The present invention relates to a diesel engine, and more particularly, to a diesel engine in which an engine body, a DPF case and an SCR catalyst case can be placed compactly.
As conventional diesel engines, there is a diesel engine including an engine body, a DPF case and an SCR catalyst case, in which a DPF is accommodated in the DPF case, and an SCR catalyst is accommodated in the SCR catalyst case (see Japanese Patent Application No. 2011-32946 (FIG. 1) for example).
The engine of this kind has a merit that the DPF traps PM in exhaust gas, and it is possible to reduce NOx in exhaust gas by the SCR catalyst.
However, the diesel engine of Japanese Patent Application No. 2011-32946 has a problem because the engine body, the DPF case and the SCR catalyst case are placed such that they stay away from one another.
The engine body, the DPF case and the SCR catalyst case cannot be placed compactly.
According to the diesel engine of Japanese Patent Application No. 2011-32946, since the engine body, the DPF case and the SCR catalyst case are placed such that they stay away from one another, the engine body, the DPF case and the SCR catalyst case cannot be placed compactly.
It is an object of the present invention to provide a diesel engine in which an engine body, a DPF case and an SCR catalyst case can be placed compactly.
As illustrated in
The invention has the following effects. It is possible to compactly place an engine body, a DPF case and an SCR catalyst case.
As illustrated in
It becomes easy to mount elements on an engine-mounting machine.
As illustrated in
It is possible to compactly place the engine body, the DPF case and the SCR catalyst case.
As illustrated in
It is possible to compactly place the engine body, the DPF case and the SCR catalyst case.
As illustrated in
It is possible to strongly support the DPF case and the SCR catalyst case on the engine body.
As illustrated in
Further, an upper end of the SCR support stay 11 is fixed to the SCR base bracket 9, and a lower end of the SCR support stay 11 is fixed to an engine body part 13 located at a position higher than the cylinder block 12. Therefore, it is possible to shorten a vertical length of the SCR support stay 11, and it is possible to strongly support the SCR catalyst case 3 on the engine body 1 through the SCR support stay 11 having high rigidity.
It is possible to strongly support the DPF case and the SCR catalyst case on the engine body.
As illustrated in
Further, a lower portion of the SCR support stay 11 is fixed to the flywheel housing 6 and the DPF base bracket 8, and the SCR base bracket 9 is fixed to an upper end of the SCR support stay 11. Therefore, the SCR catalyst case 3 is supported on the flywheel housing 6 having high rigidity through the SCR support stay 11, the SCR catalyst case 3 is also supported on the DPF support stage 10 having high rigidity through the SCR support stay 11 and the DPF base bracket 8, and it is possible to strongly support the DPF case 2 on the engine body 1.
It is possible to restrain a connector from being damaged by vibration.
As illustrated in
It is possible to compactly place a straight pipe portion of an exhaust gas relay pipe, the DPF case and the SCR catalyst case.
As illustrated in
It is possible to avoid inconvenience that crystal of urea aqueous solution conglutinates in the straight pipe portion.
As illustrated in
It is possible to keep the height of the engine low.
As illustrated in
It is possible to prevent distortion of various portions of pipes.
As illustrated in
It is possible to prevent pressure of exhaust gas from increasing.
As illustrated in
The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
In the drawings:
A general outline of the engine of the first embodiment is as follows.
As shown in
An intake manifold 24 is assembled into one of lateral sides of the cylinder head 20 as shown in
As shown in
A DPF 4 is accommodated in the DPF case 2, and an SCR catalyst 5 is accommodated in the SCR catalyst case 3.
The DPF case 2 and the SCR catalyst case 3 are mounted on the engine body 1.
As shown in
As shown in
As shown in
The DPF case 2 is placed directly above the flywheel housing 6 and right behind the cylinder head cover 7.
The SCR catalyst case 3 is placed directly above the cylinder head cover 7.
As shown in
The DPF case 2 is placed and mounted on the DPF base bracket 8.
The SCR catalyst case 3 is placed and mounted on the SCR base bracket 9.
The DPF support stage 10 is provided on an upper portion of the flywheel housing 6, the flywheel housing 6 is a cast placed on a rear end of the cylinder block 12, the DPF support stage 10 is a built-up portion of the flywheel housing 6 by casting, and the DPF base bracket 8 is placed and mounted on the DPF support stage 10.
The flywheel housing 6 is used, together with a connected transmission case, as a main frame of a running fuselage such as a tractor.
An upper end of the SCR support stay 11 is fixed to the SCR base bracket 9, and a lower end of the SCR support stay 11 is fixed to an engine body part 13 located at a position higher than the cylinder block 12.
The engine body part 13 is the intake manifold 24 shown in
As shown in
As shown in
The exhaust gas relay pipe 14 is interposed between the exhaust gas discharging pipe 2a of the DPF case 2 and the exhaust gas introducing pipe 3a of the SCR catalyst case 3. The urea aqueous solution injector 16 is placed upstream of the exhaust gas relay pipe 14. Exhaust gas 15 sent out from the DPF case 2 and urea aqueous solution 18 injected from the urea aqueous solution injector 16 are mixed with each other in the straight pipe portion 14a of the exhaust gas relay pipe 14.
The straight pipe portion 14a of the exhaust gas relay pipe 14 is placed in a direction which extends along the DPF case 2 and the SCR catalyst case 3.
A mixer plate 30 is provided in the straight pipe portion 14a of the exhaust gas relay pipe 14 to facilitate the mixing operation of the exhaust gas 15 and the urea aqueous solution 18.
As shown in
As shown in
As shown in
As shown in
The fastening portion 17c fastens and fixes the pipe portions 17a and 17b by means of a fastening band. A space between the pipe portions 17a and 17b is sealed by a gasket 17d.
As shown in
One of both ends of the SCR catalyst case 3 which is located on the same side as the exhaust gas discharging pipe 2a of the DPF case 2 is defined as one end, and an end opposite from the one end is defined as the other end. The exhaust gas introducing pipe 3a of the SCR catalyst case 3 curves and extends from a peripheral wall of the other end toward the one end.
The exhaust gas relay pipe 14 includes a curved pipe portion 14b and the straight pipe portion 14a. The curved pipe portion 14b is connected to an extending end 2c of the exhaust gas discharging pipe 2a of the DPF case 2, and curves and extends from the extending end 2c of the exhaust gas discharging pipe 2a toward the exhaust gas introducing pipe 3a of the SCR catalyst case 3. The straight pipe portion 14a straightly extends from an extending end 14c of the curved pipe portion 14b toward the exhaust gas introducing pipe 3a of the SCR catalyst case 3. An extending end 14d of the straight pipe portion 14a is connected to the exhaust gas introducing pipe 3a of the SCR catalyst case 3.
Next, a second embodiment will be described.
The second embodiment is different from the first embodiment in the following points.
As shown in
A DPF case 2 is placed and mounted on the DPF base bracket 8.
An SCR catalyst case 3 is placed and mounted on the SCR base bracket 9.
The DPF support stage 10 is provided on an upper portion of a flywheel housing 6, the flywheel housing 6 is a cast placed on a rear end of a cylinder block 12, the DPF support stage 10 is a built-up portion of the flywheel housing 6 by casting, and the DPF base bracket 8 is placed and mounted on the DPF support stage 10.
A lower portion of the SCR support stay 11 is fixed to the flywheel housing 6 and the DPF base bracket 8, and the SCR base bracket 9 is fixed to an upper end portion of the SCR support stay 11.
That is, the modification includes a connector mounting plate 28, the connector mounting plate 28 is mounted on an SCR support stay 11, and a connector 32 which is an electronic component is mounted on the connector mounting plate 28.
The connector 32 mounted on the connector mounting plate 28 is for an SCR catalyst 5. The connector 32 is of a urea aqueous solution injector 16, an inlet-side NOx sensor 33, an outlet-side NOx sensor 34 and an exhaust gas temperature sensor 35 shown in
Other configurations of the basic example of the second embodiment and its modification are the same as those of the first embodiment. In
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2013-204997 | Sep 2013 | JP | national |
2013-204998 | Sep 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8764866 | Mitsuda | Jul 2014 | B2 |
20100031644 | Keane et al. | Feb 2010 | A1 |
20100186394 | Harrison | Jul 2010 | A1 |
20110167808 | Kosaka | Jul 2011 | A1 |
20120247861 | Mizuno et al. | Oct 2012 | A1 |
20130160428 | Okuda | Jun 2013 | A1 |
20130343853 | Sato et al. | Dec 2013 | A1 |
20140102823 | Mori | Apr 2014 | A1 |
20140238767 | Numa | Aug 2014 | A1 |
20140291058 | Nakagami | Oct 2014 | A1 |
20140299401 | Nakagami | Oct 2014 | A1 |
20140326527 | Harada | Nov 2014 | A1 |
20140348716 | Park | Nov 2014 | A1 |
20150240447 | Homma | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
0226088 | Jun 1987 | EP |
1026375 | Aug 2000 | EP |
2518290 | Oct 2012 | EP |
2009150394 | Jul 2009 | JP |
2011-032946 | Feb 2011 | JP |
2012077622 | Apr 2012 | JP |
2013104394 | May 2013 | JP |
2013160146 | Aug 2013 | JP |
2013189894 | Sep 2013 | JP |
WO 2014097495 | Jun 2014 | JP |
WO 2014125622 | Aug 2014 | JP |
WO 2013103169 | Jul 2013 | KR |
2008136203 | Nov 2008 | WO |
2011152306 | Dec 2011 | WO |
Entry |
---|
Extended European Search Report issued Feb. 2, 2015 in EP Application No. 14180445.0. |
Office Action issued Feb. 23, 2016 in JP Application No. 2013204997. |
Office Action issued Feb. 23, 2016 in JP Application No. 2013204998. |
Number | Date | Country | |
---|---|---|---|
20150089930 A1 | Apr 2015 | US |