1. Field of the Invention
The present invention relates to illumination assemblies, and particularly, to an illumination assembly used in camera modules of portable electronic devices.
2. Description of Related Art
With the ongoing development of photographing technology, more and more portable electronic devices (e.g., mobile phones and digital cameras) are equipped with illumination assemblies for camera modules to strengthen environmental light for good image exposure.
A typical illumination assembly includes a light source and a planar lens whose central axis is typically coaxial with the light source. The light source usually emits light in radial directions. The radial light is strongest near the center of the lens along the common axis of the light source and the diffusing lens, and the radial light weakens towards the periphery of the lens. Thus, light uniformity is poor.
Therefore, there is room for improvement within the art.
Many aspects of the illumination assembly can be better understood with reference to the following drawings. These drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present illumination assembly. Moreover, in the drawings like reference numerals designate corresponding sections throughout the several views.
The light source 21 may be a light emitting diode (LED). As mentioned above, the emitted radial light by the light source 21 is strongest in the area near the center of the diffusing lens 22, but gradually weakens towards the periphery of the diffusing lens 22, away from the common axis of the light source 21 and the diffusing lens 22.
Referring to
The incident surface 221 includes, e.g., two first refraction portions 2211, two second refraction portions 2212 and two third refraction portions 2213. The first refraction portions 2211, the second refraction portions 2212 and the third refraction portions 2213 are configured to be sloped. The first refraction portions 2211 are arranged on both sides, and symmetrically about a central axis of the diffusing lens 22. The third refraction portions 2213 are arranged in the center area of the diffusing lens 22 and symmetrically about the central axis of the diffusing lens 22. The second refraction portions 2212 are symmetrically arranged between the first refraction portions 2211 and the third refraction portions 2213. The angle between the first refraction portion 2211 and the emitting plane 222 is larger than the angle between the second refraction portion 2212 and the emitting plane 222. The angle between the second refraction portion 2212 and the emitting plane 222 is larger than the angle between the third refraction portion 2213 and the emitting plane 222.
Referring to
It is to be understood, however, that even through numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of sections within the principles of the invention to the full extent indicated by the broad general meaning of the terms, in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
200810305233.7 | Oct 2008 | CN | national |