The present invention relates to diffractive devices, and methods for their inspection and manufacture. The invention may be applied in securing bank notes and the like against counterfeiting. It will also be appreciated that the invention may be applied in other contexts.
Diffractive Optical Elements (DOEs): As used herein, the term diffractive optical element refers to a numerical-type diffractive optical element (DOE). Numerical-type diffractive optical elements (DOEs) rely on the mapping of complex data that reconstruct in the far field (or reconstruction plane) a two-dimensional intensity pattern. Thus, when substantially collimated light, e.g. from a point light source or a laser, is incident upon the DOE, an interference pattern is generated that produces a projected image in the reconstruction plane that is visible when a suitable viewing surface is located in the reconstruction plane, or when the DOE is viewed in transmission at the reconstruction plane. The transformation between the two planes can be approximated by a Fast Fourier Transform (FFT). Thus, complex data including amplitude and phase information has to be physically encoded in the micro-structure of the DOE. This DOE data can be calculated by performing an inverse FFT transformation of the desired reconstruction (i.e. the desired intensity pattern in the far field).
DOEs are sometimes referred to as computer-generated holograms, but they differ from other types of holograms, such as rainbow holograms, Fresnel holograms and volume reflection holograms.
Security document: As used herein, the term security document includes all types of documents and tokens of value and identification documents including, but not limited to the following: items of currency such as banknotes and coins, credit cards, cheques, passports, identity cards, securities and share certificates, driver's licences, deeds of title, travel documents such as airline and train tickets, entrance cards and tickets, birth, death and marriage certificates, and academic transcripts.
Transparent Windows and Half Windows: As used herein the term window refers to a transparent or translucent area in the security document compared to the substantially opaque region to which printing is applied. The window may be fully transparent so that it allows the transmission of light substantially unaffected, or it may be partly transparent or translucent partially allowing the transmission of light but without allowing objects to be seen clearly through the window area.
A window area may be formed in a polymeric security document which has at least one layer of transparent polymeric material and one or more opacifying layers applied to at least one side of a transparent polymeric substrate, by omitting at least one opacifying layer in the region forming the window area. If opacifying layers are applied to both sides of a transparent substrate a fully transparent window may be formed by omitting the opacifying layers on both sides of the transparent substrate in the window area.
A partly transparent or translucent area, hereinafter referred to as a “half-window”, may be formed in a polymeric security document which has opacifying layers on both sides by omitting the opacifying layers on one side only of the security document in the window area so that the “half-window” is not fully transparent, but allows some light to pass through without allowing objects to be viewed clearly through the half-window.
Alternatively, it is possible for the substrates to be formed from a substantially opaque material, such as paper or fibrous material, with an insert of transparent plastics material inserted into a cut-out, or recess in the paper or fibrous substrate to form a transparent window or a translucent half-window area.
Opacifying layers: One or more opacifying layers may be applied to a transparent substrate to increase the opacity of the security document. An opacifying layer is such that LT<Lo, where Lo is the amount of light incident on the document, and LT is the amount of light transmitted through the document. An opacifying layer may comprise any one or more of a variety of opacifying coatings. For example, the opacifying coatings may comprise a pigment, such as titanium dioxide, dispersed within a binder or carrier of heat-activated cross-linkable polymeric material. Alternatively, a substrate of transparent plastic material could be sandwiched between opacifying layers of paper or other partially or substantially opaque material to which indicia may be subsequently printed or otherwise applied.
The use of diffractive optical elements (DOEs) in various settings to produce a desired output beam from a monochromatic or polychromatic source is known. For example, DOEs are used as beam-shaping or power redistribution elements for lasers.
It is also known to use DOEs as security features in security documents, for example in polymer banknotes issued in Brunei and Vietnam and marketed under the trade mark WinDOE. Typically, such security features are verified by illuminating the DOE with a point source or a pseudo-point source of polychromatic or monochromatic light. The reconstructed beam is observed in reflection or transmission as a simple image such as a character or set of numerals.
Whilst DOEs in security documents have been successful as security features, it has to date only been possible to produce DOE's which project monochromatic images, or chromatically aberrated polychromatic images in which the colours are separated due to the angular separation between diffraction orders for a given wavelength.
It would be desirable, in view of the above, to provide a diffractive device capable of producing more sophisticated coloured imagery.
According to a first aspect of the invention there is provided a method of viewing or authenticating a diffractive device including a first diffractive relief structure responsive to a first wavelength of visible monochromatic light, a second diffractive relief structure at least partially interlaced with the first diffractive relief structure and responsive to a second wavelength of visible monochromatic light, and a third diffractive relief structure at least partially interlaced with the first and second diffractive relief structures and responsive to a third wavelength of visible monochromatic light, wherein the method includes the steps of:
illuminating the diffractive device with a first beam of visible monochromatic light of the first wavelength to produce a first partial image of a first colour in a reconstruction plane,
illuminating the diffractive device with a second beam of visible monochromatic light of the second wavelength to produce a second partial image of a second colour in the reconstruction plane, and
illuminating the diffractive device with a third beam of monochromatic light of the third wavelength to produce a third partial image of a third colour in a reconstruction plane,
whereby the first, second and third partial images at least partially overlap in the reconstruction plane to form a multicoloured image.
Preferably, the method includes comparing the multicoloured image to a reference image to authenticate the diffractive device.
In the method above the illumination steps may be performed substantially simultaneously, but are preferably performed in sequence, and more preferably in a cyclical manner. The frequency of the cyclical illumination is preferably such that the three colours of the partially overlapping partial images produce the effect of a multicoloured image through eye residual image retention when viewed directly by the human eye, even though each illumination by a single wavelength produces only a single colour in the reconstruction plane. The illuminations are preferably performed at a frequency which is greater than the image retention time of the human vision system. The frequency is preferably at least 12 Hz, and more preferably about 24 Hz. The first, second and third colours of the partial images may correspond to three colours of a multi-coloured input image. Preferably, the three colours are primary or secondary colours. The multicoloured image may be formed by additive colours or the colours may be projected such that they fall in a separate projection space to create the range of colours in the multicoloured image by half toning.
According to another aspect of the invention, there is provided a diffractive security device, including a transparent substrate,
a first diffractive relief structure provided in or on the transparent substrate and responsive to a first wavelength of visible light,
a second diffractive relief structure at least partially interlaced with the first relief structure in or on the transparent substrate and responsive to a second wavelength of visible light,
a third diffractive relief structure at least partially interlaced with the first and second relief structures in or on the transparent substrate and responsive to a third wavelength of visible light,
wherein, under illumination, the first diffractive relief structure produces a first partial image of a first colour in a reconstruction plane, the second diffractive relief structure produces a second partial image of a second colour in the reconstruction plane and the third diffractive relief structure produces a third partial image of a third colour in the reconstruction plane,
and the first, second and third partial images at least partially overlap in the reconstruction plane to form a multicoloured image.
Preferably, each of the first, second and third diffractive relief structures is a numerical-type diffractive optical element (DOE).
Preferably, the first, second and third diffractive relief structures are responsive to wavelengths of primary or secondary colours.
The first, second and third relief structures of the diffractive security device may be modulated to produce variations in intensity in the reconstruction plane which correspond to variations in brightness levels of a tonal coloured input image. This may be achieved by modulating the heights or depths of the first, second and third relief structures to produce the variations in intensity.
The diffractive security device may include further relief structures responsive to the first, second and third wavelengths, the further relief structures producing further partial images in at least one additional reconstruction plane, the further partial images at least partially overlapping to produce a further multicoloured image in the at least one additional reconstruction plane. Each relief structure may be designed such that more than 50% of the intensity distribution of light diffracted from the relief structure resides in the first positive diffractive order.
In a particularly preferred embodiment, each relief structure includes a plurality of diffractive segments, the diffractive segments being interlaced with diffractive segments of the other relief structures. Preferably, the largest dimension of each segment is less than 20 microns (μm). Each segment preferably corresponds to a pixel or a group of pixels from a multicoloured input image.
According to a further aspect of the invention there is provided a security device including a diffractive structure as described in the above embodiments.
The security device may be a transmissive security device adapted to be viewed in transmission.
In other embodiments, the security device may include a reflective layer of a metallic or high-refractive index material or the reflective layer may be applied to the relief structure to produce a substantially planar surface.
Other aspects of the invention are directed to a security document, such as a banknote including the security devices, as described above. Preferably, the security device is applied on or in a window or half-window region of the security document.
According to a further aspect of the invention, there is provided apparatus for viewing or authenticating a diffractive device including a first diffractive relief structure responsive to a first wavelength of visible monochromatic light, a second diffractive relief structure at least partially interlaced with the first relief structure and responsive to a second wavelength of visible monochromatic light and a third diffractive relief structure responsive to a third wavelength of visible monochromatic light and at least partially interlaced with the first and second diffractive relief structures, wherein the apparatus includes illumination means for producing three separate beams of visible monochromatic light of the first, second and third wavelengths,
wherein the first beam of visible monochromatic light of the first wavelength is directed onto the diffractive device to produce a first partial image of a first colour in a reconstruction plane, the second beam of visible monochromatic light of the second wavelength is directed onto the diffractive device to produce a second partial image of a second colour in a reconstruction plane, and a third beam of visible monochromatic light of the third wavelength is directed onto the diffractive device to produce a third partial image of a third colour in a reconstruction plane,
whereby the first, second and third partial images at least partially overlap in the reconstruction plane to form a multicoloured image.
Preferably, the apparatus includes comparison means for comparing the multicoloured image to a reference image to authenticate the diffractive device.
Preferably, the first, second and third colours of the partial images correspond to three colours of a multicoloured input image. The three colours are preferably primary colours, such as red, green and blue, but may be secondary colours, such as cyan, magenta and yellow. The complete multicoloured image may be formed by additive colours. Alternatively, the colours may also be projected such that they fall in a separate projection space to create the range of colours in the multicoloured image by half toning.
Preferably, the illumination means includes:
three different sources of visible monochromatic light of each of the first, second and third wavelengths; or a single source of polychromatic light and a plurality of optical filter elements arranged to produce three separate beams of monochromatic light of the first, second and third wavelengths when illuminated by the polychromatic light source.
When the diffractive device is a diffractive optical element or DOE as defined herein, each separate light source is preferably a point light source or a pseudo point light source, such as a light emitting diode (LED) or organic light emitting diode (OLED), although collimated light sources, such as lasers may also be used.
The apparatus may include switching means for switching between the first, second and third wavelengths, preferably in sequence or in a cyclical manner. When separate light sources of different colours are provided, the switching means may be arranged to switch the light sources on and off in sequence or cyclically.
In an alternative embodiment, the illumination means may comprise a polychromatic light source in combination with suitable optical filters for producing the first, second and third wavelengths. In this embodiment, the switching means may include a rotatable filter wheel.
The apparatus may further include a screen or detector positioned at or near the reconstruction plane.
Preferred embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which:
By way of example, a first group of diffractive segments or pixels 200 of the first diffractive relief structure 2 may be responsive to light of a red colour, a second group of diffractive segments of pixels 300 of the second diffractive structure 3 may be responsible to light of a green colour, and the third group of diffractive segments or pixels 400 of the third diffractive relief structure 4 may be responsive to the light of a blue colour.
The diffractive segments or pixels 200, 300, 400 of the first, second and third diffractive relief structures 2, 3 and 4 are at least partially interlaced. For example, as shown in
The third group of diffractive segments or pixels 400 (represented by diamonds in
Although the first and third groups of diffractive segments or pixels 200, 400 are not shown as interlaced in
The diffractive device 1 comprising the first, second and third diffractive relief structures 2, 3 and 4 is preferably a numerical-type diffractive optical element or DOE as defined herein. Such a DOE is arranged to generate an interference pattern that produces a projected image in a reconstruction plane when illuminated by a point light source (or pseudo point light source) or another source of substantially collimated light, such as a laser.
The optical effect produced when the diffractive device of
Further, because the groups 200, 300 and 400 of diffractive segments or pixels are at least partially interlaced, when they are illuminated substantially simultaneously, sequentially or cyclically with each of the three wavelengths of the three different colours, the three partial images generated by the different groups 200, 300 and 400 overlap to produce a multicoloured image in the reconstruction plane which is sharper and less blurred than the image produced by a polychromatic point light source and which does not suffer from severe chromatic aberration.
The diffractive segments or pixels 200, 300, 400 are conveniently substantially square in shape, although other shapes such as circles, triangles, hexagons and other polygons may be used. The minimum size of the pixels is preferably about 1 micron (μm) by 1 micron (μm). The maximum size of the pixels is preferably about 10 micron (μm) by 10 micron (μm). It is possible that the largest dimension of a pixel may exceed 10 micron (μm), and be as large as about 20 micron (μm), but larger dimensions than about 10 micron (μm) can result in less definition of the resulting multicoloured image when the diffractive device is illuminated.
Referring to
The apparatus for viewing the diffractive device 11 in
Alternatively, three different monochromatic light sources in the form of lasers of appropriate frequencies in the red, green and blue parts of the visible spectrum may be used instead of the LEDs 140, 150, 160.
The optical effect produced when the diffractive optical device 11 is illuminated by the illumination means 13 is shown schematically in the lower part of
The substantially collimated light 14 from the red light source 140 will be transformed by the groups of diffractive segments or pixels 200 of the first diffractive relief structure 20 responsive to red light into a first patterned beam 17 of red light. This produces a first partial image 170 in red in a reconstruction plane 100. Similarly, the groups of diffractive segments or pixels 300, 400 of the second and third diffractive relief structures 30, 40 responsive to green and blue light respectively, transform the beams 15, 16 of substantially collimated light from the green and blue light sources 150, 160 into second and third patterned beams 18, 19 of green and blue light respectively. These patterned beams produce second and third partial images 180, 190 in the reconstruction plane 100.
As a result of the interlaced arrangement of the first, second and third diffractive relief structures 20, 30 and 40 in the diffractive device 11, the first, second and third partial images 170, 180 and 190 overlap in the reconstruction plane to produce a multicoloured image 110.
In a particularly preferred embodiment, the illumination means 13 is provided with switching means for switching each of the red, green and blue light sources 140, 150 and 160 on and off. The switching means is preferably controlled by a controller in such a manner that the on/off switching of the light sources takes place sequentially or cyclically, more preferably at a predetermined frequency and phase shift. The frequency period at which the sequential or cyclic switching takes place is preferably selected so that it is shorter than the residual image retention period of the human eye. The predetermined frequency is preferably at least 12 Hz, more preferably 24 Hz or higher . When an observer views the projected image produced in the reconstruction plane 100, e.g. by placing his eye in the reconstruction plane 100 or by viewing a screen placed in the reconstruction plane 100, the observer sees a truly multicoloured image 110 rather than three separate coloured partial images. The multicoloured image 100 produced in this manner does not suffer severely from chromatic distortion and makes the image more recognisable to the observer, thereby improving its use in authenticating the security document. In some embodiments, the security document may have another version of the multicoloured image printed or otherwise provided at another location on the document to form a reference image for comparison with the virtual multicoloured image in the reconstruction plane. Alternatively, the reference image may be provided on a separate component.
The diffractive device or DOE 11 in
In use, the DOE 11 of
The three beams 14, 15 and 16 are directed at an angle onto the reflective layer 22 in the window area 12 at a position adjacent to the DOE 11 so that each beam 14, 15, 16 is reflected back off the reflective layer 22 onto the DOE 11. The beams 14, 15 and 16 of substantially collimated monochromatic light are transformed by the groups of diffractive segments or pixels 200, 300 and 400 of the first, second and third diffractive relief structures 20, 30 and 40 of the DOE 11 into patterned beams 17, 18 and 19 of different colours, e.g. red, green and blue respectively, in similar manner to the DOE 11 of
In a modified embodiment (not shown), the transmissive DOE 11 and reflective layer 22 in
As in the embodiment of
As illustrated schematically in
The filter wheel 45 is adapted to be rotated about its axis of rotation 48 by a drive motor 49 and drive train 50. In operation, as the filter wheel 45 rotates, each of the three coloured filters (46, 47) passes in front of the polychromatic light source 43 in turn to produce three monochromatic beams of light 51 of the three different colours, red, green and blue sequentially, each beam 51 being directed onto the diffractive device or DOE 11 in the window 12 of the security document.
In one embodiment, the size of each of the coloured filters 46, 47 is preferably small enough to simulate a point light source so that each beam 51 of monochromatic light is substantially collimated. This embodiment is particularly suitable for the case when the polychromatic light source is not a point light source and does not produce substantially collimated light, e.g. an incandescent light bulb or globe.
In another embodiment, the polychromatic light source 43 may be a point light source or pseudo point light source of white light, or other white light source which produces a substantially collimated beam of light directed onto the filter wheel 45. In this case, the size of the coloured filters is less important.
In operation, the embodiment of
The projected image 110 in the reconstruction plane 100 will therefore consist of successive partial images 170, 180, 190 in the three different colours created by the successive transmitted beams 17, 18, 19, but the frequency at which the partial images 170, 180, 190 change will produce the effect of a multicoloured image owing to the residual image retention of the human eye.
The diffractive device 11 or DOE in
A preferred method of manufacture of a diffractive device in accordance with the invention will now be described.
Original artwork in the form of a multicoloured input image corresponding to the required multicoloured output image produced by the final diffractive device is first of all broken down into red, green and blue (RGB) partial images from the original coloured image, using standard reprographic techniques used to create multicoloured tonal images in the printing industry.
For each of these three partial images, a Fourier transform is performed and used to construct a three dimensional phase structure for a diffractive optical element (DOE) corresponding to each partial image using known techniques (ref Digital Diffractive Optics, Author Bernard Kress and Patrick Meyrueis, Wiley, ISBN ref 0471984477).
A sequence of tiles is produced for each DOE, and these are interlaced with one another in a repeating pattern at a tile size larger than the spot size of the light source used to illuminate the structure.
These structures are then reproduced to create a master metallic shim in a manner commonly used in the production of surface relief diffractive structures such as holograms (Diffractive Optically Variable Devices (DOVD's)).
This master shim is then replicated in to a production shim by recombining it several times in positions on the shim relevant to the final desired position on the finished security document. Again this process is well documented and is known to those skilled in the art.
The diffractive structures are then replicated on the security document using an embossing process, such as hot embossing, or embossing into a UV curable ink.
In order to prevent these structures from being easily replicated then it is advisable that they be covered with a layer having a high enough refractive index so that the device can then be fully embedded in a covering polymer layer. This can be done in a two step process in which the high refractive layer is first applied and then a second, thicker layer is applied so as to totally embed the structures. Alternatively the same result can be achieved in one step by using an embedding process of applying a polymer layer with intrinsic high refractive index properties or a polymer metal oxide composite layer in the same manner.
Alternatively the shims can be used to create a hot stamping foil in which case the device is transferred as a result of a hot stamping process. In this instance the hot stamping foil structure is preferably covered with a high refractive index material as the image is to be viewed in transmission. A suitable material for this would be Zinc Sulphide, which may be applied by vacuum deposition. Alternatively, a coating having a high refractive index, for example based upon polymeric materials including nano-scale metal oxide particles or high refractive index polymers, may be applied.
The diffractive element or DOE 61 has a plurality of diffractive segments or pixels each responsive to light of a different wavelength as described above.
The verification element 62 in the second window has a plurality of optical filter segments 65, preferably three, each of which is arranged to produce light of a different wavelength when illuminated by a polychromatic light source 70.
The optical filter segments 65 may be colour filters, such as colour filters formed by printing different coloured inks on the verification window 62. Alternatively, they may be formed as interference filters or holographic filters.
It will be appreciated from the foregoing that the invention not only provides a new type of diffractive security device which can produce a multicoloured image that is difficult to counterfeit, but also a method and apparatus for viewing and inspecting the security device, and a method of manufacture that is difficult for the average counterfeiter to reproduce.
Number | Date | Country | Kind |
---|---|---|---|
2011101567 | Nov 2011 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2012/001455 | 11/28/2012 | WO | 00 | 5/27/2014 |