The present invention relates generally to engine exhaust treatment systems. More particularly, the present disclosure relates to engine exhaust treatment systems including diesel particulate filters and heaters for regenerating the diesel particulate filters.
Vehicles equipped with diesel engines may include exhaust systems that have diesel particulate filters for removing particulate matter from the exhaust stream. With use, soot or other carbon-based particulate matter accumulates on the diesel particulate filters. As particulate matter accumulates on the diesel particulate filters, the restriction of the filters increases causing the buildup of undesirable back pressure in the exhaust systems. High back pressures decrease engine efficiency. Therefore, to prevent diesel particulate filters from becoming excessively loaded, diesel particulate filters should be regularly regenerated by burning off (i.e., oxidizing) the particulates that accumulate on the filters. Since the particulate matter captured by diesel particulate filters is mainly carbon and hydrocarbons, its chemical energy is high. Once ignited, the particulate matter burns and releases a relatively large amount of heat. Systems have been proposed for regenerating diesel particulate filters.
Some systems use a fuel fed burner positioned upstream of a diesel particulate filter to cause regeneration (see U.S. Pat. No. 4,167,852). Other systems use an electric heater to regenerate a diesel particulate filter (see U.S. Pat. Nos. 4,270,936; 4,276,066; 4,319,896; 4,851,015; 4,899,540; 5,388,400 and British Published Application No. 2,134,407). Detuning techniques are also used to regenerate diesel particulate filters by raising the temperature of exhaust gas at selected times (see U.S. Pat. Nos. 4,211,075 and 3,499,260). Self regeneration systems have also been proposed. Self regeneration systems can use a catalyst on the substrate of the diesel particulate filter to lower the ignition temperature of the particulate matter captured on the filter. An example of a self regeneration system is disclosed in U.S. Pat. No. 4,902,487.
One aspect of the present disclosure relates to an exhaust treatment device including a diesel particulate filter (DPF), a diesel oxidation catalyst (DOC) (i.e., a catalytic converter) and an electric heater for regenerating the DPF. Certain embodiments include structures for enhancing flow uniformity through the DPF during regeneration.
Another aspect of the disclosure relates to a shore station for providing power and combustion air to an exhaust treatment device equipped with an electric heater. In certain embodiments, multiple exhaust treatment devices can be connected to the shore station at one time. In one embodiment, the shore station is capable of alternating air flow between a first exhaust treatment device that is in a heating phase of regeneration, and a second exhaust treatment device that is in a cooling phase of regeneration.
Examples representative of a variety of inventive aspects are set forth in the description that follows. The inventive aspects relate to individual features as well as combinations of features. It is to be understood that both the forgoing general description and the following detailed description merely provide examples of how the inventive aspects may be put into practice, and are not intended to limit the broad spirit and scope of the inventive aspects.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail below. It is to be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure.
As shown at
During regeneration events, it is desirable for combustion air flow to be distributed generally uniformly throughout the substrate of the DPF 30. At times, the combustion air flow travels non-uniformly through the DPF 30. For example, under certain circumstances, a majority of the flow proceeds along a path of least resistance through the DPF 30 and thereby by-passes more restricted portions of the DPF substrate. This problem is more prevalent in systems where the combustion air flows horizontally through the DPF during regeneration. To address this issue and enhance flow uniformity across the entire transverse cross-sectional area of the DPF substrate, the exhaust treatment device 20 includes one or more flow distribution structures. For example, referring to
The first flow distribution structure 100 is depicted as a mixer that causes combustion air flow to swirl circumferentially around a central longitudinal axis 90 of the exhaust treatment device 20. The flow distribution device 100 can includes flow deflectors (e.g., vanes, fins, blades, etc.) that direct the flow at an angle relative to the central longitudinal axis so as to cause a swirling action. As shown at
The second flow distribution structure 120 (shown at
The outer body 22 of the exhaust treatment device 20 includes a cylindrical conduit structure 44 that extends from the inlet end 24 to the outlet end 26 of the outer body 22. The cylindrical conduit structure 44 includes a first section 46, a second section 48, a third section 50, a fourth section 52, and a fifth section 54. The first and fifth sections 46, 54 respectively define the inlet and outlet ends 24, 26 of the outer body 22. The second section 48 houses the DOC 28, the third section 50 houses the heater 32 and the fourth section 52 houses the DPF 30. Mechanical connection interfaces 56 are provided between the first and second sections 46, 48, between the second and third sections 48, 50, between the third and fourth sections 50, 52 and between the fourth and fifth sections 52, 54. The mechanical connection interfaces 56 are adapted to allow the various sections to be disconnected from one another to allow access to the interior of the outer body 22. In the depicted embodiment, mechanical connection interfaces 56 include joints 57 at which the sections are connected together. The sections include flanges 58 positioned at the joints. The flanges 58 are secured together by clamps such as V-band clamps 60 that prevent the sections from unintentionally separating at the joints 57. To facilitate assembly, selected sections can include pilot portions that fit into adjacent sections at the joints.
Referring to
The inlet pipe 64 also defines first and second sets of openings, 74, 76 that extend radially through the inlet pipe 64. The first set of openings 74 is adapted to direct exhaust flow radially outwardly from the inlet pipe 64. The first set of openings 74 cooperate with the flow dispersion plug 70 to provide flow uniformity at the upstream face of the DOC 28. The second set of openings 76 provide fluid communication between the interior of the inlet pipe 64 and a resonating chamber 78 (e.g., an expansion chamber). The resonating chamber 78 provides sound muffling within the exhaust treatment device 20. As depicted at
The exhaust treatment device 20 further includes a back pressure sensor connection location 38 for sensing the back pressure generated upstream from the DPF 30. The back pressure sensor location 38 can be located upstream of the DOC 28. As shown at
Referring still to
As depicted at
Referring to
Referring back to
The DOC 28 of the exhaust treatment device 20 is used to convert carbon monoxide and hydrocarbons in the exhaust stream into carbon dioxide and water. As shown at
Referring still to
The particulate mass reduction efficiency of the DOC is dependent upon the concentration of particulate material in the exhaust stream being treated. Post 1993 on-road diesel engines (e.g., four stroke 150-600 horsepower) typically have particulate matter levels of 0.10 grams/brake horsepower hour (bhp-hr) or better. For treating the exhaust stream of such engines, the DOC may have a particulate mass reduction efficiency of 25% or less. In other embodiments, the DOC may have a particulate mass reduction efficiency of 20% or less. For earlier model engines having higher PM emission rates, the DOC may achieve particulate mass reduction efficiencies as high as 50 percent.
For the purposes of this specification, particulate mass reduction efficiency is determined by subtracting the particulate mass that enters the DOC from the particulate mass that exits the DOC, and by dividing the difference by the particulate mass that enters the DOC. The test duration and engine cycling during testing are preferably determined by the federal test procedure (FTP) heavy-duty transient cycle that is currently used for emission testing of heavy-duty on-road engines in the United States (see C.F.R. Tile 40, Part 86.1333). Carbon monoxide and other contaminants can also be oxidized within the DOC.
It will be appreciated that unlike filters which rely primarily on mechanically capturing particulate material within a filter media, catalytic converters rely on catalyzed oxidation to remove particulate material from an exhaust stream. Therefore, catalytic converters are typically adapted to resist particulate loading. For example, a typical catalytic converter substrate has passages that extend completely from the upstream end of the substrate to the downstream end of the substrate. In this way, flow is not forced through the walls of the substrate. The channels are preferably large enough in cross-sectional area to prevent particulate material from accumulating on the substrate.
Suitable catalytic converter substrates can have a variety of other configurations. Example catalytic converter configurations having both corrugated metal and porous ceramic substrates/cores are described in U.S. Pat. No. 5,355,973, that is hereby incorporated by reference in its entirety. In certain embodiments, the DOC can be sized such that in use, the catalytic converter has a space velocity (volume metric flow rate through the DOC divided by the volume of the DOC) less than 150,000 per hour or in the range of 50,000 to 150,000 per hour. In one example embodiment, the DOC substrate can have a cell density of at least 200 cells per square inch, or in the range of 200 to 400 cells per square inch. Exemplary materials for manufacturing the DOC substrate include cordierite, mullite, alumina, SiC, refractory metal oxides, or other materials conventionally used as substrate.
The substrate 130 preferably includes a catalyst. For example, the substrate 130 can be made of a catalyst, impregnated with a catalyst or coated with a catalyst. Example catalysts include precious metals such as platinum, palladium and rhodium. In a preferred embodiment, the DOC substrate is lightly catalyzed with a precious metal catalyst. For example, in one embodiment, the DOC substrate has a precious metal loading (e.g., a platinum loading) of 15 grams or less per cubic foot. In another embodiment, the DOC substrate has a precious metal loading (e.g., a platinum loading) equal to or less than 10 grams per cubic feet or equal to or less than 5 grams per cubic foot. By lightly catalyzing the DOC substrate, the amount of NO2 generated at the DOC substrate during treatment of exhaust is minimal. The catalysts can also include other types of materials such as alumina, cerium oxide, base metal oxides (e.g., lanthanum, vanadium, etc.) or zeolites. Rare earth metal oxides can also be used as catalysts.
The DOC 20 is preferably positioned relatively close to the resistive heating element 92. For example, in one embodiment, the downstream face of the DOC is spaced a distance ranging from 1 to 4 inches from the upstream face of the resistive heating element 92. During regeneration, the DOC functions to store heat thereby heating the combustion air that flows to the DPF. Additionally, the DOC functions to reflect heat back towards the DPF. Moreover, the DOC assists in providing a dry soot pack at the DPF thereby facilitating the regeneration process.
Referring back to
As shown at
Still referring to
In alternative embodiments, the diesel particulate filter can have a configuration similar to the diesel particulate filter disclosed in U.S. Pat. No. 4,851,015 that is hereby incorporated by reference in its entirety. Example materials for manufacturing the DPF substrate include cordierite, mullite, alumina, SiC, refractory metal oxides or other materials conventionally used at DPF substrates.
It is preferred for the DPF to be lightly catalyzed or to not be catalyzed at all. In a preferred embodiment, the DPF has a precious metal loading that is less than the precious metal loading of the DOC. By minimizing the precious metal loading on the DPF, the production of NO2 during treatment of exhaust is minimized.
The DPF 30 preferably has a particulate mass reduction efficiency greater than 75%. More preferably, the DPF 30 has a particulate mass reduction efficiency greater than 85%. Most preferably, the DPF 30 has a particulate mass reduction efficiency equal to or greater than 90%. For the purposes of this specification, particulate mass reduction efficiency is determined by subtracting the particulate mass that enters the DPF from the particulate mass that exits the DPF, and by dividing the difference by the particulate mass that enters the DPF. The test duration and engine cycling during testing are preferably determined by the federal test procedure (FTP) heavy-duty transient cycle that is currently used for emission testing of heavy-duty on-road engines in the United States (see C.F.R. Tile 40, Part 86.1333).
To facilitate regeneration, it is preferred for the DPF to have a relatively low concentration of cells per square inch. For example, in one embodiment, the DPF has less than or equal to 150 cells per square inch. In another embodiment, the DPF has less than or equal to 100 cells per square inch. In a preferred embodiment, the DPF has approximately 90 cells per square inch. By using a relatively low concentration of cells within the DPF substrate, it is possible for the substrate walls 170 defining the passages 172 to be relatively thick so that the walls are less prone to cracking In one embodiment, the walls 170 have a thickness of in the range of 0.010-030 inches.
It is desired for the device 20 to not cause substantial increases in the amount of NO2 within the exhaust stream. In a preferred embodiment, the ratio of NO2 to NOx in the exhaust gas downstream from the exhaust treatment system is no more than 20 percent greater than the ratio of NO2 to NOx in the exhaust gas upstream from the exhaust treatment system. In other words, if the engine-out NOx mass flow rate is (NOx)eng, the engine-out NO2 mass flow rate is (NO2)eng, and the exhaust-treatment-system-out NO2 mass flow rate is (NO2)sys, then the ratio
is less than 0.20. In other embodiments, the ratio is less than 0.1 or less than 0.05.
In still other embodiments, the ratio of NO2 to NOx in the exhaust gas between the DOC and the DPF is no more than 20 percent greater than the ratio of NO2 to NOx in the exhaust gas upstream from the DOC. In other embodiments, the ratio of NO2 to NOx in the exhaust gas between the DOC and the DPF is no more than 10 percent greater or no more than 5 percent greater than the ratio of NO2 to NOx in the exhaust gas upstream from the DOC.
The back pressure sensor 39 of the exhaust treatment device 20 measures the back pressure generated upstream of the DPF 30. In certain embodiments, the back pressure sensor interfaces with an indicator provided in the cab of the vehicle on which the exhaust treatment device 20 is installed. When the back pressure exceeds a predetermined amount, the indicator (e.g., a light) provides an indication to the driver that the exhaust treatment device is in need of regeneration.
It will be appreciated that power and combustion air for the exhaust treatment device can be provided from either an onboard source or an offboard source. For example, vehicles may be equipped with onboard generators, controllers and sources of compressed air to provide onboard power, air and regeneration control to the exhaust treatment device 20. Alternatively, an offboard station can be used to provide power, regeneration control and combustion air to the exhaust treatment device. Offboard stations are particularly suitable for use in regenerating exhaust treatment devices installed on domiciled fleets (e.g., buses) that are periodically parked (e.g., nightly) at a given location. In still other embodiments, regeneration control may be provided onboard, while air and power are provided offboard.
The control unit is preferably equipped with a control panel. An example control panel is shown at
The control unit 202 also controls the power provided to the exhaust treatment devices 20 being regenerated. For example, the control unit 202 includes switches 312 that interface with the controller 306. The switches 312 allow the controller 306 to selectively start or stop power from being supplied to the heating elements of the exhaust treatment devices 20. Temperature controllers 314 also assist in controlling operation of the heating elements of the exhaust treatment devices 20. The temperature controllers 314 receive temperature feedback from the thermocouples of the exhaust treatment devices 20 through the temperature control lines. The temperature controllers 314 interface with switches 316 (e.g., silicon control rectifiers) that control the power provided to the heating elements. The temperature controllers 314 can be programmed to control the switches 316 so that the heating elements of the exhaust treatment devices 20 are heated to a desired temperature. The temperature controllers 314 can include displays for displaying the set/desired regeneration temperature, and also for displaying the actual temperature of the heating element as indicated from data provided by the thermocouple. The temperature controllers 314 interface with the controller 306 to provide feedback regarding the temperature of the heating elements. In the event that the heating elements heat too slowly or become overheated, the controller will discontinue the regeneration process by actuating the switches 312 so that no additional power is provided to the heating element.
When multiple exhaust treatment devices 20 are being regenerated, the controller may alternately open and close the switches 312 so that power alternates between the heating elements of the exhaust treatment devices so that both exhaust treatment devices are subject to heating cycles at the same time. In another embodiment, the controller first powers a first heating element of a first exhaust treatment device for a first complete heating cycle and then sequentially powers a second heating element of a second exhaust treatment device for a second complete heating cycle that does not overlap the first heating cycle in time. In such an embodiment, the second heating cycle in which the second heating element is heated can occur while the first exhaust treatment device is in a cooling cycle . In this way, the heating cycle of the second exhaust treatment device can overlap in time with the cooling cycle of the first exhaust treatment device.
In use of the shore station 200, the regeneration cord 220 is plugged into the bulkhead 304 of a vehicle 300. By plugging the regeneration cord 220 into the bulkhead 304, the shore station 200 can provide power and air to the exhaust treatment devices 20 during regeneration, can monitor the temperature of the heating elements, and can control the regeneration process. To start the regeneration process, the start button 230 is depressed causing power to be provided to the heating element. Concurrently, light 234 is illuminated. During the regeneration process, the power to the heating element can be stopped at any time by manually depressing the emergency stop button 232.
If after three minutes the temperature controller 314 is not sensing 500° F. at the heating element, the controller 306 aborts the start up process and the light 234 is flashed indicating a regeneration failure. Similarly, if at any time the temperature controller 314 senses a temperature over 1400° F. at the heating element, the controller 306 aborts the regeneration cycle and the light 234 is flashed. Other triggering temperatures could also be used.
Under normal operating conditions, the controller will control an initial 20 minute warm up sequence. During the warm up sequence, no compressed air is provided to the exhaust treatment device. After the 20 minute warm up, the controller 306 begins opening and closing the solenoid 308 to provide pulses of air to the exhaust treatment device. During this sequence, the light 234 continues to be illuminated. Additionally, if during the regeneration sequence, the pressure provided by the air line 212 falls below a predetermined level, the controller 306 will abort the sequence. In certain embodiments, the air can be alternated between two or more exhaust treatment devices being regenerated by the shore station. For example, air supply (e.g., pulses) can be alternated between a first exhaust treatment device in the process of being heated and a second exhaust treatment device in the process of being cooled. In this way, heating and cooling cycles of consecutively regenerated exhaust treatment devices can overlap in time without requiring air to be simultaneously provided to both the first and second exhaust treatment devices. The concurrent heating and cooling cycles are preferably coordinated so that combustion air is provided to the second exhaust treatment device when cooling air is not needed by the first exhaust treatment device (e.g., between pulses) and cooling air is provided to the first exhaust treatment device when combustion air is not needed by the second exhaust treatment device (e.g., between pulses)
After a predetermined time period (e.g., 2 hours and 30 minutes), the controller 306 stops the regeneration process and begins the cool down process. To begin the cool down process, power to the heating element is terminated. Also, the amount of air provided to the exhaust treatment device 20 can be increased by increasing the pulse rate or by using longer pulses. During cool down, the light 234 is turned off and the light 236 is turned on.
After about 4.5 hours from initiating the regeneration sequence, the solenoid 308 is de-energized and the cool down cycle ends. The light 237 is then flashed indicating that the entire cycle is complete. By overlapping the heating and cool-down cycles of consecutively regenerated exhaust treatment devices, two exhaust treatment devices can be regenerated in about 7 hours.
Further information concerning regeneration cycles and recipes can be found in PCT Patent Application No. PCT/US2006/001850, filed on Jan. 18, 2006 and entitled Apparatus for Combusting Collected Diesel Exhaust Material from Aftertreatment Devices and Methods that is hereby incorporated by reference in its entirety.
The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/145,262, filed Jan. 16, 2009 which application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61145262 | Jan 2009 | US |