The invention relates to a metal powder suitable for producing lead free bullets, in particular bullets having a density of approximately 8-15 g/cm3.
The poisoning effect of lead contamination on the environment with emphasis on soil and water has been in focus during the last decades. In many countries certain ammunition containing lead has been prohibited.
Due to a number of factors such as availability, price and material properties lead has been the dominating material for bullet and shot shell manufacturing. The density of lead at room temperature is 11.35 g/cm3 which is comparably high in relation to many other materials. The high density enables lead-based projectiles to maintain a higher kinetic energy and more accurate flight pattern over long distances than less dense materials.
Further, since lead projectiles have dominated the market, it would be an advantage if an alternative bullet has a similar density as lead projectiles minimising differences in long range trajectories and in firearm recoil. Thereby the shooter knows where to aim and the recoil consistent with that of shooting a lead projectile so the “feel” of shooting is the same as that of shooting a lead bullet.
Further, with reference to hunting bullets, a major demand is also that the bullet shall expand and cause fatal damage when penetrating the game. This condition is fulfilled with lead since this element is very ductile and has high degree of deformability.
However, for certain applications as e.g. bird hunting, one would like to minimise the expansion of the bullet and therefore full metal jacket bullets are commonly used. For sport shooting accuracy is important and the deformability of the bullets is not necessary for this kind of bullet.
Therefore it is desirable to provide a more environmental friendly bullet which has a similar density as lead. However alternative elements with high density are scarce, and for the moment only tungsten (W) and bismuth (Bi) are used commercially for production of lead free ammunition with high density. Tungsten has a density of 19.8 g/cm3 and the toxic effects of tungsten is considered to be comparably limited. Further it would be advantageous if the costs of such bullets can be kept low. The price for tungsten is very dependent on the particle size and purity and very expensive atomised powders are available on the market. However, tungsten oxide (W03) which is an intermediate product in the production of W, is comparably cheap.
U.S. Pat. No. 5,527,376 claims a shot pellet or small arms projectile comprising 40% by weight to 60% by weight tungsten and from 60% by weight to 40% by weight iron prepared by sintering tungsten containing powders having median particle sizes below about 6 microns at a temperature sufficient to form a material consisting primarily of an intermetallic compound of tungsten and iron, a projectile comprising 40-60 wt % W and 60-40 wt % Fe, formed by sintering tungsten containing powder.
U.S. Pat. No. 5,950,064 presents a method for the manufacture of lead-free shots with a density equal to or higher than lead. Ferrotungsten (typically 70%-80%, by weight, tungsten and the balance iron) and other iron-tungsten alloys are most preferred due to a relatively low cost when compared to tungsten metals and other tungsten base alloys.
U.S. Pat. No. 5,399,187 shows a lead free bullet, comprising: a compacted composite containing a high-density first constituent selected from the group consisting of tungsten, tungsten carbide, ferrotungsten and mixtures thereof; and a lower density second constituent selected from the group consisting of tin, zinc, aluminium, iron, copper, bismuth and mixtures thereof.
U.S. Pat. No. 6,823,798 describes manufacturing processes for articles that are formed from compositions of matter that include powders containing tungsten and at least one binder.
U.S. Pat. No. 6,112,669 describes a lead-free projectile made from a composition containing about 5-25% by weight tungsten and more than about 97% by weight tungsten plus iron.
U.S. Pat. No. 6,527,880 describes a non-toxic shot having a composition of 20-70% W, 10-70% Ni and 0-55% Fe.
U.S. Pat. No. 6,640,724 describes a method for manufacturing a frangible projectile from a mixture of powders having a composition that consists essentially of up to 35% ferrotungsten, up to 3% lubricant, and the balance iron. The mixture is compacted at a pressure of between about 138 MPa and about 827 MPa to form a compact. The compact is optionally sintered at a temperature no greater than about 900° C.
One object of the invention is to provide an iron-based powder and a powder composition which is suitable for manufacturing lead free ammunition. A further objective is to provide a non-toxic projectile manufactured from said iron-based powder.
Several further objectives of the present invention, which may be achieved individually or in groups according to various aspects of the present invention, are:
At least one of the above mentioned objects are solved by providing a diffusion alloyed iron powder having tungsten bonded to the surfaces of the powder particles, which diffusion alloyed iron powder comprises 30-60 wt % tungsten, balance essentially only iron and unavoidable impurities.
The diffusion alloyed powder of the invention has been shown to be suitable for producing lead free bullets, in particular when the diffusion alloyed powder is admixed with graphite in an amount of 1-4 wt % C.
Therefore a metallurgical powder composition is proposed, which composition comprises: at least 90 percent by weight of the diffusion alloyed iron powder of the invention and about 0.05 to about 2 percent by weight of a lubricant and optionally about 0.05 to about 2 percent by weight of a binder. Preferably the composition further comprises 1-4 wt % C in the form of Graphite.
Further a process for producing a diffusion alloyed iron powder which comprises: 30-60 wt % tungsten, balance essentially only iron and unavoidable impurities, said process comprises; a) mixing a tungsten oxide and an atomized iron powder, b) and annealing the mix of step a) under a reducing atmosphere whereby the tungsten oxide is reduced and tungsten is bonded to the surfaces of the iron powder particles of the iron powder.
Preferably in step b) of the process for producing the diffusion alloyed iron powder; the annealing is performed at a temperature of at least 800° C., more preferably at least 900° C. and at a temperature below 1500° C., more preferably below 1200° C. The annealing is preferably performed during at least 30 minutes, more preferably at least 45 minutes.
Preferably in step b) of the process for producing the diffusion alloyed iron powder; the reduced atmosphere comprises essentially hydrogen.
Further a method for producing a bullet comprising:
Preferably in step b) of the method for producing the bullet; the green body is formed by cold compaction of the mixture, where preferably the compaction pressure is within the range of 500-1500 MPa, more preferably at least 800 Mpa, and where preferably the temperature during compaction is below 100° C.
Alternatively in step b) of the method for producing the bullet; the green body is formed by warm compaction of the mixture, where preferably the compaction pressure is within the range of 500-1500 MPa, preferably at least 800 Mpa, and where preferably the temperature during compaction is within the range of 100-200° C.
Preferably in step c) of the method for producing the bullet; the sintering temperature is in the range of 1100° C. to 1400° C.
The sintered density of the bullet produced according to the bullet preferably has a density of at least 10 g/cm3, more preferably at least 11 g/cm3. Such bullets are suitable as shot gun bullets and hunting bullets.
The bullet may be coated with a jacket from the group consisting of tin, zinc, copper, brass and plastic.
Three diffusion alloyed iron powders—referred to, in the present application, as DA 1, DA 2 and DA 3—were prepared. This was done by mixing 227 grams of WO3, from the company H.C. Starck, and 120 grams of different iron powders, iron powder 1, iron powder 2 and iron powder 3—the numbering of the iron powders corresponding to the numbering of the diffusion alloyed iron powders. I.e. DA 1 was prepared from iron powder 1 and so on. The iron powders are shown in Table 1 and the diffusion alloyed powders are shown in Table 2.
The WO3-powder from H.C. Starck had the following properties: wt % WO3=99.9, AD 4.8 g/cm3, d90=29 μm and d50=12 μm.
Respectively mix of iron powder 1, 2 and 3 and WO3 where heat treated in a continuous furnace during 60 minutes at a temperature of 1000° C., the atmosphere being 100% Hydrogen. During this heat treatment, the fine particles of the WO3 powder bonds to the coarser iron powder particles. After cooling the resulting soft cakes were milled, and approximately 300 grams of the diffusion alloyed powders, DA 1, 2 and 3, were obtained respectively. Chemical analysis showed that the resulting diffusion alloyed powders DA 1, 2 and 3 comprised 40 wt % Fe, 60 wt % W and inevitable impurities.
A number of compositions were tested. For each composition test samples were produced by filling a form (10 mm diameter and 2 mm thickness) with the powder metallurgical compositions shown in Table 3. These samples were then compacted at a compaction pressure of 1000 Mpa followed by sintering in a 100% Hydrogen atmosphere during 1 hour and at a temperature of 1325° C. For each composition the green density and sintered density was measured as averages from their corresponding test samples. The aim was to create some sort of liquid phase sintering and the additives FeSi, FeB, C and carbonyl nickel were evaluated as seen in Table 3.
As can be seen in Table 3 the best results were achieved for composition A, E and F—all being mixed with 2 wt % C in the form of Graphite (grade UF). The highest sintering density was achieved for composition A, however composition E and F closely followed.
These results clearly shows that an iron powder having tungsten bonded to the surfaces of the iron powder particles can be achieve a bullet density similar to lead bullets and would thus be a suitable alternative for producing lead free bullets—in particular when admixing graphite to the powder metallurgical composition in order to facilitate liquid phase sintering.
It is obvious that by optimizing the production process the tungsten content could be further reduced—for a sintered density of 11.8 g/cm3 the theoretical tungsten content is approximately 30 wt %. Further, it is likely that by optimizing the process the sintering temperature may also be reduced, preferably below 1250° C. while still maintaining liquid phase sintering.
Thus according to the present invention a projectile produced from the powder of the invention may have a density in the range of approximately 8-15 g/cm3, preferably in the range of approximately 10-13 g/cm3, more preferably in the range of approximately 10.5-12 g/cm3, and even more preferably a density of approximately 11.3-11.8 g/cm3. However, it should be understood that the projectile of the invention may have a density outside of these illustrative ranges and within further subsets of these ranges.
Further, if the projectiles are jacketed, compacting could be done in the jacket and sintered therein. Alternatively, the projectiles could be compacted and sintered before being inserted into the jackets. If the projectiles are coated, they would be coated after compacting and sintering.
Number | Date | Country | Kind |
---|---|---|---|
0700193-6 | Jan 2007 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2008/050061 | 1/21/2008 | WO | 00 | 11/5/2009 |
Number | Date | Country | |
---|---|---|---|
60886664 | Jan 2007 | US |