The present disclosure relates to antennas, and in particular antennas printed on printed circuit boards (PCBs) used for wireless communication.
In-band full-duplex radio technology has been of interest for wireless communications, including for use in fifth-generation (5G) wireless networks, with transmission and reception of radio signals using a common antenna and transceiver. In full-duplex communications, transmission signals and reception signals are communicated using the same time-frequency resource (e.g., using the same carrier frequency at the same time). As a result, overall throughput of the channel can be increased by a factor of two.
Multiple Inputs Multiple Outputs (MIMO) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation in which full-duplex antennas may provide efficient and flexible utilization of wireless communication resources; increasing the capacity of the communication networks; and guaranteeing reliable communication. The presence of multiple antennas means that high isolation is required between transmit and receive antennas in order to minimize self-interference (SI), particularly in the received signal. For example, in a closely packed two-dimensional (2D) array antenna, there is a relatively high level of SI leakage signal from the transmit path to the receive path, due to internal and external couplings. In a full-duplex array antenna, this SI, which is caused by mutual coupling from transmitter to receiver, should be reduced (e.g., to below the thermal noise floor) to avoid significant system interference or distortion in the receiver. Many techniques have implemented which include defected ground structure, parasitic elements, Electromagnetic Bandgap (EBG), and Near-Field Resonators (NFRs). However, for such techniques, isolation is generally provided at the expense of narrow bandwidth (e.g. −20 dB bandwidth of 1% to 5% of the resonance frequency) and relatively larger antenna size.
It is desirable to provide an antenna that may provide high isolation for full duplex communication with improved insertion loss, bandwidth, and reduced antenna size.
An antenna element is described that includes a conductive arm supported on a substrate, the conductive arm being configured to transmit or receive electromagnetic signals. A dipole antenna includes a high dielectric material configured to provide spatial covering of the conductive arm on the substrate. The high dielectric material is configured to direct electromagnetic field radiation to mitigate interference.
An array antenna is also described comprising a transmitting antenna element as described in any of the preceding aspects/embodiments and a receiving antenna element as described in any of the preceding aspects/embodiments located on a reflector element. The receiving dipole antenna element is aligned orthogonal to that of transmitting antenna element to mitigate self interference between the transmitting and receiving antenna elements.
In one aspect, the present disclosure provides an antenna element comprising: a substrate having a first surface; at least one conductive arm configured to receive or transmit electromagnetic signals, the conductive arm being provided on the first surface of the substrate; at least one high dielectric material configured to provide spatial covering of the conductive arm on the first surface of the substrate, wherein the high dielectric material is configured to direct electromagnetic fields to mitigate interference.
In another aspect, the present disclosure provides an antenna array structure comprising: a reflector element; a first antenna element supported on the reflector element, the first antenna element having a first high dielectric material configured to provide spatial coverage of a first conductive arm, wherein the first conductive arm is aligned on the reflector element in a first direction and configured to receive electromagnetic signals in a first polarization direction; and a second antenna element supported on the reflector element, the second antenna element having a second high dielectric material configured to provide spatial coverage of a second conductive arm, wherein the second conductive arm is aligned on the reflector element in a second direction and configured to transmit electromagnetic signals in a second polarization direction; wherein the first direction is orthogonal to the second direction to mitigate interference between the first and second antenna elements.
In any of the above aspects, the antenna element may be a dipole antenna element, the dipole antenna element comprising: a first conductive arm; a second conductive arm; a first high dielectric material configured to provide spatial covering of the first conductive arm; and a second high dielectric material configured to provide spatial covering of the second conductive arm.
In any of the above aspects, the first conductive arm may be provided on the first surface of the substrate, and the second conductive arm is provided on an opposing second surface of the substrate.
In any of the above aspects, the substrate may have a first dielectric constant value, and the at least one high dielectric material has a second dielectric constant value that is greater than the first dielectric constant value.
In any of the above aspects, the second dielectric constant value may be greater than 10.
In any of the above aspects, the second dielectric constant value may be 10.2.
In any of the above aspects, the second dielectric constant value may be 20.
In any of the above aspects, dimensions of the at least one high dielectric material may be configured to be equal to, or greater than, dimensions of the at least one conductive arm.
In any of the above aspects, the at least one high dielectric material may be 0.04λ in thickness.
In any of the above aspects, the first and second conductive arms may be printed conductive traces or casted metallic conductive traces.
Any of the above aspects may further comprise a feed port electrically coupled to the first conductive arm such that the first conductive arm is a part of an unbalanced transmission line; a balun electrically coupled between a ground and the second conductive arm, the balun is configured to convert the unbalanced transmission line into a balanced transmission line that is capable of driving both of the first and second conductive arms.
In any of the above aspects, the balun may be a tapered balun.
The antenna element in any of the above aspects may be configured as any one of a dipole antenna, monopole antenna, helical antenna, and a patch antenna.
In any of the above aspects, the dipole antenna may be a printed dipole or a casted metallic dipole.
In any of the above aspects, the first and second conductive arms may be provided on a same surface of the substrate.
In any of the above aspects, the surface of the substrate upon which the first and second conductive arms are provided may be dependent on a feed port.
In any of the above aspects, the feed port may be one of a excitation throw slot, a microstrip balun, and a transition from microstrip line to differential lines.
Any of the above aspects may further comprise a plurality of the first antenna elements configured to receive electromagnetic fields, at least some of the plurality of the first antenna elements being uniformly aligned in the first direction; and a plurality of the second antenna elements configured to transmit the electromagnetic fields, at least some the plurality of the second antenna elements being uniformly aligned in the second direction.
In any of the above aspects, the first antenna elements may alternate with the second antenna elements at a regular distance around a central area of the reflector element.
In any of the above aspects, the first and second antenna elements may be configured as any one of a dipole antenna, monopole antenna, helical antenna, and patch antenna.
Reference will now be made, by way of example, to the accompanying drawings which show example embodiments of the present application, and in which:
Similar reference numerals may have been used in different figures to denote similar components.
The following is a partial list of acronyms and associated definitions that may be used in the following description:
MIMO Multiple Inputs Multiple Outputs
DK Dielectric Constant
DLPDA Dielectrically Loaded Printed Dipole Antenna
EBG Electromagnetic Bandgap
PCB Printed Circuit Board
FD Full Duplex
Directional references herein such as “front”, “rear”, “up”, “down”, “horizontal”, “top”, “bottom”, “side” and the like are used purely for convenience of description and do not limit the scope of the present disclosure. Furthermore, any dimensions provided herein are presented merely by way of an example and unless otherwise specified do not limit the scope of the disclosure. Furthermore, geometric terms such as “straight”, “flat”, “curved”, “point”, “normal”, “orthogonal” and the like, and references to direction of polarization, are not intended to limit the disclosure any specific level of geometric precision, but should instead be understood in the context of the disclosure, taking into account normal manufacturing tolerances, as well as functional requirements as understood by a person skilled in the art.
Dipole antenna element 100 includes a substrate 102 having a first surface 102A and an opposing second surface 102B. Two conductive regions 110 and 120 is each provided onto the substrate 102. The number of conductive regions may be less or more than two depending on the type of antenna element. In the illustrated embodiment, the conductive regions 110 and 120 are provided on respective surfaces 102A and 102B of the substrate 102 such that the two conductive regions 110 and 120 are separated by the thickness of the substrate 102, Ts. It is to be appreciated that in other embodiments, the conductive regions 110 and 120 may be provided on a same surface of the substrate 102 as described in more detail below. Each of the conductive regions 110, 120 includes a respective conductive arm (112, 122) and a respective leg portion (114, 124). The dipole antenna element 100 further includes a first and a second high dielectric material 130 and 140 provided on respective substrate surfaces 102A and 102B to provide spatial covering of the conductive arms 112, 122 as described in more detail below.
In some embodiments, dipole antenna element 100 is formed from printed circuit board (PCB) that includes a dielectric substrate that support one or more conductive regions such as conductive regions 110 and 120. The PCB substrate may include a conductive ground plane layer with a ground connection, one or more dielectric substrate layers. The substrate 102 may also be made of any other suitable material such as fiberglass or a flexible film substrate made of polyimide that have a dielectric constant greater than that of air (ε of 1.0). Although the first conductive region 110 is shown as being provided on the first surface 102A of the substrate 102, and the second conductive region 120 on the opposing second surface 102B of the substrate 102, it is to be understood that the two conductive regions 110 and 120 may be provided on the same surface of the substrate. In some embodiments, whether the conductive traces are provided on the same substrate surface or different substrate surfaces may be dependent on the type of signal feed used as discussed in more detail below. In some embodiments, a further coating (not shown) such as a solder mask, or sometimes referred to as solder resist, can be selectively applied over the finished conductive regions to provide additional protection against wear, oxidation, and corrosion. The two conductive regions 110 and 120 are separated and electrically insulated from each another by the thickness of the substrate 102. The substrate 102 may be perpendicularly supported on a reflector 104.
The dimension of substrate 102 is defined by length Zs, width Ys, and thickness Ts. The substrate 102 may be sized to sufficiently support the conductive regions 110 and 120, as well as to permit electrical and grounding connections. In one example embodiment, the substrate 102 is a 45 mm by 45 mm PCB for a dipole antenna element having a dipole length of 29.25 mm that is configured to operate in the 3.5 GHz frequency band. Different dimensions of the PCB may be used to accommodate conductive arms/conductive traces of different sizes depending on the configuration or type of antenna. In some example embodiments, the substrate 102 may be 1.575 mm thick, although thicker and thinner substrates could be used. The thickness of the substrate 102 may affect the resonant frequency of the dipole antenna element 100. Thus, the length of the conductive arms 112, 122 may be adjusted accordingly based on the substrate thickness to achieve the desired resonant frequency.
In some embodiments, the substrate 102 may be a thin film substrate having a thickness thinner than, in most cases, around 600 μm, or thinner than around 500 μm, although thicker substrate structures are possible. Typical thin film substrate materials may be flexible printed circuit board materials such as polyimide foils, polyethylene naphthalate (PEN) foils, polyethylene foils, polyethylene terephthalate (PET) foils, and liquid crystal polymer (LCP) foils. Further substrate materials include polytetrafluoroethylene (PTFE) and other fluorinated polymers, such as perfluoroalkoxy (PFA) and fluorinated ethylene propylene (FEP), Cytop® (amorphous fluorocarbon polymer), and HyRelex materials available from Taconic™. In some embodiments the substrates are a multi-dielectric layer substrate.
In some embodiments, the first and second conductive regions 110 and 120 may be conductive traces formed from a conductive material such such as copper or a copper alloy, or alternatively, aluminum or an aluminum alloy, printed onto the substrate 102. Example methods of conductive trace printing may include laminating a layer of conductive material onto substrate 102 and then etching the conductive layer using a mask. Other suitable methods of forming dipole conductive traces onto a substrate, such as casted metallic traces may also be used.
The two conductive regions 110, 120 may be centrally disposed on respective surfaces 102A and 102B of the substrate 102. For embodiments where the conductive regions 110 and 120 are provided on the same substrate surface, they may be bisymmetrically positioned about a central axis of the substrate surface. Each of the conductive regions 110 and 120 may include a respective first and second conductive arm 112, 122 configured to resonate electromagnetic signals, at RF frequencies for example, during transmission or be caused to resonate while receiving electromagnetic signals. In the illustrated embodiment, the conductive regions 110 and 120 further include a respective first and second leg portions 114, 124. In the illustrated example, the conductive arms 112 and 122 are integrally formed at a substantially perpendicular angle to respective leg portions 114 and 124 in the shape of an inverted “L” such that the conductive arms 112 and 122 are approximately a height Hd above the respective substrate surfaces 102A and 102B. In the present disclosure, “substantially equal” and “approximately” can include a range within normal manufacturing tolerances, for example +/−5%. The conductive arms 112 and 122 may be formed at other angles with the respective leg portions 114 and 124 depending on the type of antenna.
The conductive region 110 is configured as an electrically isolated conductor on the surface 102A of the substrate. In some embodiments, such as the one shown in
In the illustrated embodiment, with the exception of a balun 108, the conductive region 120 is substantially identical in dimensions to the conductive region 110. The conductive region 120 is configured as an electrically isolated conductor on the surface 102B of the substrate 102. In some embodiments, the leg portion 124 on the surface 102B is aligned with the leg portion 114 on the first surface 102A such that the two conductive arms 112 and 122 have a lengthwise separation gap of the width of one of leg portions 114 or 124 (Yf) as best shown in
Whether conductive regions 110 and 120 are provided on opposite substrate surfaces or the same substrate surface may be dependent upon the type RF signal feeding technique implemented at feed port 106, which may include excitation throw slot, utilization of a microstrip balun, or transition from microstrip lines to differential lines. It is to be understood that other shapes and configurations of the balun may be possible corresponding to different types of dipole configurations.
For simulation purposes, the feed port 106 may be modelled as a feed element 107. In the illustrated embodiment, the feed element is modelled as a lumped port using the Ansys® High-Frequency Structure Simulator (HFSS) software. It is to be appreciated that other types of simulation feed elements, such as a wave port, may also be used.
As previously described, the conductive arms 112 and 122 may be equally dimensioned and symmetrical to one another while extending substantially orthogonal to the respective leg portions 114 or 124. The conductive arms 112 and 122 may be integrally formed with the respective leg portions 114 and 124, as well as balun 108 and feed port 106. Thus, although described as different portions of the dipole antenna element 100, the balun 108, leg portions 114, 124, and conductive arms 112 and 122 may not be distinct or physically separate portions of the antenna element. The two conductive arms 112, 122 are separated by a distance of Yf. The conductive arms 112 and 122 extend substantially parallel to the top surface 104A of the reflector 104 towards the outer edges of the substrate 102 from its center axis. During operation, a current may oscillate or resonate in both of the conductive arms 112 and 122 in uniform direction, whether the current is driven by an input feed signal or induced by the received electromagnetic signals from a wireless channel. The radio waves resonated from each of the conductive arms 112 and 124 are 180° out of phase such that they may be constructively superimposed together. The effective operating wavelength λeff of the dipole antenna element 100 may be dependent on the conductive arm length Ld as described in more detail below.
The dipole antenna element 100 further includes a first high dielectric material 130 and a second high dielectric material 140. The first high dielectric material 130 is configured to provide spatial covering of the first conductive arm 112 on the substrate surface 102A. Similarly, the second high dielectric material 140 is configured to provide spatial covering of the second conductive arm 122 of on the surface 102B of the substrate 102. Although two high dielectric materials are illustrated and described herein, it is to be understood that this is with respect to a dipole antenna element 100 and that the number of high dielectric materials in other embodiments may correspond with the number of conductive arms as dictated by the type of antenna element.
In the illustrated embodiment, the high dielectric materials 130 and 140 are generally in the shape of a rectangular slab to correspond with the overall shape of the conductive arms 110 and 120. It may be understood that in other embodiments, the high dielectric material 130, 140 may be of other configurations that may not correspond to the shape of the conductive arms, such as a cylindrical disk, semi-ovoid, hemispherical or any other suitable shape that may provide spatial covering of the conductive arms. Generally, the high dielectric materials 130 and 140 are made of ceramic or other low-loss dielectric material that has a dielectric constant (εr) that is higher than that of the substrate 102, which in the case of a PCB is typically in the range of 2.0 to 4.5. In some embodiments, a material having a dielectric constant of 10 or more may be considered as a high dielectric material, For example, the high dielectric material may include Ventec (VT-6710) and Roger (RO3010) which have a dielectric constant of approximately 10.2, as well as Low Temperature Cofired Ceramic (LTCC) with a dielectric constant of approximately 20. The high dielectric materials 130 and 140 may be integrally formed onto respective surfaces 102A and 102B of the substrate 102. Alternatively, the high dielectric materials 130, 140 may be coupled to the substrate 102 by any other suitable means, such as using an adhesive. The high dielectric materials 130, 140 are dimensioned to encase, or provide spatial covering, of the conductive arms exposed on the surfaces of the substrate 102. The presence of the high dielectric materials 130, 140 may cause the electromagnetic field to be confined in the near field around the antenna elements. Conceptually, by being covered by the high dielectric materials, the conductive arms 112, 122 may radiate more along its top surface and less near the end edges. With the high dielectric materials, the antenna element is said to be dielectrically loaded.
Some example dimensions of the dipole antenna element 100 are now described with reference to
The operating wavelength (λo) in free space may be determined in accordance with Equation (1) as follows:
Where c is the speed of light of 3×108 m/s, and fr is the operating frequency. For example, to operate at 3.5 GHz, the operating wavelength in free space would be approximately 0.0857 m or 85.7 mm.
In some embodiments, the speed of the electromagnetic signal, and correspondingly the operating wavelength, varies in the presence of a dielectric material in accordance with Equation (2) below:
Where λd is the effective wavelength, and εr is the relative permittivity, or dielectric constant of the high dielectric material. The parameter √{square root over (εr)} is representative of the refractive index, which by definition is the square root of the dielectric constant. Typically, the length of dipole antenna (L) is approximately half of the operating wavelength, or λ/2. In some embodiment, the length of dipole antenna may be determined by Equation (3) as:
The dielectric constant εr may vary depending on the high dielectric material thickness HDR and the conductive trace width (W). Effective dielectric constant εeff may be determined by Equation (4) as follows:
Where h is the thickness of the substrate 102 thickness Ts, and W is the width of the conductive arm width WDR.
The length of the conductive arms may further be adjusted by a ΔL in accordance with Equation (5) below:
Where the parameter ΔL may be determined by Equation (6) as follows:
The width of the conductive arm is approximately one third of the dipole length L:
As may be discerned from at least Equation (3), a higher dielectric constant value εr, may decrease dipole length L. Thus, the dielectric material of the high dielectric materials 130, 140 may, at least in part, facilitate a decrease in antenna size at least because the antenna size is inversely proportional of its dielectric constant. The decrease in antenna size may come at the expense of lower operating frequency and a narrower bandwidth as described in more detail below.
From the above equations, including Equations (4), (5) and (6), the thickness of the substrate and width of the conductive trace forming the conductive arm may also be adjusted to achieve a desired dipole length. For example, as may be discerned from Equation (6), a thicker substrate of higher h value may increase the value of parameter ΔL, and thereby decrease dipole length L as per Equation (5). As a further example, increasing conductive arm width W would likely increase the effective dielectric constant εeff as per Equation (4), which also decreases dipole length L as per Equation (5).
In some embodiments, Equations (1) to (7) may be used for determining baseline design parameters that are to be further optimized for a dielectrically loaded antenna in accordance with the present disclosure. For example, baseline design parameters, such as dimensions of the various components, as determined through Equations (1) to (7) may be further adjusted for example through simulations to achieved desired operating parameters, including operating frequency band.
The high dielectric materials 130 and 140 are configured to provide spatial covering of the conductive arms 110 and 120, respectively. Thus, the dimensions of the high dielectric materials 130 and 140 are at least equal to or greater than that of the conductive arms 110 and 120. For example, for a dipole antenna element having a high dielectric material with a dielectric constant of 10.2, the dipole length Ld may be approximately 13 mm, or approximately 0.15λ, and a width Wd of approximately 3.2 mm. The corresponding high dielectric materials 130, 140 may be 15.5 mm in length LDR, or approximately 0.18λ in length, and approximately 5 mm in width WDR with a thickness of approximately 3.18 mm.
For purposes of illustrating operation of dipole antenna element in accordance with the present disclosure,
As commonly known in the art, S-parameters describe the input-output relationship between ports, or terminals, in an electrical system. For a two-port system with input port 1 and output port 2, the S11 parameter represents how much input power is reflected from the antenna back to the input port 1, and hence is known as the reflection coefficient, sometimes often referred to as the return loss.
In the illustrated example, the antenna array structure 500 includes four dipole antenna elements 502A to 502D, positioned near at the four corners of the reflector element 504. In different example embodiments, the number of dipole antenna elements could be less than or greater than 4, and the relative locations and orientations could be different than that shown in the Figures. The dipole antenna elements 502 may operate at 3.5 GHz or any other suitable frequency bands.
Generally, at least some of the dipole antenna elements serving similar functions, i.e. transmitting or receiving, may be aligned in the same direction that is generally orthogonal to those of the antenna elements serving a different function. In the illustrated embodiment, dipole antenna elements 502A and 502D are provided at opposite diagonal corners of the reflector element 504 aligned substantially in the same orientation and may be used as transmitting antenna elements. Dipole antenna elements 502B and 502C in the opposite diagonal corners of reflector element 504 may be used as receiving antenna elements and are aligned substantially orthogonal to those of transmitting antenna elements 502A and 502D. In some embodiments, each one of the dipole antenna elements 502 may be spaced apart equidistantly from its horizontally and vertically adjacent dipole antenna elements by a distance of DA. In the illustrated embodiment, the dipole antenna element 502A is approximately a DA of 200 mm, from its center, to the centers of both dipole antenna elements 502B and 502C. Similarly, the centers of dipole antenna elements 502B and 502C are approximately a DA of 200 mm away from the center of dipole antenna element 502D. The orthogonally aligned dipole antenna elements may provide two orthogonal polarizations with the transmitting antenna elements 502A, 502D and the receiving antenna elements 502B, 502C being configured to emit or receive RF signals in the horizontal X-Y plane in polarization directions that are directed at 90 degrees relative to each other. Thus, transmitting dipole antenna elements 502A, 502D and the receiving dipole antenna elements 502B, 502C are polarized in orthogonal directions generally parallel to the reflector element 504. The orthogonal alignment may suppress SI and thereby improve isolation between the transmitting and the receiving dipole antenna elements. Accordingly, in the illustrated embodiment, all four dipole antenna elements 502 may operate in the same frequency band (the 3.5 GHz band for example). In alternative embodiments, the transmitting and receiving dipole antenna elements 502 may operate in different frequency bands.
As it may be appreciated that conceptually, the high dielectric materials 130, 140 of the dipole antenna element in accordance with the present disclosure may be seen by electromagnetic fields as a preferred path with less resistance. Thus, the electromagnetic coupling between the transmitting antenna elements, such as 502A and 502D in
The disclosed dipole antenna element and antenna array structures may be useful for one or more of achieving smaller dipole length, and hence a smaller antenna array structure size, as well as wider return loss bandwidth and improved isolation between transmitting and receiving antenna elements.
The disclosed antenna array structures may be implemented in various applications that use antennas, such as telecommunication applications (e.g., transceiver applications in wireless network base stations or wireless local area network access points). The dimensions and/or material constants described in this application for the various elements of the antenna elements and structures are non-exhaustive examples and many different dimensions or materials can be applied depending on both the intended operating frequency bands and physical packaging constraints.
The present disclosure may be embodied in other specific forms without departing from the subject matter of the claims. The described example embodiments are to be considered in all respects as being only illustrative and not restrictive. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. Selected features from one or more of the above-described embodiments may be combined to create alternative embodiments not explicitly described, features suitable for such combinations being understood within the scope of this disclosure.
All values and sub-ranges within disclosed ranges are also disclosed. Also, although the systems, devices and processes disclosed and shown herein may comprise a specific number of elements/components, the systems, devices and assemblies could be modified to include additional or fewer of such elements/components. For example, although any of the elements/components disclosed may be referenced as being singular, the embodiments disclosed herein could be modified to include a plurality of such elements/components. The subject matter described herein intends to cover and embrace all suitable changes in technology. It is therefore intended that the appended claims encompass any such modifications or embodiments.
Number | Name | Date | Kind |
---|---|---|---|
10270185 | Boutayeb et al. | Apr 2019 | B2 |
20150123864 | Boryssenko et al. | May 2015 | A1 |
20180248266 | De Rochemont | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
102217140 | Oct 2011 | CN |
105576362 | May 2016 | CN |
205488534 | Aug 2016 | CN |
106450751 | Feb 2017 | CN |
108172978 | Jun 2018 | CN |
108511914 | Sep 2018 | CN |
110518338 | Nov 2019 | CN |
218448440 | Feb 2023 | CN |
Entry |
---|
Jamshed, M. A., et al. “A Dipole Sub-Array With Reduced Mutual Coupling for Large Antenna Array Applications”, IEEE Access, Nov. 2019. 2019. |
Fritz-Andrade, E., et al. “Characteristic mode analysis applied to reduce the mutual coupling of a four-element batch MIMO antenna using a defected ground structure” IET Journal, Nov. 2019. 2019. |
Number | Date | Country | |
---|---|---|---|
20220166145 A1 | May 2022 | US |