(a) Field of the Invention
The present invention relates to notch radiators and antenna systems including the same.
(b) Description of the Related Art
Tapered notch radiators (or flared notch radiators) work well as array elements in antenna arrays because they can easily fit within array lattice spacing, possess broad bandwidth despite their small aperture area and can be designed for dual polarization.
Known single feed tapered notch radiators (hereinafter “notch radiator(s)”), with a profile of a third of a wavelength at the lowest operating frequency of the notch radiators, can achieve good scan and match performance, but do not possess the differential rejection desired for high linearity and noise rejection. Known differential feed radiators such as the “bunny ear” or dipole antenna do not provide as much bandwidth as desired by many ultra-wide band (UWB) applications. Other known differential notch radiator designs possessing wider bandwidths such as those disclosed in U.S. Pat. No. 7,180,457, the entirety of which is hereby incorporated by reference, can be complicated in their constructions and do not incorporate an integrated balun as part of the radiator, requiring additional components in the design.
Accordingly, a differential notch radiator design with an integrated balun that is simple in fabrication with reduced mechanical complexity and cost is highly desirable.
Aspects of exemplary embodiments of the present invention are directed toward a novel implementation of a differential feed notch radiator that results in a significant cost reduction in manufacturing cost compared to alternative designs. A differential feed notch radiator according to the exemplary embodiments maintains excellent bandwidth and scan angle performance in both the E- and H-Planes, and has improved noise rejection and linearity performance compared to other flared notch antennas. Additionally, the novel construction of the differential feed notch radiator according to the exemplary embodiments facilitates reduction of the depth of the notch radiator, thereby reducing the distance from the electronics to the notch radiator.
According to an embodiment of the present invention, a notch radiator includes a planar dielectric substrate having a first surface and an oppositely facing second surface; a first conductive layer on the first surface and a second conductive layer on the second surface, wherein the first and second conductive layers are patterned to provide a tapered notch in a first region of the planar dielectric substrate, the tapered notch having a first end and a second end wider than the first end, and the first and second conductive layers are patterned to provide a balun in a second region of the planar dielectric substrate, the balun connected with the first end of the tapered notch; and a conductive strip for transferring differential signals embedded in the planar dielectric substrate between the first and second conductive layers, a portion of the conductive strip intersecting a portion of the tapered notch near the first end.
According to an embodiment of the present invention, the tapered notch may be substantially symmetrical about a centerline of the planar dielectric substrate.
According to an embodiment of the present invention, the conductive strip may be substantially symmetrical about the centerline of the planar dielectric substrate.
According to an embodiment of the present invention, the conductive strip may be a stripline.
According to an embodiment of the present invention, a side of the balun connected with the first end of the tapered notch may have a width that is greater than a width of the first end of the tapered notch.
According to an embodiment of the present invention, the balun may be shaped to provide a high impedance termination to the tapered notch.
According to an embodiment of the present invention, the notched radiator may further include a plurality of vias to electrically connect the first and the second conductive layers to each other.
According to an embodiment of the present invention, a number of the plurality of vias may be located near edges of the tapered notch.
According to an embodiment of the present invention, a spacing between two of the vias may be about 0.06 inch.
According to an embodiment of the present invention, the conductive strip may have a width about 0.028 inch.
According to an embodiment of the present invention, the portion of the conductive strip intersecting the portion of the tapered notch may be a middle portion of the conductive strip.
According to an embodiment of the present invention, the notched radiator may further include one or more third conductive layers between the first and second conductive layers, the one or more third conductive layers and the first and second conductive layers having a substantially same pattern.
The accompanying drawings, together with the specification, illustrate exemplary embodiments of the present invention, and, together with the description, serve to explain the principles of the present invention.
a is a schematic block diagram showing the tapered notch radiator of
b is a schematic block diagram showing the components of the tapered notch radiator of
c is a schematic block diagram showing an optimized element S-matrix of the tapered notch radiator of
a is a conceptual diagram showing a perspective view of a differential feed tapered notch radiator according to an embodiment of the present invention.
b is a conceptual diagram showing a plan view of the differential feed tapered notch radiator of
c is a conceptual diagram showing a cross-sectional view of a differential feed tapered notch radiator according to an embodiment of the present invention.
a, 6b, 6c and 6d are graphs showing the simulation results of four exemplary differential feed tapered notch radiators having lengths of 1.5″, 1.2″, 1″ and 0.75″ according to embodiments of the present invention.
In the following detailed description, only certain exemplary embodiments of the present invention are shown and described, by way of illustration. As those skilled in the art would recognize, the present invention may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Also, in the context of the present application, when an element is referred to as being “on” another element, it can be directly on the another element or be indirectly on the another element with one or more intervening elements interposed therebetween. Like reference numerals designate like elements throughout the specification.
Aspects of the embodiments of the present invention are directed toward a novel implementation of a differential feed notch radiator (e.g., a flared notch radiating element) with an integrated balun in a single board construction. Two striplines feed the same notch radiator and are electrically connected to each other at the point where they feed the notch radiator. According to the embodiments, these two stripline feeds are fed with out-of-phase signals (or differential signals), producing an effective short circuit to the center of the flared notch feed point that facilitates radiation down the flared notch slots and, additionally, helps reduce cross-polarization. The flared notch portion of the notch radiator is designed to have a suitable depth and taper that provide the desired bandwidths and scan performance, similar to the established design process for single feed flared notch radiators.
The combination of the differential feeds with an integrated balun in a single board (e.g., a printed circuit board) implementation of the differential feed notch radiator facilitates low cost and reduced manufacturing complexity. The differential feed notch radiator according to the embodiments of the present invention can achieve improved performance over the 10:1 bandwidth and scan ranges (e.g., ±60 degrees) over other currently known radiators. The broadband performance of the differential feeds notch radiator according to the embodiments of the present invention is desirable in many applications such as applications requiring high linearity, greater noise cancellation and rejection.
Referring to
A radome 50 (or an endpiece) is optionally fitted at the end of the tapered notch 30 to protect the tapered notch radiator from the environment. The radome 50 is constructed of a suitable material that minimally attenuates the electromagnetic signals transmitted or received by the tapered notch radiator.
In
a is a schematic block diagram showing the tapered notch radiator of
a is a conceptual diagram showing a perspective view of a differential feed tapered notch radiator 100 according to an embodiment of the present invention.
Referring to
In an embodiment of the present invention, the two striplines 102a and 102b are substantially symmetrical about a centerline 200 of the dielectric substrate 104.
In an embodiment of the present invention, the tapered notch 108 is substantially symmetrical about the centerline 200 of the dielectric substrate 104.
In an embodiment of the present invention, the differential feed tapered notch radiator 100 includes a plurality of vias 112 to electrically connect the two conductive layers 101a and 101b to each other as mode suppression vias. In an embodiment of the present invention, a number of the plurality of vias 112 are located near edges of the tapered notch 108. The vias is spaced less than one eighth of a wavelength apart with the wavelength being defined as the wavelength of the highest frequency in the dielectric substrate. In an embodiment of the present invention, a spacing between two of the vias is about 0.06 inch.
In an embodiment of the present invention, each of the striplines 102a and 102b has a suitable line width for a 50 Ohm impedance, but may be raised or lowered to meet different radiator or system requirements. In an embodiment, the line width of the stripline is about 0.028 inch.
In other embodiments of the present invention, one or more additional conductive layers may be interposed between the conductive layers 101a and 101b. The one or more additional conductive layers and the conductive layers 101a and 101b are patterned to have a substantially similar pattern.
c is a conceptual diagram showing a cross-sectional view of a differential feed tapered notch radiator 100′ according to an embodiment of the present invention. This embodiment is substantially similar to the embodiment of
Simulation Results of Exemplary Embodiments
a, 6b, 6c and 6d are graphs showing simulation results of active return loss of four exemplary differential feed tapered notch radiators having lengths of 1.5″, 1.2″, 1″ and 0.75″. The simulation results shown in
A differential feed tapered notch radiator according to the above described exemplary embodiments offers reduced insertion loss in front of the LNA by providing an integrated 0°/180°balun as part of the radiating element. This can improve insertion loss by about 1.5 dB, thereby improving noise figure by that amount.
Additionally, the differential feed tapered notch radiator according to the above described exemplary embodiments allows for a more compact design by eliminating the need for a balun in addition to the radiator element. Furthermore, the differential feed tapered notch radiator according to the exemplary embodiments can be applied in high linearity systems to improve noise figure and IP2H performance.
According to the above described exemplary embodiments, the combination of the differential feeds with an integrated balun in a single board radiator design facilitates low cost and reduced manufacturing complexity.
While the present invention has been described in connection with certain exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, and equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4736454 | Hirsch | Apr 1988 | A |
5081466 | Bitter, Jr. | Jan 1992 | A |
5194875 | Lucas | Mar 1993 | A |
5659326 | McWhirter et al. | Aug 1997 | A |
5949382 | Quan | Sep 1999 | A |
6008770 | Sugawara | Dec 1999 | A |
6219000 | McWhirter et al. | Apr 2001 | B1 |
6292153 | Aiello et al. | Sep 2001 | B1 |
6501431 | Irion et al. | Dec 2002 | B1 |
6963312 | Schuneman et al. | Nov 2005 | B2 |
7180457 | Trott et al. | Feb 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20110074649 A1 | Mar 2011 | US |