Embodiments of the present disclosure relate generally to ophthalmic lenses, such as intraocular lenses (IOLs), and particular embodiments provide methods, devices, and systems for mitigating or treating vision conditions such as presbyopia via ophthalmic lenses.
Embodiments herein described include an ophthalmic lens with a first surface and a second surface disposed about an optical axis, the lens being characterized by a depth of focus across a range of optical powers, i.e. an extended depth of focus (EDOF) that achieves an extended range of vision (ERV). A diffractive profile is imposed on one of the surfaces and configured to cause a distribution of non-negligible amounts of light among the depth of focus. The diffractive profile includes at least a central zone with at least one central diffractive echelette having a first phase delay, and a peripheral zone comprising at least one peripheral diffractive echelette having a second phase delay less than the first phase delay. In some embodiments, a third, intermediate zone may also be provided comprising at least one intermediate diffractive echelette having a third phase delay less than the first phase delay.
The central zone operates primarily in a higher diffractive order than the peripheral zone; and may also operate in a higher diffractive order than an optional intermediate zone. The incorporation of the central diffractive zone in the lens provides the combined diffractive profile (central zone+peripheral zone) with a longer depth of focus than that achieved by a diffractive profile defined just by the peripheral zone; and provides a longer depth of focus than a diffractive profile defined by the peripheral and an optional intermediate zone. The peripheral zone and/or optional intermediate zones may operate primarily in the first and/or second diffractive orders and distribute light to the far and intermediate ranges of viewing distances; while the central zone, which operates primarily in the second or third diffractive orders, distributes light primarily to the intermediate and/or near ranges of viewing distances. In combination, the combination of the central, peripheral, and optional intermediate diffractive zones provide light to an extended range of viewing distances. Embodiments also provide for high total light efficiency, in some cases capturing more than 90% of incident light in the complete range of vision. Embodiments also correct or partially correct for chromatic aberration in the range of vision.
In the following description, various embodiments will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the embodiments. However, it will also be apparent to one skilled in the art that the embodiments may be practiced without the specific details. Furthermore, well-known features may be omitted or simplified in order not to obscure the embodiment being described.
Embodiments herein disclosed relate to diffractive intraocular lenses for providing extended depth of focus to a patient (ERV lenses). According to some embodiments, an intraocular lens can include a diffractive profile having a central diffractive zone that works in a higher diffractive order than a remainder of the diffractive profile. Suitable diffractive lenses can have a light efficiency (i.e., total light passed to the diffractive orders as a percentage of incident light) of approximately 90%, distributed over a defocus range that covers at least three different diffractive orders within the visual range, and with at least a non-zero or non-negligible percentage of light distributed to each diffractive order. According to some embodiments, a diffractive lens can partially correct for ocular chromatic aberration. In alternative embodiments, the diffractive lens can fully correct or over-correct for ocular chromatic aberration.
Embodiments of lenses herein disclosed can be configured for placement in the eye of a patient and aligned with the cornea to augment and/or partially replace the function of the cornea. In some embodiments, corrective optics may be provided by phakic IOLs, which can be used to treat patients while leaving the natural lens in place. Phakic IOLs may be angle supported, iris supported, or sulcus supported. IOLs can be further secured with support members that attach the IOL to the eye, e.g., with physical extensions from the IOL into adjacent corneal or iris tissue. Phakic IOLs can also be placed over the natural crystalline lens or piggy-backed over another IOL. Exemplary ophthalmic lenses include contact lenses, phakic lenses, pseudophakic lenses, corneal inlays, and the like. It is also envisioned that the lens shapes disclosed herein may be applied to inlays, onlays, accommodating IOLs, spectacles, and even laser vision correction.
As used herein, non-zero may refer generally to a non-negligible or non-trivial amount of light, typically at least 10% of the total light passing through the lens for IOLs.
Embodiments disclosed herein can provide an extended depth of focus. In some embodiments, diffractive intraocular lenses herein can provide better distance, intermediate, and/or near image quality than presently available multifocal lenses while mitigating certain dysphotopsia effects, such as glare or halo.
Methods of manufacture for diffractive lenses as disclosed herein, as well as methods of treatment utilizing said diffractive lenses, may include techniques described in, e.g., U.S. Pat. No. 9,335,563, entitled “MULTI-RING LENS, SYSTEMS AND METHODS FOR EXTENDED DEPTH OF FOCUS,” which is hereby incorporated by reference.
Diffractive lenses can make use of a material having a given refractive index and a surface curvature which provide a refractive power. Diffractive lenses have a diffractive profile which confers the lens with a diffractive power or power profile that may contribute to the base power of the lens. The diffractive profile is typically characterized by a number of diffractive zones. When used for ophthalmic lenses these diffractive zones are typically annular lens zones, or echelettes, spaced about the optical axis of the lens. Each echelette may be defined by an optical zone, a transition zone between the optical zone and an optical zone of an adjacent echelette, and echelette geometry. The echelette geometry includes an inner and outer diameter and a shape or slope of the optical zone, a height or step height, and a shape of the transition zone. The surface area or diameter of the echelettes largely determines the diffractive power profile of the lens and the step height of the transition between echelettes largely determines the light distribution within the diffractive power profile. Together, these echelettes form a diffractive profile.
ERV intraocular lenses (IOLs) are intended to provide a patient with improved vision in a range of distances, covering near, intermediate and far vision. Near range of vision may generally correspond to vision provided when objects are at distances from about 33 up to 60 cm from a subject eye with the image substantially focused on the subject retina, and may correspond to a vergence of approximately −1.6 D to −3 D. Intermediate range of vision may generally correspond to vision for objects at a distance between 63 cm up to 1.3 m from a subject eye with the image substantially focused on the subject retina, and may correspond to a vergence of approximately −1.6 D to −0.75 D. Far range of vision may generally correspond to vision for objects at any distance greater than about 1.3 m from a subject eye with the image substantially focused on the subject retina, and may correspond to a vergence of less than −0.75 D. In the case of an ERV lens, or a lens having an extended depth of focus, the diffractive profile can provide a plurality of focal lengths that overlap across a range of optical powers to provide good visual acuity throughout the extended depth of focus.
A traditional multifocal diffractive profile on a lens may be used to mitigate presbyopia by providing two or more optical powers, for example, one for near vision and one for far vision. The diffractive lenses disclosed herein provide an extended depth of focus across a range of optical powers. The concepts disclosed here apply to both ERV lenses and multifocal lenses. The lenses may also take the form of an intraocular lens placed within the capsular bag of the eye, replacing the original lens, or placed in front of the natural crystalline lens. The lenses may be in the form of a contact lens, most commonly a contact lens that extends the depth of focus, or in any other form mentioned herein.
In some embodiments, a diffractive profile can include multiple diffractive zones, e.g., a central zone that includes one or more echelettes, and a peripheral zone beyond the central zone having one or more peripheral echelettes. In some specific embodiments, an intermediate diffractive zone between the central and peripheral zones may be added to the diffractive profile. Each diffractive zone may include some form of apodization. In this context, apodization means that the light distribution gradually varies between adjacent echelettes, but light remains directed to the same non-negligible diffractive orders for all echelettes within the zone. In some specific embodiments, a refractive zone may be added to a lens surface outside of the peripheral diffractive zone. In some other embodiments one or more of the diffractive zones comprise apodized diffractive surfaces. The diffractive properties of each component echelette of a diffractive zone or diffractive profile are caused by the physical parameters of the component echelettes, e.g. step height, shape, and width. A single echelette can be characterized by its phase delay, a phase delay of a zone can be characterized by the individual phase delays of its component echelettes, and a phase delay of a lens profile can be characterized by the phase delays of the echelettes and/or zones within the profile.
The diffractive lens profile 100 shown in
The diffractive profile partially corrects chromatic aberration induced by the ocular media and/or the lens material in the range of vision provided by the lens. The distributions of light obtained by the components of the example lens 100, and by the total lens, are shown below in Table 2. Table 2 refers the light distribution at the far visual range (i.e. by the first diffractive order) as well as to the light distribution within the complete visual range provided by the diffractive profile (i.e. distance and extended depth of focus). This complete visual range is herein defined as the combination of the first, second and third diffractive orders. In alternative embodiments, the visual range can also include the light distribution for the fourth diffractive order.
By way of comparison, a bifocal lens typically has a light loss of less than 20% of incident light (e.g., in some cases, of about 18% of incident light). Thus, the example ERV diffractive lens profile 100, which has a light loss of only about 8%, loses less than half as much light as a standard multifocal lens. Furthermore, a typical multifocal bifocal profile with a 50:50 light distribution between distance and near provides with 40% of light for distance vision. The example at Table 2 provides a 20% more light for far, with having a total of 60% light directed to distance.
In alternative embodiments, a lens may have a central diffractive zone defined by multiple diffractive echelettes rather than a single diffractive echelette.
In some (general) embodiments, the phase delay in the central echelette can be larger than 2λ and smaller than 4λ. In specific embodiments, phase delay can range from about 2.3λ up to 3.5λ, or from 2.45λ to 3.2λ, or from 2.5λ to 2.95λ. The number of echelettes is determined based on the desired geometry of each echelette and the available radius. The number of echelettes may vary from as few as 8 to up to 32 in some specific embodiments within a lens diameter of 6 mm. In specific embodiments, the first echelette may be positioned with an echelette boundary between 0.5 and 0.9 mm from a center of the lens, with a remainder of the echelettes placed according the position of the first echelette multiplied by the square root of the echelette number. In some embodiments, the phase delay of the peripheral echelettes can range from 1λ and can be smaller than 2λ. In specific embodiments, phase delay can range from about 1λ up to 1.5λ, or from 1.2λ to 1.5λ, or from 1.336λ to 1.5λ.
Various peripheral diffractive zone profiles may be combined with an elevated central profile to achieve different specific lens prescriptions. For example, various alternative embodiments of peripheral diffractive lens profiles are shown below in Table 3.
These peripheral zones can be combined with a central zone like described in Table 1. Therefore, the step height of the central zone is constant across the examples; and the step heights and phase delays of the diffractive echelettes in the peripheral zone are modified. In each example, the peripheral echelettes have the same step heights across the zone, which vary between 4.1 and 5.6 microns. The position of the echelettes in each peripheral diffractive profile is determined in the same way for each example combination (i.e. the position of one particular echelette is that of the central multiplied by the square root of the echelette number).
In some embodiments, the step heights in the central zone can be modified as well. For example, Table 4, below, illustrates alternative embodiments having different step heights in the central zone.
The central zone is working between the 2nd and 3rd diffractive order for the example Central 1. The central zone is working between the 3rd and 4th diffractive order for the example Central 3. The same peripheral zone 3 as described in the previous example can be combined with other central zones. Within the same peripheral zone, all echelettes have the same step height. The light distributions resulting from the above-referenced combinations of profiles are shown below in Table 5 for the far visual range (i.e. first diffractive order) as well as for two different visual ranges. Visual Range 1 contains the light distribution for the first, second and third diffractive order, while Visual Range 2 contains the light distribution for the diffractive orders at Visual Range 1 as well as the fourth diffractive order:
Varying the central zone parameters can adjust the amount of light distributed between the intermediate and near range. For combinations that have a central zone working between the third and fourth diffractive order (i.e. combinations with Central 3), there is an additional, non-trivial amount of light (i.e. greater than 10% of incoming light) distributed to an additional diffraction order to further extend the range of vision. The total light efficiency in distance, intermediate and near is 91%, which is greater than the typical light efficiencies of multifocal IOLs.
Table 7 shows the light distribution calculated for 3 mm and 5 mm pupil for the diffractive profile at Table 6 and for a sibling diffractive profile that does not incorporate the intermediate zone. Therefore, this sibling profile has also 8 echelettes, being the central the same as in Table 6 and the remaining 7 echelettes according to the description for the peripheral zone provided in Table 6. Light distribution is shown at Table 7 for distance as well as for the range of vision provided by the lens (i.e. distance and extended depth of focus). Table 7 shows that, for a 3 mm pupil, there is a 58% of light directed to distance when the intermediate zone is included in the diffractive profile, while there is a 44% of light for far without this zone. For a 5 mm pupil the light distribution at distance are 61% and 51% for the profiles with and without the intermediate zone. Therefore, the incorporation of the intermediate zone 605 (
According to various embodiments, the phase delay in the central echelette can be larger than 2λ and smaller than 4λ. In specific embodiments, phase delay can range from about 2.3λ up to 3.5λ, or from 2.45λ to 3.2λ, or from 2.5λ to 2.95λ. The number of echelettes can be determined based on the desired geometry of each echelette and the available radius. In some specific embodiments, the number of echelettes may vary from as few as 8 to up to 32. The first echelette may be positioned with an echelette boundary between 0.5 and 0.9 mm from a center of the lens, with a remainder of the echelettes placed according the position of the first echelette multiplied by the square root of the echelette number. In some embodiments, the phase delay of the peripheral echelettes can range from 1λ and can be smaller than 2λ. In specific embodiments, phase delay can range from about 1λ up to 1.5λ, or from 1.2λ to 1.5λ, or from 1.336λ to 1.5λ. In some embodiments, the phase delay of the echelettes in the intermediate zone can be smaller than that of the echelettes at the peripheral zone by 0.05λ up to 0.5λ, or by 0.10λ to 0.25λ. In alternative embodiments, the phase delay of the echelettes in the intermediate zone may vary. In alternative embodiments, the phase delay of the echelettes in the intermediate zone may be greater than that of the echelettes in the peripheral zone by 0.05λ up to 0.5λ, or by 0.05λ to 0.15λ.
Exemplary Light Distributions by Diffractive Order
Specific light distributions across the visual range of the extended depth of field can be calculated in part on the basis of the portion of light directed by each diffractive order in each respective diffractive zone. For example, Table 8, below, lists light distributions according to diffractive order for a specific embodiment of a diffractive ERV lens similar to the lens of
Table 9, below, lists light distributions according to diffractive order for a specific embodiment of a diffractive ERV lens similar to the lenses described in Table 3, i.e. having the same central zone and different peripheral diffractive zones, where the central diffractive zone operates predominantly in a higher order than the remaining echelettes. As shown, a majority of light that passes through the central diffractive zone is directed according to the second and third diffractive orders. For the peripheral1 diffractive profile, the majority of light is directed according to the first diffractive order. For the peripheral3 diffractive profile, the majority of light is directed according to the first and second diffractive orders. Total light distributions for the combined lens profiles are also shown. In both cases, there is a non-negligible amount of light directed to the first, second and third diffractive orders. The light distribution for distance is greater than for the combination with peripheral 1 than for the combination with peripheral 3. However, the light distribution at the second diffractive order is greater for the combination with the peripheral3 profile. That results in a better intermediate performance for this combination, as shown in
Table 10, below, lists light distributions according to diffractive order for a specific embodiment of a diffractive ERV lens similar to the lenses described in Table 4, i.e. having the same peripheral and different peripheral central zones, where the central diffractive zones operates predominantly in a higher order than the remaining echelettes. As shown for central 1, a majority of light that passes through any of the central diffractive zone is directed according to the second and third diffractive orders. However, for central 3, a majority of light that passes through any of the central diffractive zone is directed according to the third and fourth diffractive orders. For the peripheral diffractive profile, the majority of light is directed according to the first and second diffractive orders. Total light distributions for the combined lens profiles are also shown. For the combination with central 1, there is a non-negligible amount of light directed to the first, second and third diffractive orders. For the combination with central 3, there is a non-negligible amount of light directed to the first, second, third and fourth diffractive orders. That results in longer depth of focus for this combination, as shown in
Table 11, below, lists light distributions according to diffractive order for a specific embodiment of a diffractive ERV lens similar to the lens of
According to various embodiments, between 43% and 68% of light may be directed to the 1st diffractive order, which provides the distance visual range, between 14% and 29%, may be directed to the second diffractive order and between 14% and 26% may be directed to the third diffractive order, which creates the extended depth of focus. It is further envisioned that for creating useful vision in the intermediate and/or near distances, a non-negligible amount of light of at least 10% should be directed to the second and third diffractive order. Considering the total light loss being at least 4%, the maximum amount of light in the 1st order in this case would be 75%. In order to create maximum visual quality in the intermediate and/or near range without detrimental effect on distance vision, a maximum amount of light of 30% may be directed to the second and/or third diffractive order. As a result, the minimum amount for the first diffractive order would be 40%. Thus, the range for the first diffractive order may be between 40% and 75%, and the ranges for the second and third diffractive orders may be between 10% and 30%.
Systems and Methods for Determining the Diffractive Power Profile:
The system 800 includes a user input module 802 configured to receive user input defining aspects of an intraocular lens. Inputs to design an intraocular lens may include a patient's visual needs, corneal aberrations (or corneal topography, from which corneal aberrations can be retrieved), a pupil size performance, and lens dimensions, among other attributes. A simulated optical or visual performance can be calculated from patient's visual needs that represent the desired visual performance of the patient after the surgery. In some cases, a desired optical performance may relate to a patient's lifestyle, e.g., whether the patient prefers to participate in activities requiring predominantly distance vision, intermediate vision, or near vision without additional visual correction. The power profile prescription can be calculated from the simulated performance including, for example, a preferred optical power or optical power profile for correcting far vision and expected depth of focus. The corneal aberrations (or corneal wave front aberrations) can include the higher order rotationally symmetrical aberrations of the cornea as a function of the pupil size. A pupil size performance can include a pupil diameter of a patient under different lighting conditions. These parameters can also be related to patient's life style or profession, so that the design incorporates patient's visual needs as a function of the pupil size. In some cases, parameters such as lens asphericity can be determined based on a function of the wave front aberrations and visual needs of the patient. Lens dimensions can include a preferred radius of the total lens, and may further include preferred thickness, or a preferred curvature of one or the other of the anterior surface and posterior surface of the lens, as well as the optional incorporation of toricity in any of the IOL surfaces.
A diffractive profile modeling module 804 can receive information about the desired lens from the user input module 802, and can determine aspects of the diffractive profile. For example, the diffractive profile modeling module 804 can determine the position and heights of the echelette of the central zone. It can also determine the position, number and height of the echelettes in peripheral zones required to fulfill the performance determined from patient's visual needs. The module can determine the need of including an intermediate zone, as well as the structural characteristics of the zone (number and heights of the echelettes). The base curvature of the profile can be related to the biometry of the patient. The asphericity can also be related to that of the patient's cornea, so that it either compensates patient's corneal spherical aberration or induces a certain amount of spherical aberration to help improving intermediate and near performance in mesopic conditions.
The diffractive profile modeling module 804 can be configured to generate performance criteria 812, e.g. via modeling optical properties in a virtual environment. Performance criteria can include the match of the expected performance derived from patient's visual needs to that of the actual diffractive profile that results from 804. In some cases, the diffractive profile modeling module 804 can provide an intraocular lens surface to an intraocular lens fabrication module 808 for facilitating the production of a physical lens, which can be tested via an intraocular lens testing module 810 for empirically determining the performance criteria 812, so as to identify optical aberrations and imperfections not readily discerned via virtual modeling, and to permit iteration.
The process 900 includes receiving an input indicative of a patient's visual needs (act 902). The input can include, e.g., a desired optical power profile for correcting impaired distance vision, a desired optical power profile for correcting impaired intermediate vision, a desired optical power profile for accommodating near vision, and any suitable combination of the above. Next, a diffractive ERV lens profile can be defined according to the visual needs determined above (act 904). In some cases, the diffractive profile may be defined for providing an extended depth of focus by, e.g., defining a central diffractive zone including one more echelettes configured to operate primarily in the second and/or third and/or fourth diffractive orders, where the central diffractive zone is operable to direct incident light to a range of distances to further enlarge the depth of focus of the diffractive profile. The diffractive profile may be further defined to include a peripheral diffractive zone configured to operate primarily in a first and/or second diffractive order, or a lower diffractive order than the central diffractive zone, that is operable to direct light to a range of distances corresponding to the intermediate and/or far visual range. A diffractive lens surface can then be generated based on the diffractive profile (act 906). The system can then generate instructions to fabricate an intraocular lens based on the generated diffractive lens surface (act 908).
User interface input devices 1062 may include a keyboard, pointing devices such as a mouse, trackball, touch pad, or graphics tablet, a scanner, foot pedals, a joystick, a touchscreen incorporated into the display, audio input devices such as voice recognition systems, microphones, and other types of input devices. The input devices 1062 may also include one or more biometric input devices capable of measuring a patient's biometric inputs required to generate the diffractive lens surface. For example, input devices 1062 can include a biometer capable of measuring axial length, corneal power, corneal aberrations, preoperative anterior chamber depth, lens thickness, and/or pupil size for a patient under different lighting conditions. These variables are nonlimiting and are mentioned herein by way of example. User input devices 1062 will often be used to download a computer executable code from a tangible storage media embodying any of the methods of the present invention. In general, use of the term “input device” is intended to include a variety of conventional and proprietary devices and ways to input information into computer system 1022.
User interface output devices 1064 may include a display subsystem, a printer, a fax machine, or non-visual displays such as audio output devices. The display subsystem may be a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), a projection device, or the like. The display subsystem may also provide a non-visual display such as via audio output devices. In general, use of the term “output device” is intended to include a variety of conventional and proprietary devices and ways to output information from computer system 1022 to a user.
Storage subsystem 1056 can store the basic programming and data constructs that provide the functionality of the various embodiments of the present invention. For example, a database and modules implementing the functionality of the methods of the present invention, as described herein, may be stored in storage subsystem 1056. These software modules are generally executed by processor 1052. In a distributed environment, the software modules may be stored on a plurality of computer systems and executed by processors of the plurality of computer systems. Storage subsystem 1056 typically comprises memory subsystem 1058 and file storage subsystem 1060. Memory subsystem 1058 typically includes a number of memories including a main random access memory (RAM) 1070 for storage of instructions and data during program execution.
Various computational methods discussed above, e.g. with respect to generating a diffractive lens surface, may be performed in conjunction with or using a computer or other processor having hardware, software, and/or firmware. The various method steps may be performed by modules, and the modules may comprise any of a wide variety of digital and/or analog data processing hardware and/or software arranged to perform the method steps described herein. The modules optionally comprising data processing hardware adapted to perform one or more of these steps by having appropriate machine programming code associated therewith, the modules for two or more steps (or portions of two or more steps) being integrated into a single processor board or separated into different processor boards in any of a wide variety of integrated and/or distributed processing architectures. These methods and systems will often employ a tangible media embodying machine-readable code with instructions for performing the method steps described above. Suitable tangible media may comprise a memory (including a volatile memory and/or a non-volatile memory), a storage media (such as a magnetic recording on a floppy disk, a hard disk, a tape, or the like; on an optical memory such as a CD, a CD-R/W, a CD-ROM, a DVD, or the like; or any other digital or analog storage media), or the like.
The particulars shown herein are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of various embodiments of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for the fundamental understanding of the invention, the description taken with the drawings and/or examples making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
The following definitions and explanations are meant and intended to be controlling in any future construction unless clearly and unambiguously modified in the following examples or when application of the meaning renders any construction meaningless or essentially meaningless. In cases where the construction of the term would render it meaningless or essentially meaningless, the definition should be taken from Webster's Dictionary, 3rd Edition or a dictionary known to those of skill in the art, such as the Oxford Dictionary of Biochemistry and Molecular Biology (Ed. Anthony Smith, Oxford University Press, Oxford, 2004).
As used herein and unless otherwise indicated, the terms “a” and “an” are taken to mean “one”, “at least one” or “one or more”. Unless otherwise required by context, singular terms used herein shall include pluralities and plural terms shall include the singular.
Unless the context clearly requires otherwise, throughout the description and the claims, the words ‘comprise’, ‘comprising’, and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense, that is to say, in the sense of “including, but not limited to”. Words using the singular or plural number also include the plural and singular number, respectively. Additionally, the words “herein,” “above,” and “below” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of the application.
The description of embodiments of the disclosure is not intended to be exhaustive or to limit the disclosure to the precise form disclosed. While the specific embodiments of, and examples for, the disclosure are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize.
All references, including patent filings (including patents, patent applications, and patent publications), scientific journals, books, treatises, technical references, and other publications and materials discussed in this application, are incorporated herein by reference in their entirety for all purposes.
Aspects of the disclosure can be modified, if necessary, to employ the systems, functions, and concepts of the above references and application to provide yet further embodiments of the disclosure. These and other changes can be made to the disclosure in light of the detailed description.
Specific elements of any foregoing embodiments can be combined or substituted for elements in other embodiments. Furthermore, while advantages associated with certain embodiments of the disclosure have been described in the context of these embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the disclosure.
While the above provides a full and complete disclosure of exemplary embodiments of the present invention, various modifications, alternate constructions and equivalents may be employed as desired. Consequently, although the embodiments have been described in some detail, by way of example and for clarity of understanding, a variety of modifications, changes, and adaptations will be obvious to those of skill in the art. Accordingly, the above description and illustrations should not be construed as limiting the invention, which can be defined by the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 62/473,200, filed Mar. 17, 2017, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3367734 | Karl et al. | Feb 1968 | A |
3722986 | Tagnon | Mar 1973 | A |
4210391 | Cohen et al. | Jul 1980 | A |
4338005 | Cohen | Jul 1982 | A |
4340283 | Cohen et al. | Jul 1982 | A |
4460275 | Spriggs | Jul 1984 | A |
4504892 | Zulfilar | Mar 1985 | A |
4504982 | Burk | Mar 1985 | A |
4580883 | Shinohara | Apr 1986 | A |
4606626 | Shinohara | Aug 1986 | A |
4637697 | Freeman | Jan 1987 | A |
4640593 | Shinohara | Feb 1987 | A |
4641934 | Freeman | Feb 1987 | A |
4642112 | Freeman | Feb 1987 | A |
4655565 | Freeman | Apr 1987 | A |
4710193 | Volk | Dec 1987 | A |
4762408 | Shinohara | Aug 1988 | A |
4778462 | Grendahl | Oct 1988 | A |
4795462 | Grendahl | Jan 1989 | A |
4798608 | Grendahl | Jan 1989 | A |
4798609 | Grendahl | Jan 1989 | A |
4856234 | Goins | Aug 1989 | A |
4856889 | Guilino et al. | Aug 1989 | A |
4881804 | Cohen | Nov 1989 | A |
4881805 | Cohen | Nov 1989 | A |
4898461 | Portney | Feb 1990 | A |
4932970 | Portney | Jun 1990 | A |
4936666 | Futhey | Jun 1990 | A |
4957506 | Mercier | Sep 1990 | A |
4978211 | Cornu et al. | Dec 1990 | A |
4995714 | Cohen | Feb 1991 | A |
4995715 | Cohen | Feb 1991 | A |
5016977 | Baude et al. | May 1991 | A |
5017000 | Cohen | May 1991 | A |
5019098 | Mercier | May 1991 | A |
5050981 | Roffman | Sep 1991 | A |
5054905 | Cohen | Oct 1991 | A |
5056908 | Cohen | Oct 1991 | A |
5061058 | Guilino et al. | Oct 1991 | A |
5066301 | Wiley | Nov 1991 | A |
5076684 | Simpson et al. | Dec 1991 | A |
5089023 | Swanson | Feb 1992 | A |
5089024 | Christie et al. | Feb 1992 | A |
5096285 | Silberman | Mar 1992 | A |
5100226 | Freeman | Mar 1992 | A |
5104212 | Taboury et al. | Apr 1992 | A |
5112351 | Christie et al. | May 1992 | A |
5114220 | Baude et al. | May 1992 | A |
5116111 | Simpson et al. | May 1992 | A |
5117306 | Cohen | May 1992 | A |
5120120 | Cohen | Jun 1992 | A |
5121979 | Cohen | Jun 1992 | A |
5121980 | Cohen | Jun 1992 | A |
5129718 | Futhey et al. | Jul 1992 | A |
5144483 | Cohen | Sep 1992 | A |
5148205 | Guilino et al. | Sep 1992 | A |
5161057 | Johnson | Nov 1992 | A |
5173723 | Volk et al. | Dec 1992 | A |
5178636 | Silberman | Jan 1993 | A |
5191366 | Kashiwagi | Mar 1993 | A |
5220359 | Roffman | Jun 1993 | A |
5225858 | Portney | Jul 1993 | A |
5229797 | Futhey et al. | Jul 1993 | A |
5236970 | Christ et al. | Aug 1993 | A |
5257132 | Ceglio et al. | Oct 1993 | A |
5260727 | Oksman et al. | Nov 1993 | A |
5322649 | Rheinish et al. | Jun 1994 | A |
5344447 | Swanson | Sep 1994 | A |
5349394 | Freeman et al. | Sep 1994 | A |
5349471 | Morris et al. | Sep 1994 | A |
5381190 | Rehse et al. | Jan 1995 | A |
5384606 | Koch et al. | Jan 1995 | A |
5408281 | Zhang | Apr 1995 | A |
5443506 | Garabet | Aug 1995 | A |
5443507 | Jacobi | Aug 1995 | A |
5444106 | Zhou et al. | Aug 1995 | A |
5446508 | Kitchen | Aug 1995 | A |
5448312 | Roffman et al. | Sep 1995 | A |
5485228 | Roffman et al. | Jan 1996 | A |
5581405 | Meyers et al. | Dec 1996 | A |
5589982 | Faklis et al. | Dec 1996 | A |
5629800 | Hamblen | May 1997 | A |
5652638 | Roffman et al. | Jul 1997 | A |
5674284 | Chang et al. | Oct 1997 | A |
5682223 | Menezes et al. | Oct 1997 | A |
5683457 | Gupta et al. | Nov 1997 | A |
5684560 | Roffman et al. | Nov 1997 | A |
5684595 | Kato et al. | Nov 1997 | A |
5699142 | Lee et al. | Dec 1997 | A |
5715031 | Roffman et al. | Feb 1998 | A |
5715091 | Meyers | Feb 1998 | A |
5724258 | Roffman | Mar 1998 | A |
5728156 | Gupta et al. | Mar 1998 | A |
5748282 | Freeman | May 1998 | A |
5760871 | Kosoburd et al. | Jun 1998 | A |
5777719 | Williams et al. | Jul 1998 | A |
5796462 | Roffman et al. | Aug 1998 | A |
5800532 | Lieberman | Sep 1998 | A |
5805260 | Roffman et al. | Sep 1998 | A |
5822091 | Baker | Oct 1998 | A |
5838496 | Maruyama et al. | Nov 1998 | A |
5847802 | Menezes et al. | Dec 1998 | A |
5888122 | Gupta et al. | Mar 1999 | A |
5895422 | Hauber | Apr 1999 | A |
5895610 | Chang et al. | Apr 1999 | A |
5929969 | Roffman | Jul 1999 | A |
5968094 | Werblin et al. | Oct 1999 | A |
5968095 | Norrby | Oct 1999 | A |
5982543 | Fiala | Nov 1999 | A |
6007747 | Blake et al. | Dec 1999 | A |
6019472 | Koester et al. | Feb 2000 | A |
6050687 | Bille et al. | Apr 2000 | A |
6070980 | Obara et al. | Jun 2000 | A |
6082856 | Dunn et al. | Jul 2000 | A |
6086204 | Magnante | Jul 2000 | A |
6089711 | Blankenbecler et al. | Jul 2000 | A |
6095651 | Williams et al. | Aug 2000 | A |
6120148 | Fiala et al. | Sep 2000 | A |
6126283 | Wen et al. | Oct 2000 | A |
6126286 | Portney | Oct 2000 | A |
6139145 | Israel | Oct 2000 | A |
6142625 | Sawano et al. | Nov 2000 | A |
6145987 | Baude et al. | Nov 2000 | A |
6154323 | Kamo | Nov 2000 | A |
6199986 | Williams et al. | Mar 2001 | B1 |
6210005 | Portney | Apr 2001 | B1 |
6215096 | Von Wallfeld et al. | Apr 2001 | B1 |
6224211 | Gordon | May 2001 | B1 |
6231603 | Lang, I et al. | May 2001 | B1 |
6270220 | Keren | Aug 2001 | B1 |
6271915 | Frey et al. | Aug 2001 | B1 |
6325510 | Golub et al. | Dec 2001 | B1 |
6338559 | Williams et al. | Jan 2002 | B1 |
6353503 | Spitzer et al. | Mar 2002 | B1 |
6413276 | Werblin | Jul 2002 | B1 |
6429972 | Ota et al. | Aug 2002 | B1 |
6439720 | Graves et al. | Aug 2002 | B1 |
6457826 | Lett | Oct 2002 | B1 |
6462874 | Soskind | Oct 2002 | B1 |
6464355 | Gil | Oct 2002 | B1 |
6474814 | Griffin | Nov 2002 | B1 |
6488708 | Sarfarazi | Dec 2002 | B2 |
6491721 | Freeman et al. | Dec 2002 | B2 |
6497483 | Frey et al. | Dec 2002 | B2 |
6511180 | Guirao et al. | Jan 2003 | B2 |
6520638 | Roffman et al. | Feb 2003 | B1 |
6527389 | Portney | Mar 2003 | B2 |
6533416 | Fermigier et al. | Mar 2003 | B1 |
6536899 | Fiala | Mar 2003 | B1 |
6537317 | Steinert et al. | Mar 2003 | B1 |
6547391 | Ross, III et al. | Apr 2003 | B2 |
6547822 | Lang | Apr 2003 | B1 |
6554425 | Roffman et al. | Apr 2003 | B1 |
6554859 | Lang et al. | Apr 2003 | B1 |
6557992 | Dwyer et al. | May 2003 | B1 |
6576012 | Lang | Jun 2003 | B2 |
6582076 | Roffman et al. | Jun 2003 | B1 |
6585375 | Donitzky et al. | Jul 2003 | B2 |
6609673 | Johnson | Aug 2003 | B1 |
6609793 | Norrby et al. | Aug 2003 | B2 |
6616275 | Dick et al. | Sep 2003 | B1 |
6655802 | Zimmermann et al. | Dec 2003 | B2 |
6685315 | De | Feb 2004 | B1 |
6705729 | Piers et al. | Mar 2004 | B2 |
6709103 | Roffman et al. | Mar 2004 | B1 |
6755524 | Rubinstein et al. | Jun 2004 | B2 |
6791754 | Ogawa | Sep 2004 | B2 |
6802605 | Cox et al. | Oct 2004 | B2 |
6808262 | Chapoy et al. | Oct 2004 | B2 |
6818158 | Pham et al. | Nov 2004 | B2 |
6827444 | Williams et al. | Dec 2004 | B2 |
6830332 | Piers et al. | Dec 2004 | B2 |
6835204 | Stork et al. | Dec 2004 | B1 |
6846326 | Zadno-Azizi et al. | Jan 2005 | B2 |
6848790 | Dick et al. | Feb 2005 | B1 |
6851803 | Wooley et al. | Feb 2005 | B2 |
6884261 | Zadno-Azizi et al. | Apr 2005 | B2 |
6923539 | Simpson et al. | Aug 2005 | B2 |
6923540 | Ye et al. | Aug 2005 | B2 |
6951391 | Morris et al. | Oct 2005 | B2 |
6957891 | Fiala | Oct 2005 | B2 |
6972032 | Aharoni et al. | Dec 2005 | B2 |
6986578 | Jones | Jan 2006 | B2 |
7025456 | Morris et al. | Apr 2006 | B2 |
7036931 | Lindacher et al. | May 2006 | B2 |
7048759 | Bogaert et al. | May 2006 | B2 |
7048760 | Cumming | May 2006 | B2 |
7061693 | Zalevsky | Jun 2006 | B2 |
7073906 | Portney | Jul 2006 | B1 |
7093938 | Morris et al. | Aug 2006 | B2 |
7111938 | Andino et al. | Sep 2006 | B2 |
7137702 | Piers et al. | Nov 2006 | B2 |
7156516 | Morris et al. | Jan 2007 | B2 |
7159983 | Menezes et al. | Jan 2007 | B2 |
7188949 | Bandhauer et al. | Mar 2007 | B2 |
7198640 | Nguyen | Apr 2007 | B2 |
7217375 | Lai | May 2007 | B2 |
7221513 | Cho et al. | May 2007 | B2 |
7232218 | Morris et al. | Jun 2007 | B2 |
7287852 | Fiala | Oct 2007 | B2 |
7293873 | Dai et al. | Nov 2007 | B2 |
7365917 | Zalevsky | Apr 2008 | B2 |
7377640 | Piers et al. | May 2008 | B2 |
7377641 | Piers et al. | May 2008 | B2 |
7441894 | Zhang et al. | Oct 2008 | B2 |
7455404 | Bandhauer et al. | Nov 2008 | B2 |
7475986 | Dai et al. | Jan 2009 | B2 |
7481532 | Hong et al. | Jan 2009 | B2 |
7543937 | Piers et al. | Jun 2009 | B2 |
7572007 | Simpson | Aug 2009 | B2 |
7604350 | Dursteler et al. | Oct 2009 | B2 |
7615073 | Deacon et al. | Nov 2009 | B2 |
7654667 | Blum et al. | Feb 2010 | B2 |
7670371 | Piers et al. | Mar 2010 | B2 |
7677725 | Piers et al. | Mar 2010 | B2 |
7717558 | Hong et al. | May 2010 | B2 |
7753521 | Wooley et al. | Jul 2010 | B2 |
7871162 | Weeber | Jan 2011 | B2 |
7883207 | Iyer et al. | Feb 2011 | B2 |
7896916 | Piers et al. | Mar 2011 | B2 |
7922326 | Bandhauer et al. | Apr 2011 | B2 |
7984990 | Bandhauer et al. | Jul 2011 | B2 |
7998198 | Angelopoulos et al. | Aug 2011 | B2 |
8128222 | Portney | Mar 2012 | B2 |
8157374 | Bandhauer et al. | Apr 2012 | B2 |
8192022 | Zalevsky | Jun 2012 | B2 |
8197063 | Iyer et al. | Jun 2012 | B2 |
8216307 | Schaper, Jr. | Jul 2012 | B2 |
8231219 | Weeber | Jul 2012 | B2 |
8231673 | Sacharoff et al. | Jul 2012 | B2 |
8235525 | Lesage et al. | Aug 2012 | B2 |
8240850 | Apter et al. | Aug 2012 | B2 |
8262728 | Zhang et al. | Sep 2012 | B2 |
8292953 | Weeber et al. | Oct 2012 | B2 |
8382281 | Weeber | Feb 2013 | B2 |
8388137 | Dreher et al. | Mar 2013 | B2 |
8430508 | Weeber | Apr 2013 | B2 |
8444267 | Weeber et al. | May 2013 | B2 |
8480228 | Weeber | Jul 2013 | B2 |
8500805 | Kobayashi et al. | Aug 2013 | B2 |
8506075 | Bandhauer et al. | Aug 2013 | B2 |
8529623 | Piers et al. | Sep 2013 | B2 |
8556416 | Lawu | Oct 2013 | B2 |
8556417 | Das et al. | Oct 2013 | B2 |
8573775 | Weeber | Nov 2013 | B2 |
8619362 | Portney | Dec 2013 | B2 |
8636796 | Houbrechts et al. | Jan 2014 | B2 |
8652205 | Hong et al. | Feb 2014 | B2 |
8678583 | Cohen | Mar 2014 | B2 |
8709079 | Zhang et al. | Apr 2014 | B2 |
8734511 | Weeber et al. | May 2014 | B2 |
8740978 | Weeber et al. | Jun 2014 | B2 |
8747466 | Weeber et al. | Jun 2014 | B2 |
8755117 | Kobayashi et al. | Jun 2014 | B2 |
8771348 | Zhao | Jul 2014 | B2 |
8827446 | Iyer et al. | Sep 2014 | B2 |
8906089 | Piers et al. | Dec 2014 | B2 |
9069185 | Zhao | Jun 2015 | B2 |
9078745 | Zhang et al. | Jul 2015 | B2 |
9122074 | Piers et al. | Sep 2015 | B2 |
9164201 | Fermigier et al. | Oct 2015 | B2 |
9223148 | Fiala et al. | Dec 2015 | B2 |
9304329 | Zhao | Apr 2016 | B2 |
9310624 | Argal et al. | Apr 2016 | B2 |
9320594 | Schwiegerling | Apr 2016 | B2 |
9329309 | Van | May 2016 | B2 |
9335563 | Weeber | May 2016 | B2 |
9335564 | Choi et al. | May 2016 | B2 |
9355563 | Altintas et al. | May 2016 | B2 |
9370416 | Argal et al. | Jun 2016 | B2 |
9518864 | Grossinger et al. | Dec 2016 | B2 |
9563070 | Ando et al. | Feb 2017 | B2 |
9622856 | Weeber et al. | Apr 2017 | B2 |
9869580 | Grossinger et al. | Jan 2018 | B2 |
9925041 | Gerlach et al. | Mar 2018 | B2 |
9931200 | Van et al. | Apr 2018 | B2 |
10698234 | Zhao | Jun 2020 | B2 |
20010018612 | Carson et al. | Aug 2001 | A1 |
20020082690 | Sarbadhikari | Jun 2002 | A1 |
20020093701 | Zhang et al. | Jul 2002 | A1 |
20020105617 | Norrby et al. | Aug 2002 | A1 |
20020118337 | Perrott et al. | Aug 2002 | A1 |
20020122153 | Piers et al. | Sep 2002 | A1 |
20030014107 | Reynard | Jan 2003 | A1 |
20030063254 | Piers et al. | Apr 2003 | A1 |
20030076478 | Cox, I | Apr 2003 | A1 |
20030169491 | Bender et al. | Sep 2003 | A1 |
20030171808 | Phillips | Sep 2003 | A1 |
20040021824 | Ye et al. | Feb 2004 | A1 |
20040080710 | Wooley et al. | Apr 2004 | A1 |
20040085515 | Roffman et al. | May 2004 | A1 |
20040088050 | Norrby et al. | May 2004 | A1 |
20040106992 | Lang et al. | Jun 2004 | A1 |
20040111153 | Woods et al. | Jun 2004 | A1 |
20040138746 | Aharoni et al. | Jul 2004 | A1 |
20040150789 | Jones | Aug 2004 | A1 |
20040156014 | Piers et al. | Aug 2004 | A1 |
20040169820 | Dai et al. | Sep 2004 | A1 |
20040189981 | Ross et al. | Sep 2004 | A1 |
20040230299 | Simpson et al. | Nov 2004 | A1 |
20040246440 | Andino et al. | Dec 2004 | A1 |
20040252274 | Morris et al. | Dec 2004 | A1 |
20050057720 | Morris et al. | Mar 2005 | A1 |
20050096226 | Stock et al. | May 2005 | A1 |
20050099589 | Ishak | May 2005 | A1 |
20050128432 | Altmann | Jun 2005 | A1 |
20050203619 | Altmann | Sep 2005 | A1 |
20050259222 | Kelch et al. | Nov 2005 | A1 |
20050264757 | Morris et al. | Dec 2005 | A1 |
20050267575 | Nguyen et al. | Dec 2005 | A1 |
20060004446 | Aharoni et al. | Jan 2006 | A1 |
20060009816 | Fang et al. | Jan 2006 | A1 |
20060030938 | Altmann | Feb 2006 | A1 |
20060034003 | Zalevsky | Feb 2006 | A1 |
20060055883 | Morris et al. | Mar 2006 | A1 |
20060066808 | Blum et al. | Mar 2006 | A1 |
20060098162 | Bandhauer et al. | May 2006 | A1 |
20060098163 | Bandhauer et al. | May 2006 | A1 |
20060109421 | Ye et al. | May 2006 | A1 |
20060116763 | Simpson | Jun 2006 | A1 |
20060116764 | Simpson | Jun 2006 | A1 |
20060139570 | Blum et al. | Jun 2006 | A1 |
20060176572 | Fiala | Aug 2006 | A1 |
20060238702 | Glick et al. | Oct 2006 | A1 |
20060244904 | Hong et al. | Nov 2006 | A1 |
20060244905 | Piers et al. | Nov 2006 | A1 |
20070002444 | Piers et al. | Jan 2007 | A1 |
20070052920 | Stewart et al. | Mar 2007 | A1 |
20070129803 | Cumming et al. | Jun 2007 | A1 |
20070171362 | Simpson et al. | Jul 2007 | A1 |
20070182924 | Hong et al. | Aug 2007 | A1 |
20070236769 | Zalevsky | Oct 2007 | A1 |
20070258143 | Portney | Nov 2007 | A1 |
20070268451 | Raghuprasad | Nov 2007 | A1 |
20070282438 | Hong et al. | Dec 2007 | A1 |
20080030677 | Simpson | Feb 2008 | A1 |
20080147185 | Hong et al. | Jun 2008 | A1 |
20080161913 | Brady et al. | Jul 2008 | A1 |
20080161914 | Brady et al. | Jul 2008 | A1 |
20080269891 | Hong et al. | Oct 2008 | A1 |
20080273169 | Blum et al. | Nov 2008 | A1 |
20080300679 | Altmann | Dec 2008 | A1 |
20090062911 | Bogaert | Mar 2009 | A1 |
20090088840 | Simpson et al. | Apr 2009 | A1 |
20090164008 | Hong et al. | Jun 2009 | A1 |
20090187242 | Weeber et al. | Jul 2009 | A1 |
20090210054 | Weeber et al. | Aug 2009 | A1 |
20090234448 | Weeber et al. | Sep 2009 | A1 |
20090240328 | Treushnikov et al. | Sep 2009 | A1 |
20090295295 | Shannon et al. | Dec 2009 | A1 |
20090323020 | Zhao et al. | Dec 2009 | A1 |
20100014049 | Bandhauer et al. | Jan 2010 | A1 |
20100016961 | Hong et al. | Jan 2010 | A1 |
20100057202 | Bogaert | Mar 2010 | A1 |
20100087921 | Simpson | Apr 2010 | A1 |
20100097569 | Weeber et al. | Apr 2010 | A1 |
20100100177 | Zhao | Apr 2010 | A1 |
20100131060 | Simpson et al. | May 2010 | A1 |
20100161048 | Schaper, Jr. | Jun 2010 | A1 |
20100161051 | Hong | Jun 2010 | A1 |
20100274233 | Dick et al. | Oct 2010 | A1 |
20100281021 | Weeber et al. | Nov 2010 | A1 |
20100312336 | Hong et al. | Dec 2010 | A1 |
20100321635 | Apter et al. | Dec 2010 | A1 |
20110022170 | Simpson et al. | Jan 2011 | A1 |
20110098811 | Hong et al. | Apr 2011 | A1 |
20110109874 | Piers et al. | May 2011 | A1 |
20110125261 | Portney | May 2011 | A1 |
20110149236 | Weeber | Jun 2011 | A1 |
20110166652 | Bogaert et al. | Jul 2011 | A1 |
20110267693 | Kobayashi et al. | Nov 2011 | A1 |
20110270596 | Weeber | Nov 2011 | A1 |
20110292335 | Schwiegerling | Dec 2011 | A1 |
20110313522 | Hayes | Dec 2011 | A1 |
20110313523 | Hayes | Dec 2011 | A1 |
20110313525 | Cumming | Dec 2011 | A1 |
20110317124 | Weeber et al. | Dec 2011 | A1 |
20110317126 | Weeber | Dec 2011 | A1 |
20120029630 | Piers et al. | Feb 2012 | A1 |
20120059464 | Zhao | Mar 2012 | A1 |
20120140166 | Zhao | Jun 2012 | A1 |
20120143326 | Canovas et al. | Jun 2012 | A1 |
20120154740 | Bradley et al. | Jun 2012 | A1 |
20120165932 | Argal et al. | Jun 2012 | A1 |
20120170121 | Okada et al. | Jul 2012 | A1 |
20120283825 | Houbrechts et al. | Nov 2012 | A1 |
20120320335 | Weeber et al. | Dec 2012 | A1 |
20120323321 | Simonov et al. | Dec 2012 | A1 |
20130035760 | Portney | Feb 2013 | A1 |
20130046381 | Zalevsky et al. | Feb 2013 | A1 |
20130060330 | Weeber et al. | Mar 2013 | A1 |
20130107202 | Liang | May 2013 | A1 |
20130201445 | Das et al. | Aug 2013 | A1 |
20140172088 | Carson et al. | Jun 2014 | A1 |
20150022775 | Ando et al. | Jan 2015 | A1 |
20150029460 | Bradley et al. | Jan 2015 | A1 |
20150094807 | Piers et al. | Apr 2015 | A1 |
20150359625 | Argal et al. | Dec 2015 | A1 |
20160216535 | Zhao et al. | Jul 2016 | A1 |
20160220350 | Gerlach | Aug 2016 | A1 |
20160220352 | Choi et al. | Aug 2016 | A1 |
20160320633 | Weeber et al. | Nov 2016 | A1 |
20160334640 | De, Jr. et al. | Nov 2016 | A1 |
20160341978 | Schwiegerling | Nov 2016 | A1 |
20170172088 | May | Jun 2017 | A1 |
20170209259 | Choi et al. | Jul 2017 | A1 |
20170216020 | Weeber et al. | Aug 2017 | A1 |
20170219846 | Ando | Aug 2017 | A1 |
20170227789 | Ando et al. | Aug 2017 | A1 |
20170239038 | Choi et al. | Aug 2017 | A1 |
20170245985 | Canovas et al. | Aug 2017 | A1 |
20170245986 | Canovas et al. | Aug 2017 | A1 |
20170245987 | Canovas et al. | Aug 2017 | A1 |
20170252151 | Mackool | Sep 2017 | A1 |
20180092739 | Pagnoulle et al. | Apr 2018 | A1 |
20180132996 | Tiwari et al. | May 2018 | A1 |
20180147050 | Choi et al. | May 2018 | A1 |
20180147052 | Hong | May 2018 | A1 |
20180275428 | Ando | Sep 2018 | A1 |
20180373060 | Knox et al. | Dec 2018 | A1 |
20190004335 | Weeber et al. | Jan 2019 | A1 |
20190224000 | Choi et al. | Jul 2019 | A1 |
20190254810 | Tiwari et al. | Aug 2019 | A1 |
20190307557 | De Carvalho et al. | Oct 2019 | A1 |
20190314148 | Liu | Oct 2019 | A1 |
20200038172 | Hussain et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
2005230194 | Dec 2010 | AU |
2501217 | Apr 2004 | CA |
2507659 | Jun 2004 | CA |
2590085 | Jun 2006 | CA |
1951340 | Apr 2007 | CN |
101181171 | Apr 2011 | CN |
102665611 | Sep 2012 | CN |
69715830 | Aug 2003 | DE |
335731 | Oct 1989 | EP |
342895 | Nov 1989 | EP |
0343067 | Nov 1989 | EP |
355230 | Feb 1990 | EP |
0369561 | May 1990 | EP |
375291 | Jun 1990 | EP |
0393639 | Oct 1990 | EP |
412751 | Feb 1991 | EP |
0457553 | Nov 1991 | EP |
470811 | Feb 1992 | EP |
0537643 | Apr 1993 | EP |
605841 | Jul 1994 | EP |
0316162 | Oct 1995 | EP |
355230 | Oct 1995 | EP |
681198 | Nov 1995 | EP |
0537643 | Mar 1997 | EP |
0926531 | Jun 1999 | EP |
949529 | Oct 1999 | EP |
1376203 | Jan 2004 | EP |
1424049 | Jun 2004 | EP |
1862148 | Dec 2007 | EP |
1310267 | Jan 2008 | EP |
1891912 | Feb 2008 | EP |
2043558 | Apr 2009 | EP |
2045648 | Apr 2009 | EP |
1402308 | May 2009 | EP |
1424049 | Jun 2009 | EP |
2103279 | Sep 2009 | EP |
2113226 | Nov 2009 | EP |
2365379 | Sep 2011 | EP |
2377493 | Oct 2011 | EP |
2378319 | Oct 2011 | EP |
2290411 | May 2012 | EP |
2363097 | Sep 2012 | EP |
2527908 | Nov 2012 | EP |
2812882 | Dec 2014 | EP |
2813881 | Dec 2014 | EP |
2349093 | Oct 2015 | EP |
3150170 | Dec 2017 | EP |
1215851 | Feb 1990 | IT |
1154119 | Jun 1989 | JP |
2028615 | Jan 1990 | JP |
2079815 | Mar 1990 | JP |
2137814 | May 1990 | JP |
2249631 | Oct 1990 | JP |
3011315 | Jan 1991 | JP |
2000511299 | Aug 2000 | JP |
2003532157 | Oct 2003 | JP |
2010158315 | Jul 2010 | JP |
2013101323 | May 2013 | JP |
101154066 | Jun 2012 | KR |
2011154235 | Jul 2013 | RU |
2011154238 | Jul 2013 | RU |
9002963 | Mar 1990 | WO |
9222264 | Dec 1992 | WO |
9303409 | Feb 1993 | WO |
9413225 | Jun 1994 | WO |
9417435 | Aug 1994 | WO |
9724639 | Jul 1997 | WO |
9744689 | Nov 1997 | WO |
9831299 | Jul 1998 | WO |
9907309 | Feb 1999 | WO |
9923526 | May 1999 | WO |
0019906 | Apr 2000 | WO |
0076426 | Dec 2000 | WO |
0121061 | Mar 2001 | WO |
0163344 | Aug 2001 | WO |
0182839 | Nov 2001 | WO |
0189424 | Nov 2001 | WO |
0221194 | Mar 2002 | WO |
0234158 | May 2002 | WO |
02084381 | Oct 2002 | WO |
02088830 | Nov 2002 | WO |
03009053 | Jan 2003 | WO |
2004013680 | Feb 2004 | WO |
2004034129 | Apr 2004 | WO |
2004049979 | Jun 2004 | WO |
2004090611 | Oct 2004 | WO |
2004096014 | Nov 2004 | WO |
2004113959 | Dec 2004 | WO |
05019906 | Mar 2005 | WO |
06025726 | Mar 2006 | WO |
2006047698 | May 2006 | WO |
06060477 | Jun 2006 | WO |
2006060480 | Jun 2006 | WO |
2006067255 | Jun 2006 | WO |
2007092948 | Aug 2007 | WO |
2007133384 | Nov 2007 | WO |
2008045847 | Apr 2008 | WO |
2008150982 | Dec 2008 | WO |
2009017403 | Feb 2009 | WO |
2009027438 | Mar 2009 | WO |
2009043985 | Apr 2009 | WO |
2009058755 | May 2009 | WO |
2009076670 | Jun 2009 | WO |
2009130610 | Oct 2009 | WO |
2009148454 | Dec 2009 | WO |
2010046356 | Apr 2010 | WO |
2010054255 | May 2010 | WO |
2010059764 | May 2010 | WO |
2010079528 | Jul 2010 | WO |
2010093975 | Aug 2010 | WO |
2010100523 | Sep 2010 | WO |
2010104530 | Sep 2010 | WO |
2010144315 | Dec 2010 | WO |
2011024125 | Mar 2011 | WO |
2011055228 | May 2011 | WO |
2011075641 | Jun 2011 | WO |
2011075668 | Jun 2011 | WO |
2012004746 | Jan 2012 | WO |
2012031211 | Mar 2012 | WO |
2012070313 | May 2012 | WO |
2012078763 | Jun 2012 | WO |
2012085917 | Jun 2012 | WO |
2012122411 | Sep 2012 | WO |
2012140389 | Oct 2012 | WO |
2013018379 | Feb 2013 | WO |
2013028992 | Feb 2013 | WO |
2013093916 | Jun 2013 | WO |
2013114209 | Aug 2013 | WO |
2013116133 | Aug 2013 | WO |
2013118177 | Aug 2013 | WO |
2013118499 | Aug 2013 | WO |
2014008343 | Jan 2014 | WO |
2014033543 | Mar 2014 | WO |
2014091528 | Jun 2014 | WO |
2014111831 | Jul 2014 | WO |
2014189049 | Nov 2014 | WO |
2017137841 | Aug 2017 | WO |
2017149403 | Sep 2017 | WO |
2018093873 | May 2018 | WO |
2018150236 | Aug 2018 | WO |
2019130030 | Jul 2019 | WO |
2020115104 | Jun 2020 | WO |
Entry |
---|
Schwiegerling et al., “Representation of videokeratoscopic height data with Zernike polynomials,” Journal of the Optical Society of America, 1995, 12 (10), 2105-2113. |
Seitz B., et al, “Corneal Topography,” Current Opinion in Ophthalmolgy, 1997, vol. 8 (4), pp. 8-24. |
Siedlecki D., et al., “Radial Gradient index Intraocular Lens: a Theoretical Model,” Journal of Modern Optics, Feb. 20-Mar. 10, 2008, vol. 55 (4-5), pp. 639-647. |
Smith G. et al., “The spherical aberration of the crystalline lens of the human eye,” Vision Res., 2001, 41 (2), 235-243. |
Smith Kinney, “Sensitivity of the eye to spectral radiation at scotopic and mesopic intensity levels,” Journal of the Optical Society of America, 1955, 45 (7), 507-514. |
Terwee T., et al., “Visualization of the Retinal Image in an Eye Model With Spherical and Aspheric, Diffractive, and Refractive Multifocal Intraocular Lenses,” Journal of Refractive Surgery, Mar. 2008, vol. 24 (3), pp. 223-232. |
Thibos L. N. et al., “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Applied Optics, 1992, 31 (19), 3594-3600. |
Thibos L. N. et al., “Theork and measurement of ocular chromatic aberration,” Vision Res, 1988, 30 (1), 33-49. |
Townsley, “New Knowledge of the corneal contour,” Contacto, 1970, pp. 38-43. |
Van Den Berg T.J., “Analysis of Intraocular Straylight, Especially in Relation to Age,” Optometry and Vision Science, Feb. 1995, vol. 72 (2), pp. 52-59. |
Van Meeteren A., “Calculations on the Optical Modulation Transfer Function of the Human Eye for White Light,” Optica Acta, May 1974, vol. 21 (5), pp. 395-412. |
Verriest G., “The Spectral Curve of Relative Luminous Efficiency in Different Age Groups of Aphakic Eyes,” Mod Probl Ophthalmol., 1974, 13, 314-317. |
Villegas E.A., et al., “Correlation between Optical and Psychophy, Sical Parameters as a Function of Defocus,” Optometry and Vision Science, Jan. 1, 2002, vol. 79 (1), pp. 60-67. |
Wang J.Y., et al, “Wave-Front Interpretation With Zemike Polynomials,” Applied Optics, 1980, vol. 19 (9), pp. 1510-1518. |
International Search Report and Written Opinion for Application No. PCT/EP2018/056744, dated Jun. 14, 2018, 16 pages. |
Albert D.M., “(Book Review) Intraocular Lenses: Evolution, Designs, Complications, and Pathology, by David Apple et al.,” Archieves of Opthalmology, 1990, vol. 108, pp. 650. |
Alfonso J.F., et al., “Prospective Study of the Acri.LISA Bifocal Intraocular Lens,” Journal of Cataract Refractive Surgery, Nov. 2007, vol. 33 (11), pp. 1930-1935. |
Alvarez S. L. et al., “Spectral threshold: measurement and clinical applications,” British Journal of Ophthalmology, 1983, 67, 504-507. |
Apple D.J., et al., Eds., “Intraocular Lenses: Evolution, Designs, Complications and Pathology,” in: New Concepts in Intraocular Lens Implantation, Williams & Wilkins publisher, Jan. 1989, vol. 22 (36), pp. 205-221. |
Apple D.J., et al., Eds., “Intraocular Lenses: Evolution, Designs, Complications and Pathology,” in: New Concepts in Intraocular Lens Implantation, Williams & Wilkins publisher, Jan. 1989, vol. 36 (1), pp. 21-36. |
Artal P., et al., “Contributions of the Cornea and the Lens to the Aberrations of the Human Eye,” Optics Letters, 1998, vol. 23 (21), pp. 1713-1715. |
Atchinson D.A., “Design of Aspheric Intraocular Lens,” Ophthamic & Physiological Optics, 1991, vol. 11 (2), pp. 137-146. |
Atchinson D.A., et al., “Optical Design of Intraocular Lenses. II. Off-Axis performance,” Optometry & Vision Science, 1989, vol. 66 (9), pp. 579-590. |
Atchinson D.A., et al., “Third-Order Aberrations Of Pseudophakic Eyes,” Ophthalmic and Physiological Optics , 1989, vol. 9, pp. 205-211. |
Atchinson D.A., “Optical Design of Intraocular Lenses. I. On-Axis Performance,” American Academy of Optometry, 1989, vol. 66 (8), pp. 492-506. |
Atchinson D.A., “Optical design of intraocular lenses III. On-Axis Performance in the Presence of Lens Displacement,” American Academy of Optometry, 1989, vol. 66 (10), pp. 671-681. |
Atchinson, “Refractive errors induced by displacement of intraocular lenses within the pseudophakic eye,” Optometry & Vision Science, 1989, 66 (3), 146-152. |
Bonnet R., et al, “New Method Of Topographical Ophthalmometry—Its Theoretical And Clinical Applications,” American Journal of Optometry, 1962, vol. 39 (5), pp. 227-251. |
Bradley A. et al., “Achromatizing the Human Eye” Optometry & Vision Science, 1991, vol. 68 (8), pp. 608-616. |
Buralli D.A., et al, “Optical Performance Of Holographic Kinoforms,” Applied Optics, Mar. 1989, vol. 28 (5), pp. 976-983. |
Canovas C., et al., “Hybrid Adaptive-Optics Visual Simulator,” Optical Letters, Jan. 15, 2010, vol. 35 (2), pp. 196-198. |
Cohen A.L., “Diffractive Bifocal Lens Design,” Optometry and Vision Science, Jun. 1993, vol. 70 (6), pp. 461-468. |
Cohen A.L., “Practical Design of a Bifocal Hologram Contact Lens or Intraocular Lens,” Applied Optics, Jul. 1, 1992, vol. 31 (19), pp. 3750-3754. |
Diffractive Lenses for Extended Depth of Focus and Presbyopic Correction, Presentation from Wavefront Congress held on Feb. 15, 2008, Rochester, New York. |
Doskolovich L.L., et al., “Special Diffractive Lenses,” Lens and Optical Systems Design, Apr. 1992, vol. 1780, pp. 393-402. |
Dwyer W. O. et al., “Racial Differences In Color Vision: Do They Exist”, American Journal of Optometry & Physiological Optics, 1975, 52, 224-229. |
El Hage S.G., et al., “Contribution of the Crystalline Lens to the Spherical Aberration of the Eye,” 1973, vol. 63 (2), pp. 205-211. |
Futhey J.A., “Diffractive Bifocal Intraocular Lens,” SPIE, 1989, vol. 1052, pp. 142-148. |
Geun Y., et al., “Visual Performance after Correcting the Monchromatic and Chromatic Aberrations of the Eye,” Journal of the Optical Society of America, 2002, vol. 19 (2), pp. 266-275. |
Glasser A. et al., “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res, 1998, 38 (2), 209-229. |
Greivenkamp J.E., et al., “Visual Acuity Modeling Using Optical Raytracing Of Schematic Eyes,” American Journal of Ophthalmology, 1995, vol. 120 (2), pp. 227-240. |
Griswold Scott et al., “Scotopic Spectral Sensitivity of Phakic and Aphakic Observers Extending into the Near Ultraviolet,” Vision res, 1992, 32 (9), 1739-1743. |
Guirao A., et al., “Corneal Wave Aberration from Videokeratography: Accuracy And Limitations of the Procedure,” Journal of the Optical Society of America, 2000, vol. 17 (6), pp. 955-965. |
Iovs, 1999, 40 (4), S535. |
Kiely et al., “The mean shape of the human cornea,” Optica ACTA, 1982, 29 (8), 1027-1040. |
Kokoschka S., et al., “Influence of Field Size on the Spectral Sensitivity of the Eye in the Photopic and Mesopic Range,” American Journal of Optometry and Physiological Optics, 1985, vol. 62 (2), pp. 119-126. |
Liang J., et al, “Objective Measurement Of Wave Aberrations Of The Human Eye With The Use Of A Hartmann-Shack Wave-Front Sensor,” Journal of the Optical Society of America, 1994, vol. 11 (7), pp. 1949-1957. |
Lindsay R., et al., “Descriptors of Corneal Shape,” Optometry and Vision Science, 1998, vol. 75 (2), pp. 156-158. |
Liou H.L., et al., “Anatomically Accurate, Finite Model Eye for Optical Modeling,” Journal of Optical Society of America, Aug. 1997, vol. 14 (8), pp. 1684-1695. |
Lotmar, “Theoretical eye model with aspherics,” Journal of the Optical Society of America, 1971, 61 (11), 1522-1529. |
Malacara D., et al., “Wavefront Fitting With Discrete Orthogonal Polynomials In a Unit Radius Circle,” Optical Engineering, 1990, vol. 29 (6), pp. 672-675. |
Mandell R.B., et al., “Mathematical Model of the Corneal Contour,” 1965, School of Optometry, University of California, Berkeley, pp. 183-197. |
Marcos S., et al., “A New Approach to the Study of Ocular Chromatic Aberrations,” Vision Research, 1999, vol. 39 (26), pp. 4309-4323. |
Marsack J.D., et al., “Metrics of Optical Quality Derived from Wave Aberrations Predict Visual Performance,” Journal of Vision, Apr. 2004, vol. 4 (4), pp. 322-328. |
Monsoriu J.A., et al., “Devil's Lenses,” Optics Express, Oct. 17, 2007, vol. 15 (21), pp. 13858-13864. |
Mordi J.A., et al., “Influence of Age of Chromatic Aberration of the Human Eye,” American Journal of Optometry & Physiological Optics, 1985, vol. 62 (12), pp. 864-869. |
Morlock, R., et al., “Patient-Reported Spectacle Independence Questionnaire (PRSIQ): Development and Validation,”American Journal of Ophthalmology, Jun. 2017, vol. 178, pp. 101-114. |
Navarro R., et al., “Accommodation-Dependent Model of the Human Eye with Aspherics,” Journal of the Optical Society of America, Aug. 1985, vol. 2 (8), pp. 1273-1281. |
Norrby S., et al., “Model Eyes for Evaluation of Intraocular Lenses,” Applied Optics, Sep. 7, 2007, vol. 46 (26), pp. 6595-6605. |
“Optical Design,” Military Standardization Handbook, 1962, Chapter 4, U.S. Department of Defense MIL-HDBK-141, 4-1-4-19. |
Oshika T., et al., “Changes in Corneal Wavefront Aberrations with Aging,” Investigative Ophthalmology & Visual Science, 1999, vol. 40 (7), pp. 1351-1355. |
Patel S., et al., “Shape and Radius of Posterior Corneal Surface,” Refractive and Corneal Surgery, 1993, vol. 9 (3), pp. 173-181. |
Piers P.A., et al., “Eye Models for the Prediction of Contrast Vision in Patients with New Intraocular Lens Designs,” Optics Letters, Apr. 1, 2004, vol. 29 (7), pp. 733-735. |
Piers P.A., et al., “Theoretical Comparison of Aberration-Correcting Customized and Aspheric Intraocular Lenses,” Journal of Refractive Surgery, Apr. 2007, vol. 23 (4), pp. 374-384. |
Said et al., “The Variation with Age of the Spectral Transmissivity of the Living Human Crystalline Lens,” Gerontologia, 1959, 213-231. |
Guillon M., et al., “Corneal Topography: A Clinical Model,” Ophthalmic & Physiological Optics, 1986, vol. 6 (1), pp. 47-56. |
Smith G., et al., “The spherical aberration of intra-ocular lenses,” Department of Optometry, 1988, vol. 8 (3), pp. 287-294. |
Castignoles F., et al., “Comparison of the Efficiency, MTF and Chromatic Properties of Four Diffractive Bifocal Intraocular Lens Designs,” Optics Express, Mar. 2010, vol. 18 (5), pp. 5245-5256. |
Sokolowski M., et al. “Hybrid Heptafocal Intraocular Lenses,” Optica Applicata, Dec. 2015, vol. 45 (3), pp. 285-298. |
Number | Date | Country | |
---|---|---|---|
20180263760 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62473200 | Mar 2017 | US |