This application claims the priority of China patent application No. 202010298507.5 filed on Apr. 16, 2020, disclosure of which is hereby incorporated by reference in its entirety.
The present disclosure relates to the technical field of filters, and in particular, to a dielectric waveguide filter.
Along with the development of 5th generation (5G) communication, dielectric waveguide filters have found increasingly spread applications. Accordingly, higher and higher requirements are posed for the performance of the dielectric waveguide filters.
To improve the out-of-band rejection capability of the dielectric waveguide filter, the dielectric waveguide filter typically needs to be configured as a multi-zero structure. In the related art, however, the dielectric waveguide filter needs to be provided with a capacitive coupling column or double-side rows of cavities in order to achieve the multi zeros of the dielectric waveguide filter. As such, the configuration based on capacitive coupling column increases the difficulties in subsequent debugging of the dielectric waveguide filter, while the configuration based on the double-sided rows of cavities results in an increased size of the dielectric waveguide filter. The increased difficulties in subsequent debugging and process limit further application of the dielectric waveguide filter.
Embodiments of the present disclosure provide a dielectric waveguide filter, so as to achieve miniaturization of the dielectric waveguide filter and expand the application range of the dielectric waveguide filter.
In a first aspect, an embodiment of the present disclosure provides a dielectric waveguide filter. The dielectric waveguide filter includes a dielectric main body, where a plurality of isolation slots and a plurality of frequency tuning blind holes are provided in the dielectric main body; and at least two port signal transmission holes are further provided in the dielectric main body; where the at least two port signal transmission holes and at least part of the plurality of frequency tuning blind holes are disposed on two opposite sides of the dielectric main body; and in a thickness direction of the dielectric main body, the at least two port signal transmission holes do not overlap with the plurality of frequency tuning blind holes.
In some embodiments, there is no capacitive coupling window disposed between the plurality of frequency tuning blind holes of the dielectric waveguide filter.
In some embodiments, both a left side and a right side of each of the at least two port signal transmission holes are provided with the frequency tuning blind holes.
In some embodiments, at least one of the at least two port signal transmission holes is disposed at a central position between two frequency tuning blind holes adjacent to the at least one port signal transmission hole.
In some embodiments, the plurality of frequency tuning blind holes includes eight frequency tuning blind holes, and the eight frequency tuning blind holes are arranged in two rows and four columns; the plurality of isolation slots includes a first isolation slot, a second isolation slot and a third isolation slot; the first isolation slot is disposed between a first column of frequency tuning blind holes and a second column of frequency tuning blind holes, the second isolation slot is disposed between the second column of frequency tuning blind holes and a third column of frequency tuning blind holes, and the third isolation slot is disposed between the third column of frequency tuning blind holes and a fourth column of frequency tuning blind holes; and the at least two port signal transmission holes includes a first port signal transmission hole and a second port signal transmission hole, where the first port signal transmission hole is disposed between the first column of frequency tuning blind holes and the second column of frequency tuning blind holes, and the second port signal transmission hole is disposed between the third column of frequency tuning blind holes and the fourth column of frequency tuning blind holes.
In some embodiments, the first isolation slot and the third isolation slot are in a cross shape, and the second isolation slot is in a shape of a line segment.
In some embodiments, the first port signal transmission hole and the second port signal transmission hole are symmetrical with respect to a centerline of the eight frequency tuning blind holes.
In some embodiments, the first isolation slot is connected to the second isolation slot.
In some embodiments, the plurality of frequency tuning blind holes are disposed along a straight line.
In some embodiments, at least part of the plurality of frequency tuning blind holes are disposed on a same side of the dielectric waveguide filter as the at least two port signal transmission holes.
In the technical solution of the embodiments of the present disclosure, an adopted dielectric waveguide filter includes the dielectric main body, where the plurality of isolation slots and the plurality of frequency tuning blind holes are disposed on the dielectric main body, and the at least two port signal transmission holes are further disposed on the dielectric main body; where the at least two port signal transmission holes and the at least part of the plurality of frequency tuning blind holes are disposed on the two opposite sides of the dielectric main body; and in the thickness direction of the dielectric main body, the at least two port signal transmission holes do not overlap with the at least part of the plurality of frequency tuning blind holes. An input signal on the at least two port signal transmission holes will generate a signal with a phase difference of −180° from the input signal by passing through the plurality of frequency tuning blind holes, that is, generate a transmission zero. Since a capacitive coupling column is not needed to generate the transmission zero, the difficulty of later debugging and optimization as well as the labor-hour cost can be greatly reduced, thereby facilitating miniaturization of the dielectric waveguide filter, and expanding the application range of the dielectric waveguide filter.
Hereinafter the present disclosure will be further described in detail in conjunction with the drawings and embodiments. It is to be understood that the specific embodiments set forth herein are merely intended to illustrate and not to limit the present disclosure. Additionally, it is to be noted that for ease of description, merely part, not all, of the structures related to the present disclosure are illustrated in the drawings.
Based on the above-mentioned technical problem, the present disclosure proposes the following solving solution.
Specifically, the dielectric main body 101 may be a ceramic main body, the plurality of frequency tuning blind holes 103 are blind holes disposed on the dielectric main body 101, and a metal shielding layer, e.g., a copper shielding layer, may be disposed on a surface of the dielectric main body 101. The port signal transmission holes 104 are blind holes disposed on the dielectric main body 101. The port signal transmission holes 104 and the at least part of the plurality of frequency tuning blind holes 103 are disposed on the two opposite sides of the dielectric main body 101. For example, the at least part of the plurality of frequency tuning blind holes 103 are disposed on a front surface of the dielectric main body 101, and the port signal transmission holes 104 are disposed on a back surface of the dielectric main body 101. The port signal transmission hole 104 serves as an input port or an output port of the dielectric waveguide filter. In this embodiment, the port signal transmission holes 104 do not overlap with the frequency tuning blind holes 103 in the thickness direction of the dielectric main body 101. For example, after a signal is inputted from one port signal transmission hole 1041, the signal is transmitted in two ways. The signal of one way is transmitted to another port signal transmission hole 1042 through frequency tuning blind holes (1033-1034-1035-1036) while the signal of the other way generates a signal with a phase difference of −180° from an input signal of the port signal transmission hole 1041 after passing through frequency tuning blind holes (1031-1032), that is, a group of transmission zeros is generated. It could be understood that there is a signal of a way inputted from the another port signal transmission hole 1042 that generates a signal with a phase difference of −180° from an input signal of the port signal transmission hole 1042 after passing through frequency tuning blind holes (1037-1038), that is, another group of transmission zeros is generated. Thereby the dielectric waveguide filter of this embodiment can generate multiple transmission zeros. Since the capacitive coupling column is not needed, the difficulty of later optimization and debugging can be greatly reduced, the labor-hour cost can be greatly reduced, and meanwhile, miniaturization of the dielectric waveguide filter can be achieved, and an application range of the dielectric waveguide filter can be expanded. It could be understood that the thickness direction of the dielectric main body 101 is a direction perpendicular to a side of the dielectric main body 101 on which the frequency tuning blind holes 103 are disposed, and in this direction, the port signal transmission holes 104 do not overlap with the frequency tuning blind hole 103, that is, orthographic projections of the port signal transmission holes 104 in this direction do not overlap with orthographic projections of the frequency tuning blind holes 103 in this direction.
In a technical solution of the embodiments of the present disclosure, an adopted dielectric waveguide filter includes the dielectric main body, where the plurality of isolation slots and the plurality of frequency tuning blind holes are disposed on the dielectric main body, and the at least two port signal transmission holes are further disposed on the dielectric main body; where the port signal transmission holes and the at least part of the plurality of frequency tuning blind holes are disposed on the two opposite sides of the dielectric main body; and in the thickness direction of the dielectric main body, the port signal transmission holes do not overlap with the plurality of frequency tuning blind holes. The input signal on the port signal transmission hole will generate the signal with the phase difference of −180° from the input signal by passing through the frequency tuning blind hole, that is, the transmission zero is generated. Since the capacitive coupling column is not needed to generate the transmission zero, the difficulty of later debugging and optimization can be greatly reduced, and the labor-hour cost can be greatly reduced, and meanwhile the miniaturization of the dielectric waveguide filter is achieved and the application range of the dielectric waveguide filter is expanded.
In some embodiments, there is no capacitive coupling window disposed among the frequency tuning blind holes 103 of the dielectric waveguide filter, that is, there is no need of capacitive coupling column. In the embodiment, the frequency tuning blind holes 103 of this embodiment are all in an inductive cross coupling mode, which has a better stability and consistency.
In some embodiments, still referring to
In this way, it can be ensured that the input signal of the port signal transmission hole 104 will have a signal passing through the frequency tuning blind hole 103 to generate a signal with a phase difference of −180° from the input signal, and it can be ensured that the transmission zero is generated, thereby improving out-of-band rejection capability of the dielectric waveguide filter.
Still referring to
Exemplarily, both the port signal transmission holes 104 and the frequency tuning blind holes 103 are circular cavities. In other embodiments, the port signal transmission holes 104 and the frequency tuning blind holes 103 may be of other shapes. The port signal transmission hole 104 is disposed at the center position of frequency tuning blind holes 103 adjacent to the port signal transmission hole 104, such that the dielectric waveguide filter has a relatively simple and stable structure and better characteristics such as excellent consistency. The application range of the dielectric waveguide filter is further expanded.
In some embodiments, still referring to
Specifically,
In some embodiments, still referring to
In this way, process difficulty of the dielectric waveguide filter can be simplified and the production cost of the dielectric waveguide filter is reduced.
In some embodiments, still referring to
Specifically, as illustrated in
It is to be noted that in the above-mentioned description, a number of frequency tuning blind holes on the left side of the first port signal transmission hole 1041 is 2, and a number of frequency tuning blind holes on the right side of the second port signal transmission hole 1042 is 2. However, this number is only an example, and in other embodiments, this number may also be (2, 1), (2, 0), (1, 2), (1, 1), (1, 0), (0, 1), (0, 2), . . . , respectively.
In some embodiments,
In this way, the dielectric waveguide filter can generate asymmetric transmission zeros. The principle of generating the asymmetric transmission zeros is similar to that of the transmission zeros of the dielectric waveguide filter shown in
In some embodiments,
Specifically, in this embodiment, the frequency tuning blind holes may be arranged in a column, the port signal transmission holes 104 do not overlap with the frequency tuning blind holes 103, such that the input signal on the port signal transmission holes 104 passes through the frequency tuning blind holes 103 to generate a signal with a phase difference of −180° from the input signal, that is, to generate the transmission zero. Since no capacitive coupling column is needed to generate the transmission zero, the difficulty of later optimization and debugging can be greatly reduced, the labor-hour cost can be greatly reduced, and meanwhile the miniaturization of the dielectric waveguide filter is achieved, and the application range of the dielectric waveguide filter is expanded. In
In some embodiments, at least part of the plurality of frequency tuning blind holes and the port signal transmission holes are disposed on a same side of the dielectric waveguide filter.
Specifically, the frequency tuning blind holes may be disposed on two sides of the dielectric waveguide filter, that is, frequency tuning blind holes in a form of a blind hole are disposed on two sides of the dielectric main body, and the frequency tuning blind holes on two sides of the dielectric main body may be at opposite positions in such configuration, so as to improve remote suppression performance of the dielectric waveguide filter.
It is to be noted that in other embodiments, the dielectric main body may be of double layer, where a setting location of the frequency tuning blind holes is well known to those skilled in the art and will not be repeated herein. The dielectric waveguide filter of this embodiment can generate transmission zeros or symmetric transmission zeros with any number and any position; the frequency tuning blind holes are all inductive cross-coupled with good stability and consistency; the cavity arrangement is more flexible, that is, the arrangement may be in-line, double-row or double-layer, and the structure is simple and stable; and the process is less difficult, the production cost is low, the structural consistency is excellent, and the application range is wider.
The foregoing merely depicts some exemplary embodiments according to the present disclosure and the technical principles used therein. Those having ordinary skill in the art will appreciate that the present disclosure will not be limited to the specific embodiments described herein, and that various apparent modifications, adaptations and substitutions can be made without departing from the scope of the present disclosure. Thus, while the present disclosure has been described in detail by way of the above-described embodiments, the present disclosure will not be limited to the above-mentioned embodiments and may further include more other equivalent embodiments without departing from the concept of the present disclosure. The scope of the present disclosure is thus determined by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
202010298507.5 | Apr 2020 | CN | national |