providing an embodiment consistent with the disclosure herein. Any and all such arrangements consistent with the disclosure herein are contemplated and considered to fall within the scope of an invention disclosed herein.


Reference is now made to FIGS. 22-23, which illustrate mathematical modeling data showing the advantages of an example embodiment disclosed herein and generally represented by FIGS. 7A, 13 and 14A. FIG. 22 depicts the performance characteristics, more particularly the dBi gain and S(1, 1) return loss, for a single radiating dielectric structure 2000, more particularly a single unit cell 1020, having both the first dielectric portion 2020 and the second dielectric portion 2520 of an embodiment disclosed herein. As depicted, the bandwidth is 21% at −10 dBi between 69 GHz and 85 GHz, the gain is substantially constant with a peak of 12.3 dBi at 79 GHz in the 21% bandwidth, and three of the resonant modes in the 21% bandwidth are TE modes, TE01, TE02, TE03. FIG. 23 depicts a comparison of the S(1, 1) return loss performance characteristics of the same unit cell 1020 as that associated with FIG. 22, with and without the second dielectric portion 2520, which is presented to illustrate the advantages of an embodiment disclosed herein. Curve 2300 depicts the S(1, 1) characteristic with the second dielectric portion 2520, and curve 2310 depicts the S(1, 1) characteristic absent the second dielectric portion 2520. As can be seen, use of the second dielectric portion 2520 enhances the minimum return loss by at least 40 dBi over the operating frequency range from 69 GHz to 85 GHz.


In view of the foregoing, it will be appreciated that an EM device 1000 as disclosed herein is operable having an operating frequency range having at least two resonant modes at different center frequencies, where at least one of the resonant modes is supported by the presence of the second dielectric portion 2520. In an embodiment, the at least two resonant modes are TE modes. It will also be appreciated that an EM device 1000 as disclosed herein is operable having an operating frequency range having at least three resonant modes at different center frequencies, where at least two of the at least three resonant modes are supported by the presence of the second dielectric portion 2520. In an embodiment, the at least three resonant modes are TE modes. In an embodiment, the EM device 1000 is operable having a minimum return loss value in an operating frequency range, and wherein removal of the second dielectric portion 2520 increases the minimum return loss value in the operating frequency range by at least 5 dBi, alternatively by at least 10 dBi, alternatively by at least 20 dBi, alternatively by at least 30 dBi, and further alternatively by at least 40 dBi.


With reference back to FIGS. 1C, 1D and at least FIG. 4, it will be appreciated that an embodiment includes a second dielectric portion 2550, alternatively herein referred to as an electromagnetic (EM) dielectric lens, having at least one lens portion (also herein referred to by reference numeral 2550) formed of at least one dielectric material, where the at least one lens portion 2550 has a cavity 2700 outlined by the boundary of the at least one dielectric material. In an embodiment, the at least one lens portion 2550 is formed from a plurality of layered lens portions (depicted by dashed lines 2552. In an embodiment, the plurality of lens portions 2550, 2552 are arranged in an array (see array 3000 in FIG. 4 for example). In an embodiment, the plurality of lens portions 2550, 2552 are connected (see connecting structure 4000 in FIG. 4 for example), where connection of the plurality of lens portions 2550, 2552 is provided by at least one dielectric material. In an embodiment, the EM dielectric lens 2550 is an all-dielectric structure.


In view of the foregoing description of structure of an EM device 1000 as herein disclosed, it will be appreciated that an embodiment also includes a method of making such EM device 1000, which includes: providing a substrate; disposing a plurality of first dielectric portions, FDPs, on the substrate, each FDP of the plurality of FDPs having a proximal end and a distal end and comprising a dielectric material other than air, the proximal end of each FDP being disposed on the substrate; disposing a second dielectric portion, SDP, proximate each FDP, each SDP having a proximal end and a distal end, the proximal end of each SDP being disposed proximate the distal end of a corresponding FDP, each SDP comprising a dielectric material other than air, the dielectric material of each FDP having an average dielectric constant that is greater than the average dielectric constant of the dielectric material of a corresponding SDP, each FDP and corresponding SDP forming a dielectric structure. In an embodiment of the method, each SDP is physically connected to at least one other of the SDPs via a connecting structure formed of a non-gaseous dielectric material, the connecting structure and the connected SDPs forming a single monolithic structure. In an embodiment of the method, the disposing a SDP includes disposing the single monolithic structure proximate each FDP. In an embodiment of the method, the single monolithic structure is a single dielectric material having a seamless and contiguous structure. In an embodiment of the method, the method further includes attaching the single monolithic structure to the substrate. In an embodiment of the method, the attaching includes attaching via bonding, posts of the single monolithic structure onto support platforms of the substrate. In an embodiment of the method, the attaching includes attaching via snap-fitting, snap-fit posts of the single monolithic structure into shouldered holes of the substrate. In an embodiment of the method, the attaching includes attaching stepped-down posts of the single monolithic structure only partially into through holes of the substrate, and applying a bonding material in the through holes to bond the posts to the substrate. In an embodiment of the method, the dielectric structure is an all-dielectric structure.


With general reference to the foregoing, reference is now made specifically to FIGS. 24A through 31, which depict alternative embodiments to those described hereinabove, and which are described herein below with reference to the following aspects.


Aspect-1 (see FIGS. 24A, 24B, and 24C, for example): An embodiment of an electromagnetic, EM, device 6100 (similar to EM device 1000 of FIG. 1A, but having an alternative EM signal feed and a plurality of alternative dielectric structures), comprises: a plurality of dielectric structures 6200, each dielectric structure of the plurality of dielectric structures comprising: a first dielectric portion, FDP, 6202 having a proximal end 6204 and a distal end 6206, the FDP 6202 comprising a dielectric material other than air; and a second dielectric portion, SDP, 6252 having a proximal end 6254 and a distal end 6256, the proximal end 6254 of the SDP 6252 being disposed proximate the distal end 6206 of the FDP 6202, the SDP 6252 comprising a dielectric material other than air; wherein the dielectric material of the FDP 6202 has an average dielectric constant that is greater than the average dielectric constant of the dielectric material of the SDP 6252; wherein the SDP 6252 has an overall height dimension HS as observed in a side elevation view (see FIG. 24B for example), and the proximal end 6254 of the SDP 6252 has an overall width dimension W1 as observed in a side elevation view (see FIG. 24B for example); wherein HS is equal to or greater than 2.5 times W1, and is equal to or less than 55 times W1.


Aspect-2: The device 6100 of Aspect-1, wherein HS is equal to or greater than 3 times W1.


Aspect-3: The device 6100 of Aspect1, wherein the SDP 6252 has a generally cylindrical shape.


Aspect-4: The device 6100 of Aspect-1, wherein the distal end 6256 of each SDP 6252 has a relatively thin connecting structure 6280 that integrally interconnects a neighboring SDP 6252.1, 6252.2, wherein the relatively thin connecting structure 6280 has a thickness t that is relatively thin in relation to W1. In an embodiment, t is equal to or greater than 0.1 times W1, and equal to or less than 0.5 times W1, or alternatively equal to or less than 0.2 times W1.


Aspect-5: The device 6100 of Aspect-1, further comprising: a substrate integrated waveguide, SIW, 6300 upon which the plurality of dielectric structures 6200 are disposed.


Aspect-6: The device 6100 of Aspect-5 (best seen with reference to FIG. 24C in combination with FIGS. 24A and 24B), wherein the SIW 6300 comprises: a lower electrically conductive layer 6302; an upper electrically conductive layer 6304; a dielectric layer 6306 disposed between the lower and the upper conductive layers 6302, 6304; a plurality of electrically conductive vias 6308 disposed between and in electrical communication with the lower and upper conductive layers 6302, 6304, the plurality of conductive vias 6308 arranged to form an electromagnetic, EM, waveguide 6310 of the SIW 6300; wherein a first portion 6320 of the SIW 6300 comprises a coplanar signal feed 6322 formed in the upper conductive layer 6304 via an absence 6324 of conductive material of the upper conductive layer 6304, the signal feed 6322 disposed to electromagnetically cooperate with the EM waveguide 6310; wherein a second portion 6330 of the SIW 6300 provides a support for the plurality of dielectric structures 6200 and is an extension of the first portion 6320 of the SIW 6300 (wherein the lower conductive layers 6302 of the first and second portions 6320, 633 are coplanar, and the upper conductive layers 6304 of the first and second portions 6320, 633 are coplanar), the plurality of dielectric structures 6200 disposed to electromagnetically cooperate with the EM waveguide 6310; wherein the signal feed 6322 is disposed on the first portion 6320 and not on the second portion 6330.


Aspect-7: The device 6100 of Aspect-6, wherein: the signal feed 6322 has a signal input region 6326 and a signal output region 6328; the signal output region 6328 being disposed a distance d from the second portion 6330; and d is greater than zero and equal to or less than λ/20, where λ is an operational wavelength at an operating frequency of the device 6100.


Aspect-8: The device 6100 of Aspect-7, further comprising: an electromagnetic reflective, EMR, structure 6400 having a plurality of electromagnetic reflectors 6410, each reflector of the plurality of electromagnetic reflectors 6410 disposed around and in one-to-one correspondence with a corresponding one of the plurality of dielectric structures 6200; the EMR structure 6400 disposed in electrical communication with the upper conductive layer 6304 on the second portion 6330 of the SIW 6300.


Aspect-9: The device 6100 of Aspect-8, wherein: the EMR structure 6400 has a height HR that is equal to or less than 0.25 times HS.


Aspect-10: The device 6100 of Aspect-7, wherein: the coplanar signal feed 6322 has a signal input impedance of about 50 ohm, and a signal output impedance of greater than 50 ohm.


Aspect-11: The device 6100 of Aspect-7, wherein: a portion 6312 of the plurality of electrically conductive vias 6308 of the EM waveguide 6310 are disposed on each side of and are proximate the signal feed 6308, and are arranged relative to each other so as to form a wall of overlapping vias as observed in a side view (see FIG. 24B for example) of the SIW 6300 to reduce sideways signal leakage from the signal feed.


Aspect-12: The device 6100 of Aspect-7, wherein: each dielectric structure of the plurality of dielectric structures 6200 within a given SIW 6300 has a central vertical axis 6208, 6210, parallel to a z-axis of the device 6100 (see FIG. 24A for example), that is sideways offset 6212 relative to each other within the confines of the corresponding SIW 6300 as observed in a plan view of the device 6100 (see FIG. 24C for example).


Aspect-13: The device 6100 of Aspect-12, wherein: the central vertical axes 6208, 6210 of closest neighboring ones of the plurality of dielectric structures 6200 within a given SIW 6300 are disposed a distance from each other by a distance of λ/2.


Aspect-14: The device 6100 of Aspect-8, wherein: in response to electrical excitation at the signal feed 6322 at a frequency of between about 52.5 GHz and about 65 GHz, the device 6100 is operable to radiate an electromagnetic radiation field having at least four transverse electric, TE, modes of radiation, as observed from the analytical modeling data depicted in FIG. 25. An advantage of being able to radiate at least four TE modes of radiation, using tall (high aspect ratio) SDPs 6252 as disclosed herein, is enhanced bandwidth with a flat gain over the bandwidth, also as observed in the analytical modeling data depicted in FIG. 25, which shows a gain of 10-12 dBi over a bandwidth of 20%. While FIG. 25 depicts only four TE modes of radiation (TE1, TE2, TE3, TE4), it is contemplated that a greater number of TE modes of radiation may be possible by applying the teachings of the disclosure herein, thereby further improving gain, bandwidth, or both.


Aspect-15: The device 6100 of Aspect-14, wherein: the device 6100 is operable with a gain of at least 10 dBi over the four TE modes of radiation (see FIG. 25 for example). FIGS. 26, 27, and 28, provide additional analytical modeling data for the device 6100. For example: FIG. 26 shows a gain in excess of 12 dBi with a bandwidth of about 13.3%; FIG. 27 shows a beam squint of +/−2 degrees with only a 0.6 dBi gain drop at Phi=0 degrees; and, FIG. 28 shows a beam squint of +/−2 degrees with only a 0.6 dBi gain drop at Phi=90 degrees.


Aspect-16 (see FIGS. 29A, 29B and 29C, with reference to FIGS. 24A, 24B, and 24C, for example): An electromagnetic array 6500 comprising a plurality of the device 6100 of Aspect-8 integrally arranged side by side each other wherein each lower conductive layer 602 is continuous, each upper conductive layer 6304 is continuous, each dielectric layer 6306 is continuous, and a combination of each EMR structure 6400 of each device 6100 forms an aggregate EMR structure 6420, wherein: the aggregate EMR structure 6420 has a first portion 6422 that includes the plurality of electromagnetic reflectors 6410, and a second portion 6424 that includes a plurality of electromagnetic reflective, EMR, extensions 6426, each signal feed 6322 being flanked on each side by one of the plurality of EMR extensions 6426 that serves to improve signal isolation between adjacent ones of the signal feeds 6322.


Aspect-17: The array 6500 of Aspect-16, wherein: the central vertical axes 6208, 6210 of closest neighboring ones of the plurality of dielectric structures 6200 within a given SIW 6300 are disposed a distance 6212 from each other by a distance of λ/2.


Aspect-18 (with specific reference now to FIG. 30C and general reference to FIGS. 30A and 30B in combination with FIGS. 29A, 29B, and 29C): The array 6500 of Aspect-17, wherein: the central vertical axes 6214, 6216 of closest neighboring ones of the plurality of dielectric structures 6200 in neighboring SIWs 6300.1, 6300.2 are disposed a distance 6218 from each other by a distance of λ/4.


Aspect-19: The device 6100 of Aspect-6, wherein: the FDP 6202 has a first dielectric constant value, Dk1; the SDP 6252 has a second dielectric constant value, Dk2; the dielectric layer 6306 of the SIW 6300 has a third dielectric constant value, Dk3; Dk2 is less than Dk1, and Dk3 less than Dk1.


Aspect-20: The device 6100 of Aspect-19, wherein: Dk3 is equal to or greater than Dk2.


Aspect-21: The device 6100 of Aspect-19, wherein: Dk3 is equal to or less than 0.5 times Dk1.


Aspect-22 (see FIG. 31 in combination with FIGS. 29A, 29B, 29C, 30A, 30B, and 30C, for example): An electromagnetic device 6600, comprising: a first electromagnetic, EM, signal feed 6322.1; a second EM signal feed 6322.2 disposed adjacent to the first EM signal feed 6322.1; and, an elevated electrically conductive region 6426 disposed between and elevated relative to the first and second EM signal feeds 6322.1, 6322.2.


Aspect-23: The device 6600 of Aspect-22, wherein: the first and second EM signal feeds 6322.1, 6322.2 are disposed on a feed substrate 6300; the elevated electrically conductive region 6426 comprises a metal-plated substrate having a first elongated cavity 6602 disposed over the first EM signal feed 6322.1, and a second elongated cavity 6604 disposed over the second EM signal feed 6322.2, and an elongated electrically conductive finger 6426 that forms the elevated electrically conductive region disposed between the first and second EM signal feeds 6322.1, 6322.2.


Aspect-24: The device 6600 of Aspect-23, wherein: the feed substrate 6300 comprises an upper electrically conductive layer 6304; and the elongated electrically conductive finger 6426 is electrically bonded to the upper electrically conductive layer 6304 of the feed substrate 6300.


Aspect-25: The device 6600 of Aspect-23, wherein: the feed substrate 6300 comprises a first portion 6320 having the first and second EM signal feeds 6322.1, 6322.2 arranged thereon, and a second portion 6330 that provides a support region (upper surface of the upper electrically conductive layer 6304) for a plurality of dielectric structures 6200 and is an extension of the first portion 6320; a first set 6200.1 of the plurality of dielectric structures is disposed to electromagnetically cooperate with the first EM signal feed 6322.1, and a second set 6200.2 of the plurality of dielectric structures is disposed to electromagnetically cooperate with the second EM signal feed 6322.2; and the first and second EM signal feeds 6322.1, 6322.2 are disposed on the first portion 6320 and not on the second portion 6330.


Aspect-26: The device 6600 of Aspect-25, wherein: the plurality of dielectric structures 6200 is disposed on the support region of the second portion 6330.


Aspect-27: The device 6600 of Aspect-26, wherein each dielectric structure of the plurality of dielectric structures 6200 comprises: a first dielectric portion, FDP, 6202 having a proximal end 6204 and a distal end 6206, the FDP 6202 comprising a dielectric material other than air; and a second dielectric portion, SDP, 6252 having a proximal end 6254 and a distal end 6256, the proximal end 6254 of the SDP 6252 being disposed proximate the distal end 6206 of the FDP 6202, the SDP 6252 comprising a dielectric material other than air; wherein the dielectric material of the FDP 6202 has an average dielectric constant that is greater than the average dielectric constant of the dielectric material of the SDP 6252.


Aspect-28: The device 6600 of Aspect-27, wherein: at least the FDP 6202 is a dielectric resonator structure.


Aspect-29: The device 6600 of Aspect-27, wherein: the distal end 6256 of each SDP 6252 has a relatively thin connecting structure 6280 that integrally interconnects a neighboring SDP 6252.1, 6252.2, wherein the relatively thin connecting structure 6280 has a thickness t that is relatively thin in relation to an overall width dimension W1, as observed in a side elevation view, of the proximal end 6254 of a given SDP 6252.


Aspect-30: The device 6600 of Aspect-27, wherein: the FDP 6202 has a first dielectric constant Dk1 that is equal to or greater than 10 and equal to or less than 20; and the SDP 6252 has a second dielectric constant Dk2 that is greater than the dielectric constant of air and equal to or less than 9.


Aspect-31: The device 6600 of Aspect-30, wherein: the SDP 6252 has an overall height dimension HS as observed in a side elevation view, and the proximal end 6254 of the SDP 6252 has an overall width dimension W1 as observed in a side elevation view; and HS is equal to or greater than 2.5 times W1, and is equal to or less than 55 times W1.


Aspect-32: The device 6600 of Aspect-30, further comprising: an electromagnetic reflective, EMR, structure 6400 having a plurality of electromagnetic reflectors 6410, each reflector of the plurality of electromagnetic reflectors 6410 disposed around and in one-to-one correspondence with a corresponding one of the plurality of dielectric structures 6200; the EMR structure 6400 disposed in electrical communication with the second portion 6330 of the feed substrate 6300; and the EMR structure 6400 disposed in electrical communication with the elevated electrically conductive region 6426 disposed between the first and second EM signal feeds 6322.1, 6322.2.


Aspect-33: The device 6600 of Aspect-24, wherein: each of the first and the second EM signal feeds 6322.1, 6322.2 are formed in the upper electrically conductive layer 6304 via an absence 6324.16324.2 of conductive material of the upper electrically conductive layer 6304.


Aspect-34: The device 6600 of Aspect-33, wherein the feed substrate is a substrate integrated waveguide, SIW, 6300 and further comprises: a lower electrically conductive layer 6302; a dielectric layer 6306 disposed between the lower and the upper electrically conductive layers 6302, 6304; a plurality of electrically conductive vias 6308 disposed between and in electrical communication with the lower and upper electrically conductive layers 6302, 6304, the plurality of electrically conductive vias 6308 arranged to form first and second electromagnetic, EM, waveguides 6310.1 and 6310.2 of the SIW 6300, which electromagnetically cooperate with the first and second EM signal feeds 6322.1, 6322.2, respectively; wherein a first portion 6320 of the SIW 6300 comprises a coplanar signal feed structure having the first and second EM signal feeds 6322.1, 6322.2; wherein a second portion 6330 of the SIW 6300 provides a support for a plurality of dielectric resonator structures 6200 (see FIGS. 24A, 29A, and 30A) and is an extension of the first portion 6320 of the SIW 6300; wherein a first set 6200.1 of the plurality of dielectric resonator structures 6200 is disposed to electromagnetically cooperate with the first EM waveguide 6310.1, and a second set 6200.2 of the plurality of dielectric resonator structures 6200 is disposed to electromagnetically cooperate with the second EM waveguide 6310.2; wherein the first and second EM signal feeds 6322.1, 6322.2 are disposed on the first portion 6320 and not on the second portion 6330.


Aspect-35: The device 6600 of Aspect-34, wherein: each of the first and second EM signal feeds 6322.1, 6322.2 has a signal input region 6326 and a signal output region 6328 (see FIG. 24C for example); the signal output region 6328 being disposed a distance d from the second portion 6330 (see FIG. 24C for example); and d is greater than zero and equal to or less than λ/20, where λ is an operational wavelength at an operating frequency of the device.


Aspect-36 (best seen with reference to FIGS. 31 and 24C): The device 6600 of Aspect-35, further comprising: an electromagnetic reflective, EMR, structure 6400 having a plurality of electromagnetic reflectors 6410, each reflector of the plurality of electromagnetic reflectors 6410 disposed around and in one-to-one correspondence with a corresponding one of the plurality of dielectric resonator structures 6200; the EMR structure 6400 disposed in electrical communication with the upper conductive layer 6304 on the second portion 6330 of the SIW 6300; the EMR structure 6400 disposed in electrical communication with the elevated electrically conductive region 6426 disposed between the first and second EM signal feeds 6322.1, 6322.2.


Aspect-37: The device 6600 of Aspect-36, wherein: each of the first and second EM signal feeds 6322.1, 6322.2 of the coplanar signal feed structure has a signal input impedance of about 50 ohm, and a signal output impedance of greater than 50 ohm.


Aspect-38: The device 6600 of Aspect-36, wherein: the plurality of electrically conductive vias 6308 of a corresponding one of the first and second EM waveguides 6310.1, 6310.2 are disposed on each side of and are proximate the corresponding EM signal feed 6322.1, 6322.2, and are arranged relative to each other so as to form a wall of overlapping vias 6312 (best seen with reference to FIG. 24B) as observed in a side view of the SIW 6300 to reduce sideways signal leakage from the corresponding EM signal feed 6322.1, 6322.2.


Aspect-39: The device 6600 of Aspect-34, wherein each dielectric resonator structure of the plurality of dielectric resonator structures 6200 comprises: a first dielectric portion, FDP, 6202 having a proximal end 6204 and a distal end 6206, the FDP 6202 comprising a dielectric material other than air; and a second dielectric portion, SDP, 6252 having a proximal end 6254 and a distal end 6256, the proximal end 6254 of the SDP 6252 being disposed proximate the distal end 6206 of the FDP 6202, the SDP 6252 comprising a dielectric material other than air; wherein the dielectric material of the FDP 6202 has an average dielectric constant that is greater than the average dielectric constant of the dielectric material of the SDP 6252.


Aspect-40: The device 6600 of Aspect-39, wherein: the FDP 6202 has a first dielectric constant Dk1 that is equal to or greater than 10 and equal to or less than 20; and the SDP 6252 has a second dielectric constant Dk2 that is greater than the dielectric constant of air and equal to or less than 9.


Aspect-41: The device 6600 of Aspect-40, wherein: the SDP 6252 has an overall height dimension HS as observed in a side elevation view, and the proximal end 6254 of the SDP 6252 has an overall width dimension W1 as observed in a side elevation view; and HS is equal to or greater than 2.5 times W1, and is equal to or less than 55 times W1.


As used herein with respect to the foregoing Aspects 1-41, reference to the term elevated, means elevated in a positive z-direction along the z-axis of the x-y-z orthogonal coordinate system as depicted in FIGS. 24A, 29A, and 30A.


In view of all of the foregoing, while certain combinations of EM device features have been described herein, it will be appreciated that these certain combinations are for illustration purposes only and that any combination of any of the EM device features disclosed herein may be employed in accordance with an embodiment of the invention. Any and all such combinations are contemplated herein and are considered to fall within the ambit of an invention disclosed herein.


While an invention has been described herein with reference to example embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the claims. Many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment or embodiments disclosed herein as the best or only mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. In the drawings and the description, there have been disclosed example embodiments and, although specific terms and/or dimensions may have been employed, they are unless otherwise stated used in a generic, exemplary and/or descriptive sense only and not for purposes of limitation, the scope of the claims therefore not being so limited. When an element such as a layer, film, region, substrate, or other described feature is referred to as being “on” another element, it can be directly on the other element, or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. The use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. The use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. The term “comprising” as used herein does not exclude the possible inclusion of one or more additional features. And, any background information provided herein is provided to reveal information believed by the applicant to be of possible relevance to the invention disclosed herein. No admission is necessarily intended, nor should be construed, that any of such background information constitutes prior art against an embodiment of the invention disclosed herein.

Claims
  • 1. An electromagnetic device, comprising: a first electrically conductive electromagnetic, EM, signal feed formed on a feed substrate;a second electrically conductive EM signal feed disposed adjacent to the first EM signal feed formed on the feed substrate; andan elevated electrically conductive region formed by an electrically conductive substrate electrically bonded to the feed substrate, the elevated electrically conductive region being disposed between and elevated relative to the first and second electrically conductive EM signal feeds.
  • 2. The device of claim 1, wherein: the electrically conductive substrate further comprises a first elongated cavity disposed over the first electrically conductive EM signal feed, and a second elongated cavity disposed over the second electrically conductive EM signal feed, and an elongated electrically conductive finger that forms the elevated electrically conductive region disposed between the first and second electrically conductive EM signal feeds.
  • 3. The device of claim 2, wherein: the feed substrate comprises an upper electrically conductive layer; andthe elongated electrically conductive finger is electrically connected to the upper electrically conductive layer of the feed substrate.
  • 4. The device of claim 2, wherein: the feed substrate comprises a first portion having the first and second EM signal feeds arranged thereon, and a second portion that provides a support region for a plurality of dielectric structures and is an extension of the first portion;a first set of the plurality of dielectric structures is disposed to electromagnetically cooperate with the first EM signal feed, and a second set of the plurality of dielectric structures is disposed to electromagnetically cooperate with the second EM signal feed; andthe first and second EM signal feeds are disposed on the first portion and not on the second portion.
  • 5. The device of claim 4, wherein: the plurality of dielectric structures is disposed on the support region of the second portion.
  • 6. The device of claim 5, wherein each dielectric structure of the plurality of dielectric structures comprises: a first dielectric portion, FDP, having a proximal end and a distal end, the FDP comprising a dielectric material other than air; anda second dielectric portion, SDP, having a proximal end and a distal end, the proximal end of the SDP being disposed proximate the distal end of the FDP, the SDP comprising a dielectric material other than air;wherein the dielectric material of the FDP has an average dielectric constant that is greater than the average dielectric constant of the dielectric material of the SDP.
  • 7. The device of claim 6, wherein: at least the FDP is a dielectric resonator structure.
  • 8. The device of claim 6, wherein: the distal end of each SDP has a relatively thin connecting structure that integrally interconnects a neighboring SDP, wherein the relatively thin connecting structure has a thickness t that is relatively thin in relation to an overall width dimension W1, as observed in a side elevation view, of the proximal end of a given SDP.
  • 9. The device of claim 6, wherein: the FDP has a first dielectric constant Dk1 that is equal to or greater than 10 and equal to or less than 20; andthe SDP has a second dielectric constant Dk2 that is greater than the dielectric constant of air and equal to or less than 9.
  • 10. The device of claim 9, wherein: the SDP has an overall height dimension HS as observed in a side elevation view, and the proximal end of the SDP has an overall width dimension W1 as observed in a side elevation view; andHS is equal to or greater than 2.5 times W1, and is equal to or less than 55 times W1.
  • 11. The device of claim 9, further comprising: an electromagnetic reflective, EMR, structure having a plurality of electromagnetic reflectors, each reflector of the plurality of electromagnetic reflectors disposed around and in one-to-one correspondence with a corresponding one of the plurality of dielectric structures;the EMR structure disposed in electrical communication with the second portion of the feed substrate; andthe EMR structure disposed in electrical communication with the elevated electrically conductive region disposed between the first and second EM signal feeds.
  • 12. The device of claim 3, wherein: each of the first and the second EM signal feeds are formed in the upper electrically conductive layer via an absence of conductive material of the upper electrically conductive layer.
  • 13. The device of claim 12, wherein the feed substrate is a substrate integrated waveguide, SIW, and further comprises: a lower electrically conductive layer;a dielectric layer disposed between the lower and the upper electrically conductive layers;a plurality of electrically conductive vias disposed between and in electrical communication with the lower and upper electrically conductive layers, the plurality of electrically conductive vias arranged to form first and second electromagnetic, EM, waveguides of the SIW, which electromagnetically cooperate with the first and second EM signal feeds, respectively;wherein a first portion of the SIW comprises a coplanar signal feed structure having the first and second EM signal feeds;wherein a second portion of the SIW provides a support for a plurality of dielectric resonator structures and is an extension of the first portion of the SIW;wherein a first set of the plurality of dielectric resonator structures is disposed to electromagnetically cooperate with the first EM waveguide, and a second set of the plurality of dielectric resonator structures is disposed to electromagnetically cooperate with the second EM waveguide;wherein the first and second EM signal feeds are disposed on the first portion and not on the second portion.
  • 14. The device of claim 13, wherein: each of the first and second EM signal feeds has a signal input region and a signal output region;the signal output region being disposed a distance d from the second portion; andd is greater than zero and equal to or less than λ/20, where λ, is an operational wavelength at an operating frequency of the device.
  • 15. The device of claim 14, further comprising: an electromagnetic reflective, EMR, structure having a plurality of electromagnetic reflectors, each reflector of the plurality of electromagnetic reflectors disposed around and in one-to-one correspondence with a corresponding one of the plurality of dielectric resonator structures;the EMR structure disposed in electrical communication with the upper conductive layer on the second portion of the SIW;the EMR structure disposed in electrical communication with the elevated electrically conductive region disposed between the first and second EM signal feeds.
  • 16. The device of claim 15, wherein: each of the first and second EM signal feeds of the coplanar signal feed structure has a signal input impedance of about 50 ohm, and a signal output impedance of greater than 50 ohm.
  • 17. The device of claim 15, wherein: the plurality of electrically conductive vias of a corresponding one of the first and second EM waveguides are disposed on each side of and are proximate the corresponding EM signal feed, and are arranged relative to each other so as to form a wall of overlapping vias as observed in a side view of the SIW to reduce sideways signal leakage from the corresponding EM signal feed.
  • 18. The device of claim 13, wherein each dielectric resonator structure of the plurality of dielectric resonator structures comprises: a first dielectric portion, FDP, having a proximal end and a distal end, the FDP comprising a dielectric material other than air; anda second dielectric portion, SDP, having a proximal end and a distal end, the proximal end of the SDP being disposed proximate the distal end of the FDP, the SDP comprising a dielectric material other than air;wherein the dielectric material of the FDP has an average dielectric constant that is greater than the average dielectric constant of the dielectric material of the SDP.
  • 19. The device of claim 18, wherein: the FDP has a first dielectric constant Dk1 that is equal to or greater than 10 and equal to or less than 20; and the SDP has a second dielectric constant Dk2 that is greater than the dielectric constant of air and equal to or less than 9.
  • 20. The device of claim 19, wherein: the SDP has an overall height dimension HS as observed in a side elevation view, and the proximal end of the SDP has an overall width dimension W1 as observed in a side elevation view; andHS is equal to or greater than 2.5 times W1, and is equal to or less than 55 times W1.
  • 21. The electromagnetic device of claim 1, wherein: the first electrically conductive electromagnetic, EM, signal feed is formed in an upper electrically conductive layer of a metal-plated substrate via an absence of conductive material of the upper electrically conductive layer;the second electrically conductive EM signal feed disposed adjacent to the first EM signal feed is formed in the upper electrically conductive layer of the metal-plated substrate via an absence of conductive material of the upper electrically conductive layer; andthe electrically conductive region is formed by the electrically conductive substrate that also comprises a first elongated cavity disposed over the first electrically conductive EM signal feed, and a second elongated cavity disposed over the second electrically conductive EM signal feed.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 62/693,057, filed Jul. 2, 2018, which is incorporated herein by reference in its entirety. This application also claims the benefit of U.S. Provisional Application Ser. No. 62/633,256, filed Feb. 21, 2018, which is incorporated herein by reference in its entirety. This application also claims the benefit of U.S. Provisional Application Ser. No. 62/617,358, filed Jan. 15, 2018, which is incorporated herein by reference in its entirety.

US Referenced Citations (311)
Number Name Date Kind
2624002 Bouix Oct 1952 A
3212454 Ringenbach Oct 1965 A
3255453 Horst Jun 1966 A
3321765 Peters et al. May 1967 A
3321821 Horst May 1967 A
4274097 Krall et al. Jun 1981 A
4288795 Shelton Sep 1981 A
4366484 Weiss et al. Dec 1982 A
4458249 Valentino et al. Jul 1984 A
4575330 Hull Mar 1986 A
4743915 Rammos et al. May 1988 A
4929402 Hull May 1990 A
4983910 Majidi-Ahy Jan 1991 A
5061943 Rammos Oct 1991 A
5104592 Hull et al. Apr 1992 A
5125111 Trinh Jun 1992 A
5184307 Hull et al. Feb 1993 A
5192559 Hull et al. Mar 1993 A
5227749 Raguenet et al. Jul 1993 A
5234636 Hull et al. Aug 1993 A
5236637 Hull Aug 1993 A
5273691 Hull et al. Dec 1993 A
5453754 Fray Sep 1995 A
5476749 Steinmann et al. Dec 1995 A
5589842 Wang et al. Dec 1996 A
5667796 Otten Sep 1997 A
5677796 Zimmerman et al. Oct 1997 A
5828271 Stitzer Oct 1998 A
5854608 Leisten Dec 1998 A
5867120 Ishikawa et al. Feb 1999 A
5940036 Oliver et al. Aug 1999 A
5943005 Tanizaki et al. Aug 1999 A
5952972 Ittipiboon et al. Sep 1999 A
6008755 Ishikawa et al. Dec 1999 A
6031433 Tanizaki et al. Feb 2000 A
6052087 Ishikawa et al. Apr 2000 A
6061026 Ochi et al. May 2000 A
6061031 Cosenza et al. May 2000 A
6075492 Schmidt et al. Jun 2000 A
6076324 Daily et al. Jun 2000 A
6133887 Tanizaki et al. Oct 2000 A
6147647 Tassoudji et al. Nov 2000 A
6181297 Leisten Jan 2001 B1
6188360 Kato et al. Feb 2001 B1
6198450 Adachi et al. Mar 2001 B1
6268833 Tanizaki et al. Jul 2001 B1
6292141 Lim Sep 2001 B1
6314276 Hilgers et al. Nov 2001 B1
6317095 Teshirogi et al. Nov 2001 B1
6323808 Heinrichs et al. Nov 2001 B1
6323824 Heinrichs et al. Nov 2001 B1
6344833 Lin et al. Feb 2002 B1
6373441 Porath et al. Apr 2002 B1
6437747 Stoiljkovic et al. Aug 2002 B1
6476774 Davidson et al. Nov 2002 B1
6528145 Berger et al. Mar 2003 B1
6552687 Rawnick et al. Apr 2003 B1
6556169 Fukuura et al. Apr 2003 B1
6621381 Kundu et al. Sep 2003 B1
6743744 Kim et al. Jun 2004 B1
6794324 Kim et al. Sep 2004 B1
6816118 Kingsley et al. Nov 2004 B2
6816128 Jennings Nov 2004 B1
6855478 DeVoe et al. Feb 2005 B2
7161535 Palmer et al. Jan 2007 B2
7179844 Aki Feb 2007 B2
7183975 Thomas et al. Feb 2007 B2
7196663 Bozer et al. Mar 2007 B2
7253789 Kingsley et al. Aug 2007 B2
7279030 Kurowski Oct 2007 B2
7292204 Chang et al. Nov 2007 B1
7310031 Pance et al. Dec 2007 B2
7355560 Nagai Apr 2008 B2
7379030 Lier May 2008 B1
7382322 Yang et al. Jun 2008 B1
7443363 Ying Oct 2008 B2
7498969 Paulsen et al. Mar 2009 B1
7534844 Lee et al. May 2009 B2
7545327 Iellici et al. Jun 2009 B2
7550246 Fukuzumi et al. Jun 2009 B2
7570219 Paulsen et al. Aug 2009 B1
7595765 Hirsch et al. Sep 2009 B1
7636063 Channabasappa Dec 2009 B2
7649029 Kolb et al. Jan 2010 B2
7663553 Chang et al. Feb 2010 B2
7688263 Oxley Mar 2010 B1
7710325 Cheng May 2010 B2
7767728 Lu et al. Aug 2010 B2
7796080 Lynch et al. Sep 2010 B1
7824839 Ober et al. Nov 2010 B2
7835600 Yap et al. Nov 2010 B1
7935476 Teng May 2011 B2
7961148 Goldberger Jun 2011 B2
8018397 Jow et al. Sep 2011 B2
8098187 Lynch et al. Jan 2012 B1
8098197 Herting et al. Jan 2012 B1
8119214 Schwantes et al. Feb 2012 B2
8232043 Williamson et al. Jul 2012 B2
8498539 Iichenko et al. Jul 2013 B1
8736502 Langfield et al. May 2014 B1
8773319 Anderson et al. Jul 2014 B1
8902115 Loui et al. Dec 2014 B1
9112273 Christie et al. Aug 2015 B2
9184697 Sekiguchi et al. Nov 2015 B2
9205601 Desimone et al. Dec 2015 B2
9225070 Zeweri et al. Dec 2015 B1
9583837 Xue Feb 2017 B2
9608330 Singleton et al. Mar 2017 B2
9825373 Smith Nov 2017 B1
9930668 Barzegar et al. Mar 2018 B2
10355361 Pance et al. Jul 2019 B2
10476164 Pance et al. Nov 2019 B2
10522917 Pance et al. Dec 2019 B2
10587039 Pance et al. Mar 2020 B2
10601137 Pance et al. Mar 2020 B2
10700438 Gerding Jun 2020 B2
11108159 Pance et al. Aug 2021 B2
20010013842 Ishikawa et al. Aug 2001 A1
20010043158 Adachi et al. Nov 2001 A1
20020000947 Al-Rawi et al. Jan 2002 A1
20020057138 Takagi et al. May 2002 A1
20020067317 Sakurada Jun 2002 A1
20020149108 Ahn Oct 2002 A1
20020180646 Kivekas et al. Dec 2002 A1
20020196190 Lim Dec 2002 A1
20030016176 Kingsley et al. Jan 2003 A1
20030034922 Isaacs et al. Feb 2003 A1
20030043075 Bit-Babik et al. Mar 2003 A1
20030043086 Schaffner et al. Mar 2003 A1
20030122729 Diaz et al. Jul 2003 A1
20030151548 Kingsley et al. Aug 2003 A1
20030181312 Mailadil et al. Sep 2003 A1
20040029709 Oba et al. Feb 2004 A1
20040029985 Aki et al. Feb 2004 A1
20040036148 Block et al. Feb 2004 A1
20040051602 Pance et al. Mar 2004 A1
20040080455 Lee Apr 2004 A1
20040113843 Le Bolzer et al. Jun 2004 A1
20040119646 Ohno et al. Jun 2004 A1
20040127248 Lin et al. Jul 2004 A1
20040130489 Le Bolzer et al. Jul 2004 A1
20040155817 Kingsley et al. Aug 2004 A1
20040233107 Popov et al. Nov 2004 A1
20040257176 Pance et al. Dec 2004 A1
20040263422 Lynch Dec 2004 A1
20050017903 Ittipiboon et al. Jan 2005 A1
20050024271 Ying et al. Feb 2005 A1
20050057402 Ohno et al. Mar 2005 A1
20050099348 Pendry May 2005 A1
20050122273 Legay et al. Jun 2005 A1
20050154567 Jackman et al. Jul 2005 A1
20050162316 Thomas et al. Jul 2005 A1
20050162733 Cho et al. Jul 2005 A1
20050179598 Legay et al. Aug 2005 A1
20050200531 Huang et al. Sep 2005 A1
20050219130 Koch et al. Oct 2005 A1
20050225499 Kingsley et al. Oct 2005 A1
20050242996 Palmer et al. Nov 2005 A1
20050248421 Joodaki Nov 2005 A1
20050264449 Strickland Dec 2005 A1
20050264451 Aikawa et al. Dec 2005 A1
20050264452 Fujishima et al. Dec 2005 A1
20060022875 Pidwerbetsky et al. Feb 2006 A1
20060119518 Ohmi et al. Jun 2006 A1
20060145705 Raja Jul 2006 A1
20060194690 Osuzu Aug 2006 A1
20060220958 Saegrov Oct 2006 A1
20060232474 Fox Oct 2006 A1
20060293651 Cronin Dec 2006 A1
20070067058 Miyamoto et al. Mar 2007 A1
20070152884 Bouche et al. Jul 2007 A1
20070164420 Chen et al. Jul 2007 A1
20070252778 Ide et al. Nov 2007 A1
20080036675 Fujieda Feb 2008 A1
20080042903 Cheng Feb 2008 A1
20080048915 Chang et al. Feb 2008 A1
20080079182 Thompson et al. Apr 2008 A1
20080094309 Pance et al. Apr 2008 A1
20080122703 Ying May 2008 A1
20080129616 Li et al. Jun 2008 A1
20080129617 Li et al. Jun 2008 A1
20080019195 Tokoro et al. Aug 2008 A1
20080193749 Thompson et al. Aug 2008 A1
20080202720 Wagstaff Aug 2008 A1
20080260323 Jalali et al. Oct 2008 A1
20080272963 Chang et al. Nov 2008 A1
20080278378 Chang et al. Nov 2008 A1
20090040131 Mosallaei Feb 2009 A1
20090073332 Irie Mar 2009 A1
20090102739 Chang et al. Apr 2009 A1
20090128262 Lee et al. May 2009 A1
20090128434 Chang et al. May 2009 A1
20090140944 Chang et al. Jun 2009 A1
20090153403 Chang et al. Jun 2009 A1
20090179810 Kato et al. Jul 2009 A1
20090184875 Chang et al. Jul 2009 A1
20090206957 Hiroshima et al. Aug 2009 A1
20090262022 Ying Oct 2009 A1
20090270244 Chen et al. Oct 2009 A1
20090305652 Boffa et al. Dec 2009 A1
20100002312 Duparre et al. Jan 2010 A1
20100051340 Yang et al. Mar 2010 A1
20100103052 Ying Apr 2010 A1
20100156754 Kondou Jun 2010 A1
20100220024 Snow et al. Sep 2010 A1
20100231452 Babakhani et al. Sep 2010 A1
20110012807 Sorvala Jan 2011 A1
20110050367 Yen et al. Mar 2011 A1
20110121258 Hanein et al. May 2011 A1
20110122036 Leung et al. May 2011 A1
20110133991 Lee et al. Jun 2011 A1
20110204531 Hara et al. Aug 2011 A1
20110248890 Lee et al. Oct 2011 A1
20120045619 Ando et al. Feb 2012 A1
20120092219 Kim Apr 2012 A1
20120212386 Massie et al. Aug 2012 A1
20120242553 Leung et al. Sep 2012 A1
20120245016 Curry et al. Sep 2012 A1
20120256796 Leiba Oct 2012 A1
20120274523 Ayatollahi Nov 2012 A1
20120276311 Chirila Nov 2012 A1
20120280380 Kamgaing Nov 2012 A1
20120287008 Kim Nov 2012 A1
20120306713 Raj et al. Dec 2012 A1
20120329635 Hill Dec 2012 A1
20130076570 Lee et al. Mar 2013 A1
20130088396 Han Apr 2013 A1
20130113674 Ryu May 2013 A1
20130120193 Hoppe et al. May 2013 A1
20130127669 Han May 2013 A1
20130234898 Leung et al. Sep 2013 A1
20130278610 Stephanou et al. Oct 2013 A1
20140043189 Lee et al. Feb 2014 A1
20140091103 Neitzel Apr 2014 A1
20140139370 Hammer et al. May 2014 A1
20140327591 Kokkinos Nov 2014 A1
20140327597 Rashidian et al. Nov 2014 A1
20150035714 Zhou Feb 2015 A1
20150070230 Bradley et al. Mar 2015 A1
20150077198 Yatabe Mar 2015 A1
20150138036 Harper Apr 2015 A1
20150183167 Molinari et al. Jul 2015 A1
20150207233 Kim et al. Jul 2015 A1
20150207234 Ganchrow et al. Jul 2015 A1
20150236428 Caratelli et al. Aug 2015 A1
20150244082 Caratelli et al. Aug 2015 A1
20150266244 Page Sep 2015 A1
20150303546 Rashidian et al. Oct 2015 A1
20150314526 Cohen Nov 2015 A1
20150346334 Nagaishi et al. Dec 2015 A1
20150380824 Tayfeh Aligodarz et al. Dec 2015 A1
20160036132 Rumpf et al. Feb 2016 A1
20160107290 Bajaj et al. Apr 2016 A1
20160111769 Pance et al. Apr 2016 A1
20160218437 Guntupalli et al. Jul 2016 A1
20160219976 Guyan Aug 2016 A1
20160263823 Espiau et al. Sep 2016 A1
20160294066 Djerafi et al. Oct 2016 A1
20160294068 Djerafi et al. Oct 2016 A1
20160313306 Ingber et al. Oct 2016 A1
20160314431 Quezada Oct 2016 A1
20160322708 Tayfeh Aligodarz et al. Nov 2016 A1
20160351996 Ou Dec 2016 A1
20160372955 Fackelmeier et al. Dec 2016 A1
20170018851 Henry et al. Jan 2017 A1
20170040700 Leung et al. Feb 2017 A1
20170062944 Zimmerman et al. Mar 2017 A1
20170110804 Henry et al. Apr 2017 A1
20170125901 Sharawi et al. May 2017 A1
20170125908 Pance et al. May 2017 A1
20170125909 Pance et al. May 2017 A1
20170125910 Pance et al. May 2017 A1
20170179569 Kim et al. Jun 2017 A1
20170188874 Suhami Jul 2017 A1
20170201026 Werner et al. Jul 2017 A1
20170225395 Boydston et al. Aug 2017 A1
20170256847 Vollmer et al. Sep 2017 A1
20170271772 Miraftab et al. Sep 2017 A1
20170272149 Michaels Sep 2017 A1
20170324171 Shehan Nov 2017 A1
20170360534 Sun Dec 2017 A1
20180007746 Smith Jan 2018 A1
20180054234 Stuckman et al. Feb 2018 A1
20180069594 Henry et al. Mar 2018 A1
20180090815 Shirinfar et al. Mar 2018 A1
20180115072 Pance et al. Apr 2018 A1
20180166789 Galla et al. Jun 2018 A1
20180183150 Sienkiewicz et al. Jun 2018 A1
20180241129 Pance et al. Aug 2018 A1
20180282550 Burgess et al. Oct 2018 A1
20180309202 Pance et al. Oct 2018 A1
20180323514 Pance et al. Nov 2018 A1
20190020105 Pance et al. Jan 2019 A1
20190115668 Coward et al. Apr 2019 A1
20190128624 Cohen et al. May 2019 A1
20190214732 Leung et al. Jul 2019 A1
20190221939 George et al. Jul 2019 A1
20190221940 Pance et al. Jul 2019 A1
20190288360 Hendry Sep 2019 A1
20190319357 Pance et al. Oct 2019 A1
20190319358 Pance et al. Oct 2019 A1
20190379123 Leung et al. Dec 2019 A1
20190393607 Pance et al. Dec 2019 A1
20200083602 Sethumadhavan et al. Mar 2020 A1
20200083609 Pance et al. Mar 2020 A1
20200083610 Pance et al. Mar 2020 A1
20200099136 Pance et al. Mar 2020 A1
20200122387 Polidore et al. Apr 2020 A1
20200194881 Pance et al. Jun 2020 A1
20200227827 Vollmer et al. Jul 2020 A1
20210328356 Polidore et al. Oct 2021 A1
Foreign Referenced Citations (38)
Number Date Country
102130376 Jul 2011 CN
102130377 Jul 2011 CN
104037505 Sep 2014 CN
105390809 Mar 2016 CN
105490005 Apr 2016 CN
106299672 Jan 2017 CN
107240782 Oct 2017 CN
110212310 Sep 2019 CN
110380230 Oct 2019 CN
216288983 Apr 2022 CN
0468413 Jan 1992 EP
0587247 Mar 1994 EP
0801436 Oct 1997 EP
1772748 Apr 2007 EP
1783516 May 2007 EP
2905632 Aug 2015 EP
2050231 Jan 1981 GB
2575946 Jan 2020 GB
H0665334 Mar 1994 JP
H07154114 Jun 1995 JP
08191211 Jul 1996 JP
2004112131 Apr 2004 JP
2013211841 Oct 2010 JP
2660385 Jul 2018 RU
9513565 May 1995 WO
0076028 Dec 2000 WO
2012129968 Oct 2012 WO
2014100462 Jun 2014 WO
2014126837 Aug 2014 WO
2015102938 Jul 2015 WO
2016153711 Sep 2016 WO
2017040883 Mar 2017 WO
2017075177 May 2017 WO
2017075184 May 2017 WO
2017090401 Jun 2017 WO
2018010443 Jan 2018 WO
2017075186 May 2018 WO
2018226657 Dec 2018 WO
Non-Patent Literature Citations (28)
Entry
Buerkle, A. et al; “Fabrication of a DRA Array Using Ceramic Stereolithography”; IEEE Antennas and Wireless Popagation Letters; IEEE; vol. 5,, No. 1, Jan. 2007; pp. 479-481.
Guo, Yomg-Xin, et al.,; “Wide-Band Stacked Double Annular-Ring Dielectric Resonator Antenna at the End-Fire Mode Operation”; IEEE Transacions on Antennas and Propagation; vol. 53; No. 10; Oct. 2005; 3394-3397 pages.
Kakade, A.B., et al; “Analysis of the Rectangular Waveguide Slot Coupled Multilayer hemispherical Dielectric Resonator Antenna”; IET Microwaves, Antennas & Propagation, The Institution of Engineering and Technology; vol. 6; No. 3; Jul. 11, 2011; 338-347 pages.
Kakade, Anandrao, et al.; Mode Excitation in the Coaxial Probe Coupled Three-Layer Hemispherical Dielectric Resonator Antenna; IEEE Transactions on Antennas and Propagation; vol. 59; No. 12; Dec. 2011; 7 pages.
Kishk, A. Ahmed, et al.,; “Analysis of Dielectric-Resonator with Emphasis on Hemispherical Structures”; IEEE Antennas & Propagation Magazine; vol. 36; No. 2; Apr. 1994; 20-31 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2019/013579; Report dated Mar. 27, 2019; 17 pages.
Petosa, Aldo, et al.; “Dielectric Resonator Antennas: A Historical Review and the Current State of the Art”; IEEE Antennas and Propagation Magazine; vol. 52, No. 5, Oct. 2010; 91-116 pages.
Ruan, Yu-Feng, et al; “Antenna Effects Consideration for Space-Time Coding UWB-Impulse Radio System in IEEE 802.15 Multipath Channel”; Wireless Communications, Networking and Mobile Computing; 2006; 1-4 pages.
Wong, Kin-Lu, et al.,; “Analysis of a Hemispherical Dielectric Resonator Antenna with an Airgap”; IEEE Microwave and Guided Wave Letters; vol. 3; No. 9; Oct. 3, 1993; 355-357 pages.
Zainud-Deen, S H et al; “Dielectric Resonator Antenna Phased Array for Fixed RFID Reader in Near Field Region”; IEEE; Mar. 6, 2012; pp. 102-107.
Raghvendra Kumar Chaudhary et al; Variation of Permittivity in Radial Direction in Concentric Half-Split Cylindrical Dielectric Resonator Antenna for Wideband Application: Permittivity Variation in R-Dir. in CDRA; International Journal of RF and Microwave Computer-Aided Engineering; vol. 25; No. 4; May 1, 2015; pp. 321-329.
Zhang Shiyu et al.; “3D-Printed Graded Index Lenses for RF Applications”; ISAP 2016 International Symposium on Antennas and Propagation, Okinawa, Japan.; pp. 1-27.
Zainud-Deen SH Et al: High Directive Dielectric resonator antenna over curved ground plane using metamaterials, National Radio Science Conference IEEE, Apr. 26, 2011 pp. 1-9.
“New 3D Printed Electromagnetic Lense from OmniPreSense”; URL: http://www.microwavejournal.com/articles/31133-new-3d-printed-electromagnetic-lens-from-omnipresense; Date of Access: Oct. 16, 2018; 8 pages.
“Photoacid Generator Selection Guide for the electronics industry and energy curable coatings” (BASF 2010).
Atabak Rashidian et al; “Photoresist-Based Polymer Resonator Antennas: Lithography Fabrication, Strip-Fed Excitation, and Multimode Operation”, IEEE Antennas and Propagation Magazine, IEEE Service Center; vol. 53, No. 4, Aug. 1, 2011; 16-27 pages.
Boriskin et al. “Integrated Lens Antennas” In: “Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications”, Sep. 8, 2017, International Publishing, pp. 3-36.
Elboushi A. et al., “High Gain Hybrid DRA/Horn antenna for MMW Applications”, Concordia Universitiy; 2014 IEEE; 2 pages.
Hesselbarth et al., “Millimeter-wave front-end integration concept using beam-switched lens antenna”, 2016 10th European Conference on Antennas and Propagation, European Assoc. of Antennas and Propagation, Apr. 10, 2016; pp. 1-5.
Keysight Technologies; “Split Post Dielectric Resonators for Dielectric Measurements of Substrates”; Keysight Technologies, Dec. 2, 2017; 5989-5384EN, pp. 1-11.
Krupka et al.; “Split post dielectric resonator technique for precise measurements of laminar dielectric specimens—Measurement uncertainties”; IEEE Xplore Conference Paper Feb. 2000, pp. 305-308.
Krupka J., Gregory A.P., Rochard O.C., Clarke R.N., Riddle B., Baker-Jarvis J., Uncertainty of Complex Permittivity Measurement by Split-Post Dielectric Resonator Techniques, Journal of the European Ceramic Society, No. 10, pp. 2673-2676, 2001.
Krupka, J., Geyer, R.G., Baker-Jarvis, J., Ceremuga, J., Measurements of the complex permittivity of microwave circuit board substrates using split dielectric resonator and reentrant cavity tech¬niques, Seventh International Conference on Dielectric Materials, Measurements and Applications, (Conf. Publ. No. 430), pp. 21-24, Sep. 1996.
Lei, Juan et al., “Experimental demonstration of conformal phased array antenna via transformation optics,” Scientific Reports, vol. 8, No. 1, Feb. 28, 2018, 14 pages.
Liang, M. et al.; “A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping,” IEEE Transactions on Antennas and Propagation, 62(4), Apr. 2014, 1799-1807.
Tang, W. et al., “Discrete Coordinate Transformation for Designing All-Dielectric Flat Antennas”, IEEE Transactions on Antennas and Propagation, vol. 58, No. 12, Dec. 2010 pp. 3795-3804.
Thornton et al., “Introduction” In: “Modern Lens Antennas for Communications Engineering”, Jan. 1, 2013 John Wiley & Sons, Inc. pp. 1-48.
Akbari, el al., “Comparison between Circularly-Polarized Hybrid DR/Conical Horn and Hybrid DR /spherical Lens Antennas in Millimeter Wave” 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (pp. 261-262).
Related Publications (1)
Number Date Country
20190221939 A1 Jul 2019 US
Provisional Applications (3)
Number Date Country
62693057 Jul 2018 US
62633256 Feb 2018 US
62617358 Jan 2018 US