Dielectric waveguide comprising connected dielectric strips

Information

  • Patent Grant
  • 6307451
  • Patent Number
    6,307,451
  • Date Filed
    Monday, July 13, 1998
    26 years ago
  • Date Issued
    Tuesday, October 23, 2001
    23 years ago
Abstract
A dielectric waveguide designed to avoid the influence of reflection of electromagnetic waves at connected portions of dielectric strips and to have an improved characteristic. A third dielectric strip is inserted in a part of a connection section at which a first dielectric strip and a second dielectric strip are connected to each other, and the distances between the three connection planes in said connection section are determined so that a wave reflected at the connection plane between the first and third dielectric strips, a wave reflected at the connection plane between the first and second dielectric strips, and a wave reflected at the connection plane between the second and third dielectric strips are superposed with a phase difference of 2π/3 from each other. Alternatively or in addition, the distance between the first-second dielectric strip connection plane and the first-third dielectric strip connection plane is set to ⅙ of the guide wavelength of an electromagnetic wave propagating through the dielectric strips, and the distance between the first-second dielectric strip connection plane and the second-third dielectric strip connection plane is set to ⅙ of the guide wavelength. Reflected waves are thereby superposed in phase opposition to each other to cancel out. In this manner, propagation of a reflected signal to ports is limited.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a dielectric waveguide suitable for a transmission line or an integrated circuit used in a millimeter wave band or a microwave band.




2. Description of the Related Art




A dielectric waveguide having a dielectric strip between opposing parallel conductors has been used as a transmission line used in a millimeter wave band or a microwave band. In particular, a dielectric waveguide in which the distance between the conductors is set to a value smaller than ½ of the wavelength of propagating electromagnetic waves to limit radiated waves at a bent portion of a dielectric strip has been used as a nonradiative dielectric waveguide.




Dielectric waveguides of this kind may be used to form millimeter wave circuit modules and may be connected to each other between the modules. In such a case, dielectric strips are connected to each other. Also, if dielectric strip portions are not integrally formed in a single module, dielectric strips are connected to each other.





FIG. 35

shows a conventional connection between two dielectric strips. Upper and lower electrodes are omitted. Members


1


and


2


are dielectric strips. Dielectric waveguides are connected to each other by opposing the end surfaces of the dielectric strips which are perpendicular to the direction of propagation of electromagnetic waves.




Conventionally, polytetrafluoroethylene (PTFE), which has a small dielectric constant and exhibits a low-transmission loss, has been used to make a dielectric strip, and hard aluminum having high workability and having a suitable high hardness has been used as a material for forming an electroconductive plate constituting a dielectric waveguide. However, the difference between the linear expansion coefficients of PTFE and aluminum is so large that a gap is formed between the opposed surfaces of dielectric strips of a dielectric waveguide when the dielectric waveguide is used at a temperature lower than the temperature at the time of assembly. Ordinarily, a certain gap can also exist between the opposed surfaces of dielectric strips according to a working tolerance. Since the dielectric constant of air entering such a gap is different from that of the dielectric strips, reflection of an electromagnetic wave occurs at the gap, resulting in a deterioration in the characteristics of the transmission line. Moreover, at the time of assembly of separate dielectric waveguides, a misalignment may occur between the opposed surfaces of the dielectric strips at the connection between the two dielectric waveguides, which depends upon the assembly accuracy. In such a case, reflection is caused at the connection surfaces, also resulting in a deterioration in the characteristics of the transmission line.





FIG. 36

shows the result of calculation of an S


11


(reflection loss) characteristic in a 60 GHz band of a dielectric waveguide which has a sectional configuration such as shown in

FIG. 1

, and in which, referring to

FIGS. 1 and 35

, a=2.2 mm, b=1.8 mm, 2=0.5 mm, gap=0.2 mm, LL=10 mm, and the dielectric constant εr of 2.04. The characteristic was calculated by a three-dimensional finite element method. The guide wavelength λg at 60 GHz in this case is 8.7 mm. As shown in

FIG. 36

, even when the gap is small, about 0.2 mm, the reflection loss is −15 dB or larger.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide a dielectric waveguide designed to avoid the influence of a gap formed at a connection between dielectric strips and to have an improved characteristic.




According to the present invention, there is provided a dielectric waveguide comprising an electromagnetic wave propagation region formed by disposing a plurality of dielectric strip portions along a direction of propagation of an electromagnetic wave. According to one aspect of the present invention, to avoid the influence of reflection at the connection between each adjacent pair of the dielectric strips, adjacent pairs of the electric strips are connected at a plurality of planes spaced apart from each other in the direction of propagation of an electromagnetic wave by a distance corresponding to an odd number multiple of ¼ of the guide wavelength of the electromagnetic wave propagating through the dielectric strips.




Thus, the connection planes between the adjacent pairs of the dielectric strips are spaced apart from each other by the distance corresponding to an odd number multiple of ¼ of the wavelength of an electromagnetic wave in the direction of propagation of the electromagnetic wave to enable electromagnetic waves reflected at the connection planes to be superposed in phase opposition to each other to cancel out, thus reducing the influence of reflection.





FIGS. 1 and 2

show the configurations of examples of this dielectric waveguide of the present invention. Members


4


and


5


shown in

FIG. 1

are conductor plates. A dielectric strip


1


is placed between the conductor plates


4


and


5


. In the example shown in

FIG. 2

, the distance between two connection planes perpendicular to the electromagnetic wave propagation direction is set to λg/4, where λg is the guide wavelength. The effect of setting the distance between two connection planes to λg/4 is as described below. When a wave reflected at one of the connection planes and another reflected at the other connection plane propagate in one direction, the difference between the electrical lengths of the two waves is λg/2 because one of the two waves goes and returns in the section of length λg/4, so that the two reflected waves are in phase opposition to each other. Therefore, the two reflected waves can cancel out. In this manner, propagation of reflection waves to a port


1


or port


2


is limited.




According to a second aspect of the present invention, a dielectric strip having a length corresponding to an odd number multiple of ¼ of the guide wavelength of an electromagnetic wave propagating through two dielectric strips is interposed between the two dielectric strips to connect them to each other.

FIG. 3

shows an example of this arrangement. A state of a dielectric waveguide from which upper and lower dielectric plates are removed is illustrated in FIG.


3


. The effect of interposing, between two dielectric strips


1


and


2


to be connected to each other, a dielectric strip


3


having a length corresponding to an odd number multiple of ¼ of the guide wavelength of an electromagnetic wave propagating through the dielectric strips is as described below. A wave reflected at the dielectric strip


1


-


3


connection plane and a wave reflected at the dielectric strip


2


-


3


connection plane are in phase opposition to each other. Therefore, these waves can cancel out and propagation of reflected waves to a port


1


or port


2


is limited.




According to a third aspect of the present invention, shown in

FIG. 4

, a third dielectric strip is inserted in part of a connection section of a first dielectric strip and a second dielectric strip and the three strips are connected to each other, and the distances between the three connection planes in said connection section are determined so that a wave reflected at the connection plane between the first and third dielectric strips, a wave reflected at the connection plane between the first and second dielectric strips, and a wave reflected at the connection plane between the second and third dielectric strips are superposed with a phase difference of 2π/3 from each other. For example, the phase of a reflected wave at the first-third dielectric strip connection plane is


0


; the phase of a reflected wave at the first-second dielectric strip connection plane is 2π/3 (120°); and the phase of a reflected wave at the second-third dielectric strip connection plane is 4π/3 (240°), and if the reflected waves are equal in intensity, each of the real and imaginary part of the resultant wave is zero. Thus, the three reflected waves cancel out.




According to a fourth aspect of the present invention, the distance between the first-second dielectric connection plane and the first-third dielectric strip connection plane is set to ⅙ of the guide wavelength of an electromagnetic wave propagating through the dielectric strips, and the distance between the first-second dielectric strip connection plane and the second-third dielectric strip connection plane is set to ⅙ of the guide wavelength.

FIG. 4

shows the configuration of an example of this dielectric waveguide. In

FIG. 4

, conductor plates located above and below the dielectric strips are omitted. Waves reflected at the connection planes can be canceled out by inserting a third dielectric strip


3


in part of a connection section of a first dielectric strip


1


and a second dielectric strip


2


and by setting each of the distances L1 and L2 between the two connection planes to λg/6.




According to fifth and sixth aspects of the present invention, to reduce an error in positioning of the opposed surfaces of the dielectric strips at the connection between a pair of dielectric waveguides, the pair of dielectric waveguides are positioned along a direction parallel to the conductor plates and along a direction perpendicular to the electromagnetic wave propagation direction by a projecting portion of one of the conductor plates in the opposed surfaces of the conductor plates at the connection between the pair of dielectric waveguides and a recessed portion of the corresponding opposite conductor plate at a corresponding position.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a cross-sectional view of an example of a dielectric waveguide in accordance with the present invention;





FIG. 2

is a perspective view of dielectric strip portions according to the first aspect of the present invention;





FIG. 3

is a perspective view of dielectric strip portions according to the second aspect of the present invention;





FIG. 4

is a perspective view of dielectric strip portions according to the third aspect of the present invention;





FIG. 5

is a perspective view of a dielectric waveguide which represents a first embodiment of the present invention;





FIG. 6

is a perspective view of dielectric strip portions of the dielectric waveguide shown in

FIG. 5

;





FIG. 7

is a graph showing a reflection characteristic of the dielectric wave guide shown in

FIG. 5

;





FIGS. 8A and 8B

are diagrams showing other examples of the structure of the dielectric strip portions;





FIG. 9

is a perspective view of the structure of dielectric strip portions in a dielectric waveguide which represents a second embodiment of the present invention;





FIG. 10

is a graph showing a reflection characteristic of the dielectric waveguide shown in

FIG. 9

;





FIG. 11

is a perspective view of another example of the structure of dielectric strip portions;





FIG. 12

is a perspective view of another example of the structure of dielectric strip portions;





FIG. 13

is a cross-sectional view of dielectric waveguide which represents a third embodiment of the present invention;





FIG. 14

is a perspective view of the dielectric waveguide shown in

FIG. 13

, the dielectric waveguide being shown without conductor plates;





FIGS. 15A and 15B

are perspective views of other examples of the structure of dielectric strip portions;





FIGS. 16A and 16B

are perspective views of the structure of dielectric strip portions in a dielectric waveguide which represents a fourth embodiment of the present invention;





FIGS. 17A and 17B

perspective views of another example of the structure of dielectric strip portions;





FIG. 18

is a perspective view of a dielectric waveguide which represents a fifth embodiment of the present invention, the dielectric waveguide being shown without conductor plates;





FIG. 19

is a partial perspective view of another example of the structure of the dielectric waveguide;





FIG. 20

is a perspective view of a dielectric waveguide which represents a sixth embodiment of the present invention, the dielectric waveguide being shown without conductor plates;





FIG. 21

is a cross-sectional view of dielectric strip portions in the dielectric waveguide shown in

FIG. 20

;





FIG. 22

is a cross-sectional view of another example of the structure of dielectric strip portions in the dielectric waveguide shown in

FIG. 20

;





FIG. 23

is a perspective view of a dielectric waveguide which represents a seventh embodiment of the present invention, the dielectric waveguide being shown without conductor plates;





FIG. 24

is a graph showing the a reflection characteristic of the dielectric waveguide shown in

FIG. 23

;





FIGS. 25A and 25B

are a perspective view and an exploded perspective view, respectively, of a dielectric waveguide which represents an eighth embodiment of the present invention, the dielectric waveguide being shown without conductor plates;





FIG. 26

is a graph showing the a reflection characteristic of the dielectric waveguide shown in

FIG. 25

;





FIGS. 27A and 27B

are an exploded perspective view and a perspective view of a dielectric waveguide device which represents a ninth embodiment of the present invention;





FIG. 28

is an exploded perspective view of another example of the dielectric waveguide device of the ninth embodiment;





FIG. 29

is an exploded perspective view of an isolator combined type oscillator which represents a tenth embodiment of the present invention;





FIG. 30

is a plan view of the isolator combined type oscillator shown in

FIG. 29

;





FIGS. 31A and 31B

are cross-sectional views of other examples of the dielectric waveguide device;





FIG. 32

is a diagram showing the structure of connected portions of connection between dielectric waveguides;





FIG. 33

is a diagram showing another example of the structure of connected portions of dielectric waveguides;





FIG. 34

is a diagram showing another example of the structure of connected portions of dielectric waveguides;





FIG. 35

is a perspective view of a conventional dielectric waveguide device shown without conductor plates; and





FIG. 36

is a graph showing a reflection characteristic of the dielectric waveguide device shown in FIG.


35


.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




The configuration of a dielectric waveguide which represents an embodiment of the present invention will be described below with reference to

FIGS. 5

to


7


.





FIG. 5

is a cross-sectional view of an essential portion of the dielectric waveguide. In this embodiment, grooves each having a depth g are respectively formed in conductor plates


4


and


5


, dielectric strips are respectively set in the grooves, and the conductor plates


4


and


5


with the dielectric strips are positioned relative to each other so that the dielectric strips are opposed to each other.





FIG. 6

is a perspective view of the construction of the dielectric strips shown without the upper and lower conductor plates. Referring to

FIG. 6

, members


1




a


and


2




a


correspond to the dielectric strip provided on the lower conductor plate


4


shown in

FIG. 5

, and members


1




b


and


2




b


correspond to the dielectric strip provided on the upper conductor plate shown in FIG.


5


. The distance L between dielectric strip


1




a


-


2




a


connection plane a and dielectric strip


1




b


-


2




b


connection plane b is set to λg/4.




If this dielectric waveguide has a cross-sectional configuration such as shown in

FIG. 1

; a1=a2=1.1 mm, b=1.8 mm, and 2=0.5 mm in the structure shown in

FIGS. 5 and 6

; and the dielectric constant εr of the dielectric strip is 2.04, the guide wavelength λg at 60 G Hz is 8.7 mm. Accordingly, the distance L between the two connection planes is set to 2.2 mm.

FIG. 7

shows the result of calculation of an S


11


(reflection loss) characteristic in a 60 GHz band based a three-dimensional finite element method with respect to a case where gap=0.2 mm and LL=10 mm. As is apparent from the comparison with the result shown in

FIG. 36

, the reflection characteristic can be markedly improved.




While a pair of half dielectric strips with a boundary parallel to the direction of propagation of electromagnetic waves (into upper and lower halves) are used in the example shown in

FIG. 6

, dielectric strips


1


and


2


each formed of one integral body as shown in

FIG. 8A

may alternatively be used. Also, a structure such as shown in

FIG. 8B

may be used, in which one dielectric strip


1


is formed of one integral body while a pair of half dielectric strips


2




a


and


2




b


are provided on the other side. The same effect of the present invention can also be obtained by using such a structure.




The configuration of a dielectric waveguide which represents a second embodiment of the present invention will next be described below with reference to

FIGS. 9

to


12


.





FIG. 9

is a perspective view of the construction of dielectric strips shown without upper and lower conductor plates. In this embodiment, as shown in

FIG. 9

, each of the dielectric strip


1




a


-


2




a


connection plane a and the dielectric strip


1




b


-


2




b


connection plane b is perpendicular to each of the upper and lower conductor plates.

FIG. 10

shows the result of calculation of a reflection characteristic in the 60 GHz band performed by the three-dimensional finite element method with respect to specifications: a1=2.2 mm, b=b2=0.9 mm, 2=0.5 mm (see FIG.


1


), gap=0.2 mm, L=2.2 mm, LL=10 mm, and εr=2.04. It can be understood from this result that a suitable reflection characteristic can be obtained at the operating frequency (60 GHz band).




While an example of use of a pair of half dielectric strips with a boundary parallel to the direction of propagation of electromagnetic waves has been described with reference to

FIG. 9

, dielectric strips


1


and


2


each formed of one integral body may alternatively be used as shown in

FIG. 11

to obtain the same effect. According to the structure shown in

FIG. 11

, the dielectric strips can be manufactured by punching, which is advantageous in mass-producibility and in cost reduction effect.




In the above-described embodiments, the two connection planes are set perpendicular to the direction of propagation of electromagnetic waves. However, it is not always necessary to do so. As shown in

FIG. 12

, the connection planes may be set obliquely while being maintained parallel to each other, with the distance L between the two connection planes in the direction of propagation of electromagnetic waves set to λg/4.




The configuration of a dielectric waveguide which represents a third embodiment of the present invention will next be described below with reference to

FIGS. 13

to


15


. The third embodiment is arranged in such a manner that a dielectric plate is interposed between two conductor plates, and a planar circuit is formed on the dielectric plate.





FIG. 13

is a cross-sectional view of the structure of this waveguide. Grooves each having a depth g are respectively formed in conductor plates


4


and


5


, dielectric strips


1




a


and


1




b


are respectively set in the grooves, and a dielectric plate


6


is interposed between the two dielectric strips. On the dielectric plate


6


, conductor patterns for a microstrip line, a coplanar line, a slot lines or the like are formed and electronic components including a semiconductor element or the like are mounted.





FIG. 14

is a perspective view of this structure shown without the upper and lower conductor plates. The distance L between the dielectric strip


1




a


-


2




a


connection plane defined on the lower side of the dielectric plate


6


as viewed in FIG.


14


and the dielectric strip


1




b


-


2




b


connection plane defined on the upper side of the dielectric plate


6


is set to an odd number multiple of λg/4. Also in this case, a reflection characteristic in the operating band as favorable as those in the first and second embodiments can be obtained.




It is not always necessary for the dielectric strips to have connection planes such as those shown in

FIG. 14

perpendicular to the direction of propagation of electromagnetic waves. The dielectric strips may have connection planes inclined at a predetermined angle from a plane perpendicular to the direction of propagation of electromagnetic waves, as shown in

FIG. 15A

or


15


B. (In

FIGS. 15A and 15B

, the dielectric plate between the upper and lower dielectric strips is omitted.) Also in such a case, the arrangement may be such that the distance L between the two connection planes in the direction of propagation of electromagnetic waves corresponds to an odd number multiple of λg/4 while the two connection planes are set substantially parallel to each other.




The configurations of dielectric waveguides which represent a fourth embodiment of the present invention will next be described below with reference to

FIGS. 16 and 17

.





FIG. 16A

is a perspective view of dielectric strips shown without upper and lower conductor plates, and shows the connection structure of the dielectric strips.

FIG. 16B

is an exploded perspective view of the dielectric strips. While the dielectric strips are connected to each other at two connection planes in each of the above-described embodiments, the dielectric strips in this embodiment are connected at three connection planes a, b, and c perpendicular to the direction of propagation of electromagnetic waves. The distance L between the connection planes is set to an odd number multiple of λg/4.





FIG. 17A

is a perspective view of dielectric strips shown without upper and lower conductor plates, and shows the connection structure of the dielectric strips.

FIG. 17B

is an exploded perspective view of the dielectric strips. In this example, the dielectric strips are connected at four connection planes a, b, c, and d. Even in the case where the number of connection planes is three or more as in this embodiment, propagation of reflected waves to a port #1 or a port #2 can be limited by setting the distance L between the connection planes to an odd number multiple of λg/4.




If such tenon-mortise-like connection is made, the accuracy of relative positioning of the dielectric strips in a direction perpendicular to the axial direction of the dielectric strips can be easily improved.




The configurations of three dielectric waveguides which represent a fifth embodiment of the present invention will next be described below with reference to

FIGS. 18 and 19

. In a case where a planar circuit is formed together with a dielectric waveguide by using a dielectric plate, a waveguide portion in which the dielectric plate is inserted and another waveguide portion in which the dielectric plate is not inserted are connected at a certain point. The fifth embodiment comprises examples of a matching structure at such a connection point.

FIGS. 18 and 19

are perspective views of waveguides shown without upper and lower conductor plates.




In the example shown in

FIG. 18

, the dielectric constants of the dielectric strips


1


,


2




a


, and


2




b


, and the dielectric plate


6


are set approximately equal to each other, or the dielectric constant of the dielectric plate


6


is set slightly smaller than the dielectric constants of the dielectric strips


1


,


2




a


, and


2




b


, so that the line impedances of the portion in which the dielectric plate


6


is inserted and the portion in which the dielectric plate


6


is not inserted are approximately equal to each other.




If the dielectric constant of the dielectric plate


6


is different from those of the dielectric strips


1


,


2




a


, and


2




b


, a recess (cut) is provided in the dielectric plate


6


as shown in

FIG. 19

to set the line impedance at the recess to a middle value between the line impedance of the portion in which the dielectric plate is inserted and the line impedance of the portion in which the dielectric plate is not inserted.




The configurations of a dielectric waveguide which represents a sixth embodiment of the present invention will next be described below with reference to

FIGS. 20

to


22


.





FIG. 20

is a perspective view in a state where upper and lower conductor plates are removed. This dielectric waveguide differs from that illustrated in

FIG. 18

in that four dielectric strips


1




a


,


1




b


,


2




a


, and


2




b


are used. Also in this case, the distance L between the connection plane a and the connection plane b is set to an odd number multiple of λg/4.





FIGS. 21 and 22

are cross-sectional views of dielectric strip portions along the direction of propagation of electromagnetic waves. In the example shown in

FIG. 21

, the thicknesses of the dielectric strips


1




b


and


2




b


are equal to each other while the thickness of the dielectric strip


1




a


is equal to the sum of the thickness of the dielectric strip


2




a


and the thickness of the dielectric plate


6


. In the example shown in

FIG. 22

, the thickness of the entire dielectric strip


1




b


is equal to that of the dielectric strip la, the thicknesses of the dielectric strips


2




a


and


2




b


are equal to each other, and the height of the connection plane between the dielectric strips


1




a


and


1




b


corresponds to the center of the end surface of the dielectric plate


6


in the direction of height. When the dielectric strips in the structure shown in

FIG. 21

are formed, they can be obtained without post working since the thickness of each dielectric strip is constant. This structure is therefore advantageous in manufacturing facility. The structure shown in

FIG. 22

is symmetrical about a horizontal plane, so that the facility with which the dielectric waveguide is designed is improved.





FIG. 23

is a diagram showing the configuration of a dielectric waveguide which represents a seventh embodiment of the present invention. In

FIG. 23

, only dielectric strips are shown without upper and lower conductor plates. A dielectric strip


3


having a length corresponding to an odd number multiple of λg/4 is interposed between two dielectric strips


1


and


2


which are to be connected to each other. In the dielectric waveguide thus constructed, a wave reflected at the dielectric strip


1


-


3


connection plane and a wave reflected at the dielectric strip


2


-


3


connection plane are superposed in phase opposition to each other to be canceled out. In this manner, reflected waves propagating to a port


1


and to a port


2


are reduced.





FIG. 24

shows the result of calculation of a reflection characteristic in the 60 GHz band of the dielectric waveguide shown in FIG.


23


. The characteristic was calculated by the three-dimensional finite element method with respect to specifications: a=2.2 mm, b


2


=1.8 mm, 2=0.5 mm (see FIG.


1


), gap=0.2 mm, L=2.2 mm, LL=10 mm, and εr=2.04. Thus, an improved reflection characteristic in the operating 60 GHz band can be obtained.




When the dielectric strips in the structure shown in

FIG. 23

are formed, each dielectric strip can be worked by being cut along a plane perpendicular to its axial direction. Thus, the facility with which the dielectric waveguide is manufactured can be improved.





FIGS. 25A and 25B

are diagrams showing a dielectric waveguide which represents an eighth embodiment of the present invention.

FIG. 25A

is a perspective view of dielectric strips shown without upper and lower conductor plates, and

FIG. 25B

is an exploded perspective view of the dielectric strips. As shown in

FIGS. 25A and 25B

, a third dielectric strip


3


is inserted in a connection section of first and second dielectric strips


1


and


2


, and each of the distances L1 and L2 between two pairs of connection planes is set to λg/6, thereby enabling waves reflected at the connection planes to cancel out.





FIG. 26

shows the result of calculation of a reflection characteristic in the 60 GHz band of the dielectric waveguide shown in FIG.


25


. The characteristic was calculated by the three-dimensional finite element method with respect to specifications: a=2.2 mm, b=1.8 mm, g=0.5 mm (see FIG.


1


), gap=0.2 mm, and εr=2.04, L1 =L2, and L1 +L2 =L=3.0. The guide wavelength λg at 60 GHz is 8.7 mm. It can be understood from this result that an improved reflection characteristic at the operating frequency (60 GHz band) can be obtained even in the case where there are three connection planes.





FIGS. 27 and 28

are exploded perspective views of a dielectric waveguide device which represents a ninth embodiment of the present invention. In this embodiment, each of components of a mixer or an oscillator is separately manufactured and the prepared components are combined to form a dielectric waveguide device.

FIG. 27A

is a diagram showing a state of two components


20


and


21


before assembly, and

FIG. 27B

is a perspective view of the connection structure of dielectric strip portions used in the two components


20


and


21


. The component


20


has conductor plates


4




a


and


5




a


and has dielectric strips


1




a


and


1




b


provided between the conductor plates


4




a


and


5




b


, as shown in FIG.


27


B. Similarly, the component


21


has dielectric strips


2




a


and


2




b


provided between conductor plates


4




b


and


5




b


. A planar circuit on a dielectric plate is formed inside these components


20


and


21


according to one's need. In the component


20


, the end surface of the conductor plate


5




a


protrudes by L beyond the end surface of the conductor plate


4




a


. In the component


21


, the end surface of the conductor plate


4




b


protrudes by L beyond the end surface of the conductor plate


5




b


. Correspondingly, the distance between the dielectric strip


1




b


-


2




b


connection plane a and the dielectric strip


1




a


-


2




a


connection plane b is set to L, as shown in FIG.


27


B. When these two components


20


and


21


are combined, they are positioned relative to each other along the vertical direction as viewed in the figure by abutment of the lower surface of the protruding portion of the conductor plate


5




a


and the upper surface of the protruding portion of the conductor plate


4




b


and by abutment of the upper surface of the protruding portion of the dielectric strip


2




a


and the lower surface of the protruding portion of the dielectric strip


1




b


. The two components


20


and


21


are also positioned along the electromagnetic wave propagation direction by abutment of the end surfaces of the dielectric plates


4




a


and


5




a


, and


4




b


and


5




b


, and by abutment of the end surfaces of the dielectric strips


1




a


and


1




b


, and


2




a


and


2




b.







FIG. 28

shows an example of positioning in a dielectric waveguide along a direction perpendicular to the electromagnetic wave propagation direction and along a horizontal direction as viewed in the figure. Positioning pins


7


and


8


are provided on the conductor plate


4




b


, and positioning holes


9


and


10


are formed in corresponding positions in the conductor plate


5




a


. The components


21


and


22


are positioned by fitting the positioning pins


7


and


8


projecting from the component


21


to the positioning holes


9


and


10


of the component


20


.





FIG. 29

is an exploded perspective view of an oscillator with which an isolator is integrally combined, and which represents a tenth embodiment of the present invention, and

FIG. 30

is a plan view of components in a superposed state. Components


2


,


31


, and


32


shown in

FIGS. 29 and 30

are dielectric strips, and a component


34


is a ferrite disk. These components are disposed between a conductor plate


35


and another conductor plate (not shown) opposed to each other. A resistor


33


is provided at a terminal of the dielectric strip


32


. Further, a magnet for applying a dc magnetic field to the ferrite disk


34


is provided. These components form an isolator.




An end portion of the dielectric strip


2


is formed so as to have a step portion. A dielectric strip


1




a


is placed on the conductor plate


35


continuously with the step portion of the dielectric strip


2


. A dielectric plate


6


is placed on the end step portion of the dielectric strip


2


, on the dielectric strip


1




a


and on a portion of the conductor plate


36


. The dielectric plate


6


has a cut portion S at its one end. The cut portion S corresponds to the step portion of the dielectric strip


2


. A dielectric strip


1




b


is placed at a position on the dielectric plate


6


opposite from the dielectric strip


1




a


, thus forming a structure in which the dielectric plate


6


is interposed between the upper and lower dielectric strips. This structure enables impedance matching by setting the impedance of the line at the step portion of the dielectric strip


2


as a middle value between the impedance of the line at the dielectric strip


1




a


and the impedance of the line at the dielectric strip


2


.




The length of the dielectric strip


1




b


is approximately equal to the sum of the dielectric strip


1




a


and the length of the step portion of the dielectric strip


2


. The length of the step portion at the end of the dielectric strip


2


is set an odd number multiple of ¼ of the guide wavelength of an electromagnetic wave propagating through the dielectric strips. Waves reflected at the two connection planes between the dielectric strip


2


and the dielectric strips


1




a


and


1




b


are thereby made to cancel out.




On the dielectric plate


6


, an excitation probe


38


, a low-pass filter


39


, and a bias electrode


40


are formed. A Gunn diode block


36


is provided on the conductor plate


35


, and a Gunn diode is connected to the excitation probe


38


on the dielectric plate


6


, and the excitation probe


38


is positioned at the ends of the dielectric strips


1




a


and


1




b


. A dielectric resonator


37


is also provided on the dielectric plate


6


. The dielectric resonator


37


is disposed close to the dielectric strips


1




a


and


1




b


to couple with the same.




In the thus-constructed oscillator, a bias voltage is applied to the bias electrode


40


to supply a bias voltage to the Gunn diode. The Gunn diode thereby oscillates a signal, which propagates through the dielectric strips


1




a


and


1




b


, the dielectric strips


1




a


and


1




b


and the nonradiative dielectric waveguide formed of the dielectric strips


1




a


and


1




b


and the upper and lower conductor plates via the excitation probe


38


. This signal propagates in the direction from the dielectric strip


2


toward the dielectric strip


31


. The dielectric resonator


37


stabilizes the oscillation frequency of the Gunn diode. The low-pass filter


39


suppresses a leak of a high-frequency signal to the bias electrode


40


.




A reflected wave from the dielectric strip


31


is guided in the direction toward the dielectric strip


32


by the operation of the isolator and is terminated by the resistor


33


in a non-reflection manner. Therefore, no reflected wave returns from the dielectric strip


31


to the Gunn diode. Also, waves reflected at the two connection planes between the dielectric strips


1




a


and


1




b


and the dielectric strip


2


cancel out and do not return to the Gunn diode. Thus, an oscillator having stabilized characteristics can be obtained.





FIG. 32

shows another example of the connection structure of dielectric waveguides.




Referring to

FIG. 32

, one dielectric waveguide has grooves formed in conductor plates


4




a


and


5




a


, and has a dielectric strip


1


fit to the grooves. Another dielectric waveguide has grooves formed in conductor plates


4




b


and


5




b


, and has a dielectric strip


2


fit to the grooves. Portions of the dielectric strips


1


and


2


opposed to each other are stepped so that the distance between the two connection planes is ¼ of the guide wavelength.




The opposed surfaces of the dielectric plates at the connection between the two dielectric waveguides are formed in such a manner that, as shown in

FIG. 32

, a portion p of one conductor plate


5




a


projects while the other conductor plate


5




b


opposed to the conductor plate


5




a


is recessed at the corresponding position d, thus forming step portions s.




This structure enables the two dielectric waveguides to be positioned relative to each other along a direction parallel to the flat surfaces of the conductor plates and along a direction perpendicular to the electromagnetic wave propagation direction (the longitudinal direction of the dielectric strips) by abutment of the side surfaces of the above-described step portions when they are opposed to each other with a certain gap formed therebetween, or when they are brought into abutment on each other.





FIG. 33

shows still another example of the connection structure of dielectric waveguides.




This example differs from that shown in

FIG. 32

in that, in the opposed end surfaces of the pairs of conductor plates at the connection between two dielectric waveguides, a portion p of each of the conductor plates


4




a


and


5




a


on one side projects while the conductor plates


4




b


and


5




b


on the other side are recessed at corresponding positions d, thereby forming step portions s.




This structure enables the two dielectric waveguides to be positioned relative to each other along a direction parallel to the flat surfaces of the conductor plates and along a direction perpendicular to the electromagnetic wave propagation direction by abutment of the side surfaces of the above-described step portions when they are opposed to each other with a certain gap formed therebetween, or when they are brought into abutment on each other.




In the examples shown in

FIGS. 32 and 33

, step portions are formed in only one place as viewed in plan. However, the arrangement may alternatively be such that, for example, as shown in

FIG. 34

, step portions s are formed in two places so that their side surfaces face in different directions, thereby enabling positioning along each of a direction parallel to the flat surfaces of the conductor plates and a direction perpendicular to the electromagnetic wave propagation direction.




The embodiments have been described with respect to the grooved type dielectric waveguides in which the distance between the flat surfaces of the portions of the conductor plates at the dielectric strip portions is increased relative to the distance between the flat conductor surfaces in the other regions. The present invention, however, can also be applied in the same manner to a normal type dielectric waveguide such as shown in FIG.


31


A. In the above-described embodiments, conductor plates each formed of a metal plate or the like are used as flat conductors between which dielectric strip portions are interposed, and dielectric strips are provided separately from the conductor portions having flat surfaces. The present invention, however, can also be applied in the same manner to, for example, a window type dielectric waveguide constructed in such a manner that, as shown in

FIG. 31B

, dielectric strip portions are integrally formed on dielectric plates


11


and


12


, electrodes


13


and


14


are provided on external surfaces of the dielectric plates, and the dielectric strip portions are opposed to each other.




According to the first to fourth aspects of the present invention, electromagnetic waves reflected at the connection planes are superposed to cancel out, thereby reducing the influence of reflection. Therefore, a dielectric waveguide having an improved reflection characteristic can be obtained even if the difference between the linear expansion coefficients of dielectric strips and conductor plates is large, even if the waveguide is used in an environment where there are large variations in temperature, or even if a comparatively large gap is formed between the surfaces of the dielectric strips connected to each other due to a large working tolerance.




According to the fifth and sixth aspects of the present invention, two dielectric waveguides can be positioned along a direction parallel to the conductor plates and along a direction perpendicular to the electromagnetic wave propagation direction. Therefore, a dielectric waveguide can be obtained in which reflection at a connection plane between two dielectric waveguides can be limited and which has an improved transmission line characteristic.



Claims
  • 1. A dielectric waveguide comprising:an electromagnetic wave propagation region comprised of a first pair and an adjacent second pair of dielectric strips disposed along a direction of propagation of an electromagnetic wave; said first and second pairs of dielectric strips being connected to each other at respective connection planes which are spaced apart from each other in the direction of propagation by a distance corresponding to an odd number multiple of ¼ of the guide wavelength of an electromagnetic wave propagating through the first and second pairs of dielectric strips; and a dielectic plate interposed between said first and second pairs of dielectric strips, wherein a recess is disposed in a portion of said dielectric plate disposed between said first and second pairs of dielectric strips.
  • 2. A dielectric waveguide according to claim 1, wherein a dielectric constant of said dielectric plate is lower than dielectric constants of said first and second pairs of dielectric strips.
  • 3. A dielectric waveguide comprising:an electromagnetic wave propagation region comprised of first and second dielectric strips disposed along a direction of propagation of an electromagnetic wave, further comprising a third dielectric strip inserted in part of a connection section at which the first dielectric strip and the second dielectric strip are connected to each other, thereby forming three respective connection planes between the first and second dielectric strips the first and third dielectric strips, and the second and third dielectric strips; and wherein the distance between the three connection planes in said connection section are determined so that a wave reflected at the connection plane between the first and third dielectric strips, a wave reflected at the connection plane between the first and second dielectric strips, and a wave reflected at the connection plane between the second and third dielectric strips are superposed with a phase difference of 2π/3 from each other.
  • 4. A dielectric waveguide according to claim 3, wherein the distance between the first-second dielectric strip connection plane and the first-third dielectric strip connection plane is set to ⅙ of the guide wavelength of an electromagnetic wave propagating through the dielectric strips, and the distance between the first-second dielectric strip connection plane and the second-third dielectric strip connection plane is set to ⅙ of the guide wavelength.
  • 5. A dielectric waveguide according to claim 4, wherein said dielectric waveguide is further comprised of two pairs of conductor plates and said first, second and third dielectric strips are disposed between the two pairs of conductor plates, and the respective conductor plates of at least one of said pairs of conductor plates are positioned both along a direction parallel to said conductor plates and along a direction perpendicular to the electromagnetic wave propagation direction by a projecting portion of one of the conductor plates at said connection section between the dielectric strips, and a recessed portion of the other conductor plate at a corresponding position.
  • 6. A dielectric waveguide according to claim 3, wherein said dielectric waveguide is further comprised of two pairs of conductor plates and said first, second and third dielectric strips are disposed between the two pairs of conductor plates, and the respective conductor plates of at least one of said pairs of conductor plates are positioned both along a direction parallel to said conductor plates and along a direction perpendicular to the electromagnetic wave propagation direction by a projecting portion of one of the conductor plates at said connection section between said dielectric strips, and a recessed portion of the other conductor plate at a corresponding position.
  • 7. A dielectric waveguide comprising:an electromagnetic wave propagation region of comprised of first and second dielectric strips disposed along a direction of propagation of an electromagnetic wave, further comprising a third dielectric strip inserted in part of a connection section at which a first dielectric strip and a second dielectric strip are connected to each other, thereby forming respective connection planes between the first and second dielectric strips the first and third dielectric strips, and the second and third dielectric strips; and wherein the distance between the first-second dielectric strip connection plane and the first-third dielectric strip connection plane is set to ⅙ of the guide wavelength of an electromagnetic wave propagating through the first, second and third dielectric strips, and the distance between the first-second dielectric strip connection plane and the second-third dielectric strip connection plane is set to ⅙of the guide wavelength.
  • 8. A dielectric waveguide according to claim 7, wherein said dielectric waveguide is further comprised of two pairs of conductor plates and said first, second and third dielectric strips are disposed between the two pairs of conductor plates, and the respective conductor plates of at least one of said pairs of conductor plates are positioned both along a direction parallel to said conductor plates and along a direction perpendicular to the electromagnetic wave propagation direction by a projecting portion of one of the conductor plates at said connection section between said dielectric strips, and a recessed portion of the other conductor plate at a corresponding position.
  • 9. A dielectric waveguide comprising:an electromagnetic wave propagation region comprised of a first pair and an adjacent second pair of dielectric strips disposed alone a direction of propagation of an electromagnetic wave; said first and second pairs of dielectric strips being connected to each other at respective connection planes which are spaced apart from each other in the direction of propagation by a distance corresponding to an odd number multiple of ¼ of the guide wavelength of an electromagnetic wave propagating through the first and second pairs of dielectric strips; and a dielectric plate interposed between said first and second pairs of dielectric strips; wherein an edge of said dielectric plate is disposed at one of said connection planes.
  • 10. A dielectric waveguide comprising:an electromagnetic wave propagation region comprised of a first pair and an adjacent second pair of dielectric strips disposed along a direction of propagation of an electromagnetic wave, said first and second pairs of dielectric strips being connected to each other at respective connection planes which are spaced apart from each other in the direction of propagation by a distance corresponding to an odd number multiple of ¼ of the guide wavelength of an electromagnetic wave propagating through the first and second pairs of dielectric strips; and a dielectric plate interposed between said first and second pairs of dielectric strips, wherein a portion of said first pair of dielectric strips is integral with a corresponding portion of said second pair of dielectric strips.
Priority Claims (2)
Number Date Country Kind
9-186358 Jul 1997 JP
10-036204 Feb 1998 JP
US Referenced Citations (6)
Number Name Date Kind
0700112 EPX Mar 1996
3537043 Smith Oct 1970
3577105 Jones, Jr. May 1971
4517536 Stern et al. May 1985
5770989 Ishikawa et al. Jun 1998
5825268 Ishikawa et al. Oct 1998
Foreign Referenced Citations (4)
Number Date Country
147078 Sep 1948 AU
0700112 Mar 1996 EP
0818844 Jan 1998 EP
1555937 Nov 1979 GB
Non-Patent Literature Citations (3)
Entry
E. H. Fooks, R. A. Zakarevicius, “Microwave Engineering Using Microstrip Circuits”, pp. 131-132 (Prentice Hall, New York, 1990).
Xu, S. et al., “Scattering Properties of Discontinuities in NRD Guide”, IEE Proceedings: Microwaves, Antennas and Propagation, GB, IEE, Sstevenage, Herts, vol. 141, No. 3, Part H, pp. 205-210, Jun. 1994.
European Search Report dated May 16, 2000.