Claims
- 1. An internal combustion engine that operates with charge air boost and comprises:
an intake system; an exhaust system comprising a tailpipe; a throttle valve for selectively restricting exhaust gas flow to the tailpipe; an exhaust gas recirculation (EGR) system for controlled recirculation of exhaust gas from the exhaust system to the intake system comprising an EGR valve having an inlet port communicated to the exhaust system upstream of the throttle valve and an outlet port communicated to the intake system; and a control for operating the EGR valve and the throttle valve, including a regulator for operating the throttle valve to partially restrict exhaust gas flow to the tailpipe to regulate the difference between pressure at the EGR valve inlet and pressure at the EGR valve outlet to a desired differential that is substantially unaffected by pressure change in the intake system and in the exhaust system.
- 2. An internal combustion engine as set forth in claim 1 in which the control comprises a processor that processes data to develop one command signal for controlling the EGR valve and that processes data useful in regulating the difference between pressure at the EGR valve inlet and pressure at the EGR valve outlet to a desired differential to develop another command signal for controlling the throttle valve.
- 3. An internal combustion engine as set forth in claim 2 in which the processor processes data that includes pressure at the EGR valve inlet, pressure at the EGR valve outlet, and EGR valve position.
- 4. An internal combustion engine as set forth in claim 1 in which the engine comprises a turbocharger having a compressor in the intake system and a turbine in the exhaust system, in which the inlet port of the EGR valve is communicated to the exhaust system downstream of the turbine, and in which the outlet port of the EGR valve is communicated to the intake system downstream of the compressor.
- 5. An internal combustion engine as set forth in claim 4 including a cooler through which the inlet port of the EGR valve is communicated to the exhaust system.
- 6. An internal combustion engine as set forth in claim 1 in which the regulator comprises a device that is communicated to a pneumatic power source and that operates to develop a regulated pneumatic pressure that is communicated to a pneumatic actuator for operating the throttle valve.
- 7. An internal combustion engine as set forth in claim 6 in which the regulator device comprises a body having a source port communicated to the pneumatic power source, a vent port communicated to atmosphere, a regulated pressure port communicated to the pneumatic actuator for operating the throttle valve, and an internal regulating mechanism operatively associated with the source port, the vent port, and the regulated pressure port for developing regulated pressure at the regulated pressure port.
- 8. An internal combustion engine as set forth in claim 7 in which the internal regulating mechanism comprises a stem that is positionable within a bore along an imaginary centerline, the pneumatic device comprises an internal passage from the source port to the bore, the stem comprises a continuation of the passage to an end of the stem, the regulating mechanism further comprises a vent valve comprising a valve element that is biased toward closing communication between the end of the stem and the vent port, and that is disposed on the centerline for mutual interaction with the end of the stem to develop the regulated pressure at the regulated pressure port.
- 9. An internal combustion engine as set forth in claim 8 in which the device body further comprises a first chamber space and a second chamber space divided by a movable wall that moves in one direction along the centerline to force the stem to move in the one direction for positioning the stem toward the vent valve element, and the regulating mechanism further comprises a spring that resiliently biases the stem against the movable wall in a direction opposite the one direction.
- 10. An internal combustion engine as set forth in claim 6 including a valve for closing communication of the device to a pneumatic power source to prevent the regulator from developing regulated pneumatic pressure.
- 11. A method of exhaust gas recirculation in an internal combustion engine that operates with charge air boost and comprises:
an intake system; an exhaust system comprising a tailpipe; a throttle valve for selectively restricting exhaust gas flow to the tailpipe; an exhaust gas recirculation (EGR) system for controlled recirculation of exhaust gas from the exhaust system to the intake system comprising an EGR valve having an inlet port communicated to the exhaust system upstream of the throttle valve and an outlet port communicated to the intake system; the method comprising:
controlling the EGR valve and the throttle valve, including operating the throttle valve to partially restrict exhaust flow to the tailpipe in a manner that regulates the difference between pressure at the EGR valve inlet and pressure at the EGR valve outlet to a desired differential that is substantially unaffected by pressure change in the intake system and in the exhaust system.
- 12. A method as set forth in claim 11 in which the step of controlling the EGR valve and the throttle valve comprises processing data to develop one command signal for controlling the EGR valve and data useful in regulating the difference between pressure at the EGR valve inlet and pressure at the EGR valve outlet to a desired differential to develop another command signal for controlling the throttle valve.
- 13. A method as set forth in claim 12 in which the processing step includes processing pressure at the EGR valve inlet, pressure at the EGR valve outlet, and EGR valve position.
- 14. A method as set forth in claim 11 in which the step of operating the throttle valve to partially restrict exhaust flow to the tailpipe in a manner that regulates the difference between pressure at the EGR valve inlet and pressure at the EGR valve outlet to a desired differential that is substantially unaffected by pressure change in the intake system and in the exhaust system comprises communicating a pneumatic regulating mechanism of a pneumatic regulator device to a pneumatic power source, developing a regulated pneumatic pressure, and communicating that regulated pneumatic pressure to a pneumatic actuator for operating the throttle valve.
- 15. A pneumatic regulator for association with an internal combustion engine that has an intake system, an exhaust system including a tailpipe, a throttle valve for selectively restricting exhaust gas flow to the tailpipe, and an exhaust gas recirculation (EGR) system for controlled recirculation of exhaust gas from the exhaust system to the intake system including an EGR valve having an inlet port communicated to the exhaust system upstream of the throttle valve and an outlet port communicated to the intake system, the regulator comprising:
a body comprising pressure differential sensing ports for sensing pressure differential across the inlet and outlet ports of the EGR valve, and a pneumatic pressure regulating mechanism that is associated with a source port adapted to be communicated to a pneumatic power source, with a vent port adapted to be communicated to atmosphere, and with a regulated pressure port, and that operates to develop at the regulated pressure port a regulated pneumatic pressure for operating the throttle valve.
- 16. A pneumatic regulator as set forth in claim 15 in which the pneumatic pressure regulating mechanism comprises a stem that is positionable within a bore along an imaginary centerline, the body comprises an internal passage from the source port to the bore, the stem comprises a continuation of the passage to an end of the stem, the regulating mechanism further comprises a vent valve comprising a valve element that is biased toward closing communication between the end of the stem and the vent port, and that is disposed on the centerline for mutual interaction with the end of the stem to develop the regulated pressure at the regulated pressure port.
- 17. A pneumatic regulator as set forth in claim 16 in which the body further comprises a first chamber space and a second chamber space divided by a movable wall that moves in one direction along the centerline to force the stem to move in the one direction for positioning the stem toward the vent valve element, a first of the pressure differential sensing ports communicates to the first chamber space, a second of the pressure differential sensing ports communicates to the second chamber space, and the regulating mechanism further comprises a spring that resiliently biases the stem against the movable wall in a direction opposite the one direction.
- 18. A pneumatic regulator as set forth in claim 14 including a solenoid-operated valve for selectively opening and closing an internal passage of the body to the source port.
REFERENCE TO RELATED APPLICATION AND PRIORITY CLAIM
[0001] This application derives from the following commonly owned co-pending patent application, the priority benefit of which is expressly claimed: Provisional Application Ser. No. 60/174,532 (Attorney Docket 00 P 7402 US) filed on Jan. 5, 2000 in the name of John Edward Cook and entitled DIESEL EGR SYSTEM.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60174532 |
Jan 2000 |
US |