1. Field of the Invention
The present invention relates to a differentially controllable two-way clutch used for a power transmission mechanism and an auxiliary machine driving system in an automobile and configured to transmit and block power in two directions, a forward rotation direction and a backward rotation direction.
2. Description of the Related Art
In general, a two-way clutch is used for a power transmission mechanism and an auxiliary machine driving system in an automobile as means for switching a power transmission path. For example, when a hybrid car with two power sources, an internal combustion engine and an electric motor, travels using the electric motor in addition to the internal combustion engine, power from the electric motor is transmitted to an output shaft through a two-way clutch in both forward and backward rotation directions. Furthermore, as described in Japanese Patent Application Laid-Open Nos. 2002-5200, H6-344796, and H10-53044, the two-way clutch is also used for an auxiliary machine driving system that also uses an electric motor, a center differential in a four-wheel-drive car, and the like.
According to the two-way clutches in Japanese Patent Application Laid-Open Nos. 2002-5200, H6-344796, and H10-53044, a cylindrical surface is formed on one of an inner wheel and an outer wheel, whereas a cam surface is formed on the other of the inner and outer wheels. A torque transmission member such as a roller or a sprag is interposed between the cylindrical surface and the cam surface. The torque transmission member is held in the neutral position of the cam surface or in one of engaged positions of the cam surface. An electromagnetic clutch mechanism or a frictional driving mechanism is used to switch the phase of a cage configured to hold the torque transmission member.
However, in the configuration in which the torque transmission member is held in the neutral position of the cam surface, the torque transmission member is held by bias means provided in the cage. Thus, the torque transmission member cannot disadvantageously be reliably held at the neutral position. On the other hand, in the configuration in which the torque transmission member is held in one of the engaged positions of the cam surface, the cylindrical surface and the torque transmission member are in sliding contact with each other. Thus, while the two-way clutch is inactive (running idly), drag torque is generated, resulting in a disadvantageous increase in fuel consumption or the like.
Thus, an object of the present invention is to provide a differentially controllable two-way clutch configured to enable a cage to be differentially controlled and to allow rotation to be reliably locked in both a forward rotation direction and a backward rotation direction, the two-way clutch also preventing possible drag torque even in an idle running state.
To accomplish the object, the differentially controllable two-way clutch according to the present invention includes an outer wheel with a cam portion on an inner circumference, an inner wheel arranged apart from the outer wheel and toward an inner diameter of the two-way clutch as well as rotatably and concentrically with respect to the outer wheel, a torque transmission member located between the outer wheel and the inner wheel to transmit torque, a cage configured to hold the torque transmission member and to be slidable in a circumferential direction and which is differentially controlled, and a spring supported by the cage and configured to be capable of biasing the torque transmission member so that the torque transmission member engages with a cam surface.
The present invention exerts the following effects. The cage can be differentially controlled, and the rotation can be reliably locked in both the forward and backward rotation directions. Furthermore, no drag torque is generated even in the idle running state.
The term “torque transmission member” as used herein refers to a member that engages with a cam surface of the outer wheel and an outer circumferential surface of the inner wheel to transmit torque. The torque transmission member may have any shape provided that the torque transmission member can engage with the cam surface of the outer wheel. The torque transmission member may take any of various forms, for example, a roller, a ball, and a ball-like sprag.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.
The present invention will be described below in detail with reference to the drawings. Of course, embodiments described below do not limit but illustrate the present invention. Furthermore, in the drawings, the same components are denoted by the same reference numerals.
As shown in
A plurality of cam portions 12 (described below) are formed on the inner circumference of the outer wheel 1. A roller 3 is interposed between the outer circumferential surface of the inner wheel 2 and each of the cam portions 12. The roller 3 is held by a pair of cages 6 and 7 (described below) arranged between the outer wheel 1 and the inner wheel 2. The roller 3 is biased by an accordion spring 5 described below in a direction in which the roller 3 engages with the cam surface of the cam portion 12.
The two-way clutch 30 includes an annular switching plate 50 (described below in detail) provided at one axial end surface thereof and fitted on the outer wheel 1 so as to be pivotally movable within a predetermined range. Switching a lever 51 of the switching plate 50 controls the rotation direction of the two-way clutch. The switching plate 50 is prevented from slipping out in the axial direction, by means of a retainer 61 fixed to the outer wheel 1.
If only the inner wheel 2 coupled to a driving shaft (not shown in the drawings) is rotating, then in the present embodiment, since the roller 3 is neutral with respect to cam surfaces 40 and 41 as described below, the two-way clutch 30 is prevented from hindering rotation of the inner wheel 2. Thus, possible power loss and the like caused by drag torque is inhibited.
That is, when the rollers 3 are neutral, the inner wheel 2 can rotate freely in the opposite directions. As shown in
The switching plate 50 integrated with the lever 51 limits sliding (movement) of the cages 6 to 9. Thus, if the lever 51 is displaced in the forward rotation direction (clockwise), then as described below, the cages 6 to 9 slides relative to the outer wheel 1 until a protruding portion of each of the cages comes into abutting contact with an end surface of a movement limiting recess portion 10, while contracting a coil spring 25. At this time, the rollers 3 come into engagement with the cam surface 40. As a result, the clockwise rotation of the inner wheel 2 is limited. The inner wheel 2 can rotate only counterclockwise.
On the other hand, if the lever 51 is displaced in the backward rotation direction (counterclockwise), the rollers 3 come into engagement with the cam surface 41 to limit the counterclockwise rotation of the inner wheel 2. The inner wheel 2 can rotate only clockwise.
The two-way clutch 30 includes the outer wheel 1 with a cylindrical inner circumferential surface, and the inner wheel 2 arranged apart from the outer wheel 1 and toward the inner diameter of the two-way clutch 30 as well as relatively rotatably and concentrically with respect to the outer wheel 1 and having a cylindrical outer circumferential surface. The two-way clutch 30 further includes a plurality of torque transmission members arranged between the outer wheel 1 and the inner wheel 2 to transmit torque, that is, the rollers 3 in a cylindrical shape each with a circular axial cross section and the cages 6, 7, 8, and 9 configured to hold the respective rollers 3. The rollers 3 are rollable in the circumferential direction. The cages 6 to 9 are arranged so as to be slidable in the circumferential direction.
Pockets 4 are formed on the inner circumferential surface of the outer wheel 1 as recess portions depressed outward in the radial direction. Six pockets 4 are formed at equal intervals in the circumferential direction. The cam portion 12 engaged with the roller 3 is formed on an outer circumferential wall of each of the pockets 4.
Each of the cages 6 to 9 arranged in the annular space defined between the outer wheel 1 and the inner wheel has a sectional shape complementary to that of the annular space. Each of the cages 6 to 9 includes a top surface with a curvature complementary to that of the inner circumferential surface of the outer wheel 1 and a bottom surface with a curvature complementary to that of the outer circumferential surface of the inner wheel 2. The pair of cages 6 and 7 have almost the same shape and include a recess portion (described below) which holds a spring described below on the respective circumferential end surfaces 15 and 16. The cages 6 and 7 include nothing on the other end surfaces 17 and 18. The cages 6 and 7 thus lie opposite each other so as to be capable of coming into abutting contact with each other at the other end surfaces 17 and 18. As shown in
Some of the plurality of circumferentially provided cages the number of which corresponds to the number of the rollers 3 are configured differently from the cages 6 and 7. Each of the cages 8 and 9 provided at one location in the circumferential direction includes a recess portion on the opposite circumferential end surfaces. One circumferential end surface 19 of the cage 8 has the same configuration as that of the end surfaces 15 and 16 of the cages 6 and 7, and includes a recess portion 31 in which a spring is insertedly mounted. Furthermore, one circumferential end surface 20 of the cage 8 includes a recess portion 26 in which the coil spring 25 is insertedly mounted.
One circumferential end portion 21 of the cage 9 has the same configuration as that of the end surfaces 15 and 16 of the cages 6 and 7, and includes a recess portion 32 in which a spring is insertedly mounted. Furthermore, one circumferential end surface 22 of the cage 9 includes a recess portion 28 in which the coil spring 25 is insertedly mounted. The recess portions 26 and 28 have almost the same shape and are placed opposite each other when the end surfaces 20 and 22 of the cages 8 and 9 come into contact with each other. The recess portions 26 and 28 define one circumferential space in which the coil spring 25 is located.
The cage 8 includes a protruding portion 27 which is flush with the end surface 20 and which extends from the end surface 20 toward the outer diameter of the two-way clutch. The cage 9 includes a protruding portion 29 which is flush with the end surface 22 and which extends from the end surface 22 toward the outer diameter of the two-way clutch. The protruding portions 27 and 29 are fitted in the movement limiting recess portion 10, depressed toward the outer diameter of the two-way clutch, and are movable within the circumferential length of the recess portion 10. The movement limiting recess portion 10, which limits circumferential movement of the protruding portions 27 and 29, is formed at one circumferential location between the pockets 4.
The movement limiting recess portion 10 includes opposite circumferential end portions 13 and 14. An operation described below brings the protruding portion 27 into abutting contact with the end portion 13, while bringing the protruding portion 29 into abutting contact with the end portion 14, thus limiting the movement.
The accordion spring 5 is insertedly mounted in each of recess portions 33 and 34 (
The cam surface 40, the cam surface 41, and the recess 42 are continuously formed in the pocket 4 in the outer wheel as shown in
The end surfaces 15, 16, 19, and 21 respectively of the cages 6 to 9 including the recess portions in which the accordion springs 5 are insertedly mounted have similar shapes. An outer diameter-side flange and an inner diameter-side flange forming the recess portion have different circumferential lengths. For example, as shown in
The cages 8 and 9, shaped differently from the other cages, include cylindrical projections 23 and 24 each provided at one axial end surface of the cage so as to project in the axial direction. The projections 23 and 24 are fitted in an elongated circumferential slot 52 in the switching plate 50 shown in
The two-way clutch 30 includes the cages 6 and 7 at four locations in the circumferential direction and the pair of cages 8 and 9 at two locations in the circumferential direction. The pair of cages 8 and 9 are arranged at locations in the circumferential direction where the cages are out of phases with each other by almost 180 degrees. Two sets of cages 6 and 7 are arranged between the pair of cages 8 and 9. Six rollers 3 are arranged in the circumferential direction. Of course, these numbers can be changed as required.
A plurality of cages are annularly provided and include the pair of cages 8 and 9, which engage with the switching plate 50, and the cages 6 and 7, which do not engage with the switching plate 50.
The operation of the two-way clutch 30 according to an embodiment of the present invention will be described below with reference to
[Clockwise (Forward Rotation-Wise) Engaged State]
As shown in
In the above-described state, as shown in
<Counterclockwise (Backward Rotation-Wise) Engaged State>
The counterclockwise engagement of the roller 3 is an operation exactly opposite to the clockwise rotation. As shown in
In the above-described state, as shown in
Of course, even while a rotation torque is being transmitted clockwise and while a rotation torque is being transmitted counterclockwise as shown in
<Neutral Position (Idle Running State of the Inner Wheel)>
When the lever 51 is switched to the neutral position, the switching plate 50 is kept in the neutral position shown in
In the neutral position, the roller 3 is sandwiched between the two circumferentially opposite cages and between the accordion springs 5. As shown in
Now, with reference to
In
Then, if the two-way clutch 30 transmits torque in the backward rotation direction, the operation is exactly opposite to that shown in
As described above, the pair of cages are differentially driven. One of the cages allows the accordion spring 5 to exert the bias force required for the engagement. The other cage avoids contacting the roller 3 and allowing the accordion spring 5 to apply a bias force.
To allow the roller 3 to be reliably held and disconnected from the outer circumferential surface of the inner wheel 2 in the neutral position, the cages 6 to 9 are shaped as shown in the figures. The end portions of all the cages located opposite the respective rollers 3 are shaped similarly to those in the configuration described below. Here, the cages 6 and 7 will be described with reference to
The cages 6 and 7 are open toward the roller 3 and include the recess portions 33 and 34, respectively. As described above, the accordion spring 5 is interposed in each of the recess portions 33 and 34. The cage 6 includes the inner diameter flange 43 extending in the circumferential direction and the outer diameter flange 44 extending in the circumferential direction and having a smaller circumferential length than the inner diameter flange 43. The cage 7 includes the inner diameter flange 45 extending in the circumferential direction and the outer diameter flange 46 extending in the circumferential direction and having a smaller circumferential length than the inner diameter flange 45. The recess portion 33 is defined between the inner diameter flange 43 and the outer diameter flange 44. The recess portion 34 is defined between the inner diameter flange 45 and the outer diameter flange 46.
As shown in
The edges of the inner and outer diameter flanges which are capable of contacting the roller 3 are chamfered so as to have a curvature similar to that of the roller 3 so that the shape of the edges is complementary to that of the roller 3. A force equal to or stronger than the bias force of the accordion spring 5 is required to allow the roller 3 located in the neutral position to slip out of the recess 42 in the outer wheel 1. When the force is smaller than the bias force of the accordion spring 5, the roller 3 itself acts autonomously to return to the neutral position.
As described above, as shown in
The present invention uses the pair of cages to control the movement in the two directions. Specifically, the lever 51 projecting from the switching plate 50 is used to control the movement in the two directions. Operating and placing the lever 51 in the one desired direction allows the protruding portion of one of the cages to move to the end portion of the movement limiting recess portion. When the protruding portion comes into abutting contact with the end portion, the movement of the other cage is limited by the slot 52 in the switching plate 50. The other cage moves in the direction in which the accordion spring fitted in the cage contracts.
In the neutral position, the roller 3 is held by the accordion springs in both cages. When the lever 51 is pivotally moved to move the cages, the accordion spring 5 in one of the cages stops biasing the roller. Thus, the accordion spring 5 in the other cage moves and brings the roller 3 into the engaged state.
The present invention can be used for general power transmission mechanisms. However, the present invention is applicable to a power transmission mechanism for a hybrid car including a combination of engine driving and electric motor driving. The present invention is also applicable to a system configured to start an air conditioner simply by actuating an electric motor without driving an engine.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2009-267393, filed Nov. 25, 2009, and Japanese Patent Application No. 2010-235529, filed Oct. 20, 2010, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2009-267393 | Nov 2009 | JP | national |
2010-235529 | Oct 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1421994 | Rohrer | Jul 1922 | A |
2104320 | Fischer | Jan 1938 | A |
3476226 | Massey | Nov 1969 | A |
20020125095 | Ochab et al. | Sep 2002 | A1 |
Number | Date | Country |
---|---|---|
5-302632 | Nov 1993 | JP |
6-344796 | Dec 1994 | JP |
10-53044 | Feb 1998 | JP |
2002-5200 | Jan 2002 | JP |
Entry |
---|
Office Action issued Aug. 2, 2012 in Chinese Patent Application No. 201010563268.8. |
Number | Date | Country | |
---|---|---|---|
20110127134 A1 | Jun 2011 | US |