This invention relates generally to fuel injection systems for diesel engines, and particularly to systems employing fuel injectors of the type known as ALCO injectors, originally manufactured by American Bosch for the former American Locomotive Company. Such systems comprise an injection pump, a nozzle-and-holder assembly, and high-pressure tubing joining the pump to the assembly.
In recent years the diesel engine industry has been under continuing pressure to reduce noxious emissions without unduly sacrificing fuel efficiency, or even while improving fuel efficiency. Engine emissions performance has improved, while maintaining acceptable fuel efficiencies, but pressure for further improvements remains.
An important element in these improvements is the modification of existing designs of diesel injection systems, particularly modification of existing injection nozzle-and-holder assemblies, especially the nozzles. In the never-ending pursuit of reduced exhaust emissions and improved fuel economy, modern fuel injection systems are operating at injection pressures considerably above those prevailing when ALCO injectors were introduced, and industry efforts are continuing to develop systems for still higher injection pressures. While it is not economically feasible to retrofit older engines with newer injection technologies, it is possible to make improvements in components of injection systems used with older engines and thereby increase to a meaningful extent the injection pressure at the nozzle orifices.
ALCO nozzle-and-holder assemblies and nozzles are a notable example of such systems. Similarly to some other older systems, those employing ALCO nozzles generally include a nozzle body, in which a nozzle body chamber is formed. The nozzle body terminates in a nozzle tip and houses a nozzle valve. The seat on which the nozzle valve closes is formed in the nozzle body at the bottom of the nozzle body chamber and is open-centered. It may be referred to as the body seat. Lower parts of the body seat lie in an imaginary conical surface. Below the nozzle body chamber is a small spray-hole feed chamber or “sac.” The spray holes, or orifices, are distributed around the sac and lead to the engine combustion chamber when the nozzle is installed.
One consideration in the design of such systems is the seat/orifice ratio, namely, the ratio, at full valve lift, between (i) the governing or minimum flow area at the body seat and (ii) the collective cross-sectional area of the spray holes. Lower seat/orifice ratios are associated with higher pressure drops through the body seat and lower injection pressures at the nozzle orifices, with a resultant degeneration of fuel penetration and fuel dispersion in the engine cylinder. Seat/orifice ratios over 2 or not too far below 2 are generally considered acceptable, while lower ratios are not. However, in certain high rated engines, when the orifice area required for the engine power rating gets to be too large for the nozzle size accommodated in the engine cylinder head, the seat/orifice ratio is considered not excessively restrictive down to 1.5, and in extreme cases is compromised down to 1.35.
In a rudimentary sense, the measure or value of the minimum flow area at the body seat depends on the sac diameter, since the minimum flow area at the body seat, when the valve is at full-lift position, is located adjacent the sac entry edge, where the side wall of the sac intersects the conical lower part of the body seat.
Increasing valve lift would of course increase minimum flow area at full lift, but there are well-known constraints on increasing lift, such as body seat impact damage and coordination of valve seating and engine stroke phases in high-rated engines.
Where good practice calls for increasing the seat/orifice ratio of an ALCO-type nozzle design without increasing valve lift, one way to do it is simply to enlarge the sac diameter, which has the effect of raising the altitude of the intersection between sac wall and body seat, thereby causing the unchanged spacing, at that raised altitude, between valve and body seat at full lift to sweep a greater circumference than at the lower altitude that previously applied, correspondingly increasing the minimum flow area at the body seat, thereby in turn increasing the seat/orifice ratio. It was recognized however, that such a modification of the ALCO nozzle would have a major disadvantage in that sac volume would be substantially increased by enlarging the sac diameter along the length of the sac, thereby tending to correspondingly degrade emissions performance.
In a case such as this when it is determined that the flow area through the seat is too small for the total nozzle orifice area, universal industry practice has been to reshape the sac in the region of its entry edge with a counter-boring tool having a 120° cutting edge bottom, so that the resulting counter-bore intersects the body seat at the raised altitude referred to above and forms an annular notch extending from the raised altitude referred to above to a level below the lower altitude referred to above—sufficiently below that there is little or no more restriction of flow at the bottom of the notch than at the top. While this modification has increased seat/orifice ratio while somewhat minimizing increase in sac volume, it has done nothing to reduce sac volume and improve emissions performance in that way. Moreover, even if sac volume had been reduced, as by foreshortening the sac, the configuration of the notch was such as to limit to some degree the effectiveness of such foreshortening in reducing emissions.
The present invention does contemplate reduction of sac volume by foreshortening of the sac. The present invention also involves annularly notching the body seat and sac wall to increase the seat/orifice ratio. However, according to the present invention, the notch is configured so that it detracts from the sac-volume-reducing effectiveness of the foreshortening of the sac to a much lesser degree than the above-described conventional type counter-bored notch would have if ALCO's sac had been foreshortened, or at least to a somewhat lesser degree, depending on the specific novel notch configuration selected.
The invention realizes these results by exploiting the geometrical fact that for solids generated by revolution of a polygon of given area (sweep area) around an axis in the same plane, relatively small percentage reductions of sweep area caused by trimming the radially outer side of the sweep area result in significantly larger percentage reductions of swept volume. This means that, in an injection nozzle, a relatively small percentage reduction in the sac's cross-section at its radially outermost parts results in a significantly greater percentage reduction in sac volume.
The improvements of the invention will be more fully understood from the following detailed description of the invention.
An injection system employing an ALCO-type injector comprises an injection pump (not shown), high-pressure tubing (not shown) and a nozzle-and-holder assembly 10 shown in
When injection pump port closing occurs, a pressure wave is generated delivering fuel through the high-pressure tubing to the inlet duct 16. The pressure wave travels through duct 16, duct 17, annular groove 11 formed in the top face of valve stop spacer 29, ducts 18 (of which there are three, spaced 120° apart, only one being visible in
The spray holes may be typically nine in number. A pair from the nine is shown in the drawings, the drawing sections being slightly rotated to include both of the pair as though their centers were 180° apart, although actually they are 160° apart. The remaining seven holes are not shown.
The valve seat on the valve 15 is the conical bottom face 26 of the valve (
In the structure of
a=πs(r1+r2)
where a=flow area, s=length of sweep line, r1=the radial distance from one end of the sweep line to the nozzle's central axis, and r2=the radial distance from the other end of the sweep line to the nozzle's central axis.
While points above point A on the body seat 25 are spaced exactly or about the same distance from the face 26 as is the point A, and therefore sweep lines associated with such higher points are of exactly or about the same length as line AE, such higher points and sweep lines are associated with radii greater than radius 1 and radius 2, and therefore are associated with flow areas greater that that associated with point A. The flow area associated with point A (i.e., with line AE) is therefore the minimum cross-sectional flow area at the body seat, i.e., the minimum flow area for fluid passing from the chamber 20 to the sac 21.
As stated above, where good practice calls for increasing the seat/orifice ratio of a prototype nozzle design, one way to do it is simply to enlarge the sac diameter, which has the effect of raising the altitude of the intersection between sac wall and body seat, thereby causing the unchanged spacing, at that raised altitude, between valve and body seat at full lift to sweep a greater circumference then at the lower altitude that previously applied, correspondingly increasing the minimum flow area at the body seat, thereby in turn increasing the seat/orifice ratio. As also previously stated, it was recognized, however, that such a modification of the prototype nozzle would have a major disadvantage in that sac volume would be greatly increased by enlarging the sac diameter along the sac length, thereby tending to correspondingly degrade emissions performance.
As also stated above, an alternative prior-art practice was to increase the seat/orifice ratio by boring the top end of the sac with a 120° counter-bore. Such modification of the structure shown in
The height of the raised altitude referred to above is limited by the fact that the contact area between the nozzle valve and the body seat determines the stress to which the body seat is subjected during seating action at the end of injection. Therefore, the level to which the top end of the notch, or the point B referred to above, may be raised must be determined by assessing the body seat stress generated by the impact of the nozzle valve during its most adverse closing action.
The distance of point C below point A is selected to be great enough that the illustrated sweep line associated with point C is enlarged such that there is little or no more restriction of flow past the latter sweep line at the bottom of the notch than there is past the illustrated sweep line associated with point B at the top of the notch. The enlargement of the lower sweep line as compared to the upper one compensates, so to speak, for the reduction of the sweep radii associated with the lower sweep line as compared with the sweep radii associated with the upper sweep line so that the flow areas associated with points B and C are equal or differ by little. The increase in seat/orifice ratio realized by this structure is as great as the increase realized by simply enlarging the sac diameter as described above, but without the relatively severe emissions-increasing drawbacks of the latter.
While this modification increased seat/orifice ratio while somewhat minimizing the increasing of sac volume, it did nothing to reduce sac volume and improve emissions performance in that way. Moreover, even had sac volume been reduced, as by foreshortening the sac, the configuration of the notch was such as to limit to some degree the effectiveness of such foreshortening in reducing emissions.
The present invention contemplates reduction of sac volume by foreshortening of the sac. The present invention also involves annularly notching the body seat and sac wall to increase the seat/orifice ratio. However, according to the present invention, the notch is configured so that it detracts from the effectiveness of the foreshortening of the sac to a much lesser degree than the configuration of
According to the present invention, and as best seen in
Preferably the conical bottom face of the nozzle valve 15a is truncated at the valve tip as shown in
A distinctive aspect of the present invention is the employment of one of a range of forms of notch in the body seat and sac wall that are of different shape than the notch of
It may be noted that in the construction of
The cross-hatched areas seen in the examples of
Significantly, of all parts of the cross-sectional area of the sac, such cross-hatched areas would have had greater sweep-area radii than most parts, had such cross-hatched areas not been removed or filled-in. This means that for reduction of sac volume their removal is more significant than removal of parts of the sac cross-sectional sac area of the same magnitude but located nearer the nozzle axis.
(The radius of any specific solid-of-revolution-generating part of a cross-sectional area is the distance from the centroid or center of gravity of such specific part to the axis of revolution around which the part is swept to generate volume. In this case the axis of revolution is of course the central axis of the nozzle. The centroid of a triangular area is the intersection of lines drawn from each apex to the midpoint of the side opposite the apex.)
For example, assume a nozzle that has functional points or edges generally corresponding to points A–C mentioned above. Assume such nozzle uses a 60° body seat (body seat angle-to-vertical of 30°) and has a sac radius of 0.89 mm, a radius at the top of the notch (i.e., at point B) of 1.11 mm, a lift of 0.38 mm, with the valve tip truncated to 0.50 mm above its imaginary apex, the bottom of the sac lying at the imaginary apex of the valve when the valve is closed, and the point C located below the point A just far enough (about 0.12 mm) that the area of flow past point C is as great as the flow area past point B when the valve is fully opened.
If such a sac is configured with a lower notch wall having an angle-to-vertical of 60° (as in a 120° counter-bore such as shown in
Or, if the notch is modified so that the lower notch wall has an angle-to-vertical of about 24° to form a chamfer, as in
While the reduction in sac volume of about 12% as just described in the second example above is obviously to be preferred to a reduction of about 8% in the first example, there may be trade-offs to consider in choosing between such alternatives. For example, manufacturing tooling costs may be significantly higher in shaping the chamfer seen in
While reductions in sac volume to the extent of 8% or 12% as described in the above examples are particularly significant, it will be appreciated that any reduction below 60° of the angle-to-vertical of the bottom of a body seat notch is advantageous, because whatever percentage reduction in sweep area is thereby realized, the percentage reduction of overall sac volume will be substantially greater.
It will be appreciated that in all these examples the reductions in sac volume may be and preferably are accomplished without increasing the restriction of flow past the body seat, as by proper selection of the distance AC in structures such as those illustrated in
It follows from the foregoing descriptions that in each of the various annularly notched nozzles to which
Since the attribute described in the preceding paragraph is shared by some prior-art nozzles, such as the nozzle of
In the modified nozzle seen in
In the modified nozzle of the invention, the total nozzle orifice area and the preceding flow area through the valve seat, as modified, require no more flow passage area in the nozzle body than provided by pairs of ducts of the original size, rather than the sets of four used in the ALCO-type design.
Parasitic volume allows more fuel to be stored in the total volume of a system during fuel delivery by the injection pump due to compressibility of fuel under pressure, thereby reducing the maximum pressure that can be achieved with a smaller system volume (providing flow area is adequate). Reducing the volume at the nozzle end of the system as just described has the effect of raising the injection pressure in the sac at the nozzle orifices, resulting in greater spray penetration and improved spray dispersion. These improvements are fully compatible with the notched-body valve improvements described above, and further contribute to the overall performance of the modified ALCO-type nozzles provided by the invention.
References herein to sac diameter or radius generally refer to the diameter or radius of the cylindrical upper portion of the sac proper, and not to greater diameters or radii that may be associated with edges or walls of notches formed in the body seat.
Valve seats and corresponding body seats are referred to above as complementary to each other; however “complementary” is intended to include the relationship whereby the included angle of the valve seats very slightly exceeds that of the corresponding body seats in order to better establish the sealing locations at the top of the valve seats in accordance with accepted practice, the valve seats and body seats remaining however complementary to each other in a general sense.
The invention is not to be limited to details of the disclosure, which are given by way of example and not by way of limitation. For example, there may be filleting between the pairs of solid notch sides BD″ and CD″ seen in
Number | Name | Date | Kind |
---|---|---|---|
2927737 | Werner et al. | Mar 1960 | A |
3980237 | Parrish, Jr. | Sep 1976 | A |
5033679 | Golev et al. | Jul 1991 | A |
5467924 | Buescher | Nov 1995 | A |
5725157 | DeLuca | Mar 1998 | A |
6007000 | DeLuca | Dec 1999 | A |
6491237 | Coppola et al. | Dec 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20050103898 A1 | May 2005 | US |