This invention relates to optical lenses, and in particular to systems, devices, and methods of fabricating and manufacturing optical lenses used for imaging optics and systems, astronomy, displays, polarizers, optical communication and other areas of laser and photonics technology.
The present invention is in the technical field of optics. More particularly, the present invention is in the technical field of lenses, systems of lenses, imaging and controlling of light beams. Lenses are commonly made by shaping an optical material such as glass. The weight of such lenses increases strongly with diameter making them expensive and prohibitively heavy for applications requiring large area. Also the quality of a lens typically decreases with increasing size. To achieve desirable features such as high-quality imaging, conventional lenses sometimes have curved surfaces that are non-spherical. The need to grind and polish conventional lenses with non-spherical surfaces can make such lenses extremely expensive. Segmented lenses such as Fresnel lenses are relatively thin, however, the structural discontinuities result in severe aberrations. Uses of holographic lenses are limited by the compromise of efficiency, spectral bandwidth and dispersion. Thus, there is a need for lenses that could be obtained in the form of thin film structurally continuous coatings on a variety of substrates for a variety of spectral ranges.
Thus, the need exists for solutions to the above problems with the prior art.
A primary objective of the present invention is to provide systems, devices, and methods for providing a structurally continuous thin film lens wherein the sign of its focal length can be chosen to be positive or negative by flipping the lens.
The second objective of the present invention is providing an imaging system comprising a DW lens with spherically or cylindrically symmetric continuous structure, deposited on a variety of substrate such as optical fiber facet, a refractive lens, a birefringent lens, a phase retardation plate or a tunable lens.
The third objective of the present invention is providing sunglasses, swimming goggles, and goggles for eye protection that employ continuous thin film structures, that correct for human vision defects as do conventional prescription sunglasses or goggles but that perform this function without requiring curved lens surfaces.
The fourth objective of the present invention is providing a lens with continuous thin film structure whose properties can be changed in a useful way by application of an electrical potential to the lens.
The fifth objective of the present invention is providing a lens with a continuous thin film structure on a non-planar surface.
The sixth objective of the present invention is providing a flat mirror coated with a continuous thin film structure that focuses or defocuses light.
Further objects and advantages of this invention will be apparent from the following detailed description of the presently preferred embodiments which are illustrated schematically in the accompanying drawings.
Before explaining the disclosed embodiments of the present invention in detail it is to be understood that the invention is not limited in its applications to the details of the particular arrangements shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
In the Summary above and in the Detailed Description of Preferred Embodiments and in the accompanying drawings, reference is made to particular features (including method steps) of the invention. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally.
In this section, some embodiments of the invention will be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and prime notation is used to indicate similar elements in alternative embodiments.
A list of components will now be described.
In the following description of the invention, the term “light” will often be used to describe the electromagnetic radiation that interacts with the diffractive waveplate lenses that are the subject of this invention. Although “light” generally means electromagnetic radiation with a wavelength in the visible region of the electromagnetic spectrum, it should be understood that the usage of the term “light” in the description is not restrictive, in the sense of limiting the design and application to diffractive waveplate lenses that operate only in the visible region of the spectrum. In general, all the designs and concepts described herein apply to operation over a wide range of the electromagnetic spectrum, including the microwave, infrared, visible, ultraviolet, and X-ray regions. While physical embodiments of diffractive waveplate lenses are at present advanced for operation in the visible region of the spectrum, the designs and applications disclosed here are applicable over all the noted regions of the electromagnetic spectrum.
Many of the exemplary applications have been described herein with terms such as “light” being used to describe the electromagnetic radiation that is acted upon by the disclosed diffractive waveplate lenses. The term “light” in this context should not be taken to restrict the scope of the disclosed embodiments to only those in which the electromagnetic radiation acted upon or manipulated by the diffractive waveplate lenses is in the visible region of the spectrum. As will be evident to those skilled in the art, the exemplary embodiments disclosed here, in addition to being applicable in the visible region of the spectrum, are equally applicable to the microwave, infrared, ultraviolet, and X-ray regions of the spectrum. Exceptions to this generalization are the applications relating to human vision, for which operation in the visible region of the spectrum is required.
The present invention relates to the design and application of diffractive waveplate lenses. The term “diffractive waveplate lens” as used herein describes a thin film of birefringent material deposited on a transparent structure, for example, a thin flat substrate of optical material such as glass. This birefringent film has the property that it retards the phase of light of one linear polarization by approximately one half wave (pi radians of optical phase) relative to the light of the other linear polarization. In diffractive waveplate lenses, the optical axis orientation depends on the transverse position on the waveplate, i.e. the position in the two coordinate axes perpendicular to the surface of the diffractive waveplate lens. In other words, the optical axis orientation is modulated in one or both of the transverse directions parallel to the surface of the substrate on which the active thin film is applied. Lensing action is due to parabolic profile of optical axis orientation modulation.
There are two general types of diffractive waveplate lenses to which the present invention applies. The first type of diffractive waveplate lens is axially symmetric and is used, for example, to focus a collimated beam of light to a point in space. The second type of diffractive waveplate lens is cylindrically symmetric and is used, for example, to focus a collimated beam of light to a line segment in space. In many examples below, an optical system of circular symmetry is used as an example, but in general, all of the conclusions apply as well to optical systems of cylindrical symmetry.
Lenses that Allow Choosing the Sign of the Focal Length Depending on Orientation
In
where k0=2π/λ is the wavenumber of the light that is to be focused by the diffractive waveplate lens, λ is the wavelength of that radiation, f is the focal length of the diffractive waveplate lens (DWL), and r is the distance to the central point.
The difference in signs in variation of the anisotropy axis with radius designate lenses of two opposite signs. The difference in corresponding patterns 101 and 102 in
In the preferred embodiment of the present invention, DWLs of opposite optical axis modulation signs need not be two separate optical components and is obtained by rotating the DWL around an axis in the plane of the DWL by 180 degrees. The observers 301 and 302 looking at a given DWL from opposite sides as shown in
This optical asymmetry is described in detail in regard to
For a LHCP light beam 420 in
Cylindrical DWL
In the second type of diffractive waveplate lenses to which the present invention applies, illustrated in
where k0 and f have the same meanings as before, and x is the distance from the center of the coordinate axis.
Operation for Unpolarized Light
In many imaging applications, the source of light is unpolarized. In such a case show in
In a particularly important application, polarized sunglasses, goggles, etc. can serve as such a substrate. Attaching DWL films 703 on circular polarizing glasses 702 may impart ophthalmic action on sunglasses, protective goggles, ski goggles, and other protective eye ware shown as 701 in
An example of uses of electrically switchable diffractive waveplate lenses of the present invention are camera lenses and machine vision wherein the contrast reduction due to presence of defocused beam does not affect required image information obtained due to focused portion of the beam.
Combination with Other Functional Layers
The DW lenses 801 shown in
Vision Correction
The flexibility of being able to change the properties of a diffractive waveplate lens simply by changing the pattern of the optical axis orientation in the thin film of the lens does not apply only to correcting for spherical aberrations, it applies to the other types of imaging aberrations well known in the art of optical design. Additionally, the present invention provides the opportunity of fabricating bifocal ophtalmic lenses by smooth variations of the orientation pattern in the thin film diffractive waveplate. In one embodiment of the current invention for ophthalmic uses, the flexibility of producing any desired orientation pattern can be used to inexpensively fabricate lenses fine-tuned to precisely correct eye aberrations.
A very common application of optical systems is to correct for deficiencies in human vision. In this application, in common eyeglasses, a refractive lens is placed in front of each eye. The corrective optical element is fabricated from a refractive medium, such as glass or plastic in the case of eyeglasses. Eyeglasses include those that, in addition to providing refractive correction, also provide protection of the eyes from sunlight (prescription sunglasses).
In order to provide vision correction, the surfaces of eyeglasses have a particular curvature, often designed specifically for the person who wears the corrective optics. It would be of value from the point of view of cost and weight to eliminate the need for surface curvature in wearable vision correction devices. Since diffractive waveplate lenses include surface layers sometimes only a few micrometers in thickness, compared to the few millimeters of thickness typical of common eyeglasses, creation of eyeglasses and other wearable optics for vision correction could be of significant value due to reduction in cost and weight.
In the case of swimming goggles and goggles designed for eye protection, the requirements of the primary application may conflict with the requirement for vision correction. For example, in the case of goggles designed to protect the eyes from small high-speed moving objects, the ballistic performance of the goggles is dependent on the cross section of the optical element covering the eye. It would be highly desirable in such applications as swimming goggles and goggles designed for eye protection to be able to provide vision correction by means of thin film layers, without having to disturb the underlying structure. Diffractive waveplate lenses have the capability to allow vision correction without changing the underlying optical element, simply by applying the diffractive waveplate lenses on the surface of each goggle.
Intraocular Lens Application
A common method of human vision correction is to insert an intraocular lens as a replacement for the biological lens of the eye. The most common reason for this replacement is to correct for the vision defects associated with cataracts. While the surgical techniques required to perform replacement of the biological lens with an artificial lens are highly developed and usually successful, the availability of an optical element that performs the same function, but in a lighter package, would provide an additional option for the refinement of this medical procedure. Since diffractive waveplate lenses, unlike conventional refractive lenses, can be very thin and yet still perform the desired function, a potentially valuable application of this technology is fabrication of such lenses, either alone or combined with other optical elements, as an intraocular replacement for the biological lens of the human eye.
Diffractive Waveplate Mirror
While all of the exemplary embodiments discussed herein are of a realization of diffractive waveplate lenses employed in a mode in which the optical beam is transmitted through the thin film diffractive waveplate lens and through the underlying substrate, an alternative embodiment is to apply the thin film diffractive waveplate lens to a flat mirror as demonstrated in
The exemplary embodiments described herein have assumed either explicitly or implicitly that the thin film constituting the diffractive waveplate lens is applied to the flat surface of a solid substrate such as glass. Neither the assumption of a solid substrate, nor the assumption of a flat surface, should be taken as restrictive in defining the potential embodiments of this invention. As will be evident to anyone skilled in the art, the coatings may be applied to curved substrates, and to flexible substrates. All of the exemplary embodiments described herein could also be realized with either a curved substrate, a flexible substrate, or a substrate that is both curved and flexible.
While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.
This application claims the benefit of priority to U.S. Provisional Application Ser. 61/980,062 filed Apr. 16, 2014, the entire application of which is incorporated by reference in its' entirety, and this application is a Continuation-In-Part of U.S. patent application Ser. No. 13/916,627 filed Jun. 13, 2013, now abandoned, which is a Continuation of U.S. patent application Ser. No. 12/697,083 filed Jan. 29, 2010, now abandoned.
This invention was made in part with U.S. Government support under Army Contract No. W911QY-12-C-0016. The government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
2435616 | Vittum | Feb 1948 | A |
3721486 | Bramley | Mar 1973 | A |
3897136 | Bryngdahl | Jul 1975 | A |
4160598 | Firester et al. | Jul 1979 | A |
4301023 | Schuberth | Nov 1981 | A |
4698816 | Chun | Oct 1987 | A |
4956141 | Allen | Sep 1990 | A |
4983332 | Hahn | Jan 1991 | A |
5032009 | Gibbons | Jul 1991 | A |
5042950 | Salmon, Jr. | Aug 1991 | A |
5047847 | Toda | Sep 1991 | A |
5100231 | Sasnett et al. | Mar 1992 | A |
5142411 | Fiala | Aug 1992 | A |
5150234 | Takahashi | Sep 1992 | A |
5218610 | Dixon | Jun 1993 | A |
5321539 | Hirabayashi | Jun 1994 | A |
5325218 | Willett | Jun 1994 | A |
5446596 | Mostrorocco | Aug 1995 | A |
5619325 | Yoshida | Apr 1997 | A |
5621525 | Vogeler et al. | Apr 1997 | A |
5712721 | Large | Jan 1998 | A |
5895422 | Hauber | Apr 1999 | A |
5903330 | Funschilling | May 1999 | A |
5989758 | Komatsu | Nov 1999 | A |
6091471 | Kim | Jul 2000 | A |
6107617 | Love et al. | Aug 2000 | A |
6139147 | Zhang | Oct 2000 | A |
6170952 | La Haye et al. | Jan 2001 | B1 |
6191880 | Schuster | Feb 2001 | B1 |
6219185 | Hyde | Apr 2001 | B1 |
6320663 | Ershov | Nov 2001 | B1 |
6373549 | Tombling et al. | Apr 2002 | B1 |
6452145 | Graves et al. | Sep 2002 | B1 |
6551531 | Ford | Apr 2003 | B1 |
6678042 | Tabirian et al. | Jan 2004 | B2 |
6728049 | Tabirian et al. | Apr 2004 | B1 |
6792028 | Cook | Sep 2004 | B2 |
6911637 | Vorontsov et al. | Jun 2005 | B1 |
7048619 | Park | May 2006 | B2 |
7094304 | Nystrom | Aug 2006 | B2 |
7095772 | Delfyett et al. | Aug 2006 | B1 |
7196758 | Crawford | Mar 2007 | B2 |
7319566 | Prince | Jan 2008 | B2 |
7324286 | Glebov | Jan 2008 | B1 |
7450213 | Kim et al. | Nov 2008 | B2 |
7764426 | Lipson | Jul 2010 | B2 |
8045130 | Son | Oct 2011 | B2 |
8077388 | Gerton | Dec 2011 | B2 |
8264623 | Marrucci | Sep 2012 | B2 |
8520170 | Escuti | Aug 2013 | B2 |
8582094 | Shortt | Nov 2013 | B1 |
8643822 | Tan et al. | Feb 2014 | B2 |
8937701 | Rossini | Jan 2015 | B2 |
8982313 | Escuti et al. | Mar 2015 | B2 |
9541772 | De Sio et al. | Jan 2017 | B2 |
9557456 | Tabirian | Jan 2017 | B2 |
9592116 | De Sio et al. | Mar 2017 | B2 |
9617205 | Tabirian | Apr 2017 | B2 |
9658512 | Tabirian | May 2017 | B2 |
9715048 | Tabirian et al. | Jul 2017 | B2 |
9753193 | Tabirian et al. | Sep 2017 | B2 |
9976911 | Tabirian et al. | May 2018 | B1 |
9983479 | Tabirian et al. | May 2018 | B2 |
10031424 | Tabirian et al. | Jul 2018 | B2 |
10036886 | Tabirian et al. | Jul 2018 | B2 |
10075625 | Tabirian et al. | Sep 2018 | B2 |
10107945 | Tabirian et al. | Oct 2018 | B2 |
20010002895 | Kawano | Jun 2001 | A1 |
20010018612 | Carson | Aug 2001 | A1 |
20010030720 | Ichihashi | Oct 2001 | A1 |
20020027624 | Seiberle | Mar 2002 | A1 |
20020097361 | Ham | Jul 2002 | A1 |
20020167639 | Coates | Nov 2002 | A1 |
20030021526 | Bouevitch | Jan 2003 | A1 |
20030072896 | Kwok | Apr 2003 | A1 |
20030137620 | Wang | Jul 2003 | A1 |
20030152712 | Motomura | Aug 2003 | A1 |
20030206288 | Tabirian et al. | Nov 2003 | A1 |
20030214700 | Sidorin | Nov 2003 | A1 |
20030218801 | Korniski et al. | Nov 2003 | A1 |
20040051846 | Blum | Mar 2004 | A1 |
20040081392 | Li | Apr 2004 | A1 |
20040105059 | Ohyama | Jun 2004 | A1 |
20040165126 | Ooi et al. | Aug 2004 | A1 |
20050030457 | Kuan et al. | Feb 2005 | A1 |
20050110942 | Ide | May 2005 | A1 |
20050219696 | Albert et al. | Oct 2005 | A1 |
20050271325 | Anderson et al. | Dec 2005 | A1 |
20050276537 | Frisken | Dec 2005 | A1 |
20050280717 | Chen | Dec 2005 | A1 |
20060008649 | Shinichiro | Jan 2006 | A1 |
20060055883 | Morris | Mar 2006 | A1 |
20060109532 | Savas | May 2006 | A1 |
20060221449 | Glebov et al. | Oct 2006 | A1 |
20060222783 | Hayashi | Oct 2006 | A1 |
20070032866 | Portney | Feb 2007 | A1 |
20070040469 | Yacoubian | Feb 2007 | A1 |
20070115551 | Spilman | May 2007 | A1 |
20070122573 | Yasuike | May 2007 | A1 |
20070132930 | Ryu et al. | Jun 2007 | A1 |
20070247586 | Tabirian | Oct 2007 | A1 |
20070258677 | Chigrinov | Nov 2007 | A1 |
20080226844 | Shemo | Sep 2008 | A1 |
20080278675 | Escuti | Nov 2008 | A1 |
20090002588 | Lee et al. | Jan 2009 | A1 |
20090052838 | McDowall | Feb 2009 | A1 |
20090073331 | Shi | Mar 2009 | A1 |
20090122402 | Shemo | May 2009 | A1 |
20090141216 | Marrucci | Jun 2009 | A1 |
20090201572 | Yonak | Aug 2009 | A1 |
20090256977 | Haddock | Oct 2009 | A1 |
20090257106 | Tan | Oct 2009 | A1 |
20090264707 | Hendricks | Oct 2009 | A1 |
20100003605 | Gil | Jan 2010 | A1 |
20100066929 | Shemo | Mar 2010 | A1 |
20110069377 | Wu et al. | Mar 2011 | A1 |
20110075073 | Oiwa | Mar 2011 | A1 |
20110085117 | Moon et al. | Apr 2011 | A1 |
20110097557 | May | Apr 2011 | A1 |
20110109874 | Piers | May 2011 | A1 |
20110135850 | Saha | Jun 2011 | A1 |
20110188120 | Tabirian | Aug 2011 | A1 |
20110234944 | Powers | Sep 2011 | A1 |
20110262844 | Tabirian | Oct 2011 | A1 |
20120140167 | Blum | Jun 2012 | A1 |
20120162433 | Fuentes Gonzalez | Jun 2012 | A1 |
20120188467 | Escuti | Jul 2012 | A1 |
20130057814 | Prushinskiy et al. | Mar 2013 | A1 |
20130202246 | Meade | Aug 2013 | A1 |
20140055740 | Spaulding | Feb 2014 | A1 |
20140211145 | Tabirian | Jul 2014 | A1 |
20140252666 | Tabirian | Sep 2014 | A1 |
20150049487 | Connor | Feb 2015 | A1 |
20150081016 | De Sio et al. | Mar 2015 | A1 |
20150276997 | Tabirian et al. | Oct 2015 | A1 |
20160023993 | Tabirian | Jan 2016 | A1 |
20160047955 | Tabirian et al. | Feb 2016 | A1 |
20160047956 | Tabirian et al. | Feb 2016 | A1 |
20160209560 | Tabirian et al. | Jul 2016 | A1 |
20160363484 | Barak et al. | Dec 2016 | A1 |
20160363783 | Blum | Dec 2016 | A1 |
20170010397 | Tabirian | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
1970734 | Sep 2008 | EP |
2088456 | Dec 2009 | EP |
2001142033 | May 2001 | JP |
2004226752 | Aug 2004 | JP |
2209751 | May 1989 | UA |
2007122573 | Nov 2007 | WO |
2008130555 | Oct 2008 | WO |
2008130559 | Oct 2008 | WO |
Entry |
---|
OISE, Optics in the Southeast, Technical Conference and Tabletop Exhibit, Optical Society of America, Orlando, FL., Nov. 12-13, 2003, 9 pages. |
Dierking, Polymer Network-Stabilized Liquid Crystals, Advanced Materials, vol. 12, No. 3, 2000, 15 pages. |
Pagliusi et al. Surface-induced photorefractivity in twistable nematics: toward the all-optical control of gain, Opt. Expr. vol. 16, Oct. 2008, 9 pages. |
M. Honma, T. Nose, Polarization-independent liquid crystal grating fabricated by microrubbing process, Jpn. J. Appl. Phys., Part 1, vol. 42, 2003, 3 pages. |
Anderson, G., et al., Broadband Antihole Photon Sieve Telescope, Applied Optics, vol. 16, No. 18., Jun. 2007, 3 pages. |
Early, J. et al., Twenty Meter Space Telescope Based on Diffractive Fresnel Lens, SPIE, U.S. Department of Energy, Lawrence Livermore National Laboratory, Jun. 2003, 11 pages. |
Martinez-Cuenca, et al., Reconfigurable Shack-Hartmann Sensor Without Moving Elements,Optical Society of America, vol. 35, No. 9, May 2010, 3 pages. |
Serak, S., et al., High-efficiency 1.5 mm Thick Optical Axis Grating and its Use for Laser Beam Combining, Optical Society of America, vol. 32, No., Jan. 2007, 4 pages. |
Ono et al., Effects of phase shift between two photoalignment substances on diffration properties in liquid crystalline grating cells, Appl. Opt. vol. 48, Jan. 2009, 7 pgs. |
Naydenova et al., “Diffraction form polarization holographic gratings with surface relief in side chain azobenzene polyesters” J. Opt. Soc. Am. B, vol. 15, (1998), 14 pages. |
Oh et al., Achromatic polarization gratings as highly efficent thin-film polarizing beamsplitters for broadband light Proc. SPIE vol. 6682, (2007), 4 pages. |
Nersisyan, S., et al., Polarization insensitive imaging through polarization gratins, Optics Express, vol. 17, No. 3, Feb. 2, 2009, 14 pages. |
Tabirian, et al., PCT Application No. PCT/US15/26186 filed Apr. 16, 2015, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority dated Jul. 14, 2015, 17 pages. |
Tabiryan, et al., The Promise of Diffractive Waveplates, OPN Optics and Photonics News, Mar. 2010, 6 pages. |
Tabiryan, et al., Fabricating Vector Vortex Waveplates for Coronagraphy, 2012, 12 pages. |
Tabirian, N., et al, U.S. Appl. No. 61/757,259 filed Jan. 28, 2013, 29 pages. |
Beam Engineering for Advaced Measurements Co., et al., PCT Application No. PCT/US2016/038666 filed Jun. 22, 2016, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority , or the Declaration dated Oct. 10, 2016, 16 pages. |
Nersisyan, et al., Study of azo dye surface command photoalignment material for photonics applications, Applied Optics, vol. 49, No. 10, Apr. 1, 2010, 8 pages. |
Nersisyan, et al., Characterization of optically imprinted polarization gratings, Applied Optics, vol. 48, No. 21, Jul. 20, 2009, 6 pages. |
Nersisyan, et al., Fabrication of Liquid Crystal Polymer Axial Waveplates for UV-IR Wavelengths, Optics Express, vol. 17, No. 14, Jul. 2009, 9 pages. |
Nersisyan, et al., Optical Axis Gratings in Liquid Crystals and Their Use for Polarization Insensitive Optical Switching, Journal of Nonlinear Optical Physics & Materials, vol. 18, No. 1, 2009, 47 pages. |
Nersisyan, et al., Polarization insensitive imaging through polarization gratings, Optics Express, vol. 17, No. 3, Feb. 2, 2009, 14 pages. |
Sarkissian, et al., Longitudinally modulated nematic bandgap structure, Optical Society of America, vol. 23, No. 8, Aug. 2008, 6 pages. |
Sarkissian, et al., Polarization-universal bandgap in periodically twisted nematics, Optics Letters, vol. 31, No. 11, Jun. 1, 2006, abstract, 4 pages. |
Sarkissian, et al., Periodically Aligned Liquid Crystal: Potential Application for Projection Displays, Mol. Cryst. Liq. Cryst., vol. 451, 2006, 19 pages. |
Sarkissian, et al., Potential application of Periodically Aligned Liquid Crystal cell for projection displays, JThE12, 2005, 3 pages. |
Sarkissian, et al., Polarization-Controlled Switching Between Diffraction Orders in Transverse-Periodically Aligned Nematic Liquid Crystals, Optics Letters, Aug. 2006, abstract, 4 pages. |
Schadt, et al., Photo-Induced Alignment and Patterning of Hybrid Liquid Crystalline Polymer Films on Single Substrates, Jpn. J. Appl. Phys., vol. 34, Part 2, No. 6B, Jun. 15, 1995, 4 pages. |
Schadt , et al., Photo-Generation of Linearly Polymerized Liquid Crystal Aligning Layers Comprising Novel, Integrated Optically Patterned Retarders and Color Filters, Jpn. J. Appl. Phys., vol. 34, Part 1, No. 6A, Jun. 1995, 10 pages. |
Schadt, et al., Optical patterning of multi-domain liquid-crystal displays with wide viewing angles, Nature, vol. 381, May 16, 1996, 4 pages. |
Escuti, et al., A Polarization-Independent Liquid Crystal Saptial-Light-Modulator, Liquid Crystals X, Proc. of SPIE, vol. 6332, 2006, 9 pages. |
Escuti, et al., Polarization-Independent LC Microdisplays Using Liquid Crystal Polarization Gratings: A Viable Solution (?), Dept of Electrical & Computer Engineering @ ILCC, Jul. 1, 2008, 30 pages. |
Escuti, et al., Simplified Spectropolarimetry Using Reactive Mesogen Polarization Gratings, Imaging Spectrometry XI, Proc. of SPIE, vol. 6302, 2006, 11 pages. |
Gibbons, et al., Surface-mediated alignment of nematic liquid crystals with polarized laser light, Nature, vol. 351, May 2, 1991, 1 page. |
Gibbons, et al., Optically Controlled Alignment of Liquid Crystals: Devices and Applications, Molecular Crystals and Liquid Crystals, vol. 251, 1994, 19 pages. |
Gibbons, et al., Optically generated liquid crystal gratings, Appl. Phys. Lett., 65, Nov. 14, 1994, 3 pages. |
University of Central Florida, School of Optics CREOL PPCE, Optics in the Southeast, Technical Conference and Tabletop Exhibit, Nov. 12-13, 2003, 9 pages. |
Ichimura, et al., Surface assisted photoalignment control of lyotropic liquid crystals, Part 1, Characterization and photoalignment of aqueous solutions of a water soluble dyes as lyotropic liquid crystals, J. Materials. Chem., vol. 12, 2002, abstract, 2 pages. |
Ichimura, et al., Reversible Change in Alignment Mode of Nematic Liquid Crystals Regulated Photochemically by “Command Surfaces” Modified with an Azobenzene Monolayer, American Chemical Society, Langmuir, vol. 4, No. 5, 1988, 3 pages. |
Zel'Dovich, et al., Devices for displaying visual information, Disclosure, School of Optics/CREOL, University of Central Florida, Jul. 2000, 10 pages. |
Provenzano, et al., Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces, Applied Physics Letter 89, 2006, 4 pages. |
Titus, et al., Efficient polarization-independent, re ective liquid crystal phase grating, Applied Physics Letter 71, Oct. 20, 1197, 3 pages. |
Chen, et al. An Electrooptically Controlled Liquid-Crystal Diffraction Grating, Applied Physics Letter 67, Oct. 30, 1995, 4 pages. |
Kim, et al., Unusual Characteristics of Diffraction Gratings in a Liquid Crystal Cell, Advanced Materials, vol. 14, No. 13-14, Jul. 4, 2002, 7 pages. |
Pan, et al., Surface Topography and Alignment Effects in UV-Modified Polyimide Films with Micron Size Patterns, Chinese Journal of Physics, vol. 41, No. 2, Apr. 2003, 8 pages. |
Fuh, et al., Dynamic studies of holographic gratings in dye-doped liquid-crystal films, Optics Letter, vol. 26, No. 22, Nov. 15, 2001, 3 pages. |
Yu, et al., Polarization Grating of Photoaligned Liquid Crystals with Oppositely Twisted Domain Structures, Molecular Crystals Liquid Crystals, vol. 433, 2005, 7 pages. |
Crawford, et al., Liquid-crystal diffraction gratings using polarization holography alignment techniques, Journal of Applied Physics 98, 2005, 10 pages. |
Seiberle, et al., 38.1 Invited Paper: Photo-Aligned Anisotropic Optical Thin Films, SID 03 Digest, 2003, 4 pages. |
Wen, et al., Nematic liquid-crystal polarization gratings by modification of surface alignment, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, 5 pages. |
Anagnostis, et al., Replication produces holographic optics in volume, Laser Focus World, vol. 36, Issue 3, Mar. 1, 2000, 6 pages. |
Gale, Replicated Diffractive Optics and Micro-Optics, Optics and Photonics News, Aug. 2003, 6 pages. |
McEldowney, et al., Creating vortex retarders using photoaligned LC polymers, Optics Letter, vol. 33, No. 2, Jan. 15, 2008, 3 pages. |
Marrucci, et al., Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain, Appl. Phys. Lett. 88, 2006, 3 pages. |
Stalder, et al., Lineraly polarized light with axial symmetry generated by liquid-crystal polarization converters, Optics Letters vol. 21, No., 1996, 3 pages. |
Kakichashvili, et al., Method for phase polarization recording of holograms, Sov. J. Quantum. Electron, vol. 4, No. 6, Dec. 1974, 5 pages. |
Todorov, et al., High-Sensitivity Material With Reversible Photo-Induced Anisotropy, Optics Communications, vol. 47, No. 2, Aug. 15, 1983, 4 pages. |
Attia, et al., Anisoptropic Gratings Recorded From Two Circularly Polarized Coherent Waves, Optics Communications, vol. 47, No. 2, Aug. 15, 1983, 6 pages. |
Cipparrone, et al., Permanent polarization gratings in photosensitive langmuir blodget films, Applied Physics Letter, vol. 77, No. 14, Oct. 2, 2000, 4 pages. |
Nikolova, et al., Diffraction Efficiency and Selectivity of Polarization Holographic Recording, Optica Acta: International Journal of Optics, vol. 31, No. 5, 1984, 11 pages. |
Lee et al., “Generation of pretilt angles of liquid crystals on cinnamte-based photoalignment . . . ”, Opt., Expr., vol. 17 (26) (Dec. 2009), abstract, 4 pages. |
Yaroshchuk et al. “Azodyes as photoalignment agents for polymerizable liquid crystals”, IDW'06 Digest vol. 1-3, 2006, 4 pages. |
Chigrinov et al. “Anchoring properties of photoaligned azo-dye materials” Phys. Rev., E vol. 68, (Dec. 2003), 5 pages. |
Tabiryan, et al., Broadband waveplate lenses, Optics Express 7091, vol. 24, No. 7, Mar. 24, 2016, 12 pages. |
Tabiryan, et al. Thin waveplate lenses of switchable focal length—new generation in optics, Optics Express 25783, vol. 23, No. 20, Sep. 19, 2015, 12 pages. |
Tabiryan, et al. Superlens in the skies: liquid-crystal-polymer technology for telescopes, Newsroom, 2016, 2 pages. |
Nersisyan, et al., The principles of laser beam control with polarization gratings introduced as diffractive waveplates, Proc. of SPIE, vol. 7775, 2010, 10 pages. |
Heller, A Giant Leap for Space Telescopes, Foldable Optics, S&TR, Mar. 2003, 7 pages. |
Beam Engineering for Advanced Measurements Co., PCT Application No. PCT/US2015026186, The Extended European Search Report, dated Mar. 8, 2017, 13 pages. |
Blinov, et al., Electrooptic Effects in Liquid Crystal MAterials, Springer-Verlag New York, 1994, 17 pages. |
Crawford, et al., Liquid Crystals in Complex Geometries; Formed by Polymer and Porous Networks, Taylor and Francis, 1996, 4 pages. |
Honma, et al., Liquid-Crystal Fresnel Zone Plate Fabricated by Microorubbing, Japanese Journal of Applied Phsyics, vol. 44, No. 1A, 2005, 4 pages. |
Sobolewska et al., “On the inscription of period and half period surface relief gratings in azobenzene-functionalized polymers”, J. Phys. Chem., vol. 112 (15) Jan. 3, 2008, 10 pages. |
Barrett et al., Model of laser driven mass transport in thin films of dye-functionalized polymers, J. Chem. Phys., vol. 109 (4), Jul. 22, 1998, 13 pages. |
Tabirian, U.S. Appl. No. 14/214,375, filed Mar. 14, 2014, Office Action Summary dated Jun. 27, 2017, 10 pages. |
Tabirian, et al., U.S. Appl. No. 14/688,425, filed Apr. 16, 2015, Office Action Summary dated Oct. 5, 2017, 10 pages. |
Serak, et al. Diffractive Waveplate Arrays [Invited], Journal of the Optical Society of America B, May 2017, pp. B56-B63, vol. 34, No. 5, 8 pages. |
Emoto, et al., Optical and Physical Applications of Photocontrollable Materials: Azobenzene-Containing and Liquid Crystalline Polymers, Polymers, Jan. 2012, 150-186, vol. 4, 38 pages. |
Pepper, M. et al, Nonlinear Optical Phase Conjugation, IEEE, Sep. 1991, pp. 21-34, 14 pages. |
Tabirian, N., Utility U.S. Appl. No. 14/194,808, filed Mar. 2, 2014, Office Action Summary dated Feb. 9, 2018, 10 pages. |
Tabirian, N., Utility U.S. Appl. No. 14/324,126, filed Jul. 4, 2014, Office Action Summary dated Feb. 8, 2018, 13 pages. |
De Sio, L., et al., “Digital Polarization Holography Advancing Geometrical Phase Optics,” 2016, Optics Express, vol. 24, Issue 16, pp. 18297-18306, 10 pages. |
Borek, G. and D. Brown, “High-performance diffractive optics for beam shaping,” 1999, Proceeding of SPIE, vol. 3633, pp. 51-60, 10 pages. |
Gerchberg, et al, practical algorithm for the determination of the phase from image and diffraction plane pictures, 1972, Optik, vol. 35, Issue 2, pp. 237-246, 10 pages. |
Tabirian, N., Utility U.S. Appl. No. 15/189,551, filed Jun. 22, 2016, Office Action Summary dated Feb. 27, 2018, 16 pages. |
Tabirian, et al., Utility U.S. Appl. No. 14/688,197, filed Apr. 16, 2015, Office Action Summary dated Aug. 6, 2018, 19 pages. |
Number | Date | Country | |
---|---|---|---|
20160209560 A1 | Jul 2016 | US | |
20180120484 A9 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
61980062 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12697083 | Jan 2010 | US |
Child | 13916627 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13916627 | Jun 2013 | US |
Child | 14688197 | US |