The invention pertains to dielectric resonators, such as those used in microwave circuits for concentrating electric fields, and to the circuits made from them, such as microwave filters.
Dielectric resonators are used in many circuits, particularly microwave circuits, for concentrating electric fields. They can be used to form filters, combline filters, oscillators, triplexers, and other circuits. The higher the dielectric constant of the dielectric material out of which the resonator is formed, the smaller the space within which the electric fields are concentrated. Suitable dielectric materials for fabricating dielectric resonators are available today with dielectric constants ranging from approximately 10 to approximately 150 (relative to air). These dielectric materials generally have a mu (magnetic constant, often represented as μ) of 1, i.e., they are transparent to magnetic fields.
As is well known in the art, dielectric resonators and resonator filters have multiple modes of electrical fields and magnetic fields concentrated at different frequencies. A mode is a field configuration corresponding to a resonant frequency of the system as determined by Maxwell's equations. In a typical dielectric resonator circuit, the fundamental resonant mode, i.e., the field having the lowest frequency, is the transverse electric field mode, TE01 (or TE, hereafter). The electric field of the TE mode is circular and is oriented transverse of the cylindrical puck 12. It is concentrated around the circumference of the resonator 10, with some of the field inside the resonator and some of the field outside the resonator. A portion of the field should be outside the resonator for purposes of coupling between the resonator and other microwave devices (e.g., other resonators or input/output couplers) in a dielectric resonator circuit.
It is possible to arrange circuit components so that a mode other than the TE mode is the fundamental mode of the circuit and, in fact, this is done sometimes in dielectric resonator circuits. Also, while typical, there is no requirement that the fundamental mode be used as the operational mode of a circuit, e.g., the mode within which the information in a communications circuit is contained.
The second mode (i.e., the mode having the second lowest frequency) normally is the hybrid mode, H11δ (or H11 mode hereafter). The next lowest-frequency mode that interferes with the fundamental mode usually is the transverse magnetic or TM01δ mode (hereinafter the TM mode). There are additional higher order modes. Typically, all of the modes other than the fundamental mode, e.g., the TE mode, are undesired and constitute interference. The H11 mode, however, typically is the only interference mode of significant concern. However, the TM mode sometimes also can interfere with the TE mode, particularly during tuning of dielectric resonator circuits. The remaining modes usually have substantial frequency separation from the TE mode and thus do not cause significant interference or spurious response with respect to the operation of the system. The H11 mode and the TM mode, however, can be rather close in frequency to the TE mode and thus can be difficult to separate from the TE mode in operation. In addition, as the bandwidth (which is largely dictated by the coupling between electrically adjacent dielectric resonators) and center frequency of the TE mode are tuned, the center frequency of the TE mode and the H11 mode move in opposite directions toward each other. Thus, as the TE mode is tuned to increase its center frequency, the center frequency of the H11 mode inherently moves downward and, thus, closer to the TE mode center frequency. The TM mode typically is widely spaced in frequency from the fundamental TE mode when the resonator is in open space. However, when metal is close to the resonator, such as would be the case in many dielectric resonator filters and other circuits which use tuning plates near the resonator in order to tune the center of frequency of the resonator, the TM mode drops in frequency. As the tuning plate or other metal is brought closer to the resonator, the TM mode drops extremely rapidly in frequency and can come very close to the frequency of the fundamental TE mode.
One or more metal plates 42 may be attached by screws 27 to the top wall (not shown for purposes of clarity) of the enclosure to affect the field of the resonator and help set the center frequency of the filter. Particularly, screws 27 may be rotated to vary the spacing between the plate 42 and the resonator 10a, 10b, 10c, 10d to adjust the center frequency of the resonator. An output coupler 40 is positioned adjacent the last resonator 10d to couple the microwave energy out of the filter 20 and into a coaxial connector (not shown). Signals also may be coupled into and out of a dielectric resonator circuit by other methods, such as microstrips positioned on the bottom surface 28 of the enclosure 24 adjacent the resonators. The sizes of the resonator pucks 10a, 10b, 10c, 10d, their relative spacing, the number of pucks, the size of the cavity 22, and the size of the irises 30a, 30b, 30c all need to be precisely controlled to set the desired center frequency of the filter and the bandwidth of the filter. More specifically, the bandwidth of the filter is controlled primarily by the amount of coupling of the electric and magnetic fields between the electrically adjacent resonators. Generally, the closer the resonators are to each other, the more coupling between them and the wider the bandwidth of the filter. On the other hand, the center frequency of the filter is controlled largely by the sizes of the resonators themselves and the sizes of the conductive plates 42 as well as the distance of the plates 42 from their corresponding resonators 10a, 10b, 10c, 10d. Generally, as the resonator gets larger, its center frequency gets lower.
Prior art resonators and the circuits made from them have many drawbacks. For instance, prior art dielectric resonator circuits such as the filter shown in
Furthermore, the volume and configuration of the conductive enclosure 24 substantially affects the operation of the system. The enclosure minimizes radiative loss. However, it also has a substantial effect on the center frequency of the TE mode. Accordingly, not only must the enclosure usually be constructed of a conductive material, but also it must be very precisely machined to achieve the desired center frequency performance, thus adding complexity and expense to the fabrication of the system. Even with very precise machining, the design can easily be marginal and fail specification.
Even further, prior art resonators tend to have poor mode separation between the TE mode and the H11 and/or TE modes.
Accordingly, it is an object of the present invention to provide improved dielectric resonators.
It is another object of the present invention to provide improved dielectric resonator circuits.
It is a further object of the present invention to provide dielectric resonator circuits with improved mode separation and spurious response.
In accordance with principles of the present invention, a dielectric resonator is provided with a longitudinal through hole of variable cross section (e.g., diameter). The cross section (i.e., the section taken perpendicular to the longitudinal direction) varies as a function of height (i.e., the longitudinal direction) and may vary abruptly (i.e., stepped), linearly (e.g., conical), or otherwise. The diameter of the through hole is selected at any given height so as to remove dielectric material at the height where the spurious modes primarily exist and to leave material at the height where the fundamental mode is concentrated.
The invention can be implemented in connection with conventional cylindrical resonators, but is preferably employed in connection with conical resonators, which tend to physically separate the fundamental mode from the spurious modes better than conventional cylindrical resonators and thus allow for superior ability to remove dielectric material where spurious modes are concentrated without simultaneously removing dielectric material where the fundamental mode is concentrated.
U.S. patent application Ser. No. 10/268,415, which is fully incorporated herein by reference, discloses new dielectric resonators as well as circuits using such resonators. One of the key features of the new resonators disclosed in the aforementioned patent application is that the field strength of the TE mode field outside of and adjacent the resonator varies along the longitudinal dimension of the resonator. As disclosed in the aforementioned patent application, a key feature of these new resonators that helps achieve this goal is that the cross-sectional area of the resonator measured parallel to the field lines of the TE mode varies along the longitude of the resonator, i.e., perpendicularly to TE mode field lines. In one embodiment, the cross-section varies monotonically as a function of the longitudinal dimension of the resonator, i.e., the cross-section of the resonator changes in only one direction (or remains the same) as a function of height. In one preferred embodiment, the resonator is conical, as discussed in more detail below. Preferably, the cone is a truncated cone.
In addition, the mode separation (i.e., frequency spacing between the modes) is increased in a conical resonator. Even further, the top of the resonator may be truncated to eliminate much of the portion of the resonator in which the H11 mode field would be concentrated, thereby substantially attenuating the strength of the H11 mode.
The concepts of the present invention are particularly useful when used in connection with conical resonators such as illustrated in FIG. 13 and disclosed in U.S. patent application Ser. No. 10/268,415, but also are applicable to more conventional cylindrical resonators, such as illustrated in
In accordance with the invention, a single step longitudinal through hole 34 is provided comprising an upper portion 34a having a relatively larger cross section and a lower portion 34b having a relatively smaller cross section. Particularly, in the upper portion of the resonator 30, near the smaller longitudinal end of the resonator body, the cross section of the resonator body is smaller and thus the H11 mode is concentrated there. This is where the larger diameter portion of the through hole is disposed. The larger through hole diameter provides even less dielectric material near the top of the body where the H11 mode is concentrated. This weakens the H11 mode field strength and increases its frequency. On the other hand, in the lower portion of the resonator adjacent the larger longitudinal end of the conical resonator body where the TE mode tends to be concentrated, the through hole has a smaller diameter, thus providing relatively more material for the TE mode and, hence, keeping its frequency low and its field strong.
The TM mode field lines tend to run through the center of the resonator in the up-down direction in
In a conical resonator, both the H11 mode and the TM mode are excited close to the geometric center of the resonator, whereas the TE mode tends to be excited closer to the periphery of the conical resonator. On the other hand, in a conventional cylindrical resonator, while the TM mode still tends to be excited near the geometric center of the resonator, the H11 mode tends to be excited closer to the periphery. If a circular tuning plate is used and is placed coaxially with the resonator, the TM mode tends to concentrate coincident with the through hole, i.e., directed in the longitudinal direction and in the middle of the resonator.
Simulations run on the HFSS Version 9.2 simulation software available from Agilent Technologies, Inc. of Palo Alto, Calif., U.S.A. were performed in order to quantify some of the benefits of the present invention. In particular, a comparison of mode separation was made between a conical resonator having an epsilon of 43 and having a through hole of constant diameter over the entire height of the resonator relative to an identical resonator with a single stepped through hole such as in the embodiments illustrated by
Another simulation was run on a circuit essentially identical to the two aforementioned circuits, except having a double inverted conical through hole such as in the embodiments illustrated by
In another set of simulations, a cylindrical resonator with an epsilon of 78 and a straight through hole yielded a center frequency of 1,952 MHz for the TE mode and a center frequency of 2,686 MHz for the H11 mode. See simulation results in Appendix, pages 7-8. Hence, the frequency separation between the fundamental mode and the first spurious mode was approximately 730 MHz. A simulation of essentially the same resonator, but with a double stepped through hole such as in the embodiments illustrated by
In yet another simulation of a cylindrical resonator with an epsilon of 45 and a straight through hole, the frequency separation between the fundamental mode and the first hybrid mode was approximately 350 MHz. Particularly, the fundamental mode was centered at 1018 MHz and the first hybrid mode was centered at 1370 MHz. See simulation results in Appendix, pages 3-4. Another simulation was run on a circuit essentially identical to the aforementioned circuit, except having a double inverted conical through hole such as in the embodiments illustrated by
Appendix A hereto contains the data from the afore-described simulations.
As previously mentioned, the present invention does not significantly affect coupling performance between resonators. Accordingly, while the present invention has significant advantages with respect to spurious response when used in connection with cylindrical resonators, it does not, per se, solve the poor coupling problem inherent in cylindrical resonator circuits. Conical resonators, on the other hand, provide greatly enhanced ability to couple fields between adjacent resonators (or between a resonator and other circuitry, such as an input or output coupling loop). The variable cross-section through hole concept of the present invention provides the different advantage of improved frequency spacing between the fundamental mode and spurious modes. Accordingly, by combining these two features, one can create extremely high performance dielectric resonator circuits. Designing such a circuit so that the positions of the conical resonators relative to each other can be adjusted in order to regulate coupling between them and, therefore, bandwidth of the circuit provides an even more useful circuit.
However, with respect to cylindrical resonators, we have discovered ways to improve coupling between such resonators.
The circuit includes an input coupler 107 that receives a signal from an input coaxial cable 104 and an output coupler 108 that provides an output signal through an output coaxial cable 106.
A circular tuning plate 110 is positioned adjacent to each dielectric resonator 101, each passing through an opening in the wall of the enclosure 102. The tuning plates 110 may be externally threaded while the holes in the enclosure through which they extend are internally threaded so that the tuning plates 110 can be rotated in those holes to affect movement of them in the direction of arrows 112, 113 in
The above described embodiment illustrates merely one possible technique for mounting the resonators to the enclosure so that the resonators can be rotated relative to each other so that they can be arranged coaxially and adjusted therefrom. The resonator mounting pins need not be threadedly engaged with the tuning plate and, instead, may have any form of rotatable joint where it mates to the resonator, the enclosure or anywhere else along its length. Furthermore, while the illustrated embodiment is particularly elegant, the mounting pin can be entirely separate from the tuning plate. Preferably the longitudinal axes of the mounting pins are all oriented perpendicularly to the line connecting the geometric centers of the resonators. Preferably, the longitudinal axes of the tuning plates and the mounting pins are parallel to each other. They may be coaxial with each other, as exemplified by
Having thus described a few particular embodiments of the invention, various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements as are made obvious by this disclosure are intended to be part of this description though not expressly stated herein, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description is by way of example only, and not limiting. The invention is limited only as defined in the following claims and equivalents thereto.
Number | Name | Date | Kind |
---|---|---|---|
3475642 | Karp et al. | Oct 1969 | A |
4028652 | Wakino et al. | Jun 1977 | A |
4138652 | Nishikawa et al. | Feb 1979 | A |
4267537 | Karmel | May 1981 | A |
4283649 | Heinouchi | Aug 1981 | A |
4423397 | Nishikawa et al. | Dec 1983 | A |
4459570 | Delaballe et al. | Jul 1984 | A |
4477785 | Atia | Oct 1984 | A |
4506241 | Makimoto et al. | Mar 1985 | A |
4578655 | Etienne et al. | Mar 1986 | A |
4620168 | Delestre et al. | Oct 1986 | A |
4661790 | Gannon et al. | Apr 1987 | A |
4757289 | Kosugi et al. | Jul 1988 | A |
4810984 | Arnold et al. | Mar 1989 | A |
4821006 | Ishikawa et al. | Apr 1989 | A |
4835498 | Rouger et al. | May 1989 | A |
4881051 | Tang et al. | Nov 1989 | A |
5059929 | Tanaka | Oct 1991 | A |
5109207 | Aizawa et al. | Apr 1992 | A |
5136270 | Hatanaka et al. | Aug 1992 | A |
5140285 | Cohen | Aug 1992 | A |
5218330 | Omiya et al. | Jun 1993 | A |
5347246 | Bellows et al. | Sep 1994 | A |
5525945 | Chiappetta et al. | Jun 1996 | A |
5614875 | Jang et al. | Mar 1997 | A |
5691677 | De Maron et al. | Nov 1997 | A |
5748058 | Scott | May 1998 | A |
5777534 | Harrison | Jul 1998 | A |
5841330 | Wenzel et al. | Nov 1998 | A |
5859574 | Schmitt | Jan 1999 | A |
5949309 | Correa | Sep 1999 | A |
5990767 | Ivanov et al. | Nov 1999 | A |
6069105 | Yamamoto et al. | May 2000 | A |
6087910 | Matsumoto et al. | Jul 2000 | A |
6100703 | Davidov et al. | Aug 2000 | A |
6111339 | Ohya et al. | Aug 2000 | A |
6208227 | Remillard et al. | Mar 2001 | B1 |
6254708 | Cappabianca | Jul 2001 | B1 |
6262639 | Shu et al. | Jul 2001 | B1 |
6337664 | Mayes et al. | Jan 2002 | B1 |
6356170 | Arakawa et al. | Mar 2002 | B1 |
6402981 | Sasaki | Jun 2002 | B1 |
6707353 | Yamakawa et al. | Mar 2004 | B1 |
6717490 | Mayer | Apr 2004 | B1 |
6784768 | Pance et al. | Aug 2004 | B1 |
20040051602 | Pance et al. | Mar 2004 | A1 |
20040051603 | Pance et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
0 492 304 | Jul 1992 | EP |
0 601 370 | Jun 1994 | EP |
1 102 344 | May 2001 | EP |
1 119 069 | Jul 2001 | EP |
1 162 684 | Dec 2001 | EP |
1 181 740 | Mar 2003 | EP |
1 376 938 | Dec 1974 | GB |
1 520 473 | Aug 1978 | GB |
57-014202 | Jan 1982 | JP |
59-202701 | Nov 1984 | JP |
363280503 | Nov 1988 | JP |
01-144701 | Jun 1989 | JP |
02-042898 | Feb 1990 | JP |
02-137502 | May 1990 | JP |
02-168702 | Jun 1990 | JP |
05-102714 | Apr 1993 | JP |
05-267940 | Oct 1993 | JP |
06-061714 | Mar 1994 | JP |
07-154114 | Jun 1995 | JP |
07-154116 | Jun 1995 | JP |
03-249803 | Sep 2003 | JP |
WO 0070706 | Nov 2000 | WO |
WO 0143221 | Jun 2001 | WO |
WO 2004027917 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060186972 A1 | Aug 2006 | US |