This application claims the benefit of U.S. Provisional Application No. 60/119,396, filed Feb. 10, 1999.
This invention relates to wireless communication and, more particularly, to techniques for effective wireless communication in the presence of fading and other degradations.
Recently, some interesting approaches for transmitter diversity have been suggested. A delay diversity scheme was proposed by A. Wittneben in “Base Station Modulation Diversity for Digital SIMULCAST,” Proceeding of the 1991 IEEE Vehicular Technology Conference (VTC 41st), PP. 848-853, May 1991, and in “A New Bandwidth Efficient Transmit Antenna Modulation Diversity Scheme For Linear Digital Modulation,” in Proceeding of the 1993 IEEE International Conference on Communications (IICC '93), PP. 1630-1634, May 1993. The proposal is for a base station to transmit a sequence of symbols through one antenna, and the same sequence of symbols—but delayed—through another antenna.
U.S. Pat. No. 5,479,448, issued to Nambirajan Seshadri on Dec. 26, 1995, discloses a similar arrangement where a sequence of codes is transmitted through two antennas. The sequence of codes is routed through a cycling switch that directs each code to the various antennas, in succession. Since copies of the same symbol are transmitted through multiple antennas at different times, both space and time diversity are achieved. A maximum likelihood sequence estimator (MLSE) or a minimum mean squared error (MMSE) equalizer is then used to resolve multipath distortion and provide diversity gain. See also N. Seshadri, J. H. Winters, “Two Signaling Schemes for Improving the Error Performance of FDD Transmission Systems Using Transmitter Antenna Diversity,” Proceeding of the 1993 IEEE Vehicular Technology Conference (VTC 43rd), pp. 508-511, May 1993; and J. H. Winters, “The Diversity Gain of Transmit Diversity in Wireless Systems with Rayleigh Fading,” Proceeding of the 1994 ICC/SUPERCOMM, New Orleans, Vol. 2, PP. 1121-1125, May 1994.
Still another interesting approach is disclosed by Tarokh, Seshadri, Calderbank and Naguib in U.S. application Ser. No. 08/847635, filed Apr. 25, 1997 (based on a provisional application filed Nov. 7, 1996), where symbols are encoded according to the antennas through which they are simultaneously transmitted, and are decoded using a maximum likelihood decoder. More specifically, the process at the transmitter handles the information in blocks of M1 bits, where M1 is a multiple of M2, i.e., M1=k*M2. It converts each successive group of M2 bits into information symbols (generating thereby k information symbols), encodes each sequence of k information symbols into n channel codes, and applies each code of a group of codes to a different antenna.
When knowledge of the channel is available neither at the transmitter nor at the receiver, the above schemes require the transmission of pilot symbols. For one transmit antenna, differential detection schemes exist that neither require the knowledge of the channel nor employ pilot symbol transmission. These differential decoding schemes are used, for instance, in the IEEE IS-54 standard. This motivates the generalization of differential detection schemes for the case of multiple transmit antennas.
A partial solution to this problem was proposed in U.S. patent application Ser. No. 09/074,224 filed on May 7, 1998, where the detected sequence is used to estimate the channel at the receiver, and those estimates are fed back and used to detect the next transmitted set of symbols. Therefore, the '224 patent application disclosure can be thought of as a joint channel and data estimation.
Improvement in the art is realized by utilizing the fact that a space time encoding at the transmitter can be constructed where the symbols transmitted over a plurality of antennas in the time slots of a frame are orthogonal to each other. With this realization, in accordance with the principles of this disclosure, the inputs signals of each frame are mapped onto a coordinate system dictated by the symbols of the previous frame, and symbols from a constellation are selected based on the results of such mapping. Received signals are detected by preprocessing the signals detected at each antenna with signals detected by the antenna at the immediately previous frame, and then applied to a maximum likelihood detector circuit, followed by an inverse mapping circuit.
At time t the signal rij that is received at antenna j is given by
where the noise samples ηtj are independent samples of a zero-mean complex Gaussian random variable with variance 1/(2SNR) per complex dimension. The average energy of the symbols transmitted from each antenna is normalized to be ½, so that the average power of the received signal at each receive antenna is 1 and the signal to noise ratio is SNR.
Assuming coherent detection, the receiver computes the decision metric
over all codewords
c11c12c21c22 . . . cl1cl2, (3)
and decides in favor of the codeword that minimizes the sum of equation (2).
In the
which means that as 2b bits arrive at the encoder at each frame, constellation signals s1, and s2 are selected, and setting xi=si, the first column of the matrix is transmitted in time slot t=1 and the second column of the matrix is transmitted in time slot 2.
Maximum likelihood detection amounts to minimizing the decision statistic
over all possible values of s1 and s2. The minimizing values in equation (5) are the receiver estimates of s1 and s2, respectively. Expanding the above metric and deleting the terms that are independent of the codewords, it can be observed that the above minimization is equivalent to minimizing
where
and
The above metric decomposes into the two parts
and
where equation (9) is only a function of s1, and equation (10) is only a function of s2. Thus, the minimization of equation (5), which is derived from equation (2), is achieved by minimizing equations (9) and (10) separately. This, in turn, is equivalent to minimizing the decision statistic
for detecting s1, and the decision statistic
for decoding s2.
From a careful look at the complex vectors that make up the matrix of equation (4) it can be observed that the pair of constellation symbols (x1,x2) and (−x*2,x*1) are orthogonal to each other (i.e., (x1,x2)(−x*2,x*1)H=0), where the superscript H denotes transpose conjugate (Hermetian), and, therefore, they can constitute the two orthogonal coordinates of a coordinate system. Viewed in this manner, any pair of complex vectors, such as constellation symbols pair =(x3,x4) , can be mapped onto the coordinate system defined by (x1,x2) and (−x*2,x*1), and expressed in this coordinate system as a vector
=(A,B). (13)
That is,
(x3,x4)=A(x1,x2)+B(−x*2,x*1), (14)
where Ais the dot product of (x3,x4) and (x1,x2) , and Bis the dot product of (x3,x4) and (−x*2,x*1). This yields
A=x3x*1+x4x*2, (15)
and
B=−x3x2+x4x1. (16)
Defining as the set of all vectors from signal pairs belonging to constellation , it can be shown that, if the constellation A is restricted to phase shift keying (where the constellation points lie along the (power) unit circle), has the following properties:
Now, given a block of 2b bits, the first b bits are mapped into a constellation symbol a3 and the second two bits are mapped into a constellation symbol a4. Employing an arbitrary, fixed, starting pair of (a1,a2) that belongs to constellation (for example
the complex vector pair (a3,a4) is mapped to the coordinate system defined by the orthogonal vectors (a1,a2) and (−a*2,a*1), to yield the vector −(A,B) for −(a3,a4), or ()−(A(),B()), where
A()=a3a*1+a4a*2, (18)
and
B()=−a3a2+a4a1. (19)
Conversely, given A(), and B(), the pair (a3,a4) is recovered in a receiver that knows the pair of (a1,a2) by
(a3,a4)=A()(a1,a2)+B()(−a*2,a*1). (20)
The block is then constructed by inverse mapping of a3 and a4. Thus, there is a direct mapping from constellation symbol a3 and a4 to A(), and B().
In accordance with the principles disclosed above transmitting unit 10 of
To illustrate, suppose that during a frame q (frames having 2 time slots each), symbols s2q−1 and s2q are transmitted. More specifically, suppose symbols s2q−1 and s2q are respectively transmitted from antenna 11-1 and 11-2, and at time slot 1, and the symbols −s*2q and s*2q−1 are respectively transmitted from antenna 11-1 and 11-2 at time slot 2 of frame q. Suppose further that at frame q+1, a block of 2b bits q+1 arrives at element 12. According to the above, element 12 uses the mapping of the form expressed in equations (18) and (19) to obtain A(q+1) and B(q+1), and element 12 computes the constellation points
(s2(q+1)−1,s2(q+1))=(s2q+1,s2q+2)=A(q+1)(s2q−1,s2q)+B(q+1)(−s*2q,s*2q−1). (21)
Then, symbols s2q+1 and s2q+2 are transmitted from antennas 11-1 and 11-2, respectively at time slot 1, and symbols −s*2q+2 and s*2q+1 are transmitted from antennas 11-1 and 11-2, respectively, at time slot 2 of frame q+1. These signals are also sent to element 14 in preparation of the encoding of frame q+2. This process is inductively repeated until the end of the frame (or end of transmission).
The decoding of signals received by unit 20 is performed in detector elements 22-j, which are coupled to antennas j. Within element 22-j there is a delay element 221-j and dot product generators 222-j and 223-j. Dot product generator 222-j develops the dot product of (r2q+1,r*2q+2)·(r2q−1,r*2q) for the signals received at antenna j, and dot product generator 223-j develops the dot product of (r2q+1,r*2q+2)·(r2q,−r*2q−1) for the signals received at antenna j.
Considering the outputs of element 21-1, and simplifying the notation by employing rt for rt1, ηt for ηt1, a1,1, and a2 for a2,1, it can be observed that the signal pairs (r2q+1,r*2q+2), (r2q−1,r*2q), and (r2q,−r*2q−1) can be expressed by
(r2q+1,r*2q+2)=(s2q+l,s2q+2)Λ(a1,a2)+N2q+1, (22)
(r2q−1,r*2q)=(s2q−1,s2q)Λ(a1,a2)+N2q−1, (23)
and
(r2q,−r*2q−1)=(s*2q,s*2q−1)Λ(a1,a2)+N2q, (24)
where r2q−1,r2q,r2q+1, and r2q+2 are the received signals,
and
N2q−1=(η2q−1,η*2q). (26)
Hence, taking the dot product of equations (23) and (22) within element 222-1 results in
Expanding equation (27) results in an output for element 221-1 that is
which reduces to
1=(|a1|2+|a2|2)A(q−1)+1, (29)
where
1=(s2q+1,s2q+2)Λ(a1,a2)N*2q−1+N2q+1Λ*(a1,a2)(s2q−1,s2q)*+N2q+1N*2q−1. (30)
Similarly, carrying out the mathematics of equations (27)-(30) for the dot product of (r2q+1,r*2q+2)·(r2q,r*2q−1) within element 223-1 reveals that the output of element 223-1 corresponds to 2, where
2=(|a1|2+|a2|2)B(q−1)+2. (31)
The vector pair (1,2) at the output of detector 22-1 can then be expressed by
(1,2)=(|a1|2+|a2|2)(A(q−1),B(q−1))+(1,2). (32)
The procedure disclosed above for antenna 12-1 is used for each of the j receive antennas, as depicted in
is computed, following the approach disclosed above in connection with equations (5)-(12). Subsequently, the transmitted bits are computed by applying the inverse mapping −1 in element 26.
The above discloses the principles of this invention by way of analysis for a transmitter having two transmit antennas. It should be realized that various modifications are possible to be incorporated without departing from the spirit and scope of this invention and, in particular, it should be understood that extension to arrangements where there are more than two antennas is straight forward using, for example, the codes taught in U.S. patent application Ser. No. 09/186,908, titled “Generalized Orthogonal Designs for Space-Time Codes for Wireless Communication,” which has the effective filing date of Nov. 11, 1997.
Number | Name | Date | Kind |
---|---|---|---|
6088408 | Calderbank et al. | Jul 2000 | A |
6185258 | Alamouti et al. | Feb 2001 | B1 |
6327310 | Hochwald et al. | Dec 2001 | B1 |
6363121 | Hochwald et al. | Mar 2002 | B1 |
6459740 | Lo | Oct 2002 | B1 |
6584593 | Seshadri et al. | Jun 2003 | B1 |
6643338 | Dabak et al. | Nov 2003 | B1 |
6693982 | Naguib et al. | Feb 2004 | B1 |
6741635 | Lo et al. | May 2004 | B2 |
6807240 | Alamouti et al. | Oct 2004 | B2 |