Unless otherwise indicated herein, the approaches described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.
Reference signals are mostly required in integrated circuit (IC) subsystems, either for the purpose of analog signal processing computations (e.g., A/D conversion, thresholding, offset shifting, measurement reference, etc.), or to determine the bias level of analog circuits.
Accurate distribution of reference signals to multiple subsystems on a large or complex integrated circuit is a frequent challenge to designers, especially in the modern “system on a chip” approach. Due to the inaccuracy of the absolute values of IC component parameters (e.g., capacitance, resistance, transistor threshold and gain), it is difficult to generate precision reference voltages or currents on integrated circuits. Circuit designs, that are commonly used to generate precision reference currents or voltages, often occupy large space, consume much power, have special start-up requirements and may require active trimming during IC production. For these reasons, when precision referencing is needed in any IC system, it is usually preferable to generate only one such reference signal centrally, either on the chip, or by an external component. “Copies” of this reference signal are then distributed to the subsystems where it is needed.
Conventional approaches of distributing either reference voltage or reference current to various subsystems in a large integrated circuit are inadequate. For example, distribution of multiple copies of a current signal can lead to unwanted circuit complexity (the signal distribution to each destination requires an individual signal wire) and power consumption (due to centrally generating multiple copies of a current signal at a subsystem).
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. These drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope. The disclosure will be described with additional specificity and detail through use of the accompanying drawings.
The technical details set forth in the following description enable a person skilled in the art to implement one or more embodiments of the present disclosure.
In the reference signal distribution system 100 illustrated in
In an embodiment according to the present disclosure, the first-type transistors QN1-QNm and the second-type transistors QP1-QPm are doped with different types of carriers. For illustrative purposes, each of the first-type transistors QN1-QNm is depicted as a N type metal-oxide-semiconductor field-effect transistor (N-MOSFET), and each of the second-type transistors QP1-QPm is depicted as a P type metal-oxide-semiconductor field-effect transistor (P-MOSFET) in
For illustrative purposes, it is assumed that reference signals are provided in the reference subsystem SUB1 and then distributed to one or multiple destination subsystems SUB2-SUBm in order to generate copies of the reference signals. In an embodiment according to the present disclosure, a reference current IREF may be supplied into the drain of the first-type transistor QN1 by a reference current source IS in the reference subsystem SUB1, as depicted by the reference signal distribution system 100 illustrated in
In each subsystem of the reference signal distribution systems 100, 200, 300 and 400, the second ends (sources) of the first-type and second type transistors are connected together to create a floating complimentary metal-oxide-semiconductor (CMOS) series transistor pair. If the reference current IREF is supplied into the drain of the transistor QN1 or drawn from the drain of the transistor QP1, the floating CMOS series transistor pair formed by QN1 and QP1 may be biased to create a voltage difference between the two nodes N1 and N2. This differential voltage VDIFF established between the nodes N1 and N2 may be distributed to one or multiple subsystems SUB2-SUBm using two signal wires W1 and W2.
When the reference subsystem SUB1 is connected to the destination subsystem SUB2 via the two signal wires W1 and W2, the floating CMOS series transistor pair formed by QN2 and QP2 may be biased by the differential voltage VDIFF. Consequently, a copy current ICOPY2 associated with the reference current IREF may flow through the load resistance of the destination subsystem SUB2. The value of the copy current ICOPY2 is determined by the ratio between the sizes of the transistors QN2 and QN1 and by the ratio between the sizes of the transistors QP2 and QP1.
In an embodiment when the transistors QN1, QP1, QN2 and QP2 have the same size in width, the copy current ICOPY2 flowing through the destination subsystem SUB2 may be (approximately) the same as the reference current IREF flowing through the reference subsystem SUB1, regardless of any differences (within certain limits) between the power supply VSUPPLY1 of the reference subsystem SUB1 and the power supply VSUPPLY2 of the destination subsystem SUB2 and regardless of any differences (within certain limits) between the power offset VOFFSET1 of the reference subsystem SUB1 and the power offset VOFFSET2 of the destination subsystem SUB2.
In another embodiment, the copy current ICOPY2 flowing through the destination subsystem SUB2 may be a scaled replica of the reference current IREF flowing through the reference subsystem SUB1. This can be achieved by scaling the width of the first-type transistor QN2 by the required scaling factor relative to the width of the first-type transistor QN1, and by scaling the width of the second-type transistor QP2 by the required scaling factor relative to the width of the second-type transistor QP1.
At least one benefit of the above described approach is that the reference current IREF can be reproduced anywhere in the reference signal distribution system 100, without the need to access or reference to the exact supply voltages used at the reference subsystem (VSUPPLY1 and VOFFSET1 of the reference subsystem SUB1).
Yet another benefit with the above described approach is that the reference current IREF can be reproduced multiple times without compromising the differential voltage between the signal lines W1 and W2. The reason is that the gates of all diode-connected devices in the destination subsystems draw no current from the nodes N1 and N2. Since the copy current ICOPY2 flowing through the destination subsystem SUB2 is solely dependent on the voltage difference between the nodes N1 and N2, the magnitude of the reproduced copy current ICOPY2 will be independent of local variations in supply voltages (VSUPPLY2 and VOFFSET2 of the destination subsystem SUB2).
Yet another benefit with the above described approach is the ability to reproduce any number or magnitude of copies of the original reference current without causing extra power dissipation. The reason is that distribution of a reference signal as a differential voltage using two signal wire consumes much less power than the prior art method of distributing all required copies of the reference current which are generated at the reference subsystem.
Yet another benefit with the above described approach is the ability to reproduce any number or magnitude of copies of the original reference current without causing circuit complexity. The reason is that distribution of a reference signal as a differential voltage according to the present disclosure only requires two signal wires, instead of using individual wires to distribute all required copies of the reference current to each destination in the prior art.
If higher precision in the reproduction of the reference currents, or greater independence from local supply variations, is required, a cascoded approach, as shown in
In the destination subsystem SUB2 of the reference signal distribution system 200 illustrated in
Processing for method 500 may begin at block 502, “provide a reference current”. Block 502 may be followed by block 504, “bias a first floating CMOS series transistor pair by the reference current to establish a differential voltage between a first node and a second node.” Block 504 may be followed by block 506, “couple a second floating CMOS series transistor pair to the first node and the second node to receive the differential voltage.” Block 506 may be followed by block 508, “generate a copy current associated with the reference current using the second floating CMOS series transistor pair driven by the differential voltage.”
Although the approach discussed above in conjunction with
Although the present disclosure has been described with reference to specific exemplary embodiments, it will be recognized that the disclosure is not limited to the embodiments described, but can be practiced with modification and alteration within the spirit and scope of the appended claims. Accordingly, the specification and drawings are to be regarded in an illustrative sense rather than a restrictive sense.
The present application claims the benefit of U.S. Provisional Application 61/990,107 filed May 8, 2014, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4442398 | Bertails | Apr 1984 | A |
5894245 | Cho | Apr 1999 | A |
5955874 | Zhou | Sep 1999 | A |
6639456 | Paulus | Oct 2003 | B2 |
7046077 | Ozasa | May 2006 | B2 |
7057448 | Tanigawa | Jun 2006 | B2 |
7129796 | Goto | Oct 2006 | B2 |
7180794 | Matsue | Feb 2007 | B2 |
7391274 | Hsu | Jun 2008 | B2 |
7872463 | Jongsma | Jan 2011 | B2 |
Number | Date | Country | |
---|---|---|---|
20150326208 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
61990107 | May 2014 | US |