This disclosure relates generally to diffusers and, more particularly, to vent diffusers and in-line vent diffusers.
Diffusers are used to condition the flow of fluid passing through or being expelled from a pipe or other device and reduce noise, cavitation, and turbulence. Some diffusers will have a plurality of passages formed through a circumferential wall, which are used to reduce the noise produced as the fluid passes through the diffuser. The passages are spaced specifically such that the jets of gas that are produced as the gas exits the passages do not converge and produce aerodynamic noise. For solid diffusers used in applications where the process conditions produce aerodynamic noise, drilled holes through the circumferential wall of the diffuser are typically used to form the passages. However, drilled hole diffusers are very cumbersome, time consuming, and costly to produce. Some drilled hole diffusers may contain thousands of holes and the only real feasible way to produce the passages was to drill them.
In addition to the spacing of the passages on the outer surface of the diffuser, aerodynamic noise can also be reduced by providing a tortured, or non-linear, flow path for the passages or by varying the cross-sectional area of the passages as they pass through the wall of the diffuser. However, with drilled holes through a solid diffuser, creating passages having a non-linear flow path or having a variable cross-sectional area is not possible.
In accordance with one exemplary aspect of the present invention, a diffuser comprises a cylindrical wall having a first end and a second end, opposite the first end, and an arcuate end wall located at the second end of the cylindrical wall. The cylindrical wall has a first lattice structure formed of a first plurality of triply periodic surfaces that are periodic in cylindrical coordinates, the first lattice structure having a plurality of passages that extend between an inner surface of the cylindrical wall and an outer surface of the cylindrical wall. The arcuate end wall has a second lattice structure formed of a second plurality of triply periodic surfaces that are periodic in spherical coordinates, the second lattice structure having a plurality of passages that extend between an inner surface of the arcuate end wall and an outer surface of the arcuate end wall.
In further accordance with any one or more of the foregoing exemplary aspects of the present invention, a diffuser may further include, in any combination, any one or more of the following preferred forms.
In one preferred form, the first plurality of triply periodic surfaces and the second plurality of triply periodic surfaces are gyroid.
In another preferred form, the first plurality of triply periodic surfaces are oriented such that there are no unimpeded linear radial flow paths in the plurality of passages through the cylindrical wall and the second plurality of triply periodic surfaces are oriented such that there are no unimpeded linear radial flow paths in the plurality of passages through the arcuate end wall.
In another preferred form, the diffuser is an inline diffuser and comprises a first flange adjacent the first end of the cylindrical wall, an outlet head adjacent the outer surface of the cylindrical wall and secured to the cylindrical wall, and a second flange attached to the outlet head.
In accordance with another exemplary aspect of the present invention, a diffuser comprises a first wall having a first end and a second end, opposite the first end, a second wall having a first end and a second end, opposite the first end, and an annular cavity separating the first wall and the second wall. The first wall has a first lattice structure formed of a first plurality of triply periodic surfaces, the first lattice structure having a plurality of passages that extend between an inner surface of the first wall and an outer surface of the first wall. The second wall having a second lattice structure formed of a second plurality of triply periodic surfaces, the second lattice structure having a plurality of passages that extend between an inner surface of the second wall and an outer surface of the second wall.
In further accordance with any one or more of the foregoing exemplary aspects of the present invention, a diffuser may further include, in any combination, any one or more of the following preferred forms.
In one preferred form, the first lattice structure has a different volume fraction than the second lattice structure.
In another preferred form, the first lattice structure has a different unit cell size than the second lattice structure.
In another preferred form, the first wall is cylindrical and the first plurality of triply periodic surfaces are periodic in cylindrical coordinates and the second wall is cylindrical and the second plurality of triply periodic surfaces are periodic in cylindrical coordinates.
In another preferred form, a first arcuate end wall is located at the second end of the first wall and has a third lattice structure formed of a third plurality of triply periodic surfaces that are periodic in spherical coordinates, the third lattice structure having a plurality of passages that extend between an inner surface of the first arcuate end wall and an outer surface of the first arcuate end wall. A second arcuate end wall is located at the second end of the second wall and has a fourth lattice structure formed of a fourth plurality of triply periodic surfaces that are periodic in spherical coordinates, the fourth lattice structure having a plurality of passages that extend between an inner surface of the second arcuate end wall and an outer surface of the second arcuate end wall.
In another preferred form, the first wall is arcuate and the first plurality of triply periodic surfaces are periodic in spherical coordinates and the second wall is arcuate and the second plurality of triply periodic surfaces are periodic in spherical coordinates.
In another preferred form, the first wall is cylindrical and the first plurality of triply periodic surfaces are periodic in cylindrical coordinates and the second wall is spherical and the second plurality of triply periodic surfaces are periodic in spherical coordinates.
In another preferred form, the first plurality of triply periodic surfaces and the second plurality of triply periodic surfaces are gyroid.
In another preferred form, the first plurality of triply periodic surfaces are oriented such that there are no unimpeded linear radial flow paths in the plurality of passages through the first wall and the second plurality of triply periodic surfaces are oriented such that there are no unimpeded linear radial flow paths in the plurality of passages through the second wall.
In accordance with another exemplary aspect of the present invention, a diffuser comprises a wall having a first end and a second end, opposite the first end. The wall has a lattice structure that is formed of a plurality of triply periodic surfaces, the lattice structure having a varying unit cell size and a plurality of passages that extend between an inner surface of the wall and an outer surface of the wall.
In further accordance with any one or more of the foregoing exemplary aspects of the present invention, a diffuser may further include, in any combination, any one or more of the following preferred forms.
In one preferred form, the wall is cylindrical and the triply periodic surfaces are periodic in cylindrical coordinates.
In another preferred form, the unit cell size of the lattice structure changes from the inner surface of the wall to the outer surface.
In another preferred form, the wall is cylindrical and the unit cell size of the lattice structure changes from the first end of the wall to the second end.
In another preferred form, the diffuser comprises an arcuate end wall located at the second end of the wall and having a second lattice structure formed of a second plurality of triply periodic surfaces that are periodic in spherical coordinates. The second lattice structure has a plurality of passages that extend between an inner surface of the arcuate end wall and an outer surface of the arcuate end wall and the unit cell size of the second lattice structure changes from the inner surface of the arcuate end wall to the outer surface of the arcuate end wall.
In another preferred form, the wall is spherical and the triply periodic surfaces are periodic in spherical coordinates.
In another preferred form, the unit cell size of the lattice structure changes from the inner surface of the wall to the outer surface
The example diffusers shown and described herein have walls that include lattice structures formed of triply periodic surfaces to form passages through the lattice structures for the flow of fluid. Some examples are single stage and have single lattice structures that have a changing unit cell size and/or a changing volume fraction through the thickness and/or length of the lattice structure. Other examples are multi-stage and have multiple lattice structures with recovery volumes between the stages. The multiple lattice structures can also have changing unit cell sizes and/or a changing volume fractions through the thickness and/or length of the lattice structures and/or the multiple lattice structures could be formed of different triply periodic surfaces in each stage.
Referring to
An arcuate end wall 60 is located at a second end 30 of cylindrical wall 15, opposite first end 25. Arcuate end wall 60 can have a semi-spherical shape or other curved shape and has a second lattice structure 65 formed of a plurality of triply periodic surfaces that form a plurality of passages 70 extending between an inner surface 75 and an outer surface 80 of end wall 60. Like passages 55, passages 70 can be used to characterized and/or condition fluid flowing through vent diffuser 10 by, for example, reducing the pressure of the fluid as it flows through passages 70. Arcuate end wall 60 can be manufactured as a separate part and attached to second end 30 of cylindrical wall 15, such as by welding or other suitable process, or cylindrical wall 15 and end wall 60 can be manufactured as one single, integral, unitary part using Additive Manufacturing Technology, as described below, or any other suitable process.
Vent diffuser 10, solid wall 5, cylindrical wall 15, end wall 60, first lattice structure 50, and/or second lattice structure 65 can be manufactured using Additive Manufacturing Technology, such as direct metal laser sintering, full melt powder bed fusion, etc. Using an Additive Manufacturing Technology process, the 3-dimensional design of the desired structure is divided into multiple layers, for example layers approximately 20-50 microns thick. A powder bed, such as a powder based metal, is then laid down representing the first layer of the design and a laser or electron beam sinters together the design of the first layer. A second powder bed, representing the second layer of the design, is then laid down over the first sintered layer and the second layer is sintered together. This continues layer after layer to form the completed structure. Using an Additive Manufacturing Technology process to manufacture diffusers allows the freedom to produce passages having various shapes, geometries, and features that are not possible using current standard casting or drilling techniques. The entire vent diffuser 10 could be manufactured as a single, integral, unitary part using Additive Manufacturing Technology or one or more parts of vent diffuser 10 could be manufactured using Additive Manufacturing Technology and then assembled together.
In the example shown in
For example, as shown in
cos(ωr√{square root over (x2+y2)}+ϕr)cos(ωzz+ϕz)cos(ωθ tan−1(y/x)+ϕθ)+sin(ωr√{square root over (x2+y2)}+ϕr)sin(ωzz+ϕz)sin(ωθ tan−1(y/x)+ϕe)=0
Other possible cylindrically periodic gyroid-like triply periodic surfaces that can be used to form first lattice structure 50 can be represented by the equation:
cos(ωr√{square root over (x2+y2)}+ϕr)sin(ωzzϕz)+cos(ωzz+ϕz)sin(ωθ tan−1(y/x)+ϕθ)sin(ωr√{square root over (x2+y2)}+ϕr)+cos(ωθ tan−1(y/x)+ϕθ)sin(ωr√{square root over (x2+y2)}+ϕr)=0
In the above equations, the ω values control the frequency in that direction (r for radial, z for axial, and θ for tangential) and the ϕ values control the phase shift of where in the part the periodic surfaces begin. The gyroid-like triply periodic surfaces represented by the equations above are cylindrical lattice structures and therefore, can be used to form cylindrical wall 15.
In addition, as shown in
Again, in the above equation, the ω values control the frequency in that direction (r for radial, z for axial, and θ for tangential) and the ϕ values control the phase shift of where in the part the periodic surfaces begin.
Whether first and second lattice structures 50, 65 are formed using gyroid or gyroid-like triply periodic surfaces or other triply periodic surfaces, passages 55, 70 formed through first and second lattice structures 50, 65 will have entirely arcuate surfaces. In addition, the triply periodic surfaces of first and second lattice structures 50, 65 are also preferably oriented so that there are no unimpeded radial flow paths in passages 55, 70 through cylindrical wall 15 or end wall 60. The arcuate surfaces provide losses to reduce the pressure of the fluid flow through vent diffuser 10 and minimize the turbulence and separation that can occur using other vent types. Therefore, noise produced by fluid flowing through first and second lattice structures 50, 65 is minimized.
First and second lattice structures 50, 65 can have any volume fraction or ratio desired for a particular application and the volume fraction can be constant throughout the lattice or can vary radially and/or longitudinally along the lattice, for example, by stretching or compressing the triply periodic surfaces in the radial and/or longitudinal direction. In addition, first and second lattice structures 50, 65 can also have any unit cell size desired for a particular application and the unit cell size can also be constant throughout the lattice or can vary radially and/or longitudinally along the lattice, for example, by varying the thickness of the walls forming the triply periodic surfaces in the radial and/or longitudinal directions.
Referring to
An outlet head 185 is secured to solid wall 105, is positioned adjacent outer surface 140 and first lattice structure 150, and at least partially surrounds first lattice structure 150. A second flange 190 is attached to outlet head 185, or second flange 190 and outlet head 185 could be a single, integral, unitary part, to connect inline diffuser 100 to another pipe or other device.
An arcuate end wall 160 is located at a second end 130 of cylindrical wall 115, opposite first end 125. Arcuate end wall 160 can have a semi-spherical shape or other curved shape and has a second lattice structure 165 formed of a plurality of triply periodic surfaces that form a plurality of passages 170 extending between an inner surface 175 and an outer surface 180 of end wall 160. Like passages 155, passages 170 can be used to characterized and/or condition fluid flowing through inline diffuser 100 by, for example, reducing the pressure of the fluid as it flows through passages 170. Arcuate end wall 160 can be manufactured as a separate part and attached to second end 130 of cylindrical wall 115, such as by welding or other suitable process, or cylindrical wall 115 and end wall 160 can be manufactured as one single, integral, unitary part using Additive Manufacturing Technology, as described above, or any other suitable process.
The entire inline diffuser 100 could be manufactured as a single, integral, unitary part using Additive Manufacturing Technology or one or more parts of inline diffuser 100 could be manufactured using Additive Manufacturing Technology and then assembled together.
In the example shown in
Whether first and second lattice structures 150, 165 are formed using gyroid or gyroid-like triply periodic surfaces or other triply periodic surfaces, passages 155, 170 formed through first and second lattice structures 150, 165 will have entirely arcuate surfaces. In addition, the triply periodic surfaces of first and second lattice structures 150, 165 are also preferably oriented so that there are no unimpeded radial flow paths in passages 155, 170 through cylindrical wall 115 or end wall 160. The arcuate surfaces provide losses to reduce the pressure of the fluid flow through inline diffuser 100 and minimize the turbulence and separation that can occur using other vent types. Therefore, noise produced by fluid flowing through first and second lattice structures 150, 165 is minimized.
First and second lattice structures 150, 165 can have any volume fraction or ratio desired for a particular application and the volume fraction can be constant throughout the lattice or can vary radially and/or longitudinally along the lattice, for example, by stretching or compressing the triply periodic surfaces in the radial and/or longitudinal direction. In addition, first and second lattice structures 150, 165 can also have any unit cell size desired for a particular application and the unit cell size can also be constant throughout the lattice or can vary radially and/or longitudinally along the lattice, for example, by varying the thickness of the walls forming the triply periodic surfaces in the radial and/or longitudinal directions.
Referring to
A first arcuate end wall 260 can be located at a second end 230 of first wall 215, opposite first end 225. First arcuate end wall 260 can have a semi-spherical shape or other curved shape and has a third lattice structure 265 formed of a third plurality of triply periodic surfaces that form a plurality of passages 270 extending between an inner surface 275 and an outer surface 280 of first end wall 260. Like passages 255, passages 270 can be used to characterized and/or condition fluid flowing through vent diffuser 200 by, for example, reducing the pressure of the fluid as it flows through passages 270. First arcuate end wall 260 can be manufactured as a separate part and attached to second end 230 of first wall 215, such as by welding or other suitable process, or first wall 215 and first end wall 260 can be manufactured as one single, integral, unitary part using Additive Manufacturing Technology, as described above, or any other suitable process.
A second arcuate end wall 360 can be located at a second end 330 of second wall 315, opposite first end 325. Second arcuate end wall 360 can have a semi-spherical shape or other curved shape and has a fourth lattice structure 365 formed of a plurality of triply periodic surfaces that form a plurality of passages 370 extending between an inner surface 375 and an outer surface 380 of second end wall 360. Like passages 355, passages 370 can be used to further characterized and/or condition fluid flowing through first wall 215 and first end wall 260 by, for example, reducing the pressure of the fluid as it flows through passages 370. Second arcuate end wall 360 can be manufactured as a separate part and attached to second end 330 of second wall 315, such as by welding or other suitable process, or second wall 315 and second end wall 360 can be manufactured as one single, integral, unitary part using Additive Manufacturing Technology, as described above, or any other suitable process.
An annular cavity 290 can also surround first end wall 260 and separate first end wall 260 and second end wall 360 to form a recovery plenum between first end wall 260 and second end wall 360.
The entire vent diffuser 200 could be manufactured as a single, integral, unitary part using Additive Manufacturing Technology or one or more parts of vent diffuser 200 could be manufactured using Additive Manufacturing Technology and then assembled together.
In the example shown in
Whether first, second, third, and fourth lattice structures 250, 350, 265, 365 are formed using gyroid or gyroid-like triply periodic surfaces or other triply periodic surfaces, passages 255, 355, 270, 370 formed through first, second, third, and fourth lattice structures 250, 350, 265, 365 will have entirely arcuate surfaces. In addition, the triply periodic surfaces of first, second, third, and fourth lattice structures 250, 350, 265, 365 are also preferably oriented so that there are no unimpeded radial flow paths in passages 255, 355, 270, 370. The arcuate surfaces provide losses to reduce the pressure of the fluid flow through vent diffuser 200 and minimize the turbulence and separation that can occur using other vent types. Therefore, noise produced by fluid flowing through first, second, third, and fourth lattice structures 250, 350, 265, 365 is minimized.
First, second, third, and fourth lattice structures 250, 350, 265, 365 can have any volume fraction or ratio desired for a particular application and the volume fraction can be constant throughout the lattice or can vary radially and/or longitudinally along the lattice, for example, by stretching or compressing the triply periodic surfaces in the radial and/or longitudinal direction. In the particular example shown in
A third example vent diffuser 400 is shown in
The entire vent diffuser 400 could be manufactured as a single, integral, unitary part using Additive Manufacturing Technology or one or more parts of vent diffuser 400 could be manufactured using Additive Manufacturing Technology and then assembled together.
In the example shown in
Whether first and second lattice structures 450, 550 are formed using gyroid or gyroid-like triply periodic surfaces or other triply periodic surfaces, passages 455, 555 formed through first and second lattice structures 450, 550 will have entirely arcuate surfaces. In addition, the triply periodic surfaces of first and second lattice structures 450, 550 are also preferably oriented so that there are no unimpeded radial flow paths in passages 455, 555. The arcuate surfaces provide losses to reduce the pressure of the fluid flow through vent diffuser 400 and minimize the turbulence and separation that can occur using other vent types. Therefore, noise produced by fluid flowing through first and second lattice structures 450, 550 is minimized.
First and second lattice structures 450, 550 can have any volume fraction or ratio desired for a particular application and the volume fraction can be constant throughout the lattice or can vary radially along the lattice, for example, by stretching or compressing the triply periodic surfaces in the radial direction. In the particular example shown in
A fourth example vent diffuser 600 is shown in
The entire vent diffuser 600 could be manufactured as a single, integral, unitary part using Additive Manufacturing Technology or one or more parts of vent diffuser 600 could be manufactured using Additive Manufacturing Technology and then assembled together.
In the example shown in
Whether first, second, and third lattice structures 250, 650, 265 are formed using gyroid or gyroid-like triply periodic surfaces or other triply periodic surfaces, passages 255, 655, 270 formed through first, second, and third lattice structures 250, 650, 265 will have entirely arcuate surfaces. In addition, the triply periodic surfaces of first, second, and third lattice structures 250, 650, 265 are also preferably oriented so that there are no unimpeded radial flow paths in passages 255, 655, 270. The arcuate surfaces provide losses to reduce the pressure of the fluid flow through vent diffuser 600 and minimize the turbulence and separation that can occur using other vent types. Therefore, noise produced by fluid flowing through first, second, and third lattice structures 250, 650, 265 is minimized.
First, second, and third lattice structures 250, 650, 265 can have any volume fraction or ratio desired for a particular application and the volume fraction can be constant throughout the lattice or can vary radially and/or longitudinally along the lattice, for example, by stretching or compressing the triply periodic surfaces in the radial and/or longitudinal direction. In the particular example shown in
Referring to
If wall 715 were cylindrical, rather than spherical, an arcuate end wall can be located at a second end of wall 715, opposite a first end. Arcuate end wall could have a semi-spherical shape or other curved shape and a second lattice structure formed of a second plurality of triply periodic surfaces that form a plurality of passages extending between an inner surface and an outer surface of the end wall. Like passages 755, the passages in the end wall can be used to characterized and/or condition fluid flowing through vent diffuser 700 by, for example, reducing the pressure of the fluid as it flows through the passages. The arcuate end wall could be manufactured as a separate part and attached to the second end of the cylindrical wall, such as by welding or other suitable process, or the cylindrical wall and the end wall could be manufactured as one single, integral, unitary part using Additive Manufacturing Technology, as described above, or any other suitable process.
The entire vent diffuser 700 could be manufactured as a single, integral, unitary part using Additive Manufacturing Technology or one or more parts of vent diffuser 700 could be manufactured using Additive Manufacturing Technology and then assembled together.
In the example shown in
Whether lattice structure 750, or the lattice structures of a cylindrical wall or arcuate end wall, are formed using gyroid or gyroid-like triply periodic surfaces or other triply periodic surfaces, the passages formed through the lattice structures will have entirely arcuate surfaces. In addition, the triply periodic surfaces of the lattice structures are also preferably oriented so that there are no unimpeded radial flow paths in the passages. The arcuate surfaces provide losses to reduce the pressure of the fluid flow through vent diffuser 700 and minimize the turbulence and separation that can occur using other vent types. Therefore, noise produced by fluid flowing through the lattice structures is minimized.
Lattice structure 750, or the lattice structures of a cylindrical wall and/or arcuate end wall, can have any volume fraction or ratio desired for a particular application and the volume fraction can be constant throughout the lattice structure or can vary radially and/or longitudinally along the lattice, for example, by stretching or compressing the triply periodic surfaces in the radial and/or longitudinal direction. In addition, lattice structure 750, or the lattice structures of a cylindrical wall and/or arcuate end wall, can also have any unit cell size desired for a particular application and the unit cell size can also be constant throughout the lattice or can vary radially and/or longitudinally along the lattice, for example, by varying the thickness of the walls forming the triply periodic surfaces in the radial and/or longitudinal directions. In the particular example shown in
While various embodiments have been described above, this disclosure is not intended to be limited thereto. Variations can be made to the disclosed embodiments that are still within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4456033 | Kay et al. | Jun 1984 | A |
6382253 | McCarty et al. | May 2002 | B1 |
10487961 | Eilers et al. | Nov 2019 | B2 |
20070240774 | McCarty | Oct 2007 | A1 |
20090183790 | Moore | Jul 2009 | A1 |
20140014493 | Ryan | Jan 2014 | A1 |
20160341335 | Adams et al. | Nov 2016 | A1 |
20180112800 | Griffin, Jr. et al. | Apr 2018 | A1 |
20180117872 | Abu Al-Rub | May 2018 | A1 |
20180187984 | Manzo | Jul 2018 | A1 |
20190145298 | Abu Al-Rub | May 2019 | A1 |
20190274925 | Vlahinos | Sep 2019 | A1 |
20200033070 | Vlahinos | Jan 2020 | A1 |
20200171753 | Satko | Jun 2020 | A1 |
20200173291 | Rathay | Jun 2020 | A1 |
20200197751 | Madson | Jun 2020 | A1 |
20200215480 | Roy | Jul 2020 | A1 |
20200222839 | Kelly | Jul 2020 | A1 |
20200309492 | Flater, IV | Oct 2020 | A1 |
20200365290 | Fisher | Nov 2020 | A1 |
20200391290 | Stoner | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
WO-0169114 | Sep 2001 | WO |
WO-2008079593 | Jul 2008 | WO |
WO-2017018173 | Feb 2017 | WO |
Entry |
---|
Inline Diffusers Product Bulletin dated Mar. 2013, 8 pgs. |
8580 Product Bulletin dated Aug. 2017, 16 pgs. |
A31D Instructional Manual dated Jun. 2017, 28 pgs. |
V260 Instructional Manual dated Jul. 2017, 16 pgs. |
International Search Report for PCT/US2018/050580 dated Dec. 11, 2018, 6 pgs. |
Written Opinion for PCT/US2018/050580 dated Dec. 11, 2018, 10 pgs. |
Number | Date | Country | |
---|---|---|---|
20210301844 A1 | Sep 2021 | US |