The invention relates to a differential drive having a drive housing in which a differential carrier is rotatably supported around its longitudinal axis A. Sideshaft gears are supported so as to be rotatable around longitudinal axis A relative to the differential carrier. Differential gears are supported in the differential carrier rotatably around axes R extending radially relative to the longitudinal axis A. The differential gears engage the sideshaft gears and rotate together with the differential carrier.
Open differential drives of the foregoing type are preferably used in the form of axle differentials in driving axles of motor vehicles with a low or medium performance. In other words, they are particularly suited for lightweight construction and easy assembly in respect of such a differential drive rather than high performance.
From U.S. Pat. No. 1,145,295, there is known an axle differential wherein sideshaft gears, on the outside, run on a multi-part differential carrier, with the sideshaft gears themselves being supported directly in the drive housing. The differential carrier comprises a disc member forming a crown gear, and a square shaft inserted into same. Two sliding sleeves are arranged on the square shaft. The differential gears have been inserted into broken-out portions in the differential carrier. The sideshaft gears are each supported in rolling contact bearings. The open differential can be adjusted by the sliding sleeves in such a way that one of the sideshaft gears is disconnected from the differential carrier and that the other one of the sideshaft gears is connected to the differential carrier in a rotationally fast way.
FR 2,114,558 proposes a differential drive wherein the side-shaft gears are supported on the outside on a differential carrier. The application discloses that the side-shaft gears can be produced so as to be integral with the outer joint parts of constant velocity universal joints. The differential carrier is supported in the differential housing by a crown gear which is integrally formed on to the differential carrier and which, in one piece, forms the inner bearing race of a rolling contact bearing, with the outer bearing race being inserted into the drive housing.
The present invention provides a differential drive having a lightweight construction that is easy to assembly. In one embodiment, a differential drive is provided wherein the differential carrier forms journals which are firmly connected to one another, and which extend coaxially relative to the longitudinal axis A. From the journals, the differential carrier is rotatably supported in the sideshaft gears and the sideshaft gears, in-turn, are rotatably supported in the drive housing. Thus, the differential carrier is indirectly supported via the sideshaft gears in the drive housing. In this way, it is possible to provide a particularly lightweight differential drive with a few parts only, which is very easy to assemble. The sideshaft gears can be supported by rolling contact bearings in the drive housing. Prefabricated assemblies consisting of the differential carrier and inserted differential gears on the one hand, and sideshaft gears with slipped-on rolling contact bearing on the other hand, can be combined in the drive housing and secured by axial securing means for the rolling contact bearings in the drive housings.
The regions of tooth engagement between the sideshaft gears and the differential gears are located outside the differential carrier. In a particularly advantageous way, the coaxial journals at the differential carrier can be provided in the form of hollow journals which are integrally connected to one another. Furthermore, the differential gears can be inserted into axial broken-out regions in a central disc member of the differential carrier. The disc member, furthermore, serves to form a ring gear or to fix a ring gear on. In a particularly advantageous embodiment, the sideshaft gears are integrated with outer joint parts of constant velocity universal joints. Hereafter, the sideshaft gears and outer joint parts can be joined after the rolling contact bearings have been slipped on to the sideshaft gears. In this way, the rolling contact bearings are axially mounted between the sideshaft gears and the outer joint parts. The connection can be produced by laser welding or friction welding. The rolling contact bearings are preferably provided in the form of angular contact roller bearings. The pre-assembled modules each comprising a side-shaft gear, an outer joint part and a rolling-contact bearing are insertable into the drive housing along the longitudinal axis A and can be slid on to the journals of the differential carrier and secured in the differential housing. The differential carrier is preferably supported in friction bearings in the sideshaft gears, and the effective lines of load of the rolling contact bearings can pass axially centrally through bearing regions of the differential carrier in the sideshaft gears.
The sideshaft gears and the differential gears can be provided in the form of bevel gears. However, a combination of crown gears and spur gears is also possible.
Other advantages and features of the invention will also become apparent upon reading the following detailed description and appended claims, and upon reference to the accompanying drawings.
For a more complete understanding of this invention, reference should now be made to the embodiments illustrated in greater detail in the accompanying drawings and described below by way of examples of the invention.
In the drawings:
In the following description, various components and features are described for several embodiments. These specific features and components are included as examples and are not meant to be limiting.
While the invention has been described in connection with several embodiments, it should be understood that the invention is not limited to those embodiments. Thus, the invention covers all alternatives, modifications, and equivalents as may be included in the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
102 34 035 | Jul 2002 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1145295 | De Witt | Jul 1915 | A |
2187843 | Rzeppa | Jan 1940 | A |
2408926 | Griffith | Oct 1946 | A |
2548258 | Griffith | Apr 1951 | A |
3030825 | Diederich et al. | Apr 1962 | A |
3137181 | Guilbert | Jun 1964 | A |
3202016 | Arnold | Aug 1965 | A |
3427900 | Walker | Feb 1969 | A |
4635505 | Williamson | Jan 1987 | A |
4977796 | Littke | Dec 1990 | A |
6623396 | Szalony et al. | Sep 2003 | B1 |
Number | Date | Country |
---|---|---|
41 36 955 | May 1993 | DE |
0 730 109 | Sep 1996 | EP |
2 114 558 | Jun 1972 | FR |
1 371 060 | Oct 1974 | GB |
Number | Date | Country | |
---|---|---|---|
20040127323 A1 | Jul 2004 | US |