This invention generally relates to quantification of nucleic acid molecules present in a modification state using target/substrate state-dependent enzymes. For example, in one embodiment the invention comprises quantification of nucleic acid comprising a particular methylation state using methylation-specific restriction enzymes.
It is generally understood that in biological systems nucleic acid molecules may be selectively modified in various state or condition specific ways and are thus useful as biomarkers for the various states or conditions. One well known example of nucleic acid modification includes DNA methylation which is generally appreciated as an important regulator of gene expression. DNA methylation may play a role in embryogenesis and epigenetic regulation that has been implicated in the development and progression of a number of diseases, such as cancer and osteoarthritis. For example, nucleic acid methylation in eukaryotic organisms can occur with cytosine species located 5′ to a guanine species (i.e., CpG sequences), however other forms of methylation are also known. Research suggests that genes with high levels of methylation in a promoter region are transcriptionally silent, which may allow unchecked cell proliferation. When a promoter region has significant methylation of nucleic acid bases in certain regions, the methylation is typically most prevalent in sequences having CpG repeats, so called “CpG islands.” Methylated states have also been implicated in the development and progression of cancer through different mechanisms. Continuing with the present example, other types of methylation mechanisms have also been identified and may occur in heterogeneous/mixed samples such as CpA methylation profiles associated with stem cells or hydroxymethylation.
Species of target/substrate state-dependent enzymes can be useful tools to selectively enrich for a population of nucleic acid in a certain modification state. Continuing with the example of methylation, species of methylation-specific restriction enzymes (also referred to as MSRE) provide a mechanism for enrichment of a population of nucleic acid molecules by utilizing the characteristics of one or more MSRE species that includes an inability to cleave nucleic acid molecules at the enzyme recognition site when in a particular methylation state. For example, in some embodiments when a recognition site for a certain species of restriction enzyme is methylated, the MSRE cleaves the nucleic acid, and consequently the nucleic acid molecule is enzymatically reacted. Alternatively, when the recognition site is in an un-methylated state, the species of MSRE cannot enzymatically react with the nucleic acid molecule, and the integrity of the nucleic acid molecule is preserved.
There are a number of applications where accurate quantification of differences between nucleic acid modification states is desirable in order to accurately identify a disease state or condition. That identification can be particularly challenging in cases where there are only small quantities of starting nucleic acid molecule in a sample available. An example of such a field of application includes a non-invasive test for fetal genomic abnormalities. It is highly desirable that such a test accurately quantifies the amount fetal DNA in maternal blood in order to perform aneuploidy analysis (e.g. trisomy of chromosome 21, 18, or 13). It is therefore advantageous to utilize differences in a methylation state of one or more target regions that exist between a maternal nucleic acid population and a fetal nucleic acid population to quantify the amount of fetal DNA in maternal blood to identify whether a genomic abnormality is present in the fetus. In other words, accurate determination of the percentage of fetal DNA present in a sample drawn from the mother provides confidence in the counting and allocation of chromosome number contributed from the fetal and maternal sources. Another example of a field of application includes cancer analysis where it is generally appreciated that there are differences in methylation state of certain gene targets between cancer cells and normal cells in a tissue type.
This invention generally relates to increasing the sensitivity of assays for quantification of modified nucleic acid populations using target/substrate state-dependent enzymes. In particular aspects, the invention relates to digital analysis for detection and quantification of differences between methylation-dependent targets (e.g. target regions on a nucleic acid that are in a certain methylation state). For example, methods of the invention utilize digital analysis to quantify a difference in methylation-state at a target region of nucleic acid molecules in a mixed sample by a) enzymatically reacting with molecules in the mixed sample having the target region in a methylation state recognized by the enzyme and in the presence of control nucleic acid comprising the target region in the methylation state recognized by the enzyme, b) amplifying the remaining nucleic acid molecules in the sample, and c) quantifying an amount of total amplifiable nucleic acid from the mixed sample, an amount of molecules comprising the target region, and an amount of the control nucleic acid, where the amount of control nucleic acid is used to determine efficiency of the enzymatic reaction and quantify what number of molecules in the amount of molecules comprising the target region are from molecules in a methylation-state that is not recognized by the enzyme.
Methods of the invention account for the fact that, when detecting differences in methylation-state targets using MSRE's, the difference between a failed assay (i.e. inaccurate quantification) and a positive assay (i.e. accurate quantification) is dependent on the degree of enzymatic reaction of target regions of the nucleic acid in a methylation state recognized by the MSRE (e.g. non-methylated recognition site). The present invention overcomes that dependency by normalizing the amount of measured molecules comprising the target region based on a value of the enzymatic reaction efficiency of the MSRE for the target regions in the recognized methylation-state using a multiplexed assay on the same sample.
In certain aspects, methods of the invention involve providing a mixed sample of nucleic acid molecules comprising target regions in different methylation-states, reference nucleic acid molecules that do not comprise the target region, and a first number of control nucleic acid molecules comprising the target region in the recognized methylation-state (e.g. added to the mixed sample in a known concentration), and conducting methylation-specific enzymatic reaction of nucleic acid in a sample. After enzymatic reaction, a number of the molecules comprising the target regions, a number of the reference nucleic acid molecules, and a number of the control nucleic acid molecules is determined. A value of the efficiency of the methylation-specific enzymatic reaction is then measured using the first number of control nucleic acid molecules and second number of unreacted control nucleic acid molecules. The efficiency value is then used to normalize the number of the molecules comprising the target regions to calculate a number of molecules comprising the target region that are derived from molecules in a methylation-state that is not recognized by the enzyme which can then be used with the number of reference nucleic acid molecules to calculate the difference or ratio of molecules comprising the target region in a recognized methylation state versus the number of molecules comprising the target region in an unrecognized state. The ratio can then be used to identify a disease or condition. In addition, the disease or condition may relate to a percent of the mixed sample deriving from a certain source (e.g. a sample taken from an individual that has multiple targets, some of which include state dependent targets). For example, the normalized ratio may be indicative of a percent of fetal DNA in a sample or indicative of the presence/absence of cancer cells from a tissue. In some cases the source of the mixed sample may include DNA obtained from blood that comprises circulating tumor cells (also referred to as CTC) or cell free DNA (also referred to as cfDNA). In some cases the source of the mixed sample may include DNA obtained from saliva, urine, tear, vaginal secretion, amniotic fluid, breast fluid, breast milk, sweat, or other heterogeneous tissue.
A number of examples are described herein that involve performing methylation-specific enzymatic reaction in order to allow for subsequent detection and quantification of differences in methylation state of molecules at one or more target regions in a mixed sample of nucleic acids. However it will be appreciated that other state specific enzymes exist and the same methods described herein may be employed using these enzymes, mixed samples of nucleic acid molecules having state dependent target regions, and control nucleic acid. Therefore the use of MSRE's should not be considered limiting.
It is generally appreciated that MSRE's include, inter alia, MspI and HpaII which cleave nucleic acid molecules at recognition sites based on methylation status (also sometimes referred to as cleavage sites). It will be appreciated that there are a number of different species of MSRE having different recognition sites and have different activity based on different methylation states. For example, some methylation specific enzymes recognize when a specified recognition site is not methylated resulting in cleavage of the nucleic acid where the same methylated recognition site is not recognized and left intact. In embodiments of the described invention it is important that the enzyme is specific for either the completely modified state or completely unmodified state and not a state where partial modification is recognized by the enzyme (e.g. completely methylated or completely un-methylated in the example of MSRE's). However, it is generally appreciated that the enzymatic activity can be inefficient for a variety of reasons resulting in an incomplete reaction of the recognized nucleic acid molecules in a sample and thus exact quantification of the methylation-state differences of targets can be inaccurate and unreliable without compensating for enzyme efficiency.
As described above, in order to provide accurate quantification of the methylation-state differences within a mixed sample, methods of the invention provide for assessing the efficiency of the methylation-specific enzymatic reaction. The efficiency of the methylation-specific enzymatic reaction in an assay, according to certain embodiments, can be measured by adding a known amount of control nucleic acid molecules to the sample prior to performing methylation specific enzymatic reaction. In the described embodiments, the control nucleic acid molecule includes at least one recognition site in a methylation state that is recognized by the MSRE employed in the assay. After enzymatic reaction the remaining molecules may be amplified (e.g. via digital PCR) and the efficiency of the enzymatic reaction by quantified by counting the number of control nucleic acid molecules present in the sample that should have been enzymatically reacted, and comparing that number to the known amount of control nucleic acid molecules introduced to prior to enzymatic reaction. For example, the MSRE cleavage site of the control nucleic acid is in a recognized methylation state, where an absence of control nucleic acid molecules after enzymatic reaction indicates that enzymatic reaction is complete, and a presence of control nucleic acid after enzymatic reaction indicates that enzymatic reaction is incomplete. For incomplete enzymatic reaction, a number of control nucleic acid remaining after enzymatic reaction relative to the known amount of control nucleic acid added to the assay is used to measure the efficiency of the enzymatic reaction (e.g. percent efficiency). The measured efficiency can then be used to normalize a value of methylation-dependent targets in the assay.
In certain embodiments, one or more MSRE's that recognize one or more regions that differ in methylation state by disease or condition of an individual (or individuals in the case of prenatal testing for aneuploidy) as well as recognizing one or more regions in control nucleic acid molecules comprising the methylation state recognized by the MSRE can be introduced into the mixed sample including the target nucleic acid from the individual(s) for detection of the disease or condition, a reference nucleic acid from the individual, and control nucleic acid not associated with the individual added to the mixed sample in a known quantity. The MSRE's are used to enzymatically react with one or more regions of the target nucleic acid molecules in the recognized methylation state, thereby leaving one or more regions of target nucleic acid molecules that are not in the recognized methylation state intact for subsequent amplification and/or detection. In the same sample, the MSRE's are used to enzymatically react with the regions of the control nucleic acid molecules in the recognized methylation state, as discussed above, in order to determine the efficiency of the enzymatic reaction. In embodiments of the invention described herein, the reference molecules are never a substrate for enzymatic reaction and the control nucleic acid molecules are always a substrate for enzymatic reaction. The number of intact target nucleic acid molecules are subsequently quantified using the number of intact control nucleic acid molecules to normalize for the enzymatic efficiency.
In certain aspects, methods of the invention rely on counting techniques to quantify a ratio or fraction of intact target nucleic acid molecules relative to the number reference nucleic acid molecules. The ratio is indicative of a disease or condition. According to some embodiments, the method provides for counting nucleic acids in partitioned compartments, such as droplets, as in digital PCR. This method involves partitioning the nucleic acid from a sample, after the enzymatic reaction step, into droplets such that a subset of droplets includes nucleic acid from the mixed sample, and amplifying nucleic acid within each droplet. In some embodiments the modification state specific enzymes are included in the mixed sample partitioned into the droplets so that enzymatic reaction step occurs in the droplets, along with any subsequent reactions for processing and detection. The amplified product in each droplet may be detected by, for example, a hydrolysis probe-based assay. In some embodiments, the droplets contain one or fewer target nucleic acid molecules per droplet. In the same or alternative embodiments the nucleic acid molecules partitioned into droplets may include one or more multiplexed target molecules comprising one or more regions recognized by one or more state specific enzymes that differs in state by disease or condition of an individual, one or more reference nucleic acid molecules, and one or more control nucleic acid molecules. In addition, components for an amplification reaction and detection (e.g. probes with detectable labels, primers, reagents) may be introduced into the droplets. The probes with detectable labels and primers introduced into each droplet may be specific for different targets.
An exemplary method for forming droplets involves flowing a stream of aqueous fluid including the mixed sample such that it intersects two opposing streams of flowing carrier fluid that is immiscible with the aqueous fluid. Intersection of the aqueous fluid with the two opposing streams of flowing carrier fluid results in partitioning of the aqueous fluid into individual aqueous droplets. The carrier fluid may be any fluid that is immiscible with the aqueous fluid. An exemplary carrier fluid is oil, particularly, a fluorinated oil. In certain embodiments, the carrier fluid includes a surfactant, such as a fluorosurfactant. The droplets may be flowed through channels.
Detection of the nucleic acid molecules that include molecules with target regions that differ in methylation state, reference molecules, and control nucleic acid molecules can be accomplished by introducing a plurality of probe species that identify the particular nucleic acid types to the mixed sample. Typically the probe species are added to the mixed sample after the enzymatic reaction steps are complete and subsequently included in the partitioned compartments, although as described above in some embodiments the probe species may be included in the mixed sample with the state specific enzyme when partitioned. Members of the plurality of probe species can each include the same detectable label, or a different detectable label. The detectable label is preferably a fluorescent label. The plurality of probe species can include one or more groups of probe species at varying concentrations. The one or more groups of probe species can include the same detectable label which varies in intensity upon detection, due to the varying probe concentrations. In some embodiments, detecting the label may be accomplished by an amplification based technique, such as PCR, digital PCR, or qPCR. In specific embodiments, digital PCR is used to detect the labels. Similarly for amplification, one or more sets of primer pairs may be introduced into the assay after enzymatic reaction. Each set of primer pairs capable of amplifying a specific region of interest from the nucleic acid molecules from an individual (e.g. region comprising the state specific targets and/or reference region) and control nucleic acid molecule.
In certain aspects, embodiments of the invention involve screening for a disease or condition. Screening for a disease or condition may involve counting a first number of compartmentalized portions including a first detectable label that identifies one or more state specific targets, counting a second number of compartmentalized portions comprising a second detectable label corresponding to reference targets, adjusting the first number corresponding to the state specific targets based on the efficiency of a enzyme activity; and determining whether a statistical difference exists between adjusted first number and the second number.
The invention generally relates to methods for analyzing nucleic acid in a sample. In certain aspects, methods of the invention involve providing a mixed sample of nucleic acid comprising modification state specific targets, reference targets, and a first number of control nucleic acid molecules, and conducting modification state specific enzymatic reaction of nucleic acid in a sample using target/substrate state dependent enzymes. After enzymatic reaction, a number of the intact modification state specific targets, a number of the reference targets, and a second number of the control nucleic acid molecules is determined. A value of the completeness/efficiency of the modification state specific enzymatic reaction is then determined based on the first and second numbers of the control nucleic acid molecules. The efficiency value is then used to normalize the number of intact modification state specific targets counted and/or a ratio of the number of the modification state specific target molecules counted and the number of reference molecules counted. The ratio can then be used to identify a disease or condition. In some embodiments, the disease or condition may relate to embryogenesis, epigenetic regulation, or a disease. In the same or alternative embodiments, the disease or condition may relate to a percent of sample deriving from a certain source. For example, the normalized ratio may be indicative of a percent of fetal DNA in a sample relative to the maternal DNA, or percent of tumor DNA relative to normal DNA. Importantly, the normalized ratio may include a percentage of DNA in a first modification state relative to DNA in a second modification state that occurs in a heterogeneous sample.
The term “modification” of nucleic acid molecules, as used herein, includes any type of modification useable as a marker between a modified and unmodified state, for example, methylation and histone acetylation (e.g. chromatin). In the embodiments described herein, the nucleic acid modification is subject to enzymatic reaction by one or more target/substrate state specific enzymes and thus the modification state of the nucleic acid can be employed to selectively enrich for a population in one state versus a second population in another state. In some embodiments, some enzymes may add a modification a substrate in a state specific manner rather than remove the substrate from the sample, where the modification may be detectable or play a role in the process of detection. For example, embodiments of the invention include any target substrate that can be differentiated by an enzyme which can produce a product in a state specific manner. Other examples could include proteases, lipases, ligases, polymerases, restriction enzymes, 3-OH MSRE, and chromatin motif specific enzymes.
In the described embodiments, nucleic acid molecules in a sample may include one or more modification state specific target regions and one or more reference target regions where enzymatic treatment is employed to “enrich” for molecules comprising the state specific target region in a state not recognized and enzymatically reacted by the state specific enzyme that enables accurate quantification of differences of modification state or imbalances. An important element in the described embodiments includes a ‘spike-in’ exogenous control nucleic acid that is added in a specific quantity such that following enzymatic treatment of the sample the extent of enzymatic reaction is precisely quantified by counting the remaining number of spiked-in control molecules. It is again important to note that the control nucleic acid molecule is always a substrate for enzyme reaction in the described embodiments. For example, the control nucleic acid comprises one or more regions in the correct modification state that is recognized by the state specific enzyme and enzymatically reacted. A value for the extent of enzymatic reaction is used to determine a ‘normalizing factor’ for quantification of the number of molecules that should not be subject to enzymatic reaction.
For example, a methylation state specific target region comprises one or more substrate/recognition sites for at least one MSRE and resides, all or in part, within a target region or locus of a nucleic acid where the presence or absence of methylation at the locus is population dependent and where a difference between populations indicates the presence of a disease or condition. Further, the methylation state specific target region comprises one or more sets of sites that are recognized by primers and probes where the sets of sites may be the same as or different from the recognition site(s) for the MSRE. A methylation state independent reference molecule comprises one or more endogenous control regions that is independent of the enzymatic treatment for quantification of the amount of input molecules from an individual in the mixed sample (e.g. counting a target that is not a substrate/recognition site for the enzyme(s)). In the presently described example, if the target/assay is “methylation state independent”, containing no potential MSRE cleavage sites, then counting the number of this target with a digital amplification technique (such as digital PCR) assay results in a methylation state independent cluster on a 2-D scatter plot that indicates the number of “genome equivalents” of DNA in the sample. The number of genome equivalents is useful in the calculation of the difference between the number of modified versus unmodified molecules in a sample comprising a mixture of both species (e.g. a mixed or heterogeneous sample). For instance, in the case where an MSRE recognizes the un-methylated state of a recognition site, the number of reference molecules representing the genome equivalents will be the denominator and the number of target molecules counted in the methylated state the numerator in the fraction for counting the number of methylated target loci molecules per genomic equivalent in the sample.
Embodiments of a reference molecule comprises a region of a nucleic acid molecule that do not have a recognition site for any the enzymes used to enzymatically react with the methylation dependent targets. It is again important to note that the reference molecule is never a substrate for enzyme reaction in the described embodiments. In addition, a reference molecule is selected due its lack of copy number variation so that the number of genome equivalents in the mixed sample can be easily and accurately assessed. In certain embodiments, multiple different methylation state dependent targets, reference molecules, and control nucleic acid molecules can be assessed in a single assay. The reference nucleic acid can be used to determine a total amount of amplifiable genome equivalents in a sample as compared to an amount of the methylation state specific targets.
Methods of the invention involve performing modification state specific enzymatic reaction in order to allow for subsequent detection of modification state specific targets in nucleic acid. One example includes methylation state specific enzymatic reaction that utilizes MSRE's that cleave recognition sites having specific sequence composition based on methylation status. For example, some species of MSRE recognize an un-methylated site and cleaves the nucleic acid resulting in enzymatic reaction with the un-methylated target nucleic acid and leave molecules comprising the methylated recognition sites of methylation state specific targets intact. The intact molecules can then be used in subsequent processing steps such as amplification and quantification. However in the present example, the MSRE enzymatic reaction may not be 100% efficient resulting in inefficient and incomplete enzymatic reaction of the un-methylated target regions, and thus the number of intact molecules counted from the methylation state specific target molecules includes the expected methylated population and some number of unexpected un-methylated molecules counted as false positives. Therefore, in order to accurately quantify the number of modification state specific targets in the particular state, embodiments of the invention provide for assessing the efficiency of the modification-specific enzymatic reaction.
The efficiency of the modification-specific enzymatic reaction in an assay, according to certain embodiments, can be measured by adding a known amount of control nucleic acid to the assay prior to performing modification-specific enzymatic reaction. In the described embodiments, the control nucleic includes a modification-specific restriction enzyme cleavage site and is in a modification state that is recognized by the enzyme for enzymatic reaction. In the described embodiments, the number of the control nucleic acid molecules remaining after the enzymatic reaction step are counted and compared to the known amount of control nucleic acid added prior to enzymatic reaction to determine a measure of the efficiency of enzymatic reaction. For example, in some embodiments the modification-specific restriction enzyme cleavage site of the control nucleic acid is non-modified and recognized for cleavage by the enzyme so that an absence of control nucleic acid after enzymatic reaction indicates that the enzymatic reaction is complete, whereas a presence of some amount of control nucleic acid after enzymatic reaction indicates that the enzymatic reaction is incomplete. For incomplete enzymatic reaction, a number of control nucleic acid remaining after the enzymatic reaction relative to the known amount of control nucleic acid added to the assay is used to measure the efficiency of the enzymatic reaction. The measured efficiency can then be used to normalize a value of modification state specific targets of unknown starting quantity within the assay. That is, the measured efficiency can be used to normalize an amount of methylation state specific targets in a sample. For instance, the number of modification state specific targets counted after enzymatic reaction may be adjusted based on the measured efficiency of the enzymatic reaction corresponding to the number of unreacted control nucleic acid molecules counted. A ratio of the adjusted number of modification-dependent targets to the number of reference targets is then determined. Alternatively, ratio of the number of modification-dependent targets to the number of reference targets is determined first, and then the ratio is adjusted based the measured efficiency of the enzymatic reaction corresponding to the amount of the control nucleic acid. The ratio may be indicative of a disease or condition.
The normalization process using the measure of enzymatic reaction efficiency is very important for the precision of the assay and confidence that the number of molecules counted as false positive or false negative are minimized. The precision of the assay is particularly important when the number of molecules in a certain modification state in the sample available for counting is very low. For example, a heterogeneous sample may comprise a fraction of target nucleic acid molecules in a certain modification state associated with a disease or condition, where the fraction is less than 5%, less than 2% or less than 1% of the heterogeneous sample. In the present example the heterogeneous sample may be employed in prenatal testing for genetic aneuploidy where the fetal fraction of DNA can range from about 2-10%, or less than 2% of the DNA in the heterogeneous sample. Typically, an expected ratio of maternal to fetal chromosomes would be expected to be 1:1 for a normal fetus. However, in the case where a fetal aneuploid condition exists, the statistics for accurately identifying the aneuploid condition depend heavily on the amount of the fetal fraction of DNA with the chromosomal abnormality (e.g. particularly if low, ˜3% or less) and/or when the total number of countable molecules in the heterogeneous sample is low. In such cases precision of the assay is statistically important in order to accurately call the existence of the aneuploid condition. In other words, a low fetal fraction from a sample with a low number of countable molecules can result in a small difference in calculated ratio where the precision of detection provides measure of statistical confidence that the small difference in ratio can be accurately called as an aneuploid condition.
It will be appreciated that prenatal testing is provided in the example above, however the same applies to cancer analysis, or other assay of heterogeneous tissues using embodiments of the described invention. Therefore, the example of prenatal testing should not be considered as limiting.
Some embodiments of the invention involve determining a number of target nucleic acid molecules in the sample, such as by determining a number of modification state specific targets, determining a number of reference molecules, and determining a number of control nucleic acid molecules. For example, the numbers of molecules may be determined by detecting target-specific detectable labels that may be coupled to probes, such as hydrolysis probes.
In one aspect, the invention provides droplets containing a single nucleic acid template or fewer, amplification reagents, and one or more detectable probes. The amplification reagents may include multiplexed PCR primers that along with the detectable probes may be specific to the modification-dependent target(s), reference target(s), or control nucleic acid(s). Methods of the invention also provide for detecting the nucleic acid template by forming such droplets and amplifying the nucleic acid templates using droplet based digital amplification.
Reactions within microfluidic droplets may yield very uniform fluorescence intensity at the end point, and ultimately the intensity depends on the efficiency of probe hydrolysis. Thus, in another aspect of the methods of the invention, different reactions with different efficiencies can be discriminated on the basis of end point fluorescence intensity alone even if they have the same color. Furthermore, in another method of the invention, the efficiencies can be tuned simply by adjusting the probe concentration, resulting in an easy-to-use and general purpose method for multiplexing. In another aspect of the invention, adding multiple colors increases the number of possible reactions geometrically, rather than linearly as with qPCR, because individual reactions can be labeled with multiple fluorophores.
Nucleic Acids
Nucleic acid is generally is acquired from a sample or a subject. Target molecules for labeling and/or detection according to the methods of the invention include, but are not limited to, genetic and proteomic material, such as DNA, genomic DNA, RNA, expressed RNA, chromosomal and/or extra-chromosomal targets (e.g. mitochondrial, episomal, exosomal). Methods of the invention are applicable to DNA from whole cells or to portions of genetic or proteomic material obtained from one or more cells, or cell-free DNA. For a subject, the sample may be obtained in any clinically acceptable manner, and the nucleic acid templates are extracted from the sample by methods known in the art. Nucleic acid templates can be obtained as described in U.S. Patent Application Publication Number US2002/0190663 A1, published Oct. 9, 2003. Generally, nucleic acid can be extracted from a biological sample by a variety of techniques such as those described by Maniatis, et al. (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y., pp. 280-281, 1982), the contents of which are incorporated by reference herein in their entirety.
Nucleic acid templates include deoxyribonucleic acid (DNA) and/or ribonucleic acid (RNA). Nucleic acid templates can be synthetic or derived from naturally occurring sources. In one embodiment, nucleic acid templates are isolated from a biological sample containing a variety of other components, such as proteins, lipids and non-template nucleic acids. Nucleic acid templates can be obtained from any cellular material, obtained from an animal, plant, bacterium, fungus, or any other cellular organism. Biological samples for use in the present invention include viral particles or preparations. Nucleic acid templates can be obtained directly from an organism or from a biological sample obtained from an organism, e.g., from blood, urine, cerebrospinal fluid, seminal fluid, saliva, sputum, stool and tissue. In a particular embodiment, nucleic acid is obtained from fresh frozen plasma (FFP). Any tissue or body fluid specimen may be used as a source for nucleic acid for use in the invention. Nucleic acid templates can also be isolated from cultured cells, such as a primary cell culture or a cell line. The cells or tissues from which template nucleic acids are obtained can be infected with a virus or other intracellular pathogen. A sample can also be total RNA extracted from a biological specimen, a cDNA library, viral, or genomic DNA.
In some embodiments nucleic acid molecules obtained from biological samples is fragmented to produce suitable template molecules for analysis. In one embodiment, nucleic acid from a biological sample is fragmented by sonication. It will however be appreciated that there are numerous methods for fragmenting nucleic acid molecules known in the related art and any method may be used with the presently described embodiments.
A biological sample as described herein may be homogenized or fractionated in the presence of a detergent or surfactant. The concentration of the detergent in the buffer may be about 0.05% to about 10.0%. The concentration of the detergent can be up to an amount where the detergent remains soluble in the solution. In a preferred embodiment, the concentration of the detergent is between 0.1% to about 2%. The detergent, particularly a mild one that is nondenaturing, can act to solubilize the sample. Detergents may be ionic or nonionic. Examples of nonionic detergents include triton, such as the Triton® X series (Triton® X-100 t-Oct-C6H4-(OCH2-CH2)xOH, x=9-10, Triton® X-100R, Triton® X-114 x=7-8), octyl glucoside, polyoxyethylene(9)dodecyl ether, digitonin, IGEPAL® CA630 octylphenyl polyethylene glycol, n-octyl-beta-D-glucopyranoside (betaOG), n-dodecyl-beta, Tween® 20 polyethylene glycol sorbitan monolaurate, Tween® 80 polyethylene glycol sorbitan monooleate, polidocanol, n-dodecyl beta-D-maltoside (DDM), NP-40 nonylphenyl polyethylene glycol, C12E8 (octaethylene glycol n-dodecyl monoether), hexaethyleneglycol mono-n-tetradecyl ether (C14E06), octyl-beta-thioglucopyranoside (octyl thioglucoside, OTG), Emulgen, and polyoxyethylene 10 lauryl ether (C12E10). Examples of ionic detergents (anionic or cationic) include deoxycholate, sodium dodecyl sulfate (SDS), N-lauroylsarcosine, and cetyltrimethylammoniumbromide (CTAB). A zwitterionic reagent may also be used in the purification schemes of the present invention, such as Chaps, zwitterion 3-14, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulf-onate. It is contemplated also that urea may be added with or without another detergent or surfactant.
Lysis or homogenization solutions may further contain other agents, such as reducing agents. Examples of such reducing agents include dithiothreitol (DTT), .beta.-mercaptoethanol, DTE, GSH, cysteine, cysteamine, tricarboxyethyl phosphine (TCEP), or salts of sulfurous acid. Once obtained, the nucleic acid is denatured by any method known in the art to produce single stranded nucleic acid templates and a pair of first and second oligonucleotides is hybridized to the single stranded nucleic acid template such that the first and second oligonucleotides flank a target region on the template.
Nucleic acid molecules within a sample may include modified regions as discussed above. For example, prokaryotic nucleic acid is methylated at cytosine and adenosine residues (see, e.g., McClelland et al., Nuc. Acids. Res. 22:3640-3659 (1994). Methylation of prokaryotic nucleic may protect the nucleic from enzymatic reaction by cognate restriction enzymes, i.e., foreign DNAs (which are not methylated in this manner) that are introduced into the cell are enzymatically reacted by restriction enzymes which cannot enzymatically react with the methylated prokaryotic nucleic acid. Nucleic acid methylation patterns can be used to identify specific bacterial types (e.g., genus, species, strains, and isolates).
Mammalian nucleic acid is often methylated at cytosine residues, typically these cytosines are 5′ neighbors of guanine (CpG). This methylation has been shown by several lines of evidence to play a role in gene activity, cell differentiation, tumorigenesis, X-chromosome inactivation, genomic imprinting and other major biological processes (Razin and Riggs eds. in DNA Methylation Biochemistry and Biological Significance, Springer-Verlag, N.Y., 1984). Research suggests that genes with high levels of methylation in a promoter region are transcriptionally silent, which may allow unchecked cell proliferation. When a promoter region has excessive methylation, the methylation is typically most prevalent in sequences having CpG repeats, so called “CpG islands.” Undermethylation (hypomethylation) has also been implicated in the development and progression of cancer through different mechanisms.
In eukaryotic cells, methylation of cytosine residues that are immediately 5′ to a guanosine, occurs predominantly in CG poor loci (Bird, Nature 321:209 (1986)). In contrast, discrete regions of CG dinucleotides called CpG islands remain unmethylated in normal cells, except during X-chromosome inactivation and parental specific imprinting (Li, et al., Nature 366:362 (1993)) where methylation of 5′ regulatory regions can lead to transcriptional repression.
Aberrant methylation, including aberrant methylation at specific loci, is often associated with a disease state. For example, de novo methylation of the Rb gene has been demonstrated in a small fraction of retinoblastomas (Sakai, et al., Am. J. Hum. Genet., 48:880 (1991)), and a more detailed analysis of the VHL gene showed aberrant methylation in a subset of sporadic renal cell carcinomas (Herman, et al., PNAS USA, 91:9700 (1994)). Expression of a tumor suppressor gene can also be abolished by de novo DNA methylation of a normally unmethylated 5′ CpG island. See, e.g., Issa, et al., Nature Genet. 7:536 (1994); Merlo, et al., Nature Med. 1:686 (1995); Herman, et al., Cancer Res., 56:722 (1996); Graff, et al., Cancer Res., 55:5195 (1995); Herman, et al., Cancer Res. 55:4525 (1995). Methylation of the p16 locus is associated with pancreatic cancer. See, e.g., Schutte et al., Cancer Res. 57:3126-3131 (1997). Methylation changes at the insulin-like growth factor II/H19 locus in kidney are associated with Wilms tumorigenesis. See, e.g., Okamoto et al., PNAS USA 94:5367-5371 (1997). The association of alteration of methylation in the p15, E-cadherin and von Hippel-Lindau loci are also associated with cancers. See, e.g., Herman et al., PNAS USA 93:9821-9826 (1997). The methylation state of GSTP 1 is associated with prostate cancer. See, e.g., U.S. Pat. No. 5,552,277. Tumors where certain genomic loci are methylated have been found to respond differently to therapies such as cis-platin or radiation treatment than tumors where the same genomic loci are un-methylated. It is clear that DNA from tumor cells at certain genomic loci can be different in the levels of DNA methylation and in this way can be distinguished from the DNA from adjacent normal cells. DNA from tumor cells has been found in various body fluids and other clinical specimens collected from cancer patients. For example, methylated DNA having the same sequence of tumor suppressor genes has been found in serum, urine, saliva, sputum, semen, lavages, cell scrapes, biopsies, resected tissues, and feces. Therefore, detection of altered methylation profiles at loci where such alterations are associated with disease can be used to provide diagnoses or prognoses of disease.
Other examples include aberrantly methylated SEPT9 DNA in plasma correlated with occurrence of colorectal cancer (See deVos et al. Clin Chem. 2009 July; 55(7):1337-46); MGMT promoter methylation predictive of response to radiotherapy and chemotherapy (See Rivera et al Neuro Oncol (2010) 12 (2): 116-121); and RASSF1A implicated in cancer (See Dis Markers. 2007; 23(1-2):73-87) as well as a fetal marker.
It will also be appreciated the RNA may exhibit differences in methylation state and is considered within the scope of the described embodiments.
Modification-Specific Enzymatic Reaction
Embodiments of the invention provides for performing modification specific enzymatic reaction of nucleic acid in the sample. In some cases, enzymatic reaction is performed prior to partitioning the nucleic acid for digital analysis, however enzymatic reaction may also be performed within the partitions. In some embodiments methylation-specific enzymatic reaction is used to enrich for a particular target-state to enable accurate quantification. For example, enrichment of one target-state (e.g. methylated or un-methylated) improves the precision and confidence of statistical accuracy of numbers derived from counting target copy numbers in a heterogeneous mixture (e.g. if a completely enriched 100% fetal fraction is prepared, then one needs to see a 50% increase in counts of chromosome 21 targets compared to a normal diploid chromosome target, whereas if the fetal fraction is 10% then one needs to see a 5% increase to call out an aneuploidy condition such as trisomy). The amount of input material and the precision of the measurement are very much improved by using enriched material.
The enrichment occurs from methylation-specific enzymatic reaction that prevents a target locus in a methylation state from being amplified such that target loci in the other methylation state are amplified and detected. In addition, methylation-specific enzymatic reaction is also used to enzymatically react with a known quantity of control nucleic acid, placed in the sample, containing MSRE cleavage sites in the recognized methylation state. As discussed, a comparison of the quantity of the control nucleic acid molecules after enzymatic reaction and the known quantity of control nucleic acid molecules placed in the sample allows one to determine the efficiency of the enzymatic reaction.
Methylation-specific enzymatic reaction techniques are known in the art, and utilize MSRE's. Some species of methylation-specific restriction enzymes cleave DNA at or in proximity to an un-methylated recognition sequence but does not cleave at or in proximity to the same sequence when the recognition sequence is methylated. Alternatively, some species of MSRE's cleave DNA at or in proximity to a methylated recognition sequence but does not cleave at or in proximity to the same sequence when the recognition sequence is un-methylated. Exemplary MSRE's are described in, e.g., McClelland et al., Nucleic Acids Res. 22(17):3640-59 (1994) and http://rebase.neb.com. In addition, MSRE's are described in PCR: Methods Express: Chapter 17 PCR-based methods to determine DNA methylation status at specific CpG sites using methylation-specific restriction enzymes. (S. Hughes and A. Moody, eds., 2007). Another PCR-based process that involves enzymatic reaction of genomic DNA with MSRE's prior to PCR amplification is described in Singer-Sam et al., Nucl. Acids Res. 18:687, 1990.
Suitable methylation-specific restriction enzymes that do not cleave DNA at or near their recognition sequence when a cytosine within the recognition sequence is methylated at position C5 include, e.g., Aat II, Aci I, Acl I, Age I, Alu I, Asc I, Ase I, AsiS I, Bbe I, BsaA I, BsaH I, BsiE I, BsiW I, BsrF I, BssH II, BssK I, BstB I. BstN I, BstU I, Cla I, Eae I, Eag I, Fau I, Fse I, Hha I, HinP1 I, HinC II, Hpa II, Hpy99 I, HpyCH4 IV, Kas I, Mbo I, Mlu I, MapA1 I, Msp I, Nae I, Nar I, Not I, Pml I, Pst I, Pvu I, Rsr II, Sac II, Sap I, Sau3A I, Sfl I, Sfo I, SgrA I, Sma I, SnaB I, Tsc I, Xma I, and Zra L Suitable methylation-specific restriction enzymes that do not cleave DNA at or near their recognition sequence when an adenosine within the recognition sequence is methylated at position N6 include, e.g., Mho I.
As discussed, control nucleic acids are nucleic acids that include methylation-specific cleavage sites in the recognized methylation state (e.g. always a substrate for enzymatic reaction). In the embodiments described herein, the control nucleic acids may include synthesized molecules, or purified control molecules. As one skilled in the art would appreciate, any nucleic acid molecule with a MSRE cleavage site can be used with its associated MSRE. In some embodiments, the cleavage site of the control nucleic acid is not methylated, such that the appropriate MSRE enzymatically reacts with all of the known control nucleic acid in the sample. This indicates that the enzymatic reaction is complete. If any of the control nucleic acid in the nucleic acid is not enzymatically reacted, unreacted control nucleic acid molecules are detected and quantified. The number of unreacted control nucleic acid molecules are then compared known amount of control nucleic acid molecules introduced to the sample prior to enzymatic reaction. The ratio of unreacted control molecules to the known amount of control molecules can be used as a measure of the efficiency or completeness of the methylation-specific enzymatic reaction.
Droplet Formation
Methods of the invention involve forming sample droplets where some droplets contain zero template nucleic acid molecules, some droplets contain one template nucleic acid molecule, and some droplets may or may not contain multiple template nucleic acid molecules. In some embodiments, a sample is divided into compartments such that only one or fewer of either reference target, methylation-dependent target, or control target is in any one droplet. In the described embodiments, the distribution of target nucleic acid molecules within droplets obeys the Poisson distribution. However, methods for non-Poisson loading of droplets are known to those familiar with the art, and include but are not limited to active sorting of droplets, such as by laser-induced fluorescence, or by passive one-to-one loading. The description that follows assumes Poisson loading of droplets, but such description is not intended to exclude non-Poisson loading, as the invention is compatible with all distributions of DNA loading.
The droplets are aqueous droplets that are surrounded by an immiscible carrier fluid. Methods of forming such droplets are shown for example in Link et al. (U.S. patent application numbers 2008/0014589, 2008/0003142, and 2010/0137163), Stone et al. (U.S. Pat. No. 7,708,949 and U.S. patent application number 2010/0172803), Anderson et al. (U.S. Pat. No. 7,041,481 and which reissued as RE41,780) and European publication number EP2047910 to Raindance Technologies Inc. The content of each of which is incorporated by reference herein in its entirety.
The sample fluid is typically an aqueous buffer solution, such as ultrapure water (e.g., 18 mega-ohm resistivity, obtained, for example by column chromatography), 10 mM Tris HCl and 1 mM EDTA (TE) buffer, phosphate buffer saline (PBS) or acetate buffer. Any liquid or buffer that is physiologically compatible with nucleic acid molecules can be used. The carrier fluid is one that is immiscible with the sample fluid. The carrier fluid can be a non-polar solvent, decane (e g., tetradecane or hexadecane), fluorocarbon oil, silicone oil or another oil (for example, mineral oil).
In certain embodiments, the carrier fluid contains one or more additives, such as agents which increase, reduce, or otherwise create non-Newtonian surface tensions (surfactants) and/or stabilize droplets against spontaneous coalescence on contact. Surfactants can include Tween, Span, fluorosurfactants, and other agents that are soluble in oil relative to water. In some applications, performance is improved by adding a second surfactant, or other agent, such as a polymer or other additive, to the sample fluid. Surfactants can aid in controlling or optimizing droplet size, flow and uniformity, for example by reducing the shear force needed to extrude or inject droplets into an intersecting channel. This can affect droplet volume and periodicity, or the rate or frequency at which droplets break off into an intersecting channel. Furthermore, the surfactant can serve to stabilize aqueous emulsions in fluorinated oils from coalescing.
In certain embodiments, the droplets may be coated with a surfactant or a mixture of surfactants. Preferred surfactants that may be added to the carrier fluid include, but are not limited to, surfactants such as sorbitan-based carboxylic acid esters (e.g., the “Span” surfactants, Fluka Chemika), including sorbitan monolaurate (Span 20), sorbitan monopalmitate (Span 40), sorbitan monostearate (Span 60) and sorbitan monooleate (Span 80), and perfluorinated polyethers (e.g., DuPont Krytox 157 FSL, FSM, and/or FSH). Other non-limiting examples of non-ionic surfactants which may be used include polyoxyethylenated alkylphenols (for example, nonyl-, p-dodecyl-, and dinonylphenols), polyoxyethylenated straight chain alcohols, polyoxyethylenated polyoxypropylene glycols, polyoxyethylenated mercaptans, long chain carboxylic acid esters (for example, glyceryl and polyglycerl esters of natural fatty acids, propylene glycol, sorbitol, polyoxyethylenated sorbitol esters, polyoxyethylene glycol esters, etc.) and alkanolamines (e.g., diethanolamine-fatty acid condensates and isopropanolamine-fatty acid condensates).
In certain embodiments, the carrier fluid may be caused to flow through the outlet channel so that the surfactant in the carrier fluid coats the channel walls. In one embodiment, the fluorosurfactant can be prepared by reacting the perflourinated polyether DuPont Krytox 157 FSL, FSM, or FSH with aqueous ammonium hydroxide in a volatile fluorinated solvent. The solvent and residual water and ammonia can be removed with a rotary evaporator. The surfactant can then be dissolved (e.g., 2.5 wt %) in a fluorinated oil (e.g., FLUORINERT (3M)), which then serves as the carrier fluid.
One approach to merging sample fluids, using a device called a lambda injector, involves forming a droplet, and contacting the droplet with a fluid stream, in which a portion of the fluid stream integrates with the droplet to form a mixed droplet. In this approach, only one phase needs to reach a merge area in a form of a droplet. Further description of such method is shown in pending U.S. patent application Ser. No. 13/371,222, the content of which is incorporated y reference herein in its entirety.
According to a method for operating the lambda injector, a droplet is formed as described above. After formation of the sample droplet from the first sample fluid, the droplet is contacted with a flow of a second sample fluid stream. Contact between the droplet and the fluid stream results in a portion of the fluid stream integrating with the droplet to form a mixed droplet.
The droplets of the first sample fluid flow through a first channel separated from each other by immiscible carrier fluid and suspended in the immiscible carrier fluid. The droplets are delivered to the merge area, i.e., junction of the first channel with the second channel, by a pressure-driven flow generated by a positive displacement pump. While droplet arrives at the merge area, a bolus of a second sample fluid is protruding from an opening of the second channel into the first channel. Preferably, the channels are oriented perpendicular to each other. However, any angle that results in an intersection of the channels may be used.
The bolus of the second sample fluid stream continues to increase in size due to pumping action of a positive displacement pump connected to channel, which outputs a steady stream of the second sample fluid into the merge area. The flowing droplet containing the first sample fluid eventually contacts the bolus of the second sample fluid that is protruding into the first channel. Contact between the two sample fluids results in a portion of the second sample fluid being segmented from the second sample fluid stream and joining with the first sample fluid droplet to form a mixed droplet. In certain embodiments, each incoming droplet of first sample fluid is merged with the same amount of second sample fluid.
In certain embodiments, an electric charge is applied to the first and second sample fluids. Description of applying electric charge to sample fluids is provided in Link et al. (U.S. patent application number 2007/0003442) and European Patent Number EP2004316 to Raindance Technologies Inc, the content of each of which is incorporated by reference herein in its entirety. Electric charge may be created in the first and second sample fluids within the carrier fluid using any suitable technique, for example, by placing the first and second sample fluids within an electric field (which may be AC, DC, etc.), and/or causing a reaction to occur that causes the first and second sample fluids to have an electric charge, for example, a chemical reaction, an ionic reaction, a photocatalyzed reaction, etc.
The electric field, in some embodiments, is generated from an electric field generator, i.e., a device or system able to create an electric field that can be applied to the fluid. The electric field generator may produce an AC field (i.e., one that varies periodically with respect to time, for example, sinusoidally, sawtooth, square, etc.), a DC field (i.e., one that is constant with respect to time), a pulsed field, etc. The electric field generator may be constructed and arranged to create an electric field within a fluid contained within a channel or a microfluidic channel. The electric field generator may be integral to or separate from the fluidic system containing the channel or microfluidic channel, according to some embodiments.
Techniques for producing a suitable electric field (which may be AC, DC, etc.) are known to those of ordinary skill in the art. For example, in one embodiment, an electric field is produced by applying voltage across a pair of electrodes, which may be positioned on or embedded within the fluidic system (for example, within a substrate defining the channel or microfluidic channel), and/or positioned proximate the fluid such that at least a portion of the electric field interacts with the fluid. The electrodes can be fashioned from any suitable electrode material or materials known to those of ordinary skill in the art, including, but not limited to, silver, gold, copper, carbon, platinum, copper, tungsten, tin, cadmium, nickel, indium tin oxide (“ITO”), etc., as well as combinations thereof. In some cases, transparent or substantially transparent electrodes can be used.
The electric field facilitates rupture of the interface separating the second sample fluid and the droplet. Rupturing the interface facilitates merging of bolus of the second sample fluid and the first sample fluid droplet. The forming mixed droplet continues to increase in size until it a portion of the second sample fluid breaks free or segments from the second sample fluid stream prior to arrival and merging of the next droplet containing the first sample fluid. The segmenting of the portion of the second sample fluid from the second sample fluid stream occurs as soon as the shear force exerted on the forming mixed droplet by the immiscible carrier fluid overcomes the surface tension whose action is to keep the segmenting portion of the second sample fluid connected with the second sample fluid stream. The now fully formed mixed droplet continues to flow through the first channel.
In other embodiments, the rupture of the interface can be spontaneous, or the rupture can be facilitated by surface chemistry. The invention is not limited in regard to the method of rupture at the interface, as rupture can be brought about by any means.
In the context of PCR, in a preferred embodiment, the first sample fluid contains template molecules of methylation state specific targets, reference targets, and control nucleic acid. The first sample fluid contains the template molecules of methylation state specific target nucleic acid, reference target nucleic acid, and control nucleic acid after methylation state specific enzymatic reaction. The methylation state specific enzymatic reaction is designed to cleave corresponding un-methylated sites of the methylation state specific target nucleic acid, and the methylation state specific enzymatic reaction of the control nucleic acid acts a measure of enzymatic reaction efficiency as discussed previously. The control nucleic acid can be added manually to the first sample fluid or introduced automatically by, for example, merging another fluid stream with the control nucleic acid templates into the first fluid stream. Droplets of the first sample fluid are formed as described above. Those droplets will include template molecules of methylation state specific targets, reference targets, and control nucleic acid molecules. In certain embodiments, some of the droplets will include only a single methylation state specific target molecule, reference target molecule, or control nucleic acid template while other droplets contain no template molecule, and thus digital PCR can be conducted. In a preferred embodiment, the droplets are formed in the presence of reagents and enzymes needed for subsequent PCR reactions. In other embodiments, a second sample fluid contains reagents for the PCR reaction. Such reagents generally include Taq polymerase, deoxynucleotides of type A, C, G and T, magnesium chloride, and forward and (optionally) reverse primers, all suspended within an aqueous buffer. The second fluid also includes detectably labeled probes for detection of the amplified methylation-dependent target, reference target, and control nucleic acid molecule. In an embodiment in which the PCR reagents are in a separate droplet, a droplet containing the nucleic acid is caused to merge with the PCR reagents in the second fluid as described above, producing a droplet that includes Taq polymerase, deoxynucleotides of type A, C, G and T, magnesium chloride, forward and reverse primers, detectably labeled probes, and the target nucleic acid. In another embodiment, the first fluid can contain the template DNA and PCR master mix (defined below), and the second fluid can contain the forward and reverse primers and the probe. The invention is not restricted in any way regarding the constituency of the first and second fluidics for PCR or digital PCR. For example, in some embodiments, the template DNA is contained in the second fluid inside droplets.
Target Amplification
Methods of the invention further involve amplifying the target nucleic acid in each droplet. Amplification refers to production of additional copies of a nucleic acid sequence and is generally carried out using polymerase chain reaction or other technologies well known in the art (e.g., Dieffenbach and Dveksler, PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y. [1995]). The amplification reaction may be any amplification reaction known in the art that amplifies nucleic acid molecules, such as polymerase chain reaction, nested polymerase chain reaction, ligase chain reaction (Barany F. (1991) PNAS 88:189-193; Barany F. (1991) PCR Methods and Applications 1:5-16), ligase detection reaction (Barany F. (1991) PNAS 88:189-193), strand displacement amplification, transcription based amplification system, nucleic acid sequence-based amplification, rolling circle amplification, and hyper-branched rolling circle amplification.
In certain embodiments, the amplification reaction is the polymerase chain reaction. Polymerase chain reaction (PCR) refers to methods by K. B. Mullis (U.S. Pat. Nos. 4,683,195 and 4,683,202, hereby incorporated by reference) for increasing concentration of a segment of a target sequence in a mixture of genomic DNA without cloning or purification. The process for amplifying the target sequence includes introducing an excess of oligonucleotide primers to a DNA mixture containing a desired target sequence, followed by a precise sequence of thermal cycling in the presence of a DNA polymerase. Primer sets introduced to the droplets can include primers specific to reference target, one or more different methylation-dependent targets (e.g. target methylation-dependent CpG regions), and control nucleic acid molecules (e.g. specific to the cleavage site of the control nucleic acid molecules).
To effect amplification, primers are annealed to their complementary sequence within the target molecule. Following annealing, the primers are extended with a polymerase so as to form a new complementary strand. The steps of denaturation, primer annealing and polymerase extension can be repeated many times (i.e., denaturation, annealing and extension constitute one cycle; there can be numerous cycles) to obtain a high concentration of an amplified segment of a desired target sequence. The length of the amplified segment of the desired target sequence is determined by relative positions of the primers with respect to each other, and therefore, this length is a controllable parameter.
Methods for performing PCR in droplets are shown for example in Link et al. (U.S. patent application numbers 2008/0014589, 2008/0003142, and 2010/0137163), Anderson et al. (U.S. Pat. No. 7,041,481 and which reissued as RE41,780) and European publication number EP2047910 to Raindance Technologies Inc. The content of each of which is incorporated by reference herein in its entirety.
The sample droplet may be pre-mixed with a primer or primers, or the primer or primers may be added to the droplet. In some embodiments, droplets created by segmenting the starting sample are merged with a second set of droplets including one or more primers for the target nucleic acid in order to produce final droplets. The merging of droplets can be accomplished using, for example, one or more droplet merging techniques described for example in Link et al. (U.S. patent application numbers 2008/0014589, 2008/0003142, and 2010/0137163) and European publication number EP2047910 to Raindance Technologies Inc.
In embodiments involving merging of droplets, two droplet formation modules are used. In one embodiment, a first droplet formation module produces the sample droplets consistent with limiting or terminal dilution of reference target nucleic acid, methylation-dependent nucleic acid, and control nucleic acid. A second droplet formation or reinjection module inserts droplets that contain reagents for a PCR reaction. Such droplets generally include the “PCR master mix” (known to those in the art as a mixture containing at least Taq polymerase, deoxynucleotides of type A, C, G and T, and magnesium chloride) and forward and reverse primers (known to those in the art collectively as “primers”), all suspended within an aqueous buffer. The second droplet also includes detectably labeled probes for detection of the amplified target nucleic acids (whether the reference targets, control, methylation-dependent target), the details of which are discussed below. Different arrangements of reagents between the two droplet types is envisioned. For example, in another embodiment, the template droplets also contain the PCR master mix, but the primers and probes remain in the second droplets. Any arrangement of reagents and template DNA can be used according to the invention.
Primers can be prepared by a variety of methods including but not limited to cloning of appropriate sequences and direct chemical synthesis using methods well known in the art (Narang et al., Methods Enzymol., 68:90 (1979); Brown et al., Methods Enzymol., 68:109 (1979)). Primers can also be obtained from commercial sources such as Operon Technologies, Amersham Pharmacia Biotech, Sigma, and Life Technologies. The primers can have an identical melting temperature. The lengths of the primers can be extended or shortened at the 5′ end or the 3′ end to produce primers with desired melting temperatures. Also, the annealing position of each primer pair can be designed such that the sequence and, length of the primer pairs yield the desired melting temperature. The simplest equation for determining the melting temperature of primers smaller than 25 base pairs is the Wallace Rule (Td=2(A+T)+4(G+C)). Another method for determining the melting temperature of primers is the nearest neighbor method Computer programs can also be used to design primers, including but not limited to Array Designer Software (Arrayit Inc.), Oligonucleotide Probe Sequence Design Software for Genetic Analysis (Olympus Optical Co.), NetPrimer, and DNAsis from Hitachi Software Engineering. The TM (melting or annealing temperature) of each primer is calculated using software programs such as Oligo Design, available from Invitrogen Corp.
In one embodiment, the droplet formation modules are arranged and controlled to produce an interdigitation of sample droplets and PCR reagent droplets flowing through a channel. Such an arrangement is described for example in Link et al. (U.S. patent application numbers 2008/0014589, 2008/0003142, and 2010/0137163) and European publication number EP2047910 to Raindance Technologies Inc.
A sample droplet is then caused to merge with a PCR reagent droplet, producing a droplet that includes the PCR master mix, primers, detectably labeled probes, and the target nucleic acid. Droplets may be merged for example by: producing dielectrophoretic forces on the droplets using electric field gradients and then controlling the forces to cause the droplets to merge; producing droplets of different sizes that thus travel at different velocities, which causes the droplets to merge; and producing droplets having different viscosities that thus travel at different velocities, which causes the droplets to merge with each other. Each of those techniques is further described in Link et al. (U.S. patent application numbers 2008/0014589, 2008/0003142, and 2010/0137163) and European publication number EP2047910 to Raindance Technologies Inc. Further description of producing and controlling dielectrophoretic forces on droplets to cause the droplets to merge is described in Link et al. (U.S. patent application number 2007/0003442) and European Patent Number EP2004316 to Raindance Technologies Inc.
In another embodiment, called simple droplet generation, a single droplet formation module, or a plurality of droplet formation modules are arranged to produce droplets from a mixture already containing the template DNA, the PCR master mix, primers, and detectably labeled probes. In yet another embodiment, called co-flow, upstream from a single droplet formation module two channels intersect allowing two flow streams to converge. One flow stream contains one set of reagents and the template DNA, and the other contains the remaining reagents. In the preferred embodiment for co-flow, the template DNA and the PCR master mix are in one flow stream, and the primers and probes are in the other. However, the invention is not limited in regard to the constituency of either flow stream. For example, in another embodiment, one flow stream contains just the template DNA, and the other contains the PCR master mix, the primers, and the probes. On convergence of the flow streams in a fluidic intersection, the flow streams may or may not mix before the droplet generation nozzle. In either embodiment, some amount of fluid from the first stream, and some amount of fluid from the second stream are encapsulated within a single droplet. Following encapsulation, complete mixing occurs.
Once final droplets have been produced by any of the droplet forming embodiments above, or by any other embodiments, the droplets are thermal cycled, resulting in amplification of the target nucleic acid in each droplet. In certain embodiments, the droplets are collected off-chip as an emulsion in a PCR thermal cycling tube and then thermally cycled in a conventional thermal cycler. Temperature profiles for thermal cycling can be adjusted and optimized as with any conventional DNA amplification by PCR.
In certain embodiments, the droplets are flowed through a channel in a serpentine path between heating and cooling lines to amplify the nucleic acid in the droplet. The width and depth of the channel may be adjusted to set the residence time at each temperature, which can be controlled to anywhere between less than a second and minutes.
In certain embodiments, the three temperature zones are used for the amplification reaction. The three temperature zones are controlled to result in denaturation of double stranded nucleic acid (high temperature zone), annealing of primers (low temperature zones), and amplification of single stranded nucleic acid to produce double stranded nucleic acids (intermediate temperature zones). The temperatures within these zones fall within ranges well known in the art for conducting PCR reactions. See for example, Sambrook et al. (Molecular Cloning, A Laboratory Manual, 3rd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).
In certain embodiments, the three temperature zones are controlled to have temperatures as follows: 95° C. (TH), 55° C. (TL), 72° C. (TM). The prepared sample droplets flow through the channel at a controlled rate. The sample droplets first pass the initial denaturation zone (TH) before thermal cycling. The initial preheat is an extended zone to ensure that nucleic acids within the sample droplet have denatured successfully before thermal cycling. The requirement for a preheat zone and the length of denaturation time required is dependent on the chemistry being used in the reaction. The samples pass into the high temperature zone, of approximately 95° C., where the sample is first separated into single stranded DNA in a process called denaturation. The sample then flows to the low temperature, of approximately 55° C., where the hybridization process takes place, during which the primers anneal to the complementary sequences of the sample. Finally, as the sample flows through the third medium temperature, of approximately 72° C., the polymerase process occurs when the primers are extended along the single strand of DNA with a thermostable enzyme. Methods for controlling the temperature in each zone may include but are not limited to electrical resistance, Peltier junction, microwave radiation, and illumination with infrared radiation.
The nucleic acids undergo the same thermal cycling and chemical reaction as the droplets passes through each thermal cycle as they flow through the channel. The total number of cycles in the device is easily altered by an extension of thermal zones or by the creation of a continuous loop structure. The sample undergoes the same thermal cycling and chemical reaction as it passes through N amplification cycles of the complete thermal device.
In other embodiments, the temperature zones are controlled to achieve two individual temperature zones for a PCR reaction. In certain embodiments, the two temperature zones are controlled to have temperatures as follows: 95° C. (TH) and 60° C. (TL). The sample droplet optionally flows through an initial preheat zone before entering thermal cycling. The preheat zone may be important for some chemistry for activation and also to ensure that double stranded nucleic acid in the droplets are fully denatured before the thermal cycling reaction begins. In an exemplary embodiment, the preheat dwell length results in approximately 10 minutes preheat of the droplets at the higher temperature.
The sample droplet continues into the high temperature zone, of approximately 95° C., where the sample is first separated into single stranded DNA in a process called denaturation. The sample then flows through the device to the low temperature zone, of approximately 60° C., where the hybridization process takes place, during which the primers anneal to the complementary sequences of the sample. Finally the polymerase process occurs when the primers are extended along the single strand of DNA with a thermostable enzyme. The sample undergoes the same thermal cycling and chemical reaction as it passes through each thermal cycle of the complete device. The total number of cycles in the device is easily altered by an extension of block length and tubing.
In another embodiment the droplets are created and/or merged on chip followed by their storage either on the same chip or another chip or off chip in some type of storage vessel such as a PCR tube. The chip or storage vessel containing the droplets is then cycled in its entirety to achieve the desired PCR heating and cooling cycles.
In another embodiment the droplets are collected in a chamber where the density difference between the droplets and the surrounding oil allows for the oil to be rapidly exchanged without removing the droplets. The temperature of the droplets can then be rapidly changed by exchange of the oil in the vessel for oil of a different temperature. This technique is broadly useful with two and three step temperature cycling or any other sequence of temperatures.
The invention is not limited by the method used to thermocycle the droplets. Any method of thermocycling the droplets may be used.
Target Detection
After amplification, droplets are flowed to a detection module for detection of amplification products. For embodiments in which the droplets are thermally cycled off-chip, the droplets require re-injection into either a second fluidic circuit for read-out—that may or may not reside on the same chip as the fluidic circuit or circuits for droplet generation—or in certain embodiments the droplets may be reinjected for read-out back into the original fluidic circuit used for droplet generation. The droplets may be individually analyzed and detected using any methods known in the art, such as detecting the presence or amount of a reporter. Generally, the detection module is in communication with one or more detection apparatuses. The detection apparatuses can be optical or electrical detectors or combinations thereof. Examples of suitable detection apparatuses include optical waveguides, microscopes, diodes, light stimulating devices, (e.g., lasers), photo multiplier tubes, and processors (e.g., computers and software), and combinations thereof, which cooperate to detect a signal representative of a characteristic, marker, or reporter, and to determine and direct the measurement or the sorting action at a sorting module. Further description of detection modules and methods of detecting amplification products in droplets are shown in Link et al. (U.S. patent application numbers 2008/0014589, 2008/0003142, and 2010/0137163) and European publication number EP2047910 to Raindance Technologies Inc.
In certain embodiments, amplified target (control, one or more different reference targets, and one or more different methylation-dependent targets) are detected using detectably labeled probes. In particular embodiments, the detectably labeled probes are optically labeled probes, such as fluorescently labeled probes. Examples of fluorescent labels include, but are not limited to, Atto dyes, 4-acetamido-4′-isothiocyanatostilbene-2,2′disulfonic acid; acridine and derivatives: acridine, acridine isothiocyanate; 5-(2′-aminoethyl)aminonaphthalene-1-sulfonic acid (EDANS); 4-amino-N-[3-vinylsulfonyl)phenyl]naphthalimide-3,5 disulfonate; N-(4-anilino-1-naphthyl)maleimide; anthranilamide; BODIPY; Brilliant Yellow; coumarin and derivatives; coumarin, 7-amino-4-methylcoumarin (AMC, Coumarin 120), 7-amino-4-trifluoromethylcouluarin (Coumaran 151); cyanine dyes; cyanosine; 4′,6-diaminidino-2-phenylindole (DAPI); 5′S″-dibromopyrogallol-sulfonaphthalein (Bromopyrogallol Red); 7-diethylamino-3-(4′-isothiocyanatophenyl)-4-methylcoumarin; diethylenetriamine pentaacetate; 4,4′-diisothiocyanatodihydro-stilbene-2,2′-disulfonic acid; 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid; 5-[dimethylamino]naphthalene-1-sulfonyl chloride (DNS, dansylchloride); 4-dimethylaminophenylazophenyl-4′-isothiocyanate (DABITC); eosin and derivatives; eosin, eosin isothiocyanate, erythrosin and derivatives; erythrosin B, erythrosin, isothiocyanate; ethidium; fluorescein and derivatives; 5-carboxyfluorescein (FAM), 5-(4,6-dichlorotriazin-2-yl)aminofluorescein (DTAF), 2′,7′-dimethoxy-4′5′-dichloro-6-carboxyfluorescein, fluorescein, fluorescein isothiocyanate, QFITC, (XRITC); fluorescamine; IR144; IR1446; Malachite Green isothiocyanate; 4-methylumbelliferoneortho cresolphthalein; nitrotyrosine; pararosaniline; Phenol Red; B-phycoerythrin; o-phthaldialdehyde; pyrene and derivatives: pyrene, pyrene butyrate, succinimidyl 1-pyrene; butyrate quantum dots; Reactive Red 4 (Cibacron™ Brilliant Red 3B-A) rhodamine and derivatives: 6-carboxy-X-rhodamine (ROX), 6-carboxyrhodamine (R6G), lissamine rhodamine B sulfonyl chloride rhodamine (Rhod), rhodamine B, rhodamine 123, rhodamine X isothiocyanate, sulforhodamine B, sulforhodamine 101, sulfonyl chloride derivative of sulforhodamine 101 (Texas Red); N,N,N′,N′tetramethyl-6-carboxyrhodamine (TAMRA); tetramethyl rhodamine; tetramethyl rhodamine isothiocyanate (TRITC); riboflavin; rosolic acid; terbium chelate derivatives; Cy3; Cy5; Cy5.5; Cy7; IRD 700; IRD 800; La Jolta Blue; phthalo cyanine; and naphthalo cyanine. Preferred fluorescent labels are FAM and VIC™ (from Applied Biosystems). Labels other than fluorescent labels are contemplated by the invention, including other optically-detectable labels.
In certain aspects, the droplets of the invention contain a plurality of detectable probes that hybridize to amplicons produced in the droplets. Members of the plurality of probes can each include the same detectable label, or a different detectable label. The plurality of probes can also include one or more groups of probes at varying concentration. The groups of probes at varying concentrations can include the same detectable label which vary in intensity, due to varying probe concentrations.
In some embodiments, the droplets of the invention contain a plurality of barcodes that hybridize to amplicons produced in the droplets or are incorporated into the amplicons. The barcodes may be used in lieu of fluorescent probes, to detect the presence of a target sequence, or the barcodes can be used in addition to fluorescent probes, to track a multitude of sample sources. A detectable barcode-type label can be any barcode-type label known in the art including, for example, barcoded magnetic beads (e.g., from Applied Biocode, Inc., Santa Fe Springs, CA), and nucleic acid sequences. Nucleic acid barcode sequences typically include a set of oligonucleotides ranging from about 4 to about 20 oligonucleotide bases (e.g., 8-10 oligonucleotide bases) and uniquely encode a discrete library member without containing significant homology to any sequence in the targeted sample.
The barcode sequence generally includes features useful in sequencing reactions. For example, the barcode sequences are designed to have minimal or no homopolymer regions, i.e., 2 or more of the same base in a row such as AA or CCC, within the barcode sequence. The barcode sequences are also designed so that they are at least one edit distance away from the base addition order when performing base-by-base sequencing, ensuring that the first and last base do not match the expected bases of the sequence. In certain embodiments, the barcode sequences are designed to be correlated to a particular subject, allowing subject samples to be distinguished. Designing barcodes is shown U.S. Pat. No. 6,235,475, the contents of which are incorporated by reference herein in their entirety.
In some instances, the primers used in the invention may include barcodes such that the barcodes will be incorporated into the amplified products. For example, the unique barcode sequence could be incorporated into the 5′ end of the primer, or the barcode sequence could be incorporated into the 3′ end of the primer. In some embodiments, the barcodes may be incorporated into the amplified products after amplification. For example, a suitable restriction enzyme (or other endonuclease) may be introduced to a sample, e.g., a droplet, where it will cut off an end of an amplification product so that a barcode can be added with a ligase. Attaching barcode sequences to nucleic acids is shown in U.S. Pub. 2008/0081330 and WO/2010/056728 A1, the content of each of which is incorporated by reference herein in its entirety. Methods for designing sets of barcode sequences and other methods for attaching barcode sequences are shown in U.S. Pat. Nos. 6,138,077; 6,352,828; 5,636,400; 6,172,214; 6,235,475; 7,393,665; 7,544,473; 5,846,719; 5,695,934; 5,604,097; 6,150,516; RE39,793; 7,537,897; 6172,218; and 5,863,722, the content of each of which is incorporated by reference herein in its entirety. For sequencing detection, the amplified contents of the droplets may be released for multiplex sequencing.
In a separate embodiment the detection can occur by the scanning of droplets confined to a monolayer in a storage device that is transparent to the wavelengths or method or detection. Droplets stored in this fashion can be scanned either by the movement of the storage device by the scanner or the movement of the scanner over the storage device.
The invention is not limited to the TaqMan assay, as described above, but rather the invention encompasses the use of all fluorogenic DNA hybridization probes, such as molecular beacons, Solaris probes, scorpion probes, and any other probes that function by sequence specific recognition of target DNA by hybridization and result in increased fluorescence on amplification of the target sequence.
Normalization
According to methods of the invention, the quantification of methylation-dependent targets in the assay can be normalized based on the efficiency of the methylation state specific enzymatic reaction. For example, the quantified results of the assay are normalized, after detection, based on a number of unreacted control molecules that had been spiked-in at a known number of molecules per μl of sample and are remain in the sample relative to the number of control molecules introduced into the sample (i.e. measured efficiency/completeness of the enzymatic reaction). In certain embodiments, a number of the detected methylation state specific targets are normalized based on the measured efficiency. In certain embodiments, a ratio of the detected methylation-dependent targets to the reference targets is determined, and then the ratio is normalized based on the measured efficiency.
Digital PCR Performance in Droplets
An exemplary microfluidic system for droplet generation and readout is depicted in
In a serial dilution, the average number of target DNA molecules per droplet—called the “occupancy” from this point forward—decreases in direct proportion to the DNA concentration. The occupancy is calculated from Poisson statistics using the following equation well known to those experienced in the art:
where P and N are the numbers of PCR(+) and PCR(−) droplets respectively.
Droplets are analyzed by fluorescence while flowing through the readout chip to count the numbers of PCR(+) and PCR(−) droplets (see
where n is the number of dilutions, A is the occupancy at the starting concentration (n=0), and f is the dilution factor. The linear fit was in excellent agreement with the data, with an R2 value of 0.9999 and the fitted dilution factor of 4.8 in close agreement with the expected value of 5.0.
Copy Number Assay
Traditional digital PCR methods involve the use of a single labeled probe specific for an individual target.
Data Analysis
Analysis is then performed on the droplets. The analysis may be based on counting, i.e., i.e., determining a number of droplets containing a methylation-independent target, determining a number of droplets containing a methylated-dependent target. In some embodiments the first and second numbers are analyzed to determine whether a statistical difference exists, in other embodiments the first and second numbers are analyzed to determine a ratio with different values for the numerator/denominator compared to that expected in a ‘normal’ sample.
It will be appreciated that various counting schemes useful with embodiments of the invention can include: 1) ratios of targets located on the same contiguous molecule (e.g. chromosome, or chromosome segment); 2) ratio on different contiguous molecule (fetal case looks at chr21 vs. chr18 vs. ‘normal diploid’ chromosome); 3) ratios between ‘control’ targets for multiple measurements of enzymatic specificity or completion and additional input target metrics. 4) Imbalances measure amplification/deletion/enrichment/depletion of the targets.
Counting methods are well known in the art. See, e.g., Lapidus et al. (U.S. Pat. Nos. 5,670,325 and 5,928,870) and Shuber et al. (U.S. Pat. Nos. 6,203,993 and 6,214,558), the content of each of which is incorporated by reference herein in its entirety. Statistical difference may be indicative of a condition. In certain embodiments, the condition is a disease such as cancer. In other embodiments, the statistical different relates to fetal aneuploidy. In other embodiments, the difference between a number of reference targets and a number of methylated-dependent targets provides for quantification of an amount of fetal nucleic acid in maternal blood.
It is important to note that for the result to be highly quantitative, the “methylation-specific” target(s) should show the specific target-state with a high degree of penetrance. For example, for detection of fetal aneuploidy, the minor ‘fetal’ target should be 100% methylated/unreactable state for all fetal-derived target molecules, with the maternal targets showing the complete unmethylated/reactable state (e.g. 0% methylated). It will be appreciated by those of ordinary skill in the art that appropriate validation of the targets is important, and that embodiments of the invention are useful as validation process itself (i.e. one ‘validated’ target can be compared to a second ‘candidate’ target).
Numerous examples of methylated genes that have been linked to various types of cancer have been identified. Examples of methylated genes that have been linked with susceptibility to or incidence of colorectal cancer include, for example, FOXE1, SOX17, SYNE1, BOLL, CABYR, EFEMP1, FBLN2, FOXL2, GNB4, GSTM3, HoxD1, Jph3, Neuralized (NEURL), PPP1R14a, TP53AP1, RAB32, APC2, GPNMB, MMP2, EVL, STARD8, PTPRD, CD109, LGR6, RET, CHD5, RNF182, ICAM5, ARMCX2, CBR1, DDX43, DMRTB1, FBLN2, HIST2H2AA, ICAM1, LY6K, NEF3, POMC, STK31, SYCP3, TCL1A, TFPI-2, TLR2, UCHL1, ZFP42, ASCL2, ATP8A2, CTAG2, EPHA4, FANCF, FOXQ1, HUS1B, JAM3, LEF1, MOV10L1, NPPB, PWWP1, RASSF5, REC8L1, SALL4, BEX1, BNIP3, CCK, CDX1, CNN3, CXX1, IRX4, MC5R, RSNL2, SMARCA3, SPON1, SYT6, TRPC3, TSPYL6, ZNF345, DKK3, ZNF655, B4GALT1, C10orf119, C10orf13, CBR1, COPS4, COVA1, CSRP1, DARS, DNAJC10, FKBP14, FN3KRP, GANAB, HUS1, KLF11, MRPL4, MYLK, NELF, NETO2, PAPSS2, RBMS2, RHOB, SECTM1, SIRT2, SIRT7, SLC35D1, SLC9A3R1, TTRAP, TUBG2, FLJ20277, MYBL2, GPR116, QSMR, PC4, SLC39A4, UBE3A, PDLIM3, UBE21, or any combination thereof.
Examples of methylated genes that have been linked with susceptibility to or incidence of prostate cancer include, for example, GSTP1, APC, PTGS2, T1G1, EDNRB, RASS1a, GSTP1, APC, PTGS2, T1G1, EDNRB, CD3D, APOC1, NBL1, ING4, LEF1, CENTD3, MGC15396, FKBP4, PLTP, TFAP2A, ATXN1, BMP2, ENPEP, MCAM, SSBP2, PDLIM3, NDP, or any combination thereof.
Examples of methylated genes that have been linked with susceptibility to or incidence of breast cancer include, for example, PITX2, PITX2, BACH1, CKMT, GALE, HMG20B, KRT14, OGDHL, PON2, SESN1, KIF1A (kinesin family member 1A) PDLIM3, MAL (T cell proliferation protein), or any combination thereof.
Examples of methylated genes that have been linked with susceptibility to or incidence of lung cancer include, for example, p16INK4a, APC, TMS1, RASSF1, DAPK, PRSS3 (serine protease family member-trypsinogen IV—a putative tumor suppressor gene), human DAB2 interactive protein gene, apoptosis-associated speck-lick protein containing a CARD, p16, FHIT, H-cadherin, RARβ, RARB2, PHKA2, CBR3, CAMK4, HOXB5, ZNF198, RGS4, RBM15B, PDLIM3, PAK3, PIGH, TUBB4, NISCH or any combination thereof.
Examples of methylated markers that have been shown to be associated with susceptibility to or incidence of gastrointestinal cancer include, without limitation, NDRG4/NDRG2 subfamily gene, GATA4, OSMR, GATA5, SFRP1, ADAM23, JPH3, SFRP2, APC, MGMT, TFPI2, BNIP3, FOXE1, SYNE1, SOX17, PHACTR3, JAM3, or any combination thereof.
Examples of methylated genes that have been linked with susceptibility to or incidence of cervical cancer include, for example, ESR1, DAP-kinase, APC, TIMP-3, RAR-beta, CALCA, TSLC1, TIMP-2, DcR1, DcR2, BRCA1, p15, Rassf1A, MLH1, MGMT, PDCD4, TFPI2, ARMC7, TRM-HUMAN, OGDHL, PTGS2, CDK6, GPR39, HMGN2, C130RF18, ASMTL, DLL4, NP-659450.1, NP-078820.1, CLU, HPCA, PLCG2, RALY, GNB4, CCNA1, NPTX1, C90RF19, or any combination thereof.
Examples of “methylation-specific” genes that have been linked with fetal conditions include RASSF1/MASPIN/others. It will also be appreciated that un-methylated markers are also useful with embodiments of the invention.
Release of Target from Droplet
Methods of the invention may further involve releasing amplified target molecules from the droplets for further analysis. Methods of releasing amplified target molecules from the droplets are shown in for example in Link et al. (U.S. patent application numbers 2008/0014589, 2008/0003142, and 2010/0137163) and European publication number EP2047910 to RainDance Technologies Inc.
In certain embodiments, sample droplets are allowed to cream to the top of the carrier fluid. By way of non-limiting example, the carrier fluid can include a perfluorocarbon oil that can have one or more stabilizing surfactants. The droplet rises to the top or separates from the carrier fluid by virtue of the density of the carrier fluid being greater than that of the aqueous phase that makes up the droplet. For example, the perfluorocarbon oil used in one embodiment of the methods of the invention is 1.8, compared to the density of the aqueous phase of the droplet, which is 1.0.
The creamed liquids are then placed onto a second carrier fluid which contains a de-stabilizing surfactant, such as a perfluorinated alcohol (e.g. 1H,1H,2H,2H-Perfluoro-1-octanol). The second carrier fluid can also be a perfluorocarbon oil. Upon mixing, the aqueous droplets begins to coalesce, and coalescence is completed by brief centrifugation at low speed (e.g., 1 minute at 2000 rpm in a microcentrifuge). The coalesced aqueous phase can now be removed and the further analyzed.
The released amplified material can also be subjected to further amplification by the use tailed primers and secondary PCR primers. In this embodiment the primers in the droplet contain an additional sequence or tail added onto the 5′ end of the sequence specific portion of the primer. The sequences for the tailed regions are the same for each primer pair and are incorporated onto the 5′ portion of the amplicons during PCR cycling. Once the amplicons are removed from the droplets, another set of PCR primers that can hybridize to the tail regions of the amplicons can be used to amplify the products through additional rounds of PCR. The secondary primers can exactly match the tailed region in length and sequence or can themselves contain additional sequence at the 5′ ends of the tail portion of the primer. During the secondary PCR cycling these additional regions also become incorporated into the amplicons. These additional sequences can include, but are not limited to adaptor regions utilized by sequencing platforms for library preparation and sequencing, sequences used as a barcoding function for the identification of samples multiplexed into the same reaction. molecules for the separation of amplicons from the rest of the reaction materials such as biotin, digoxin, peptides, or antibodies and molecules such as fluorescent markers that can be used to identify the fragments.
In certain embodiments, the amplified target molecules are sequenced. In a particular embodiment, the sequencing is single-molecule sequencing-by-synthesis. Single-molecule sequencing is shown for example in Lapidus et al. (U.S. Pat. No. 7,169,560), Quake et al. (U.S. Pat. No. 6,818,395), Harris (U.S. Pat. No. 7,282,337), Quake et al. (U.S. patent application number 2002/0164629), and Braslaysky, et al., PNAS (USA), 100: 3960-3964 (2003), the contents of each of these references is incorporated by reference herein in its entirety.
Briefly, a single-stranded nucleic acid (e.g., DNA or cDNA) is hybridized to oligonucleotides attached to a surface of a flow cell. The single-stranded nucleic acids may be captured by methods known in the art, such as those shown in Lapidus (U.S. Pat. No. 7,666,593). The oligonucleotides may be covalently attached to the surface or various attachments other than covalent linking as known to those of ordinary skill in the art may be employed. Moreover, the attachment may be indirect, e.g., via the polymerases of the invention directly or indirectly attached to the surface. The surface may be planar or otherwise, and/or may be porous or non-porous, or any other type of surface known to those of ordinary skill to be suitable for attachment. The nucleic acid is then sequenced by imaging the polymerase-mediated addition of fluorescently-labeled nucleotides incorporated into the growing strand surface oligonucleotide, at single molecule resolution.
Quantification of Fetal Nucleic Acid
Methods of the invention are useful for quantifying fetal nucleic acid in maternal blood in order to perform non-invasive tests for fetal genomic abnormalities. Such methods involve obtaining a sample, e.g., a tissue or body fluid that is suspected to include both maternal and fetal nucleic acids. Such samples may include urine, vaginal secretion, amniotic fluid, or tissue. In certain embodiments, this sample is drawn maternal blood, and circulating DNA is found in the blood plasma, rather than in cells. A preferred sample is maternal peripheral venous blood.
Because the amount of fetal nucleic acid in a maternal sample generally increases as a pregnancy progresses, less sample may be required as the pregnancy progresses in order to obtain the same or similar amount of fetal nucleic acid from a sample.
In addition to determining the percent of sample nucleic acid that derives from the fetus, a similar 3-plex assay can be used to directly quantify and score a sample for a fetal aneuploidy if the methylation specific target is located on the aneuploid chromosome and the reference target molecule is on a diploid chromosome (e.g. where the ratio is different from 1:1). For example the percent fetal fraction (or tumor in the case of cancer) matters for the precision of the assay and may not be known a priori without performing an assay according to the embodiments described herein. Fetal aneuploidy (e.g., Down syndrome, Edward syndrome, and Patau syndrome) and other chromosomal aberrations affect 9 of 1,000 live births (Cunningham et al. in Williams Obstetrics, McGraw-Hill, New York, p. 942, 2002). Chromosomal abnormalities are generally diagnosed by karyotyping of fetal cells obtained by invasive procedures such as chorionic villus sampling or amniocentesis. Those procedures are associated with potentially significant risks to both the fetus and the mother. Noninvasive screening using maternal serum markers or ultrasound are available but have limited reliability (Fan et al., PNAS, 105(42):16266-16271, 2008).
Methods of the invention may be used to screen for fetal aneuploidy; for example, if the methylation state specific target is on a chromosome with potential trisomy (a type of aneuploidy), and the reference target is on a different chromosome that does not have trisomy. In such an example, a statistically-signification deviation from a 1:1 ratio in the number of droplets containing a methylation state specific target molecule and the number of droplets containing a reference molecule is indicative of trisomy. In such embodiment, the methylation state specific target is a target on chromosome 21 that has been validated as always and only being methylated in fetal nucleic acid, and the reference molecule is a target on a chromosome without copy number variation. In certain embodiments, the aneuploidy is trisomy of chromosome 21 (Down syndrome). In other embodiments, the aneuploidy may include trisomy of chromosomes 13 and 18.
As illustrated in
References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein.
The invention claims the benefit of and priority to U.S. Provisional Application No. 61/887,103, filed Oct. 4, 2013, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2097692 | Fiegel | Nov 1937 | A |
2164172 | Dalton | Jun 1939 | A |
2636855 | Schwartz | Apr 1953 | A |
2656508 | Coulter | Oct 1953 | A |
2692800 | Nichols et al. | Oct 1954 | A |
2797149 | Skeggs | Jun 1957 | A |
2879141 | Skeggs | Mar 1959 | A |
2971700 | Peeps | Feb 1961 | A |
3479141 | Smythe et al. | Nov 1969 | A |
3608821 | Simm et al. | Sep 1971 | A |
3621059 | Bartlett | Nov 1971 | A |
3698635 | Sickles | Oct 1972 | A |
3784471 | Kaiser | Jan 1974 | A |
3816331 | Brown, Jr. et al. | Jun 1974 | A |
3828085 | Price et al. | Aug 1974 | A |
3930061 | Scharfenberger | Dec 1975 | A |
3960187 | Stock et al. | Jun 1976 | A |
3980541 | Aine | Sep 1976 | A |
3982541 | L'Esperance, Jr. | Sep 1976 | A |
4014469 | Sato | Mar 1977 | A |
4022575 | Hansen et al. | May 1977 | A |
4034966 | Suh et al. | Jul 1977 | A |
4059552 | Zweigle et al. | Nov 1977 | A |
4091042 | Alexanderson et al. | May 1978 | A |
4117550 | Folland et al. | Sep 1978 | A |
4130394 | Negersmith | Dec 1978 | A |
4210809 | Pelavin | Jul 1980 | A |
4253846 | Smythe et al. | Mar 1981 | A |
4266721 | Sickles | May 1981 | A |
4279345 | Allred | Jul 1981 | A |
4297345 | Howarth | Oct 1981 | A |
4315754 | Ruzicka et al. | Feb 1982 | A |
4378957 | Malkin et al. | Apr 1983 | A |
4383767 | Jido | May 1983 | A |
4439980 | Biblarz et al. | Apr 1984 | A |
4508265 | Jido | Apr 1985 | A |
4533634 | Maldonado et al. | Aug 1985 | A |
4585209 | Aine et al. | Apr 1986 | A |
4618476 | Columbus | Oct 1986 | A |
4675285 | Clark et al. | Jun 1987 | A |
4676274 | Brown | Jun 1987 | A |
4683195 | Mullis et al. | Jul 1987 | A |
4683202 | Mullis | Jul 1987 | A |
4739044 | Stabinsky | Apr 1988 | A |
4757141 | Fung et al. | Jul 1988 | A |
4767515 | Scott et al. | Aug 1988 | A |
4767929 | Valentine | Aug 1988 | A |
4779805 | Jackson et al. | Oct 1988 | A |
4795330 | Noakes et al. | Jan 1989 | A |
4801086 | Noakes | Jan 1989 | A |
4801529 | Perlman | Jan 1989 | A |
4829996 | Noakes et al. | May 1989 | A |
4853336 | Saros et al. | Aug 1989 | A |
4856363 | LaRocca et al. | Aug 1989 | A |
4859363 | Davis et al. | Aug 1989 | A |
4865444 | Green et al. | Sep 1989 | A |
4883750 | Whiteley et al. | Nov 1989 | A |
4908112 | Pace | Mar 1990 | A |
4931225 | Cheng | Jun 1990 | A |
4941959 | Scott | Jul 1990 | A |
4962885 | Coffee | Oct 1990 | A |
4963498 | Hillman et al. | Oct 1990 | A |
4981580 | Auer | Jan 1991 | A |
4996004 | Bucheler et al. | Feb 1991 | A |
5055390 | Weaver et al. | Oct 1991 | A |
5091652 | Mathies et al. | Feb 1992 | A |
5096615 | Prescott et al. | Mar 1992 | A |
5104813 | Besemer et al. | Apr 1992 | A |
5122360 | Harris et al. | Jun 1992 | A |
5149625 | Church et al. | Sep 1992 | A |
5180662 | Sitkovsky | Jan 1993 | A |
5185099 | Delpuech et al. | Feb 1993 | A |
5188290 | Gebauer et al. | Feb 1993 | A |
5188291 | Cross | Feb 1993 | A |
5192659 | Simons | Mar 1993 | A |
5204112 | Hope et al. | Apr 1993 | A |
5207973 | Harris et al. | May 1993 | A |
5241159 | Chatteriee et al. | Aug 1993 | A |
5260466 | McGibbon | Nov 1993 | A |
5262027 | Scott | Nov 1993 | A |
5270163 | Gold et al. | Dec 1993 | A |
5296375 | Kricka et al. | Mar 1994 | A |
5304487 | Wilding et al. | Apr 1994 | A |
5310653 | Hanausek-Walaszek et al. | May 1994 | A |
5313009 | Guenkel et al. | May 1994 | A |
5333675 | Mullis et al. | Aug 1994 | A |
5344594 | Sheridon | Sep 1994 | A |
5354670 | Nickoloff et al. | Oct 1994 | A |
5376252 | Ekstrom et al. | Dec 1994 | A |
5378957 | Kelly | Jan 1995 | A |
5397605 | Barbieri et al. | Mar 1995 | A |
5399461 | Van et al. | Mar 1995 | A |
5399491 | Kacian et al. | Mar 1995 | A |
5403617 | Haaland | Apr 1995 | A |
5413924 | Kosak et al. | May 1995 | A |
5417235 | Wise et al. | May 1995 | A |
5427946 | Kricka et al. | Jun 1995 | A |
5445934 | Fodor et al. | Aug 1995 | A |
5452878 | Gravesen et al. | Sep 1995 | A |
5452955 | Lundstrom | Sep 1995 | A |
5454472 | Benecke et al. | Oct 1995 | A |
5460945 | Springer et al. | Oct 1995 | A |
5468613 | Erlich et al. | Nov 1995 | A |
5475096 | Gold et al. | Dec 1995 | A |
5475610 | Atwood et al. | Dec 1995 | A |
5480614 | Kamahori | Jan 1996 | A |
5486335 | Wilding et al. | Jan 1996 | A |
5498392 | Wilding et al. | Mar 1996 | A |
5498523 | Tabor et al. | Mar 1996 | A |
5500415 | Dollat et al. | Mar 1996 | A |
5503851 | Mank et al. | Apr 1996 | A |
5512131 | Kumar et al. | Apr 1996 | A |
5516635 | Ekins et al. | May 1996 | A |
5518709 | Sutton et al. | May 1996 | A |
5523162 | Franz et al. | Jun 1996 | A |
5587128 | Wilding et al. | Dec 1996 | A |
5589136 | Northrup et al. | Dec 1996 | A |
5602756 | Atwood et al. | Feb 1997 | A |
5604097 | Brenner | Feb 1997 | A |
5610016 | Sato et al. | Mar 1997 | A |
5612188 | Shuler et al. | Mar 1997 | A |
5616478 | Chetverin et al. | Apr 1997 | A |
5617997 | Kobayashi et al. | Apr 1997 | A |
5635358 | Wilding et al. | Jun 1997 | A |
5636400 | Young | Jun 1997 | A |
5641658 | Adams et al. | Jun 1997 | A |
5643729 | Taniguchi et al. | Jul 1997 | A |
5655517 | Coffee | Aug 1997 | A |
5656155 | Norcross et al. | Aug 1997 | A |
5656493 | Mullis et al. | Aug 1997 | A |
5661222 | Hare | Aug 1997 | A |
5662874 | David | Sep 1997 | A |
5670325 | Lapidus et al. | Sep 1997 | A |
5681600 | Antinone et al. | Oct 1997 | A |
5695934 | Brenner | Dec 1997 | A |
5726026 | Wilding et al. | Mar 1998 | A |
5726404 | Brody | Mar 1998 | A |
5733526 | Trevino et al. | Mar 1998 | A |
5739036 | Parris | Apr 1998 | A |
5744366 | Kricka et al. | Apr 1998 | A |
5750988 | Apffel et al. | May 1998 | A |
5762775 | DePaoli | Jun 1998 | A |
5779868 | Parce et al. | Jul 1998 | A |
5783431 | Peterson et al. | Jul 1998 | A |
5789206 | Tavtigian et al. | Aug 1998 | A |
5813988 | Alfano et al. | Sep 1998 | A |
5840506 | Giordano | Nov 1998 | A |
5846719 | Brenner et al. | Dec 1998 | A |
5849491 | Radomski et al. | Dec 1998 | A |
5851769 | Gray et al. | Dec 1998 | A |
5858187 | Ramsey et al. | Jan 1999 | A |
5858655 | Arnold | Jan 1999 | A |
5858670 | Lam et al. | Jan 1999 | A |
5863722 | Brenner | Jan 1999 | A |
5868322 | Loucks | Feb 1999 | A |
5872010 | Karger et al. | Feb 1999 | A |
5876771 | Sizer et al. | Mar 1999 | A |
5880071 | Parce et al. | Mar 1999 | A |
5882680 | Suzuki et al. | Mar 1999 | A |
5882856 | Shuber | Mar 1999 | A |
5884846 | Tan | Mar 1999 | A |
5887755 | Hood, III | Mar 1999 | A |
5888746 | Tabiti et al. | Mar 1999 | A |
5888778 | Shuber | Mar 1999 | A |
5904933 | Riess et al. | May 1999 | A |
5921678 | Desai et al. | Jul 1999 | A |
5927852 | Serafin | Jul 1999 | A |
5928870 | Lapidus et al. | Jul 1999 | A |
5932100 | Yager et al. | Aug 1999 | A |
5935331 | Naka et al. | Aug 1999 | A |
5942056 | Singh | Aug 1999 | A |
5942443 | Parce et al. | Aug 1999 | A |
5958203 | Parce et al. | Sep 1999 | A |
5972187 | Parce et al. | Oct 1999 | A |
5980936 | Krafft et al. | Nov 1999 | A |
5989815 | Skolnick et al. | Nov 1999 | A |
5989892 | Nishimaki et al. | Nov 1999 | A |
5995341 | Tanaka et al. | Nov 1999 | A |
5997636 | Gamarnik et al. | Dec 1999 | A |
6008003 | Haak-Frendscho et al. | Dec 1999 | A |
6023540 | Walt et al. | Feb 2000 | A |
6028066 | Unger | Feb 2000 | A |
6042709 | Parce et al. | Mar 2000 | A |
6045755 | Lebl et al. | Apr 2000 | A |
6046056 | Parce et al. | Apr 2000 | A |
6048551 | Hilfinger et al. | Apr 2000 | A |
6048690 | Heller et al. | Apr 2000 | A |
6068199 | Coffee | May 2000 | A |
6074879 | Zelmanovic et al. | Jun 2000 | A |
6080295 | Parce et al. | Jun 2000 | A |
6081612 | Gutkowicz-Krusin et al. | Jun 2000 | A |
6086740 | Kennedy | Jul 2000 | A |
6096495 | Kasai et al. | Aug 2000 | A |
6103537 | Ullman et al. | Aug 2000 | A |
6105571 | Coffee | Aug 2000 | A |
6105877 | Coffee | Aug 2000 | A |
6107059 | Hart | Aug 2000 | A |
6116516 | Ganan-Calvo | Sep 2000 | A |
6118849 | Tanimori et al. | Sep 2000 | A |
6119953 | Ganan-Calvo et al. | Sep 2000 | A |
6120666 | Jacobson et al. | Sep 2000 | A |
6124388 | Takai et al. | Sep 2000 | A |
6124439 | Friedman et al. | Sep 2000 | A |
6130052 | Van Baren et al. | Oct 2000 | A |
6130098 | Handique et al. | Oct 2000 | A |
6137214 | Raina | Oct 2000 | A |
6138077 | Brenner | Oct 2000 | A |
6139303 | Reed et al. | Oct 2000 | A |
6140053 | Koster | Oct 2000 | A |
6143496 | Brown et al. | Nov 2000 | A |
6146828 | Lapidus et al. | Nov 2000 | A |
6149789 | Benecke et al. | Nov 2000 | A |
6150180 | Parce et al. | Nov 2000 | A |
6150516 | Brenner et al. | Nov 2000 | A |
6155710 | Nakajima et al. | Dec 2000 | A |
6162421 | Ordino et al. | Dec 2000 | A |
6165778 | Kedar | Dec 2000 | A |
6171796 | An et al. | Jan 2001 | B1 |
6171850 | Nagle et al. | Jan 2001 | B1 |
6172214 | Brenner | Jan 2001 | B1 |
6172218 | Brenner | Jan 2001 | B1 |
6174160 | Lee et al. | Jan 2001 | B1 |
6174469 | Gañan-Calvo | Jan 2001 | B1 |
6177479 | Nakajima | Jan 2001 | B1 |
6180372 | Franzen | Jan 2001 | B1 |
6184012 | Neri et al. | Feb 2001 | B1 |
6187214 | Ganan-Calvo | Feb 2001 | B1 |
6189803 | Ganan-Calvo | Feb 2001 | B1 |
6196525 | Ganan-Calvo | Mar 2001 | B1 |
6197335 | Sherman | Mar 2001 | B1 |
6197835 | Ganan-Calvo | Mar 2001 | B1 |
6203993 | Shuber et al. | Mar 2001 | B1 |
6207372 | Shuber | Mar 2001 | B1 |
6207397 | Lynch et al. | Mar 2001 | B1 |
6208749 | Gutkowicz-Krusin et al. | Mar 2001 | B1 |
6210396 | MacDonald et al. | Apr 2001 | B1 |
6210891 | Nyren et al. | Apr 2001 | B1 |
6210896 | Chan | Apr 2001 | B1 |
6214558 | Shuber et al. | Apr 2001 | B1 |
6221654 | Quake et al. | Apr 2001 | B1 |
6227466 | Hartman et al. | May 2001 | B1 |
6234402 | Ganan-Calvo | May 2001 | B1 |
6235383 | Hong et al. | May 2001 | B1 |
6235475 | Brenner et al. | May 2001 | B1 |
6241159 | Ganan-Calvo et al. | Jun 2001 | B1 |
6243373 | Turock | Jun 2001 | B1 |
6248378 | Ganan-Calvo | Jun 2001 | B1 |
6251661 | Urabe et al. | Jun 2001 | B1 |
6252129 | Coffee | Jun 2001 | B1 |
6258568 | Nyren | Jul 2001 | B1 |
6258858 | Nakajima et al. | Jul 2001 | B1 |
6261661 | Ohno et al. | Jul 2001 | B1 |
6261797 | Sorge et al. | Jul 2001 | B1 |
6263222 | Diab et al. | Jul 2001 | B1 |
6266459 | Walt et al. | Jul 2001 | B1 |
6267353 | Friedline et al. | Jul 2001 | B1 |
6267858 | Parce et al. | Jul 2001 | B1 |
6268152 | Fodor et al. | Jul 2001 | B1 |
6268165 | O'Brien | Jul 2001 | B1 |
6268222 | Chandler et al. | Jul 2001 | B1 |
6274320 | Rothberg et al. | Aug 2001 | B1 |
6274337 | Parce et al. | Aug 2001 | B1 |
6280948 | Guilfoyle et al. | Aug 2001 | B1 |
6292756 | Lievois et al. | Sep 2001 | B1 |
6294344 | O'Brien | Sep 2001 | B1 |
6296020 | McNeely et al. | Oct 2001 | B1 |
6296673 | Santarsiero et al. | Oct 2001 | B1 |
6299145 | Ganan-Calvo | Oct 2001 | B1 |
6301055 | Legrand et al. | Oct 2001 | B1 |
6306659 | Parce et al. | Oct 2001 | B1 |
6307957 | Gutkowicz-Krusin et al. | Oct 2001 | B1 |
6309842 | Dower et al. | Oct 2001 | B1 |
6310354 | Hanninen et al. | Oct 2001 | B1 |
6310653 | Malcolm, Jr. et al. | Oct 2001 | B1 |
6316208 | Roberts et al. | Nov 2001 | B1 |
6316213 | O'Brien | Nov 2001 | B1 |
6318640 | Coffee | Nov 2001 | B1 |
6324417 | Cotton | Nov 2001 | B1 |
6326145 | Whitcombe et al. | Dec 2001 | B1 |
6336463 | Ohta | Jan 2002 | B1 |
6344325 | Quake et al. | Feb 2002 | B1 |
6352828 | Brenner | Mar 2002 | B1 |
6355193 | Stott | Mar 2002 | B1 |
6355198 | Kim et al. | Mar 2002 | B1 |
6357670 | Ganan-Calvo | Mar 2002 | B2 |
6386463 | Ganan-Calvo | May 2002 | B1 |
6391559 | Brown et al. | May 2002 | B1 |
6394429 | Ganan-Calvo | May 2002 | B2 |
6399339 | Wolberg et al. | Jun 2002 | B1 |
6399389 | Parce et al. | Jun 2002 | B1 |
6403373 | Scanlan et al. | Jun 2002 | B1 |
6405936 | Ganan-Calvo | Jun 2002 | B1 |
6408878 | Unger et al. | Jun 2002 | B2 |
6409832 | Weigl et al. | Jun 2002 | B2 |
6429025 | Parce et al. | Aug 2002 | B1 |
6429148 | Chu et al. | Aug 2002 | B1 |
6432143 | Kubiak et al. | Aug 2002 | B2 |
6432148 | Ganan-Calvo | Aug 2002 | B1 |
6432630 | Blankenstein | Aug 2002 | B1 |
6439103 | Miller | Aug 2002 | B1 |
6440706 | Vogelstein et al. | Aug 2002 | B1 |
6440760 | Cho et al. | Aug 2002 | B1 |
6450139 | Watanabe | Sep 2002 | B1 |
6450189 | Ganan-Calvo | Sep 2002 | B1 |
6454193 | Busick et al. | Sep 2002 | B1 |
6464336 | Sharma | Oct 2002 | B1 |
6464886 | Ganan-Calvo | Oct 2002 | B2 |
6475441 | Parce et al. | Nov 2002 | B1 |
6481648 | Zimmermann | Nov 2002 | B1 |
6489103 | Griffiths et al. | Dec 2002 | B1 |
6503933 | Moloney et al. | Jan 2003 | B1 |
6506609 | Wada et al. | Jan 2003 | B1 |
6508988 | Van Dam et al. | Jan 2003 | B1 |
6511803 | Church et al. | Jan 2003 | B1 |
6520425 | Reneker | Feb 2003 | B1 |
6524456 | Ramsey et al. | Feb 2003 | B1 |
6540395 | Muhlbauer et al. | Apr 2003 | B2 |
6540895 | Spence et al. | Apr 2003 | B1 |
6551836 | Chow et al. | Apr 2003 | B1 |
6553944 | Allen et al. | Apr 2003 | B1 |
6553960 | Yoshikawa et al. | Apr 2003 | B1 |
6554202 | Ganan-Calvo | Apr 2003 | B2 |
6557334 | Jager | May 2003 | B2 |
6557834 | Ganan-Calvo | May 2003 | B2 |
6558944 | Parce et al. | May 2003 | B1 |
6558960 | Parce et al. | May 2003 | B1 |
6560030 | Egrand et al. | May 2003 | B2 |
6565010 | Anderson et al. | May 2003 | B2 |
6569631 | Pantoliano et al. | May 2003 | B1 |
6576420 | Carson et al. | Jun 2003 | B1 |
6591852 | McNeely et al. | Jul 2003 | B1 |
6592321 | Bonker et al. | Jul 2003 | B2 |
6592821 | Wada et al. | Jul 2003 | B1 |
6601613 | McNeely et al. | Aug 2003 | B2 |
6608726 | Legrand et al. | Aug 2003 | B2 |
6610499 | Fulwyler et al. | Aug 2003 | B1 |
6614598 | Quake et al. | Sep 2003 | B1 |
6627603 | Bibette et al. | Sep 2003 | B1 |
6630006 | Santarsiero et al. | Oct 2003 | B2 |
6630353 | Parce et al. | Oct 2003 | B1 |
6632619 | Harrison et al. | Oct 2003 | B1 |
6637463 | Lei et al. | Oct 2003 | B1 |
6638749 | Beckman et al. | Oct 2003 | B1 |
6645432 | Anderson et al. | Nov 2003 | B1 |
6646253 | Rohwer et al. | Nov 2003 | B1 |
6653626 | Fischer et al. | Nov 2003 | B2 |
6656267 | Newman | Dec 2003 | B2 |
6659370 | Inoue | Dec 2003 | B1 |
6660252 | Matathia et al. | Dec 2003 | B2 |
6670142 | Lau et al. | Dec 2003 | B2 |
6679441 | Borra et al. | Jan 2004 | B1 |
6680178 | Harris et al. | Jan 2004 | B2 |
6682890 | Mack et al. | Jan 2004 | B2 |
6717136 | Andersson et al. | Apr 2004 | B2 |
6729561 | Hirae et al. | May 2004 | B2 |
6738502 | Coleman et al. | May 2004 | B1 |
6739036 | Koike et al. | May 2004 | B2 |
6744046 | Valaskovic et al. | Jun 2004 | B2 |
6752922 | Huang et al. | Jun 2004 | B2 |
6753147 | Vogelstein et al. | Jun 2004 | B2 |
6766817 | da Silva | Jul 2004 | B2 |
6767194 | Jeon et al. | Jul 2004 | B2 |
6767704 | Waldman et al. | Jul 2004 | B2 |
6790328 | Jacobson et al. | Sep 2004 | B2 |
6793753 | Unger et al. | Sep 2004 | B2 |
6797056 | David | Sep 2004 | B2 |
6800849 | Staats | Oct 2004 | B2 |
6806058 | Jesperson et al. | Oct 2004 | B2 |
6808382 | Lanfranchi | Oct 2004 | B2 |
6808882 | Griffiths et al. | Oct 2004 | B2 |
6814980 | Levy et al. | Nov 2004 | B2 |
6818395 | Quake et al. | Nov 2004 | B1 |
6832787 | Renzi | Dec 2004 | B1 |
6833242 | Quake et al. | Dec 2004 | B2 |
6841350 | Ogden et al. | Jan 2005 | B2 |
6872250 | David et al. | Mar 2005 | B2 |
6890487 | Sklar et al. | May 2005 | B1 |
6897018 | Yuan et al. | May 2005 | B1 |
6905844 | Kim | Jun 2005 | B2 |
6918404 | Dias da Silva | Jul 2005 | B2 |
6926313 | Renzi | Aug 2005 | B1 |
6935768 | Lowe et al. | Aug 2005 | B2 |
6936417 | Orntoft | Aug 2005 | B2 |
6942978 | O'Brien | Sep 2005 | B1 |
6949342 | Golub et al. | Sep 2005 | B2 |
6960437 | Enzelberger et al. | Nov 2005 | B2 |
6964847 | Englert | Nov 2005 | B1 |
6974667 | Horne et al. | Dec 2005 | B2 |
6998232 | Feinstein et al. | Feb 2006 | B1 |
7022472 | Robbins et al. | Apr 2006 | B2 |
7041481 | Anderson et al. | May 2006 | B2 |
7049072 | Seshi | May 2006 | B2 |
7056674 | Baker et al. | Jun 2006 | B2 |
7057026 | Barnes et al. | Jun 2006 | B2 |
7066586 | da Silva | Jun 2006 | B2 |
7068874 | Wang et al. | Jun 2006 | B2 |
7078180 | Genetta | Jul 2006 | B2 |
7081192 | Wang et al. | Jul 2006 | B1 |
7081340 | Baker et al. | Jul 2006 | B2 |
7090983 | Muramatsu et al. | Aug 2006 | B1 |
7115230 | Sundararajan | Oct 2006 | B2 |
7118910 | Unger et al. | Oct 2006 | B2 |
7129091 | Ismagilov et al. | Oct 2006 | B2 |
7138233 | Griffiths et al. | Nov 2006 | B2 |
7153700 | Pardee et al. | Dec 2006 | B1 |
7156917 | Moriyama et al. | Jan 2007 | B2 |
7163801 | Reed | Jan 2007 | B2 |
7169560 | Lapidus et al. | Jan 2007 | B2 |
7171311 | Dai et al. | Jan 2007 | B2 |
7198899 | Schleyer et al. | Apr 2007 | B2 |
7204431 | Li et al. | Apr 2007 | B2 |
7229770 | Price et al. | Jun 2007 | B1 |
7252943 | Griffiths et al. | Aug 2007 | B2 |
7267938 | Anderson et al. | Sep 2007 | B2 |
7268167 | Higuchi et al. | Sep 2007 | B2 |
7282337 | Harris | Oct 2007 | B1 |
7291462 | O'Brien et al. | Nov 2007 | B2 |
7294503 | Quake et al. | Nov 2007 | B2 |
7300765 | Patel | Nov 2007 | B2 |
7308364 | Shaughnessy et al. | Dec 2007 | B2 |
7314721 | Gure et al. | Jan 2008 | B2 |
7316906 | Chiorazzi et al. | Jan 2008 | B2 |
7323305 | Leamon et al. | Jan 2008 | B2 |
7323309 | Mirkin et al. | Jan 2008 | B2 |
7326529 | Ali et al. | Feb 2008 | B2 |
7332280 | Levy et al. | Feb 2008 | B2 |
7332590 | Nacht et al. | Feb 2008 | B2 |
7341211 | Ganan Calvo et al. | Mar 2008 | B2 |
7348142 | Wang | Mar 2008 | B2 |
7358231 | McCaffey et al. | Apr 2008 | B1 |
7361474 | Siegler | Apr 2008 | B2 |
7364862 | Ali et al. | Apr 2008 | B2 |
7368255 | Bae et al. | May 2008 | B2 |
7378233 | Sidransky et al. | May 2008 | B2 |
7378280 | Quake et al. | May 2008 | B2 |
7390463 | He et al. | Jun 2008 | B2 |
7393634 | Ahuja et al. | Jul 2008 | B1 |
7393665 | Brenner | Jul 2008 | B2 |
7416851 | Davi et al. | Aug 2008 | B2 |
7429467 | Holliger et al. | Sep 2008 | B2 |
7432064 | Salceda et al. | Oct 2008 | B2 |
7442507 | Polsky et al. | Oct 2008 | B2 |
7449303 | Coignet | Nov 2008 | B2 |
7468271 | Golovchenko et al. | Dec 2008 | B2 |
7473530 | Huttemann | Jan 2009 | B2 |
7473531 | Domon et al. | Jan 2009 | B1 |
7476506 | Schleyer et al. | Jan 2009 | B2 |
7479370 | Coignet | Jan 2009 | B2 |
7479371 | Ando et al. | Jan 2009 | B2 |
7479376 | Waldman et al. | Jan 2009 | B2 |
7482129 | Soyupak et al. | Jan 2009 | B2 |
7501244 | Reinhard et al. | Mar 2009 | B2 |
7504214 | Erlander et al. | Mar 2009 | B2 |
7507532 | Chang et al. | Mar 2009 | B2 |
7507541 | Raitano et al. | Mar 2009 | B2 |
7510707 | Platica et al. | Mar 2009 | B2 |
7510842 | Podust et al. | Mar 2009 | B2 |
7514209 | Dai et al. | Apr 2009 | B2 |
7514210 | Holliger et al. | Apr 2009 | B2 |
7524633 | Sidransky | Apr 2009 | B2 |
7527933 | Sahin et al. | May 2009 | B2 |
7537897 | Brenner et al. | May 2009 | B2 |
7541383 | Fu et al. | Jun 2009 | B2 |
7544473 | Brenner | Jun 2009 | B2 |
7556776 | Fraden et al. | Jul 2009 | B2 |
7582446 | Griffiths et al. | Sep 2009 | B2 |
7595195 | Lee et al. | Sep 2009 | B2 |
7604938 | Takahashi et al. | Oct 2009 | B2 |
7622081 | Chou et al. | Nov 2009 | B2 |
7632562 | Nair et al. | Dec 2009 | B2 |
7635562 | Harris et al. | Dec 2009 | B2 |
7638276 | Griffiths et al. | Dec 2009 | B2 |
7655435 | Holliger et al. | Feb 2010 | B2 |
7655470 | Ismagilov et al. | Feb 2010 | B2 |
7666593 | Lapidus | Feb 2010 | B2 |
7691576 | Holliger et al. | Apr 2010 | B2 |
7698287 | Becker et al. | Apr 2010 | B2 |
7708949 | Stone et al. | May 2010 | B2 |
7718578 | Griffiths et al. | May 2010 | B2 |
7736890 | Sia et al. | Jun 2010 | B2 |
7741130 | Lee, Jr. et al. | Jun 2010 | B2 |
7754428 | Lo et al. | Jul 2010 | B2 |
RE41780 | Anderson et al. | Sep 2010 | E |
7814175 | Chang et al. | Oct 2010 | B1 |
7824889 | Vogelstein et al. | Nov 2010 | B2 |
7888017 | Quake et al. | Feb 2011 | B2 |
7897044 | Hoyos et al. | Mar 2011 | B2 |
7897341 | Griffiths et al. | Mar 2011 | B2 |
7901939 | Ismagliov et al. | Mar 2011 | B2 |
7915015 | Vogelstein et al. | Mar 2011 | B2 |
7968287 | Griffiths et al. | Jun 2011 | B2 |
7990525 | Kanda | Aug 2011 | B2 |
8012382 | Kim et al. | Sep 2011 | B2 |
8067159 | Brown et al. | Nov 2011 | B2 |
8153402 | Holliger et al. | Apr 2012 | B2 |
8252539 | Quake et al. | Aug 2012 | B2 |
8257925 | Brown et al. | Sep 2012 | B2 |
8278071 | Brown et al. | Oct 2012 | B2 |
8278711 | Rao et al. | Oct 2012 | B2 |
8288100 | Lo et al. | Oct 2012 | B2 |
8318434 | Cuppens | Nov 2012 | B2 |
8337778 | Stone et al. | Dec 2012 | B2 |
8436993 | Kaduchak et al. | May 2013 | B2 |
8462269 | Cheng et al. | Jun 2013 | B2 |
8528589 | Miller et al. | Sep 2013 | B2 |
8535889 | Larson et al. | Sep 2013 | B2 |
8592221 | Fraden et al. | Nov 2013 | B2 |
8673595 | Nakamura et al. | Mar 2014 | B2 |
8715934 | Diehl et al. | May 2014 | B2 |
8722334 | Lo et al. | May 2014 | B2 |
8765485 | Link et al. | Jul 2014 | B2 |
8772046 | Fraden et al. | Jul 2014 | B2 |
8841071 | Link | Sep 2014 | B2 |
8857462 | Miller et al. | Oct 2014 | B2 |
8871444 | Griffiths et al. | Oct 2014 | B2 |
9029083 | Griffiths et al. | May 2015 | B2 |
9029085 | Agresti et al. | May 2015 | B2 |
9176031 | Watson | Nov 2015 | B2 |
9186643 | Griffiths et al. | Nov 2015 | B2 |
9273308 | Link et al. | Mar 2016 | B2 |
9273349 | Nguyen et al. | Mar 2016 | B2 |
9328344 | Link et al. | May 2016 | B2 |
9364803 | Yurkovetsky et al. | Jun 2016 | B2 |
9399797 | Hutchison et al. | Jul 2016 | B2 |
9410151 | Link et al. | Aug 2016 | B2 |
9448172 | Griffiths et al. | Sep 2016 | B2 |
9816121 | Agresti et al. | Nov 2017 | B2 |
9839890 | Griffiths et al. | Dec 2017 | B2 |
9857202 | Seki | Jan 2018 | B2 |
9919277 | Griffiths et al. | Mar 2018 | B2 |
9925501 | Griffiths et al. | Mar 2018 | B2 |
9944977 | Link et al. | Apr 2018 | B2 |
10144950 | Nolan | Dec 2018 | B2 |
10151698 | Griffiths et al. | Dec 2018 | B2 |
10357772 | Fraden et al. | Jul 2019 | B2 |
10526605 | Liu et al. | Jan 2020 | B2 |
10584332 | Samuels et al. | Mar 2020 | B2 |
10596541 | Weitz et al. | Mar 2020 | B2 |
10612081 | Hutchison et al. | Apr 2020 | B2 |
10633652 | Link et al. | Apr 2020 | B2 |
10639597 | Link et al. | May 2020 | B2 |
10639598 | Griffiths et al. | May 2020 | B2 |
10675626 | Fraden et al. | Jun 2020 | B2 |
20010010338 | Ganan-Calvo | Aug 2001 | A1 |
20010020011 | Mathiowitz et al. | Sep 2001 | A1 |
20010023078 | Bawendi et al. | Sep 2001 | A1 |
20010029983 | Unger et al. | Oct 2001 | A1 |
20010032053 | Hielscher et al. | Oct 2001 | A1 |
20010034025 | Modlin et al. | Oct 2001 | A1 |
20010034031 | Short et al. | Oct 2001 | A1 |
20010041343 | Pankowsky | Nov 2001 | A1 |
20010041344 | Sepetov et al. | Nov 2001 | A1 |
20010041357 | Fouillet et al. | Nov 2001 | A1 |
20010042793 | Ganan-Calvo | Nov 2001 | A1 |
20010048900 | Bardell et al. | Dec 2001 | A1 |
20010050881 | Depaoli et al. | Dec 2001 | A1 |
20020004532 | Matathia et al. | Jan 2002 | A1 |
20020005354 | Spence et al. | Jan 2002 | A1 |
20020008028 | Jacobson et al. | Jan 2002 | A1 |
20020012971 | Mehta | Jan 2002 | A1 |
20020015997 | Lafferty | Feb 2002 | A1 |
20020022038 | Biatry et al. | Feb 2002 | A1 |
20020022261 | Anderson et al. | Feb 2002 | A1 |
20020033422 | Ganan-Calvo | Mar 2002 | A1 |
20020034737 | Drmanac | Mar 2002 | A1 |
20020036018 | McNeely et al. | Mar 2002 | A1 |
20020036139 | Becker et al. | Mar 2002 | A1 |
20020041378 | Peltie et al. | Apr 2002 | A1 |
20020058332 | Quake et al. | May 2002 | A1 |
20020065609 | Ashby | May 2002 | A1 |
20020067800 | Newman et al. | Jun 2002 | A1 |
20020084417 | Khalil et al. | Jul 2002 | A1 |
20020085961 | Morin et al. | Jul 2002 | A1 |
20020090720 | Mutz et al. | Jul 2002 | A1 |
20020106667 | Yamamoto et al. | Aug 2002 | A1 |
20020119455 | Chan | Aug 2002 | A1 |
20020119459 | Griffiths | Aug 2002 | A1 |
20020127591 | Wada et al. | Sep 2002 | A1 |
20020142344 | Akeson et al. | Oct 2002 | A1 |
20020143437 | Handique et al. | Oct 2002 | A1 |
20020155080 | Glenn et al. | Oct 2002 | A1 |
20020158027 | Moon et al. | Oct 2002 | A1 |
20020164271 | Ho | Nov 2002 | A1 |
20020164629 | Quake et al. | Nov 2002 | A1 |
20020166582 | O'Connor et al. | Nov 2002 | A1 |
20020179849 | Maher et al. | Dec 2002 | A1 |
20030008308 | Enzelberger et al. | Jan 2003 | A1 |
20030012586 | Iwata et al. | Jan 2003 | A1 |
20030015425 | Bohm et al. | Jan 2003 | A1 |
20030017305 | Roitman et al. | Jan 2003 | A1 |
20030017579 | Corn et al. | Jan 2003 | A1 |
20030039169 | Ehrfeld et al. | Feb 2003 | A1 |
20030040620 | Langmore et al. | Feb 2003 | A1 |
20030059764 | Ravkin et al. | Mar 2003 | A1 |
20030061687 | Hansen et al. | Apr 2003 | A1 |
20030064414 | Benecky et al. | Apr 2003 | A1 |
20030082795 | Shuler et al. | May 2003 | A1 |
20030083276 | Li et al. | May 2003 | A1 |
20030104372 | Ahmadian et al. | Jun 2003 | A1 |
20030108900 | Oliphant et al. | Jun 2003 | A1 |
20030124586 | Griffiths et al. | Jul 2003 | A1 |
20030143599 | Makarov et al. | Jul 2003 | A1 |
20030144260 | Gilon | Jul 2003 | A1 |
20030148273 | Dong et al. | Aug 2003 | A1 |
20030148544 | Nie et al. | Aug 2003 | A1 |
20030181574 | Adam et al. | Sep 2003 | A1 |
20030183525 | Elrod et al. | Oct 2003 | A1 |
20030207295 | Gunderson et al. | Nov 2003 | A1 |
20030219754 | Oleksy et al. | Nov 2003 | A1 |
20030224509 | Moon et al. | Dec 2003 | A1 |
20030229376 | Sandhu | Dec 2003 | A1 |
20030230486 | Chien et al. | Dec 2003 | A1 |
20030232356 | Dooley et al. | Dec 2003 | A1 |
20040005582 | Shipwash | Jan 2004 | A1 |
20040005594 | Holliger et al. | Jan 2004 | A1 |
20040018525 | Wirtz et al. | Jan 2004 | A1 |
20040027915 | Lowe et al. | Feb 2004 | A1 |
20040030255 | Alfano et al. | Feb 2004 | A1 |
20040031688 | Shenderov | Feb 2004 | A1 |
20040037739 | McNeely et al. | Feb 2004 | A1 |
20040037813 | Simpson et al. | Feb 2004 | A1 |
20040041093 | Schultz et al. | Mar 2004 | A1 |
20040050946 | Wang et al. | Mar 2004 | A1 |
20040053247 | Cordon-Cardo et al. | Mar 2004 | A1 |
20040057906 | Hsu et al. | Mar 2004 | A1 |
20040058450 | Pamula et al. | Mar 2004 | A1 |
20040068019 | Higuchi et al. | Apr 2004 | A1 |
20040071781 | Chattopadhyay et al. | Apr 2004 | A1 |
20040079881 | Fischer et al. | Apr 2004 | A1 |
20040086892 | Crothers et al. | May 2004 | A1 |
20040091923 | Reyes et al. | May 2004 | A1 |
20040092824 | Stamnes et al. | May 2004 | A1 |
20040096515 | Bausch et al. | May 2004 | A1 |
20040134854 | Higuchi et al. | Jul 2004 | A1 |
20040136497 | Meldrum et al. | Jul 2004 | A1 |
20040142329 | Erikson et al. | Jul 2004 | A1 |
20040146866 | Fu | Jul 2004 | A1 |
20040146921 | Veleigh et al. | Jul 2004 | A1 |
20040159633 | Whitesides et al. | Aug 2004 | A1 |
20040180346 | Anderson et al. | Sep 2004 | A1 |
20040181131 | Maynard et al. | Sep 2004 | A1 |
20040181343 | Wigstrom et al. | Sep 2004 | A1 |
20040182712 | Basol | Sep 2004 | A1 |
20040185484 | Costa et al. | Sep 2004 | A1 |
20040188254 | Spaid | Sep 2004 | A1 |
20040209299 | Pinter et al. | Oct 2004 | A1 |
20040224325 | Knapp et al. | Nov 2004 | A1 |
20040224419 | Zheng et al. | Nov 2004 | A1 |
20040229349 | Daridon | Nov 2004 | A1 |
20040241693 | Ricoul et al. | Dec 2004 | A1 |
20040253731 | Holliger et al. | Dec 2004 | A1 |
20040258203 | Yamano et al. | Dec 2004 | A1 |
20040259083 | Oshima | Dec 2004 | A1 |
20050000970 | Kimbara et al. | Jan 2005 | A1 |
20050003380 | Cohen et al. | Jan 2005 | A1 |
20050008592 | Gardel et al. | Jan 2005 | A1 |
20050019776 | Callow et al. | Jan 2005 | A1 |
20050032238 | Karp et al. | Feb 2005 | A1 |
20050032240 | Lee et al. | Feb 2005 | A1 |
20050037392 | Griffiths et al. | Feb 2005 | A1 |
20050037397 | Mirkin et al. | Feb 2005 | A1 |
20050042639 | Knapp et al. | Feb 2005 | A1 |
20050042648 | Griffiths et al. | Feb 2005 | A1 |
20050048467 | Sastry et al. | Mar 2005 | A1 |
20050064460 | Holliger et al. | Mar 2005 | A1 |
20050069920 | Griffiths et al. | Mar 2005 | A1 |
20050079501 | Koike et al. | Apr 2005 | A1 |
20050079510 | Berka et al. | Apr 2005 | A1 |
20050084923 | Mueller et al. | Apr 2005 | A1 |
20050087122 | Ismagliov et al. | Apr 2005 | A1 |
20050095611 | Chan et al. | May 2005 | A1 |
20050100895 | Waldman et al. | May 2005 | A1 |
20050103690 | Kawano et al. | May 2005 | A1 |
20050123937 | Thorp et al. | Jun 2005 | A1 |
20050129582 | Breidford et al. | Jun 2005 | A1 |
20050130173 | Leamon et al. | Jun 2005 | A1 |
20050152908 | Liew et al. | Jul 2005 | A1 |
20050161669 | Jovanovich et al. | Jul 2005 | A1 |
20050164239 | Griffiths et al. | Jul 2005 | A1 |
20050169797 | Oshima | Aug 2005 | A1 |
20050170373 | Monforte | Aug 2005 | A1 |
20050170431 | Ibrahim et al. | Aug 2005 | A1 |
20050172476 | Stone et al. | Aug 2005 | A1 |
20050183995 | Deshpande et al. | Aug 2005 | A1 |
20050202429 | Trau et al. | Sep 2005 | A1 |
20050202489 | Cho et al. | Sep 2005 | A1 |
20050207940 | Butler et al. | Sep 2005 | A1 |
20050208495 | Joseph et al. | Sep 2005 | A1 |
20050214173 | Facer et al. | Sep 2005 | A1 |
20050221339 | Griffiths et al. | Oct 2005 | A1 |
20050221341 | Shimkets et al. | Oct 2005 | A1 |
20050226742 | Unger et al. | Oct 2005 | A1 |
20050227264 | Nobile et al. | Oct 2005 | A1 |
20050248066 | Esteban | Nov 2005 | A1 |
20050251049 | Cane et al. | Nov 2005 | A1 |
20050260566 | Fischer et al. | Nov 2005 | A1 |
20050272159 | Ismagilov et al. | Dec 2005 | A1 |
20050287572 | Mathies et al. | Dec 2005 | A1 |
20060003347 | Griffiths et al. | Jan 2006 | A1 |
20060003429 | Frost et al. | Jan 2006 | A1 |
20060003439 | Ismagilov et al. | Jan 2006 | A1 |
20060008824 | Ronaghi et al. | Jan 2006 | A1 |
20060035386 | Hattori et al. | Feb 2006 | A1 |
20060036348 | Handique et al. | Feb 2006 | A1 |
20060040197 | Kabai | Feb 2006 | A1 |
20060040297 | Leamon et al. | Feb 2006 | A1 |
20060046257 | Pollock et al. | Mar 2006 | A1 |
20060051329 | Lee et al. | Mar 2006 | A1 |
20060068398 | McMillan | Mar 2006 | A1 |
20060078475 | Tai et al. | Apr 2006 | A1 |
20060078888 | Griffiths et al. | Apr 2006 | A1 |
20060078893 | Griffiths et al. | Apr 2006 | A1 |
20060094119 | Ismagilov et al. | May 2006 | A1 |
20060100788 | Carrino et al. | May 2006 | A1 |
20060108012 | Barrow et al. | May 2006 | A1 |
20060110759 | Paris et al. | May 2006 | A1 |
20060115821 | Einstein et al. | Jun 2006 | A1 |
20060147909 | Rarbach et al. | Jul 2006 | A1 |
20060153924 | Griffiths et al. | Jul 2006 | A1 |
20060154298 | Griffiths et al. | Jul 2006 | A1 |
20060160762 | Zetter et al. | Jul 2006 | A1 |
20060163385 | Link et al. | Jul 2006 | A1 |
20060169800 | Rosell et al. | Aug 2006 | A1 |
20060177832 | Brenner | Aug 2006 | A1 |
20060195269 | Yeatman et al. | Aug 2006 | A1 |
20060223127 | Yip et al. | Oct 2006 | A1 |
20060234254 | An et al. | Oct 2006 | A1 |
20060234259 | Rubin et al. | Oct 2006 | A1 |
20060234264 | Hardenbol | Oct 2006 | A1 |
20060246431 | Balachandran | Nov 2006 | A1 |
20060247532 | Ramanujam et al. | Nov 2006 | A1 |
20060252057 | Raponi et al. | Nov 2006 | A1 |
20060257893 | Takahashi et al. | Nov 2006 | A1 |
20060258841 | Michl et al. | Nov 2006 | A1 |
20060263888 | Fritz et al. | Nov 2006 | A1 |
20060269558 | Murphy et al. | Nov 2006 | A1 |
20060269934 | Woudenberg et al. | Nov 2006 | A1 |
20060269971 | Diamandis | Nov 2006 | A1 |
20060281089 | Gibson et al. | Dec 2006 | A1 |
20060281098 | Miao et al. | Dec 2006 | A1 |
20060286570 | Rowlen et al. | Dec 2006 | A1 |
20070003442 | Link et al. | Jan 2007 | A1 |
20070009914 | Wallace et al. | Jan 2007 | A1 |
20070009954 | Wang et al. | Jan 2007 | A1 |
20070016078 | Hoyt et al. | Jan 2007 | A1 |
20070020617 | Trnovsky et al. | Jan 2007 | A1 |
20070026439 | Faulstich et al. | Feb 2007 | A1 |
20070031829 | Yasuno et al. | Feb 2007 | A1 |
20070042400 | Choi et al. | Feb 2007 | A1 |
20070042419 | Barany et al. | Feb 2007 | A1 |
20070045117 | Pamula et al. | Mar 2007 | A1 |
20070048744 | Lapidus | Mar 2007 | A1 |
20070053896 | Ahmed et al. | Mar 2007 | A1 |
20070054119 | Garstecki et al. | Mar 2007 | A1 |
20070056853 | Aizenberg et al. | Mar 2007 | A1 |
20070065823 | Dressman et al. | Mar 2007 | A1 |
20070077572 | Tawfik et al. | Apr 2007 | A1 |
20070077579 | Griffiths et al. | Apr 2007 | A1 |
20070092914 | Griffiths et al. | Apr 2007 | A1 |
20070111303 | Inoue et al. | May 2007 | A1 |
20070120899 | Ohnishi et al. | May 2007 | A1 |
20070123430 | Pasquier et al. | May 2007 | A1 |
20070141593 | Lee et al. | Jun 2007 | A1 |
20070142720 | Ridder et al. | Jun 2007 | A1 |
20070154889 | Wang | Jul 2007 | A1 |
20070156037 | Pilon et al. | Jul 2007 | A1 |
20070166705 | Milton et al. | Jul 2007 | A1 |
20070172873 | Brenner et al. | Jul 2007 | A1 |
20070184439 | Guilford et al. | Aug 2007 | A1 |
20070184489 | Griffiths et al. | Aug 2007 | A1 |
20070195127 | Ahn et al. | Aug 2007 | A1 |
20070202525 | Quake et al. | Aug 2007 | A1 |
20070213410 | Hastwell et al. | Sep 2007 | A1 |
20070241068 | Pamula et al. | Oct 2007 | A1 |
20070242105 | Srinivasan et al. | Oct 2007 | A1 |
20070243634 | Pamula et al. | Oct 2007 | A1 |
20070259351 | Chinitz et al. | Nov 2007 | A1 |
20070259368 | An et al. | Nov 2007 | A1 |
20070259374 | Griffiths et al. | Nov 2007 | A1 |
20070269804 | Liew et al. | Nov 2007 | A1 |
20070275415 | Srinivasan et al. | Nov 2007 | A1 |
20070292869 | Becker et al. | Dec 2007 | A1 |
20080003142 | Link et al. | Jan 2008 | A1 |
20080003571 | McKeman et al. | Jan 2008 | A1 |
20080004436 | Tawfik et al. | Jan 2008 | A1 |
20080009005 | Kruk | Jan 2008 | A1 |
20080014589 | Link et al. | Jan 2008 | A1 |
20080014590 | Dahary et al. | Jan 2008 | A1 |
20080020940 | Stedronsky et al. | Jan 2008 | A1 |
20080021330 | Hwang et al. | Jan 2008 | A1 |
20080023330 | Viovy et al. | Jan 2008 | A1 |
20080032413 | Kim et al. | Feb 2008 | A1 |
20080038754 | Farias-Eisner et al. | Feb 2008 | A1 |
20080044828 | Kwok | Feb 2008 | A1 |
20080050378 | Nakamura et al. | Feb 2008 | A1 |
20080050723 | Belacel et al. | Feb 2008 | A1 |
20080053205 | Pollack et al. | Mar 2008 | A1 |
20080057514 | Goldenring | Mar 2008 | A1 |
20080058432 | Wang et al. | Mar 2008 | A1 |
20080063227 | Rohrseitz | Mar 2008 | A1 |
20080064047 | Zetter et al. | Mar 2008 | A1 |
20080081330 | Kahvejian | Apr 2008 | A1 |
20080081333 | Mori et al. | Apr 2008 | A1 |
20080092973 | Lai | Apr 2008 | A1 |
20080113340 | Schlegel | May 2008 | A1 |
20080118462 | Alani et al. | May 2008 | A1 |
20080124726 | Monforte | May 2008 | A1 |
20080138806 | Chow et al. | Jun 2008 | A1 |
20080166772 | Hollinger et al. | Jul 2008 | A1 |
20080166793 | Beer et al. | Jul 2008 | A1 |
20080171078 | Gray | Jul 2008 | A1 |
20080176211 | Spence et al. | Jul 2008 | A1 |
20080176236 | Tsao et al. | Jul 2008 | A1 |
20080181850 | Thaxton et al. | Jul 2008 | A1 |
20080206756 | Lee et al. | Aug 2008 | A1 |
20080216563 | Reed et al. | Sep 2008 | A1 |
20080220986 | Gormley et al. | Sep 2008 | A1 |
20080222741 | Chinnaiyan | Sep 2008 | A1 |
20080234138 | Shaughnessy et al. | Sep 2008 | A1 |
20080234139 | Shaughnessy et al. | Sep 2008 | A1 |
20080241830 | Vogelstein et al. | Oct 2008 | A1 |
20080261295 | Butler et al. | Oct 2008 | A1 |
20080268473 | Moses et al. | Oct 2008 | A1 |
20080269157 | Srivastava et al. | Oct 2008 | A1 |
20080274513 | Shenderov et al. | Nov 2008 | A1 |
20080274908 | Chang | Nov 2008 | A1 |
20080280285 | Chen et al. | Nov 2008 | A1 |
20080280302 | Kebebew | Nov 2008 | A1 |
20080286199 | Livingston et al. | Nov 2008 | A1 |
20080286801 | Arjol et al. | Nov 2008 | A1 |
20080286811 | Moses et al. | Nov 2008 | A1 |
20080293578 | Shaugnessy et al. | Nov 2008 | A1 |
20080299565 | Schneider et al. | Dec 2008 | A1 |
20080305482 | Brentano et al. | Dec 2008 | A1 |
20080311570 | Lai | Dec 2008 | A1 |
20080311604 | Elting et al. | Dec 2008 | A1 |
20090004687 | Mansfield et al. | Jan 2009 | A1 |
20090005254 | Griffiths et al. | Jan 2009 | A1 |
20090009855 | Nakatsuka et al. | Jan 2009 | A1 |
20090012187 | Chu et al. | Jan 2009 | A1 |
20090017463 | Bhowmick | Jan 2009 | A1 |
20090021728 | Heinz et al. | Jan 2009 | A1 |
20090023137 | Van Der Zee et al. | Jan 2009 | A1 |
20090026082 | Rothberg et al. | Jan 2009 | A1 |
20090029372 | Wewer | Jan 2009 | A1 |
20090042737 | Katz et al. | Feb 2009 | A1 |
20090053700 | Griffiths et al. | Feb 2009 | A1 |
20090053732 | Vermesh et al. | Feb 2009 | A1 |
20090060797 | Mathies et al. | Mar 2009 | A1 |
20090062144 | Guo | Mar 2009 | A1 |
20090068170 | Weitz et al. | Mar 2009 | A1 |
20090069194 | Ramakrishnan | Mar 2009 | A1 |
20090075265 | Budiman et al. | Mar 2009 | A1 |
20090075307 | Fischer et al. | Mar 2009 | A1 |
20090075311 | Karl | Mar 2009 | A1 |
20090081237 | D'Andrea et al. | Mar 2009 | A1 |
20090081685 | Beyer et al. | Mar 2009 | A1 |
20090087849 | Malinowski et al. | Apr 2009 | A1 |
20090092973 | Erlander et al. | Apr 2009 | A1 |
20090098542 | Budiman et al. | Apr 2009 | A1 |
20090098543 | Budiman et al. | Apr 2009 | A1 |
20090098555 | Roth et al. | Apr 2009 | A1 |
20090105959 | Braverman et al. | Apr 2009 | A1 |
20090118128 | Liu et al. | May 2009 | A1 |
20090124569 | Bergan et al. | May 2009 | A1 |
20090127454 | Ritchie et al. | May 2009 | A1 |
20090127589 | Rothberg et al. | May 2009 | A1 |
20090131353 | Insel et al. | May 2009 | A1 |
20090131543 | Weitz et al. | May 2009 | A1 |
20090134027 | Jary | May 2009 | A1 |
20090134331 | Miyamae et al. | May 2009 | A1 |
20090191565 | Lapidus et al. | Jul 2009 | A1 |
20090197248 | Griffiths et al. | Aug 2009 | A1 |
20090197772 | Griffiths et al. | Aug 2009 | A1 |
20090215633 | Van Eijk et al. | Aug 2009 | A1 |
20090226971 | Beer et al. | Sep 2009 | A1 |
20090226972 | Beer et al. | Sep 2009 | A1 |
20090233802 | Bignell et al. | Sep 2009 | A1 |
20090246788 | Albert et al. | Oct 2009 | A1 |
20090317798 | Heid et al. | Dec 2009 | A1 |
20090325217 | Luscher | Dec 2009 | A1 |
20090325236 | Griffiths et al. | Dec 2009 | A1 |
20100003687 | Simen et al. | Jan 2010 | A1 |
20100009353 | Barnes et al. | Jan 2010 | A1 |
20100015617 | Toyama | Jan 2010 | A1 |
20100021984 | Edd et al. | Jan 2010 | A1 |
20100022414 | Link et al. | Jan 2010 | A1 |
20100035252 | Rothberg et al. | Feb 2010 | A1 |
20100055677 | Colston, Jr. et al. | Mar 2010 | A1 |
20100075436 | Urdea et al. | Mar 2010 | A1 |
20100105112 | Holtze et al. | Apr 2010 | A1 |
20100111768 | Banerjee et al. | May 2010 | A1 |
20100124759 | Wang et al. | May 2010 | A1 |
20100130369 | Shenderov et al. | May 2010 | A1 |
20100136544 | Agresti et al. | Jun 2010 | A1 |
20100137143 | Rothberg et al. | Jun 2010 | A1 |
20100137163 | Link et al. | Jun 2010 | A1 |
20100159592 | Holliger et al. | Jun 2010 | A1 |
20100172803 | Stone et al. | Jul 2010 | A1 |
20100173293 | Woudenberg et al. | Jul 2010 | A1 |
20100173394 | Colston, Jr. et al. | Jul 2010 | A1 |
20100188073 | Rothberg et al. | Jul 2010 | A1 |
20100197507 | Rothberg et al. | Aug 2010 | A1 |
20100210479 | Griffiths et al. | Aug 2010 | A1 |
20100213628 | Bausch et al. | Aug 2010 | A1 |
20100233026 | Ismagliov et al. | Sep 2010 | A1 |
20100240101 | Lieberman et al. | Sep 2010 | A1 |
20100273173 | Hirai et al. | Oct 2010 | A1 |
20100282617 | Rothberg et al. | Nov 2010 | A1 |
20100285975 | Mathies et al. | Nov 2010 | A1 |
20100300559 | Schultz et al. | Dec 2010 | A1 |
20100300895 | Nobile et al. | Dec 2010 | A1 |
20100301398 | Rothberg et al. | Dec 2010 | A1 |
20100304982 | Hinz et al. | Dec 2010 | A1 |
20110000560 | Miller et al. | Jan 2011 | A1 |
20110024455 | Bethuy et al. | Feb 2011 | A1 |
20110033854 | Drmanac et al. | Feb 2011 | A1 |
20110045462 | Fu et al. | Feb 2011 | A1 |
20110053151 | Hansen et al. | Mar 2011 | A1 |
20110053798 | Hindson et al. | Mar 2011 | A1 |
20110059435 | Vogelstein et al. | Mar 2011 | A1 |
20110059556 | Strey et al. | Mar 2011 | A1 |
20110104725 | Pamula et al. | May 2011 | A1 |
20110104816 | Pollack et al. | May 2011 | A1 |
20110111981 | Love et al. | May 2011 | A1 |
20110142734 | Ismagliov et al. | Jun 2011 | A1 |
20110151444 | Albers et al. | Jun 2011 | A1 |
20110159499 | Hindson et al. | Jun 2011 | A1 |
20110174622 | Ismagilov et al. | Jul 2011 | A1 |
20110176966 | Ismagilov et al. | Jul 2011 | A1 |
20110177494 | Ismagilov et al. | Jul 2011 | A1 |
20110177586 | Ismagilov et al. | Jul 2011 | A1 |
20110177609 | Ismagilov et al. | Jul 2011 | A1 |
20110188717 | Baudry et al. | Aug 2011 | A1 |
20110190146 | Boehm et al. | Aug 2011 | A1 |
20110218123 | Weitz et al. | Sep 2011 | A1 |
20110223314 | Zhang et al. | Sep 2011 | A1 |
20110244455 | Larson et al. | Oct 2011 | A1 |
20110250597 | Larson et al. | Oct 2011 | A1 |
20110257031 | Bodeau et al. | Oct 2011 | A1 |
20110267457 | Weitz et al. | Nov 2011 | A1 |
20110275063 | Weitz et al. | Nov 2011 | A1 |
20110311978 | Makarewicz, Jr. et al. | Dec 2011 | A1 |
20120010098 | Griffiths et al. | Jan 2012 | A1 |
20120010107 | Griffiths et al. | Jan 2012 | A1 |
20120014977 | Furihata et al. | Jan 2012 | A1 |
20120015382 | Weitz et al. | Jan 2012 | A1 |
20120015822 | Weitz et al. | Jan 2012 | A1 |
20120021919 | Scholl et al. | Jan 2012 | A1 |
20120021930 | Schoen et al. | Jan 2012 | A1 |
20120088691 | Chen et al. | Apr 2012 | A1 |
20120122714 | Samuels et al. | May 2012 | A1 |
20120164652 | Clemens et al. | Jun 2012 | A1 |
20120165219 | Van Der Zaag et al. | Jun 2012 | A1 |
20120167142 | Hey | Jun 2012 | A1 |
20120171667 | Shoemaker et al. | Jul 2012 | A1 |
20120190032 | Ness et al. | Jul 2012 | A1 |
20120220494 | Samuels et al. | Aug 2012 | A1 |
20120231972 | Golyshin et al. | Sep 2012 | A1 |
20120244043 | Leblanc et al. | Sep 2012 | A1 |
20120252012 | Armougom et al. | Oct 2012 | A1 |
20120253689 | Rogan | Oct 2012 | A1 |
20120258516 | Schultz et al. | Oct 2012 | A1 |
20120288857 | Livak | Nov 2012 | A1 |
20120302448 | Hutchison et al. | Nov 2012 | A1 |
20120322058 | Regan et al. | Dec 2012 | A1 |
20130099018 | Miller et al. | Apr 2013 | A1 |
20130109577 | Korlach et al. | May 2013 | A1 |
20130143745 | Christen et al. | Jun 2013 | A1 |
20130157870 | Pushkarev et al. | Jun 2013 | A1 |
20130157872 | Griffiths et al. | Jun 2013 | A1 |
20130178368 | Griffiths et al. | Jul 2013 | A1 |
20130178378 | Hatch et al. | Jul 2013 | A1 |
20130203606 | Pollack et al. | Aug 2013 | A1 |
20130217071 | Montesclaros et al. | Aug 2013 | A1 |
20130217601 | Griffiths et al. | Aug 2013 | A1 |
20130224751 | Olson et al. | Aug 2013 | A1 |
20130225418 | Watson | Aug 2013 | A1 |
20130225623 | Buxbaum et al. | Aug 2013 | A1 |
20130244906 | Collins | Sep 2013 | A1 |
20130274117 | Church et al. | Oct 2013 | A1 |
20130288254 | Pollack et al. | Oct 2013 | A1 |
20130295567 | Link et al. | Nov 2013 | A1 |
20130295568 | Link | Nov 2013 | A1 |
20130296535 | Church et al. | Nov 2013 | A1 |
20140065631 | Froehlich et al. | Mar 2014 | A1 |
20140256568 | Link | Sep 2014 | A1 |
20140256585 | McCoy | Sep 2014 | A1 |
20140274786 | McCoy et al. | Sep 2014 | A1 |
20140323317 | Link et al. | Oct 2014 | A1 |
20140329239 | Larson et al. | Nov 2014 | A1 |
20150018236 | Green et al. | Jan 2015 | A1 |
20150038356 | Karlin-Neumann et al. | Feb 2015 | A1 |
20150126400 | Watson et al. | May 2015 | A1 |
20150184256 | Samuels et al. | Jul 2015 | A1 |
20150197790 | Tzonev | Jul 2015 | A1 |
20150247191 | Zhang et al. | Sep 2015 | A1 |
20150336072 | Weitz et al. | Nov 2015 | A1 |
20160289670 | Samuels et al. | Oct 2016 | A1 |
20160304954 | Lin et al. | Oct 2016 | A1 |
20170304785 | Link et al. | Oct 2017 | A1 |
20180057863 | Larson et al. | Mar 2018 | A1 |
20180057868 | Walder et al. | Mar 2018 | A1 |
20180223348 | Link et al. | Aug 2018 | A1 |
20180272294 | Griffiths et al. | Sep 2018 | A1 |
20180272296 | Link et al. | Sep 2018 | A1 |
20180272299 | Griffiths et al. | Sep 2018 | A1 |
20180353913 | Link et al. | Dec 2018 | A1 |
20180355350 | Link et al. | Dec 2018 | A1 |
20180361346 | Griffiths et al. | Dec 2018 | A1 |
20180363050 | Hutchison et al. | Dec 2018 | A1 |
20190024261 | Griffiths et al. | Jan 2019 | A1 |
20190107489 | Griffiths et al. | Apr 2019 | A1 |
20190134581 | Yurkovetsky et al. | May 2019 | A1 |
20190316119 | Samuels et al. | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
140025 | Jul 1996 | AT |
140880 | Aug 1996 | AT |
155711 | Aug 1997 | AT |
167816 | Jul 1998 | AT |
4032078 | Apr 1980 | AU |
6415380 | May 1981 | AU |
1045983 | Jun 1984 | AU |
2177292 | Jan 1993 | AU |
4222393 | Nov 1993 | AU |
4222593 | Nov 1993 | AU |
4222693 | Nov 1993 | AU |
4222793 | Nov 1993 | AU |
4223593 | Nov 1993 | AU |
677197 | Apr 1997 | AU |
677781 | May 1997 | AU |
680195 | Jul 1997 | AU |
2935197 | Jan 1998 | AU |
3499097 | Jan 1998 | AU |
3501297 | Jan 1998 | AU |
1276099 | Jun 1999 | AU |
4955799 | Dec 1999 | AU |
3961100 | Oct 2000 | AU |
4910300 | Nov 2000 | AU |
747464 | May 2002 | AU |
768399 | Dec 2003 | AU |
2004225691 | Jun 2010 | AU |
2010224352 | Oct 2010 | AU |
8200642 | Dec 1982 | BR |
9710052 | Jan 2000 | BR |
1093344 | Jan 1981 | CA |
2258481 | Jan 1998 | CA |
2520548 | Oct 2004 | CA |
563 087 | Jun 1975 | CH |
563807 | Jul 1975 | CH |
2100685 | Jul 1972 | DE |
3042915 | Sep 1981 | DE |
43 08 839 | Apr 1997 | DE |
69126763 | Feb 1998 | DE |
199 61 257 | Jul 2001 | DE |
100 15 109 | Oct 2001 | DE |
100 41 823 | Mar 2002 | DE |
0047130 | Feb 1985 | EP |
0402995 | Dec 1990 | EP |
0249007 | Mar 1991 | EP |
0418635 | Mar 1991 | EP |
0476178 | Mar 1992 | EP |
0546174 | Jun 1993 | EP |
0618001 | Oct 1994 | EP |
620432 | Oct 1994 | EP |
0637996 | Feb 1995 | EP |
0637997 | Feb 1995 | EP |
0718038 | Jun 1996 | EP |
0540281 | Jul 1996 | EP |
0528580 | Dec 1996 | EP |
0486351 | Jul 1997 | EP |
0895120 | Feb 1999 | EP |
1362634 | Nov 2003 | EP |
1447127 | Aug 2004 | EP |
04782399.2 | May 2006 | EP |
1741482 | Jan 2007 | EP |
2017910 | Jan 2009 | EP |
2127736 | Dec 2009 | EP |
2047910 | Jan 2012 | EP |
13165665.4 | Nov 2013 | EP |
13165667.0 | Nov 2013 | EP |
2363205 | Jun 2014 | EP |
2534267 | Apr 2018 | EP |
2 095 413 | Feb 1997 | ES |
2 404 834 | Apr 1979 | FR |
2 451 579 | Oct 1980 | FR |
2 469 714 | May 1981 | FR |
2 470 385 | May 1981 | FR |
2 650 657 | Feb 1991 | FR |
2 669 028 | May 1992 | FR |
2 703 263 | Oct 1994 | FR |
1148543 | Apr 1969 | GB |
1 446 998 | Aug 1976 | GB |
2 005 224 | Apr 1979 | GB |
2 047 880 | Dec 1980 | GB |
2 062 225 | May 1981 | GB |
2 064 114 | Jun 1981 | GB |
2097692 | Nov 1982 | GB |
2 210 532 | Jun 1989 | GB |
922432 | Feb 1993 | IE |
S5372016 | Jun 1978 | JP |
S5455495 | May 1979 | JP |
55125472 | Sep 1980 | JP |
S5636053 | Apr 1981 | JP |
56-124052 | Sep 1981 | JP |
59-49832 | Mar 1984 | JP |
59-102163 | Jun 1984 | JP |
H0665609 | Mar 1994 | JP |
6-265447 | Sep 1994 | JP |
7-489 | Jan 1995 | JP |
8-153669 | Jun 1996 | JP |
10-217477 | Aug 1998 | JP |
3-232525 | Oct 1998 | JP |
2000-271475 | Oct 2000 | JP |
2001-301154 | Oct 2001 | JP |
2001-517353 | Oct 2001 | JP |
2002-085961 | Mar 2002 | JP |
2003-501257 | Jan 2003 | JP |
2003-502656 | Jan 2003 | JP |
2003-149136 | May 2003 | JP |
2003-222633 | Aug 2003 | JP |
2005-037346 | Feb 2005 | JP |
2005-192944 | Jul 2005 | JP |
2007-190364 | Aug 2007 | JP |
2009-265751 | Nov 2009 | JP |
2010-198393 | Sep 2010 | JP |
2012-204765 | Oct 2012 | JP |
2013-143959 | Jul 2013 | JP |
2016063824 | Apr 2016 | JP |
264353 | May 1996 | NZ |
8402000 | May 1984 | WO |
9015807 | Dec 1990 | WO |
9105058 | Apr 1991 | WO |
9107772 | May 1991 | WO |
9116966 | Nov 1991 | WO |
9203734 | Mar 1992 | WO |
9221746 | Dec 1992 | WO |
9303151 | Feb 1993 | WO |
9308278 | Apr 1993 | WO |
9322053 | Nov 1993 | WO |
9322054 | Nov 1993 | WO |
9322055 | Nov 1993 | WO |
9322058 | Nov 1993 | WO |
9322421 | Nov 1993 | WO |
9416332 | Jul 1994 | WO |
9423738 | Oct 1994 | WO |
9424314 | Oct 1994 | WO |
9426766 | Nov 1994 | WO |
9800705 | Jan 1995 | WO |
9511922 | May 1995 | WO |
9519922 | Jul 1995 | WO |
9524929 | Sep 1995 | WO |
9533447 | Dec 1995 | WO |
9634112 | Oct 1996 | WO |
9638730 | Dec 1996 | WO |
9640057 | Dec 1996 | WO |
9640062 | Dec 1996 | WO |
9640723 | Dec 1996 | WO |
9700125 | Jan 1997 | WO |
9700442 | Jan 1997 | WO |
9704297 | Feb 1997 | WO |
9704748 | Feb 1997 | WO |
9723140 | Jul 1997 | WO |
9728556 | Aug 1997 | WO |
9738318 | Oct 1997 | WO |
9739814 | Oct 1997 | WO |
9740141 | Oct 1997 | WO |
9745644 | Dec 1997 | WO |
9747763 | Dec 1997 | WO |
9800231 | Jan 1998 | WO |
9802237 | Jan 1998 | WO |
9810267 | Mar 1998 | WO |
9813502 | Apr 1998 | WO |
9822625 | May 1998 | WO |
9823733 | Jun 1998 | WO |
9831700 | Jul 1998 | WO |
9833001 | Jul 1998 | WO |
9834120 | Aug 1998 | WO |
9837186 | Aug 1998 | WO |
9841869 | Sep 1998 | WO |
9852691 | Nov 1998 | WO |
9858085 | Dec 1998 | WO |
9902671 | Jan 1999 | WO |
9922858 | May 1999 | WO |
9928020 | Jun 1999 | WO |
9928507 | Jun 1999 | WO |
9931019 | Jun 1999 | WO |
9942539 | Aug 1999 | WO |
9954730 | Oct 1999 | WO |
9961888 | Dec 1999 | WO |
0004139 | Jan 2000 | WO |
0047322 | Feb 2000 | WO |
0052455 | Feb 2000 | WO |
0037924 | Jun 2000 | WO |
0040712 | Jun 2000 | WO |
0054735 | Sep 2000 | WO |
0061275 | Oct 2000 | WO |
0070080 | Nov 2000 | WO |
0076673 | Dec 2000 | WO |
00078455 | Dec 2000 | WO |
0112327 | Feb 2001 | WO |
0114589 | Mar 2001 | WO |
0118244 | Mar 2001 | WO |
0164332 | Sep 2001 | WO |
0168257 | Sep 2001 | WO |
0169289 | Sep 2001 | WO |
0172431 | Oct 2001 | WO |
0180283 | Oct 2001 | WO |
01089787 | Nov 2001 | WO |
0189788 | Nov 2001 | WO |
0194635 | Dec 2001 | WO |
0216017 | Feb 2002 | WO |
0218949 | Mar 2002 | WO |
0222869 | Mar 2002 | WO |
0223163 | Mar 2002 | WO |
0227660 | Apr 2002 | WO |
0231203 | Apr 2002 | WO |
2002036815 | May 2002 | WO |
0247665 | Aug 2002 | WO |
02060275 | Aug 2002 | WO |
02060591 | Aug 2002 | WO |
02066992 | Aug 2002 | WO |
02068104 | Sep 2002 | WO |
02078845 | Oct 2002 | WO |
02103011 | Dec 2002 | WO |
02103363 | Dec 2002 | WO |
03011443 | Feb 2003 | WO |
03026798 | Apr 2003 | WO |
03037302 | May 2003 | WO |
03044187 | May 2003 | WO |
03078659 | Sep 2003 | WO |
2003003015 | Oct 2003 | WO |
03099843 | Dec 2003 | WO |
2004002627 | Jan 2004 | WO |
2004018497 | Mar 2004 | WO |
2004024917 | Mar 2004 | WO |
2004026453 | Apr 2004 | WO |
2004037374 | May 2004 | WO |
2004038363 | May 2004 | WO |
2004069849 | Aug 2004 | WO |
2004071638 | Aug 2004 | WO |
2004074504 | Sep 2004 | WO |
2004083443 | Sep 2004 | WO |
2004087308 | Oct 2004 | WO |
2004088314 | Oct 2004 | WO |
2004091763 | Oct 2004 | WO |
2004102204 | Nov 2004 | WO |
2004103565 | Dec 2004 | WO |
2005000970 | Jan 2005 | WO |
2005002730 | Jan 2005 | WO |
2005003375 | Jan 2005 | WO |
200511867 | Feb 2005 | WO |
2005021151 | Mar 2005 | WO |
2005023427 | Mar 2005 | WO |
2005041884 | May 2005 | WO |
2005049787 | Jun 2005 | WO |
2005103106 | Nov 2005 | WO |
2005118138 | Dec 2005 | WO |
2005118867 | Dec 2005 | WO |
2006002641 | Jan 2006 | WO |
2006009657 | Jan 2006 | WO |
2006027757 | Mar 2006 | WO |
2006038035 | Apr 2006 | WO |
2006040551 | Apr 2006 | WO |
2006040554 | Apr 2006 | WO |
2006076810 | Jul 2006 | WO |
2006078841 | Jul 2006 | WO |
2006096571 | Sep 2006 | WO |
2006101851 | Sep 2006 | WO |
2007012638 | Feb 2007 | WO |
2007021343 | Feb 2007 | WO |
2007030501 | Mar 2007 | WO |
2007026884 | Mar 2007 | WO |
2007081385 | Jul 2007 | WO |
2007081387 | Jul 2007 | WO |
2007089541 | Aug 2007 | WO |
2007114794 | Oct 2007 | WO |
2007123744 | Nov 2007 | WO |
2007133710 | Nov 2007 | WO |
2007138178 | Dec 2007 | WO |
2007140015 | Dec 2007 | WO |
2008021123 | Feb 2008 | WO |
2008063227 | May 2008 | WO |
2008097559 | Aug 2008 | WO |
2008115626 | Sep 2008 | WO |
2008121342 | Oct 2008 | WO |
2008130623 | Oct 2008 | WO |
2007092473 | Nov 2008 | WO |
2008134153 | Nov 2008 | WO |
2009015296 | Jan 2009 | WO |
2009029229 | Mar 2009 | WO |
2009049889 | Apr 2009 | WO |
2009059430 | May 2009 | WO |
2009085929 | Jul 2009 | WO |
2009094623 | Jul 2009 | WO |
2009117485 | Sep 2009 | WO |
2009137415 | Nov 2009 | WO |
2009137606 | Nov 2009 | WO |
2010009365 | Jan 2010 | WO |
2010056728 | May 2010 | WO |
2010040006 | Aug 2010 | WO |
2010115154 | Oct 2010 | WO |
2010151776 | Dec 2010 | WO |
2011042564 | Apr 2011 | WO |
2011079176 | Jun 2011 | WO |
2011100604 | Aug 2011 | WO |
2012022976 | Feb 2012 | WO |
2012045012 | Apr 2012 | WO |
2012047297 | Apr 2012 | WO |
2012048341 | Apr 2012 | WO |
2012083225 | Jun 2012 | WO |
2012112970 | Aug 2012 | WO |
2012142213 | Oct 2012 | WO |
2012167142 | Dec 2012 | WO |
201314356 | Jan 2013 | WO |
2013120089 | Aug 2013 | WO |
2013165748 | Nov 2013 | WO |
2014026031 | Feb 2014 | WO |
2014065756 | May 2014 | WO |
2014165559 | Oct 2014 | WO |
2014204939 | Dec 2014 | WO |
2015013681 | Jan 2015 | WO |
2015200893 | Dec 2015 | WO |
2017117358 | Jul 2017 | WO |
Entry |
---|
“Trisomy” from Wikipedia. Printed on Dec. 9, 2020. |
“Digital polymerase chain reaction” from Wikipedia. Printed on Dec. 9, 2020. |
Poon et al., Differential DNA Methylation between Fetus and Mother as a Strategy for Detecting Fetal DNA in Maternal Plasma. Clinical Chemistry, 48, 35-41, 2002. |
Viswanathan et al., DNA Analysis by Restriction Enzyme (DARE) enables concurrent genomic and epigenomic characterization of single cells. Nucleic Acids Research, 47 (19), e122, 2019. |
Squires, 2005, Microfluidics: fluid physics at the nanoliter scale, Rev Mod Phys 77:977-1026. |
Stauber, 1993, Rapid generation of monoclonal antibody-secreting hybridomas against African horse sickness virus by in vitro immunization and the fusion/cloning technique, J Immunol Meth 161(2):157-168. |
Stemmer, 1994, DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. PNAS 91(22):10747-51. |
Stemmer, 1994, Rapid evolution of a protein in vitro by DNA shuffling, Nature 370(6488):389-91. |
Stober, 1998, Controlled growth of monodisperse silica spheres in the micron size range, J Colloid Interface Sci 26(1):62-69. |
Stofko, 1992, A single step purification for recombinant proteins, Febs Lett 302:274-278. |
Stone, 2004, Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Ann Rev Fluid Mech 36:381-441. |
Strizhkov, 2000, PCR amplification on a microarray of gel-immobilized oligonucleotides: Detection of bacterial toxin- and drug-resistant genes and their mutations, BioTechniques 29(4):844-857. |
Strommenger, 2003, Multiplex PCR assay for simultaneous detection of nine clinicly relevant antibiotic resistance genes in S aureus, J Clin Microb 41(9):4089-4094. |
Stroock, 2002, Chaotic mixer for microchannels, Science 295(5555):647-651. |
Studer, 1997, Fluorous synthesis: a fluorous-phase strategy for improving separation efficiency in organic synthesis, Science 275:823-826. |
Sugiura, 2001, Interfacial tension driven monodispersed droplet formation from mtcrofabricated channel array, Langmuir 17:5562-5566. |
Sugiura, 2002, Effect of channel structure on microchannel emuisification, Langmuir 18:5708-5712. |
Sundberg, 1995, Spatially-addressable immobilisation of macromolecules on solid supports, J Am Chem Soc 117:12050-12057. |
Sung, 2005, Chip-based microfluidic devices coupled with electrospray ionization-mass spectrometry, Electrophoresis 26:1783-1791. |
Sutcliffe, 1986, Dynamics of UV laser ablation of organic polymer surfaces, J Appl Phys 60(9):3315-3322. |
Suzuki, 1996, Random mutagenesis of thermus aquaticus DNA polmerase I: concordance of immutable sites in vivo with the crystal structure, PNAS 93:96701-9675. |
Suzuki, 2013, A novel guidewire approach for handling acute-angle bifurcations, J Inv Cardiol 25(1):48-54. |
Syed, 2009, Next-generation sequencing library preparation: simultaneous fragmentation and tagging using in vitro transposition, Nat Meth 6:1-2. |
Takayama, 1999, Patterning cells and their environmnets using multiple laminar fluid flows in cappillary networks, PNAS 96:5545-5548. |
Takeuchi, 2005, An axisymmetric flow-focusing microfluidic device, Adv Mater 17(8):1067-1072. |
Taly, 2007, Droplets as microreactors for high-throughput biology, Chembiochem 8(3):263-272. |
Tan, 2003, Controlled fission of droplet emulsions in bifurcating microfluidic channels, 12th Int Conf SSAM 28-31. |
Tan, 2003, Microfluidic liposome generation from monodisperse droplet emulsion, Summer Bioeng Conf, Florida, 2 pages. |
Tan, 2003, Monodisperse droplet emulsions in co-flow microfluidic channels, Micro TAS, 2 pages. |
Tan, 2004, Design of microluidic channel geometries for the control of droplet volume, chemical concentration, and sorting, Lab Chip 4(4):292-298. |
Tang, 2009, A multi-color fast-switching microfluidic droplet dye laser, Lab Chip 9:2767-2771. |
Taniguchi, 2002, Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media, Lab Chip 2:19-23. |
Tawfik, 1998, Man-made cell-like compartments for molecular evolution, Nat Biotech 7(16):652-56. |
Taylor, 1934, The formation of emulsions in definable field of flow, Proc R Soc London A 146(858):501-523. |
Taylor, 1991, Characterization of chemisorbed monolayers by surface potential measurments, J Phys D Appl Phys 24:1443. |
Tencza, 2000, Development of a fluorescence polarization-based diagnostic assay for equine infectious anemia virus, J Clin Microbiol 38(5):1854-185. |
Terray, 2002, Fabrication of linear colloidal structures for microfluidic applications, Applied Phys Lett 81(9):1555-1557. |
Terray, 2002, Microfluidic control using colloidal devices, Science 296(5574):1841-1844. |
Tewhey, 2009, Microdroplet based PCR environment for large scale targeted sequence, Nat Biotech 27(11):1025-1031. |
Theberge, 2010, Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology, Angew Chem Int Ed 49(34):5846-5868. |
Thompson, 1983, Introduction to Lithography, ACS Symp Ser 219:1-13. |
Thorsen, 2001, Dynamic pattern formation in a vesicle-generating microfluidic device, Phys Rev Lett 86(18):4163-4166. |
Thorsen, 2002, Microfluidic large-scale integration, Science 298:580-584. |
Thorsen, 2003, Microfluidic technologies for highthroughput screening applications, California Institute of Technology. |
Tice, 2003, Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers, Langmuir 19:9127-9133. |
Tice, 2004, Effects of viscosity on droplet formation and mixing in microfluidic channels, Analytica Chimica Acta 507:73-77. |
Titomanlio, 1990, Capillary experiments of flow induced crystallization of HDPE, AIChe J 36(1):13-18. |
Tleugabulova, 2004, Evaluating formation and growth mechanisms of silica particles using fluorescence anisotropy decay analysis, Langmuir 20(14):5924-5932. |
Tokatlidis, 1995, Nascent chains: folding and chaperone intraction during elongation on ribosomes, Philos Trans R Soc Lond B Biol Sci, 348:89-95. |
Tokeshi, 2002, Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network, Anal Chem 74(7):1565-1571. |
Tokumitsu, 1999, Preparation of gadopentetic acid-loaded chitosan microparticles for gadolinium neutron-capture therapy of cancer by a novel emulsion-droplet coalescence technique, Chem Pharm Bull 47(6):838-842. |
Tonelli et al., 2002, Perfluoropolyether functional oligomers: unusual reactivity in organic chemistry, Journal of fluorine Chemistry, 118; 107-121. |
Trolier-McKinstry, 2004, Thin Film Piezoelectric for MEMS, Journal of Electroceramics 12:7-17. |
Tsuchiya, 2007, On-chip polymerase chain reaction microdevice employing a magnetic droplet-manipulation system, Sens Actuators B 130:583-588. |
Schatz, 1996, Screening of peptide libraries linked to lac repressor, Meth Enzymol 267:171-91. |
Schneegass, 2001, Miniaturized flow-through PCR with different template types in a silicone chip thermocycler, Lab on a Chip 1:42-9. |
Schopman, 2012, Selective packaging of cellular miRNAs in HIV-1 particles, Virus Res 169(2):438-47. |
Schubert, 2002, Designer Capsules, Nat Med 8:1362. |
Schweitzer, 2000, Immunoassays with rolling circle DNA amplification, PNAS 97(18):10113-10119. |
Schweitzer, 2001, Combining nucleic acid amplification and detection. Curr Opin Biotechnol 12(1):21-7. |
Scott, 1948, The solubility of fluorocarbons, J Am Chem Soc 70:4090-4093. |
Sedlak, 2013, Viral diagnostics in the era of digital polymerase chain reaction, Diag Microb Inf Dis 75(1):1-4. |
Seethala, 1997, Homogeneous fluorescence polarization assay for Src-Family tyrosine kinases, Anal Biochem 253(2):210-218. |
Seiler, 1993, Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency, Anal Chem 65(10):1481-1488. |
Selwyn, 1965, A simple test for inactivation of an enzyme during assay, Biochim Biophys Acta 105:193-195. |
Sen, 2012, Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis, Journal of the American College of Cardiology 59(15):1392-1402. |
Seo, 2007, Microfluidic consecutive flow-focusing droplet generators, Soft Matter 3:986-992. |
Seong, 2002, Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts, J Am Chem Soc 124(45):13360-1. |
Seong, 2002, Fabrication of microchambers defined by photopolymerized hydrogels and weirs within microfluidic systems, Anal Chem 74(14):3372-3377. |
Sepp, 2002, Microbead display by in vitro compartmentalisation: selection for binding using flow cytometry, FEBS Letters 532:455-58. |
Serpersu, 1985, Reversible and irreversible modification of erythrocyte membrane permeability by electric field, Biochim Biophys Acta 812(3):779-785. |
Shapiro, 1983, Multistation multiparameter flow cytometry: a critical review and rationale, Cytometry 3: 227-243. |
Shastry, 2006, Directing droplets using microstructured surfaces, Langmuir 22:6161-6167. |
Shen, 2006, Eigengene-based linear discriminant model for tumor classification using gene expression microarray data, Bioinformatics 22(21):2635-2642. |
Shestopalov, 2004, Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system, Royal Soc Chem 4:316-321. |
Shim, 2007, Using microfluidics to decouple nucleation and growth of protein crystals, Cryst Growth Des 7(11):2192-2194. |
Shimizu, 1995, Encapsulation of biologically active proteins in a multiple emulsion, Biosci Biotech Biochem 59(3):492-496. |
Shtern, 1996, Hysteresis in swirling jets, J Fluid Mech 309:1-44. |
Sia, 2003, Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies, Electrophoresis 24(21):3563-3576. |
Siemering, 1996, Mutations that suppress the thermosensitivity of green fluorescent protein, Curr Biol 6:1653-1663. |
Silva-Cunha, 1998, W/O/W multiple emulsions of insulin containing a protease inhibitor and an absorption enhancer: biological activity after oral administration to normal and diabetic rats, Int J Pharm 169:33-44. |
Sims, 2000, Immunopolymerase chain reaction using real-time polymerase chain reaction for detection, Anal. Biochem. 281(2):230-2. |
Sista, 2007, Development of a Digital Microfluidic Lab-on-a-Chip for Automated Immunoassay with Magnetically Responsive Beads, Doctoral Thesis, Florida State University, 128 pages. |
Sista, 2008, Development of a digital microfluidic platform for point care testing, Lab on a Chip 8:2091-2104. |
Siwy, 2003, Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal, Appl Phys A: Mat Sci Proc 76:781-785. |
Slappendel, 1994, Normal cations and abnormal membrane lipids in the red blood cells of dogs with familial stomatocytosis hypertrophic gastritis, Blood 84:904-909. |
Slob, 1997, Structural identifiability of PBPK models: practical consequences for modeling strategies and study designs, Crit Rev Toxicol. 27(3):261-72. |
Smith, 1985, The synthesis of oligonucleotides containing an aliphatic amino group at the 5′ terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis, Nucl Acid Res 13:2399-2412. |
Smith, 1986, Fluorescence detection in automated DNA sequence analysis, Nature 321:674-679. |
Smith, 1989, Absolute displacement measurements using modulation of the spectrum of white light in a Michelson interferometer, Applied Optics, 28(16):3339-3342. |
Smith, 1992, Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science 258(5085):1122-1126. |
Smith, 2010, Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples, Nucleic Acids Res 38(13):e142. |
Smyth, 2000, Markers of apoptosis: methods for elucidating the mechanism of apoptotic cell death from the nervous system, Biotechniques 32:648-665. |
Sohn, 2000, Capacitance cytometry: Measuring biological cells one by one, PNAS 97(20):10687-10690. |
Sola, 2014, Fabrication of a microfluidic cell made of thiolene for microarray applications, 18th Int Conf Miniaturized Systems for Chem and Life Sciences, MicroTAS, San Antonio, TX 1719-1721. |
Somasundaram, 1999, Gain studies of Rhodamine 6G dye doped polymer laser, J Photochem Photobiol 125(1-3):93-98. |
Song, 2002, Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels, App Phy Lett 83(22):4664-4666. |
Song, 2003, A microfluidic system for controlling reaction networks in time, Angew Chem Int Ed 42(7):768-772. |
Song, 2003, Millisecond kinetics on a microluidic chip using nanoliters of reagents, J Am Chem Soc 125:14613-14619. |
Song, 2006, Reactions in droplets in microfluidic channels, Angew chem Int ed 45(44):7336-7356. |
Soni, 2007, Progress toward ultrafast DNA sequencing using solid-state nanopores, Clin Chem 53:1996-2001. |
Soumillion, 2001, Novel concepts for the selection of catalytic activity. Curr Op Biotech 12:387-394. |
Spiro, 2000, A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry, Appl Env Micro 66:4258-4265. |
Sproat, 1987, The synthesis of protected 5′-mercapto-2′,5′-dideoxyribonucleoside-3′-0-phosphorainidites, uses of 5′-mercapto-oligodeoxyribonucleotides, Nucleic Acids Res 15:4837-4848. |
Adang, 2001, The contribution of combinatorial chemistry to lead generation: an interim analysis, Curr Med Chem 8:985-998. |
Affholter 1999, Engineering a Revolution, Chemistry in Britain 48-51. |
Agrawal, 1990, Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling, Tetrahedron Let 31:1543-1546. |
Aharoni, 2005, High-Throughput screens and selections of enzyme-encoding genes, Curr Opin Chem Biol, 9(2):210-6. |
Ahn, 2006, Dielectrophoretic manipulation of drops for high-speed microluidic sorting devices, Applied Phys Lett 88:024104. |
Akasheh, 2004, Development of piezoelectric micromachined ultrasonic transducers, Sensors and Actuators A Physical, 111:275-287. |
Allen, 2000, High throughput fluorescence polarization: a homogeneous alternative to radioligand binding for cell surface receptors J Biomol Screen. 5(2):63-69. |
Ammar, 2003, UV/Vis absorption and fluorescence spectroscopic study of novel symmetrical biscoumarin dyes, Dyes and Pigments 57:259-265. |
Amstutz, 2001, In vitro display technologies: novel developments and applications. Curr Opin Biotech 12:400-405. |
Anarbaev, 1998, Klenow fragment and DNA polymerase alpha-primase fromserva calf thymus in water-in-oil microemulsions, Biochim Biophy Acta 1384:315-324. |
Anderson, 1983, Preparation of a cell-free protein-synthesizing system from wheat germ, Methods Enz 101:635-644. |
Anderson, 1993, Restriction endonucleases and modification methylases, Curr Op Struct Biol 3:24-30. |
Ando, 1999, PLGA microspheres containing plasmid DNA: preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization, J Pharm Sci 88(1):126-130. |
Angell, 1983, Silicon micromechanical devices, Scientific Am 248:44-55. |
Anhuf, 2003, Determination of SMN1 and SMN2 copy number using TaqMan technology, Hum Mutat 22(1):74-78. |
Anna, 2003, Formation of dispersions using flow focusing in microchannels, Appl Phys Lett82(3):364-366. |
Armstrong, 1996, Multiple-Component condensation strategies for combinatorial library synthesis, Acc Chem Res 29(3):123-131. |
Ashkin, 1987, Optical trapping and manipulation of single cells using infrared laser beams, Nature 330:769-771. |
Ashkin, 1987, Optical trapping and manipulation of viruses and bacteria, Science 235(4795):1517-20. |
Auroux, 2002, Micro Total Analysis Systems 2: Analytical standard operations and applications, Anal Chem 74(12):2637-2652. |
Baccarani, 1977, Escherichia coli dihydrofolate reductase: isolation and characterization of two isozymes, Biochemistry 16(16):3566-72. |
Bagwe, 2001, Improved drug delivery using microemulsions: rationale, recent progress, and new horizons, Crit Rev Ther Drug Carr Sys 18(1):77-140. |
Baker, 2010, Clever PCR: more genotyping, smaller volumes, Nat Meth 7:351-356. |
Ballantyne, 1973, Selective area metallization by electron-beam controlled direct metallic deposition, J Vac Sci Tech 10:1094. |
Barany, 1991, Genetic disease detection and DNA amplification using cloned thermostable ligase, PNAS 88(1):189-93. |
Barany, 1991, The ligase chain reaction in a PCR World, PCR Meth App 1(1):5-16. |
Baret, 2009, Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity, Lab Chip 9:1850-1858. |
Baret, 2009, Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis, Langmuir 25:6088-6093. |
Baroud, 2004, Multiphase flows in microfluidics, Physique 5:547-555. |
Bauer, 1999, Advances in cell separation: recent developments in counterflow centrifugal elutriation and continuous flow cell separation, J Chromot 722:55-69. |
Beebe, 2000, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature 404:588-590. |
Beer, 2007, On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets, Anal Chem 79(22):8471-8475. |
Beer, 2008, On-chip single-copy real-time reverse transcription PCR in isolated picoliter droplets, Anal Chem 80(6):1854-1858. |
Bein, 1999, Efficient assays for combinatorial methods for the eiscovery of catalysts, Agnew Chem Int Ed 38:3:323-26. |
Benichou, 2002, Double emulsions stabilized by new molecular recognition hybrids of natural polymers, Polym Adv Tech 13:1019-1031. |
Benner, 1994, Expanding the genetic lexicon, Trends Biotech 12:158-63. |
Benning, 2000, The binding of substrate analogs to phosphotriesterase. J Biol Chem 275:30556-30560. |
Berman, 1987, An agarose gel electrophoresis assay for the detection of DNA-binding activities in yeast cell extracts, Meth Enz 155:528-37. |
Bernath, 2004, In Vitro Compartmentalization by double emulsions: sorting and gene enrichment by FACS Anal Biochem 325:151-157. |
Bernath, 2005, Directed evolution of protein inhibitors of DNA-nucleases by in vitro compartmentalization (IVC) and nano-droplet delivery, J Mol Biol 345(5):1015-26. |
Betlach, 1976, A restriction endonuclease analysis of the bacterial plasmid controlling the EcoRI restriction and modification of DNA, Fed Proc 35:2037-2043. |
Bibette, 1999, Emulsions: basic principles, Rep Prog Phys 62:969-1033. |
Bico, 2002, Rise of liquids and bubbles in angular capillary tubes, J Colloid & Interface Sc 247:162-166. |
Bico, 2002, Self-Propelling Slugs, J Fluid Mech 467:101-127. |
Binder, 2009, Mismatch and G-stack modulated probe signals on SNP microarrays, PLoS One, 4(11):e7862. |
Binladen, 2007, The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing, PLoSOne 2(2) e197. |
Blanchet, 1993, Laser Ablation and the Production of Polymer Films, Science, 262(5134):719-721. |
Boder, 1997, Yeast surface display for screening combinatorial polypeptide libraries, Nat Biotech 15(6):553-7. |
Bosque, 2009, Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells, Blood, 113(1):58-65. |
Bougueleret, 1984, Characterization of the gene coding for the EcoRV restriction and modification system of E coli, Nucleic Acids Res 12(8):3659-76. |
Deyries, 2011, Megapixel digital PCR, Nat. Methods 8, 649-651. |
Hildebrand, 1949, Liquid-Liquid Solubility of Perfluoromethylcyclohexane with Benzene, Carbon Tetrachloride, Chlorobenzene, Chloroform and Toluene, J. Am. Chem. Soc, 71: 22-25. |
Hindson, 2011, High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number, Anal. Chem., 83, 8604-8610. |
Hjelmfelt, 1993, Pattern-Recognition in Coupled Chemical Kinetic Systems, Science, 260(5106):335-337. |
Ho, 1989, Site-directed mutageneiss by overlap extension using the polymerase chain reaction, Gene, 77(1):51-9. |
Hochuli, 1987, New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues, J Chromatogr 411: 177-84. |
Holmes, 1995, Reagents for Combinatorial Organic Synthesis: Development of a New O-Nitrobenzyl Photolabile inder for Solid Phase Synthesis, J. OrgChem., 60: 2318-2319. |
Holtze, 2008, Biocompatible surfactants for water-in-fluorocarbon emulsions, Lab Chip, 8, 1632-1639. |
Hong, 1999, Stereochemical constraints on the substrate specificity of phosphodiesterase, Biochemistry, 38: 1159-1165. |
Hoogenboom, 1997, Designing and optimizing library selection strategies for generating high-affinity antibodies, Trends Biotechnol, 15:62-70. |
Hopfinger, 1996, Explosive Breakup of a Liquid Jet by a Swirling Coaxial Jet, Physics of Fluids 8(7):1696-1700. |
Hopman, 1998, Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for In situ hybridization using CARD amplification, J of Histochem and Cytochem, 46(6):771-77. |
Horton, 1989, Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension, Gene 77(1):61-68. |
Hosokawa, 1999, Handling of Picoliter Liquid Samples in a Poly(dimethylsiloxane)-Based Microfluidic Device, Analytical Chemistry, 71(20):4781-4785. |
Hsieh, 2009, Rapid label-free DNA analysis in picoliter microfluidic droplets using FRET probes, Microfluidics and hanofluidics 6(3):391-401. |
Hsu, 1999, et al., Comparison of process parameters for microencapsulation of plasmid DNA in poly(D, L-lactic-co-glycolic acid microspheres, J Drug Target, 7:313-23. |
Hua, 2010, Multiplexed Real-Time Polymerase Chain Reaction on a Digital Microfluidic Platform, Analytical Chemistry 82(6):2310-2316. |
Huang, 1991, Kinetic assay of fluorescein mono-beta-D-galactosidase hydrolysis by beta-galactosidase: a front-face measurement for strongly absorbing fluorogenic substrates, Biochemistry, 30:8530-4. |
Huang, 1992, A sensitive competitive ELISA for 2,4-dinitrophenol using 3,6-fluorescein diphosphate as a fluorogenic substrate, J Immunol Meth, 149:261. |
Huang, 2004, Continuous particle separation through deterministic lateral displacement, Science 304(5673):987-990. |
Huang, 2007, Identification of 8 foodborne pathogens by multicolor combinational probe coding technology in a single real-time PCR, Clin Chem., 53(10):1741-8. |
Hubert, 2003, Data Concordance from a Comparison between Filter Binding and Fluorescence Polarization Assay Formats for Identification of RUOCK-II Inhibitors, J biomol Screen 8(4):399-409. |
Huebner, 2007, Quantitative detection of protein expression in single cells using droplet microfluidics, Chem Com 12:1218-1220. |
Hug, 2003, Measurement of the number of molecules of a single mRNA species in a complex mRNA preparation. J Theor Biol.; 221(4):615-24. |
Hung, 2004, Controlled Droplet Fusion in Microfluidic Devices, MicroTAS 2004, Sep. 26-30, Malmo, Sweden. |
Hung, 2004, Optimization of Droplet Generation by controlling PDMS Surface Hydrophobicity, 2004 ASME International Mechanical Engineering Congress and RD&D Expo, Nov. 13-19, Anaheim, CA, 47-48. |
Hutchison, 2005, Cell-free cloning using Phi29 polymerase, PNAS 102(48):17332-17336. |
Ibrahim, 2003, High-speed cell sorting: fundamentals and recent advances, Curr Opin Biotchnol, 14(1):5-12. |
Ikeda, 2000, Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro, Clin Cancer Res 6(11):4409-4415. |
Illumina, 2010, Genomic Sequencing, data Sheet, 6 pages. |
Inai, 1993, Immunohistochemical detection of an enamel protein-related epitope in rat bone at an early stage of osteogenesis, Histochemistry 99(5):335-362. |
Invitrogen, 2008, Specification sheet for Dynabeads® Oligo (dT)25, http://ww.invitrogen.com, 2 pages. |
Ismagilov, 2003, Integrated Microfluidic Systems, Angew. Chem. Int. Ed 42:4130-4132. |
Jakobovits, 1993, Analysis of homozygous mutant chimeric mice deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production, PNAS USA 90:2551-255. |
Jakobovits, 1993, Germ-line transmission and expression of a human-derived yeast artificial chromosome, Nature 362:255-258. |
Janda, 1997, Chemical selection for catalysis in combinatorial antibody libraries, Science, 275:945-948. |
Jang, 2003, Controllable delivery of non-viral DNA from porous scaffold, J Controlled Release 86(1):157-168. |
Jarvie, 2007, Amplicon Sequencing, Roche Dx Application Note No. 5 (16 pages). |
Jermutus, 1998, et al., Recent advances in producing and selecting functional proteins by using cell-free translation, Curr Opin Biotechnol 9(5): 534-48. |
Jo, 2003, Encapsulation of Bovine Serum Albumin in Temperature-Programmed Shell-in-Shell Structures, Macromol. Rapid Comm 24:957-962. |
Joerger, 1995, Analyte detection with DNA-labeled antibodies and polymerase chain reaction, Clin. Chem. 41(9):1371-7. |
Johannsson, 1988, Amplification by Second Enzymes, In ELISA and Other Solid Phase Immunoassays, Kemeny et al (ed.), Chapter 4, pp. 85-106 John Wiley. |
Johannsson, 1991, Heterogeneous Enzyme Immunoassays, In Principles and Practice of Immunoassay, pp. 295-325 Stockton Press. |
Johnson, 1993, Human antibody engineering: Current Opinion in Structural Biology, 3:564-571. |
Johnson, 2002, Protein tyrosine phosphatase 1B inhibitors for diabetes, Nature Review Drug Discovery 1, 696-709. |
Jones, 1986, Replacing the complementarity-determining regions in a human antibody with those from a mouse, Nature, 321:522-525. |
Jones, 1997, Quenched BODIPY dye-labeled casein substrates for the assay of protease activity by direct fluorescence measurement, Anal Biochem, 251:144-152. |
Jones, 1999, Glowing jellyfish, luminescence and a molecule called coelenterazine, Trends Biotechnol. 17(12):477-81. |
Joo, 1999, Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylaion, Nature 399:670. |
Joos, 1997, Covalent attachment of hybridizable oligonucleotides to glass supports, Analytical Biochemistry 247:96-101. |
Joyce, 1994, In vitro Evolution of Nucleic Acids, Curr. Opp. Structural Biol, 4: 331-336. |
Kadir, 1990, Haem binding to horse spleen ferritin, Febs Lett, 276: 81-4. |
Kallen, 1966, The mechanism of the condensation of formaldehyde with tetrahydrofolic acid, J. Biol. Chem., 241:5851-63. |
Kambara, 1988, Optimization of Parameters in a DNA Sequenator Using Fluorescence Detection, Nature Biotechnology 6:816-821. |
Kamensky, 1965, Spectrophotometer: new instrument for ultrarapid cell analysis, Science 150(3696):630-631. |
Kanouni, 2002, Preparation of a stable double emulsion (W1/0/W2): role of the interfacial films on the stability of the system, Adv. Collid. Interf. Sci., 99(3): 229-254. |
Karapatis, 1998, Direct rapid tooling a review of current research, Rapid Prototyping Journal, 4(2):77-89. |
Katanaev, 1995, Viral Q beta RNA as a high expression vector for mRNA translation in a cell-free system, Febs Lett, 359:89-92. |
Katsura, 2001, Indirect micromanipulation of single molecules in water-in-oil emulsion, Electrophoresis, 22:289-93. |
Kawakatsu, 1997, Regular-sized cell creation in microchannel emulsification by visual microprocessing method, Journal of the American Oil ChemistS Society, 74:317-21. |
Keana, 1990, New reagents for photoaffinity labeling: synthesis and photolysis of functionalized perfluorophenyl azides, J. Org. Chem.55(11):3640-3647. |
Keefe, 2001, Functional proteins from a random-sequence library, Nature, 410: 715-718. |
Keij, 1994, High-speed photodamage cell sorting: An evaluation of the ZAPPER prototype, Methods in cell biology, 42:371-358. |
Kelly, 2005, Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle, Circulation Research 96:327-336. |
Kelly, 2007, Miniaturizing chemistry and biology in microdroplets, Chem Commun 18:1773-1788. |
Kerker, 1983, Elastic and inelastic light scattering in flow cytometry, Cytometry, 4:1-10. |
Khandjian, 1986, UV crosslinking of RNA to nylon membrane enhances hybridization signals, Mol. Bio. Rep. 11:107-115. |
Kheir, 2012, Oxygen Gas-Filled Microparticles Provide Intravenous Oxygen Delivery, Science Translational Medicine 4(140):140ra88 (10 pages). |
Kim, 2003, Type II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures, J. Am Chem Soc. 125:11466-11467. |
Kim, 2004, Comparative study on sustained release of human growth hormone from semi-crystalline poly(L-lactic acid) and amorphous poly(D,L-lactic-co-glycolic acid) microspheres: morphological effect on protein release, Journal of Controlled Release, 98(1):115-125. |
Kircher, 2010, High-throughput DNA sequencing-concepts and limitations, Bioessays 32(6):524-536. |
Kiss, 2008, High-throughput quantitative polymerase chain reaction in picoliter droplets, Anal. Chem 80:8975-8981. |
Kitagawa, 1995, Manipulation of a single cell with microcapillary tubing based on its electrophoretic mobility, Electrophoresis 16:1364-1368. |
Klug, 1994, All you wanted to know about selex, Molecular Biology Reports, 20:97-107. |
Klug, 1995, Gene Regulatory Proteins and Their Interaction with DNA, Ann NY Acad Sci, 758: 143-60. |
Klug, 1995, Protein motifs 5. Zinc fingers, FASEB J 9(8):597-604. |
Knaak, 1995, Development of partition coefficients, Vmax and Km values, and allometric relationships, Toxicol Lett. 79(1-3):87-98. |
Knight, 1998, Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds, Physical Review Lett 80(17):3863-3866. |
Koeller, 2001, Enzymes for chemical synthesis, Nature 409:232-240. |
Kohler, 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256:495-7. |
Kojima, 2005, PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets. Nucleic Acids Res. 33:e150, 9 pages. |
Kolb, 1995, Cotranslational folding of proteins, Biochem Cell Biol, 73:1217-20. |
Komatsu, 2001, Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation rom tegafur, an anticancer prodrug, in human liver microsomes. Drug Met. Disp., 28:1457-1463. |
Kopp, 1998, Chemical amplification: continuous flow PCR on a chip, Science, 280:1046-48. |
Koster, 2008, Drop-based microfluidic devices for encapsulation of single cells, Lab on a Chip 8:1110-1115. |
Kowalczykowski, 1994, Biochemistry of homologous recombination in Escherichia coli, Microbiol Rev 58(3):401-65. |
Kozbor, 1984, A human hybrid myeloma for production of human monoclonal antibodies, J. Immunol., 133:3001-3005. |
Krafft, 1991, Synthesis and preliminary data on the biocompatibility and emulsifying properties of perfluoroalkylated phosphoramidates as injectable surfactants, Eur. J. Med. Chem., 26:545-550. |
Krafft, 2001, Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research, Adv Rev Drug Disc 47:209-228. |
Krafft, 2003, Emulsions and microemulsions with a fluorocarbon phase, Colloid and Interface Science 8(3):251-258. |
Kralj, 2005, Surfactant-enhanced liquid-liquid extraction in microfluidic channels with inline electric-field enhanced coalescence, Lab Chip 5:531-535. |
Kricka, 1996, Micromachining: a new direction for clinical analyzers, Pure and Applied Chemistry 68(10):1831-1836. |
Kricka, 2003, Microchip PCR, Anal Bioanal Chem 377(5):820-825. |
Kritikou, 2005, “It's cheaper in the Picolab,” Nature, September, vol. 6, 1 page. |
Krumdiek, 1980, Solid-phase synthesis of pteroylpolyglutamates, Methods Enzymol, 524-29. |
Kruth, 2003, Lasers and materials in selective laser sintering, Assembly Automation, 23(4):357-371. |
Kumagai, 1994, Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm, Applied Physics Letters, 65(14):1850-1852. |
Kumar, 1989, Activity and kinetic characteristics of glutathione reductase in vitro in reverse micellar waterpool, Biochem Biophys Acta, 996(1-2):1-6. |
Kumaresan, 2008, High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets, Anal Chem, 80:3522-3529. |
Lage, 2003, Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH, Genome Res 13:294-307. |
Laird, 2013, Rapid Quantification of the Latent Reservoir for HIV-1 Using a Viral Outgrowth Assay, PLOS Pathogens 9(5):e1003398. |
Lamprecht, 2004, pH-sensitive microsphere delivery increases oral bioavailability of calcitonin, J Control Rel 98(1):1-9. |
Lancet, 1993, Probability model for molecular recognition in biological receptor repertoirs, PNAS 90(8):3715-9. |
Landergren, 1988, A ligase mediated gene detection technique, Science 241(4869):1077-80. |
Lasheras, 1998, Breakup and atomization of a round water jet by a high speed annular air jet, J Fluid Mech 357:351-379. |
Laufer, 1996, Introduction to Optics and Lasers in Engineering, Cambridge University Press, Cambridge UK:156-162. |
Leamon, 2003, A massively parallel pictoterplate based platform for discrete picoliter-scale PCR, Electrophoresis 24:3769-3777. |
Leary, 2000, Application of advanced cytometric and molecular technologies to minimal residual disease monitoring, Proc SPIE 3913:36-44. |
Lee, 2000, Circulating flows inside a drop under time-periodic non-uniform electric fields, Phys Fuilds 12(8):1899-1910. |
Lee, 2001, Preparation of silica particles encapsulating retinol using O/W/O multiple emulsions, J Coll Interface Sci 240 (1):83-89. |
Lee, 2002, Effective formation of silicone-in-fluorocarbon-in-water double emulsions, J Disp Sci Tech 23(4):491-497. |
Lee, 2002, Investigating the target recognition of DNA cytosine-5 methyltransferase Hhal by library selection using in vitro compartmentalisation (IVC), Nucleic Acids Res 30:4937-4944. |
Lee, 2004, Special issue on biomedical applications for MEMS and microfluidics, Proc IEEE 92(1):3-5. |
Lemof, 2003, An AC magnetohydrodynamic microfluidic switch for Micro Total Analysis Systems, Biomed Microdev 5(I):55-60. |
Leng 2009, Microfluidic crystalizaiton, Lab Chip 9:24-23. |
Leng, 2010, Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR, Lab Chip 10:2841-2843. |
Lesley, 1991, Use of in vitro protein synthesis from PCR-generated templates to study interaction of E coli transcription factors with core RNA polymerase, J Biol Chem 266(4):2632-8. |
Lesley, 1995, Preparation and use of E. coli S-30 extracts, Methods Mol Biol 37:265-78. |
Leung, 1989, A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction, Technique 1:11-15. |
Li, 1995, Single-step procedure for labeling DNA strand breaks with fllourescein- or BODIPY-conjugated deoxynucleotides, Cytometry 20:172-180. |
Li, 1997, Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects, Anal Chem 69(8):1564-1568. |
Li, 2005, Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes, Nat Biotech 23(7):885-889. |
Li, 2006, Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins, PNAS 103:19243-19248. |
Li, 2018, Microfluidic fabrication of microparticles for biomedical applications, Chem Soc Rev 47(15):5646-5683. |
Liao, 1986, Isolation of a thermostable enzyme variant by cloning and selection in a thermophile, PNAS 83:576-80. |
Lim, 1980, Microencapsulated islets as bioartificial endocrine pancreas, Science 210(4472):908-10. |
Lin, 2007, Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing, Nano Lett 7(2):507-512. |
Link, 2004, Geometrically mediated breakup of drops in microfluidic devices, Phys Rev Lettv92(5):054503-1-4. |
Link, 2006, Electric control droplets in microfluidic devices, Angew Chem Int Ed 45:2556-2560. |
Lipinski, 2001, Experimental and computational approaches to estimate solubility and permeability in drug discovery, , Adv Drug Deliv Rev 46:3-26. |
Lipkin, 1988, Biomarkers of increased susceptibility to gastreointestinal cancer: new application to studies of cancer prevention in human subjects, Cancer Res 48:235-245. |
Liu, 2000, Passive mixing in a three-dimensional serpentine microchannel, J MEMS 9(2):190-197. |
Liu, 2002, Fabrication and characterization of hydrogel-based microvalves, Mecoelectromech. Syst. 11:45-53. |
Lizardi, 1998, Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19(3):225-32. |
Lo, 2007, Digital PCR for the molecular detection of fetal chromosomal aneuploidy, PNAS 104(32):13116-13121. |
Loakes, 1994, 5-Nitroindole as a universal base analogue, Nucleic Acids Res 22:4039-4043. |
Loakes, 1997, Stability and structure of DNA oligonucleotides containing non-specific base analogues, J Mol Biol 270:426-435. |
Lodish, 2000, Structure of Nucleic Acids, Section 4.1 , Molecular Cell Biology, 4th edition, New York, 1-3. |
Loeker, 2003, FTIR analysis of water in supercritical carbon dioxide microemulsions using monofunctional perfluoropolyether surfanctants, Colloids and Surfaces A: Phys Eng Asp 214:143-150. |
Loo, 2004, Nanoshell Enabled Photonics-Based Imaging and Therapy of Cancer, Technology in Cancer Research & Treatment 3(1):33-40. |
Lopez-Herrera, 1995, The electrospraying of viscous and non-viscous semi-insulating liquids: scaling laws, Bull Am Phys Soc 40 (12):2041. |
Lopez-Herrera, 1999, One-dimensional simulation of the breakup of capillary jets of conducting liquids application to EHD spraying, Aerosol Set 30(7):895-912. |
Lopez-Herrera, 2003, Coaxial jets generated from electrified Taylor cones, Aerosol Sci 34:535-552. |
Lorenceau, 2005, Generation of polymerosomes from double-emulsions, Langmuir 21(20):9183-9186. |
Lorenz, 1991, Isolation and expression of a cDNA encoding Renilla reniformis luciferase, PNAS 88(10):4438-42. |
Loscertales, 2002, Micro/nano encapsulation via electrified coaxial liquid jets, Science 295(5560):1695-1698. |
Lowe, 2002, Perfluorochemical respiratory gas carriers: benefits to cell culture systems, J Fluorine Chem 118:19-26. |
Lu, 2007, Robust fluorescein-doped silica nanoparticles via dense-liquid treatment, Colloids and Surfaces A Phys Eng Asp 303(3):207-210. |
Luisi, 1987, Activity and conformation of enzymes in reverse micellar solutions, Meth Enzymol 136:188-216. |
Lund, 1988, Assesment of methods for covalent binding of nucleic acids to magnetic beads, Dynabeads, and the characteristics of the bound nucleic acids in hybridization reactions, Nucleic Acids Res 16(22):10861-10880. |
Ellman, 1991, Biosynthetic method for introducing unnatural amino acids site-specifically into proteins, Methods Enzymol, 202:301-36. |
Endo, 1996, Autocatalytic decomposition of cobalt complexes as an indicator system for the determination of trace amounts of cobalt and effectors, Analyst 121:391-394. |
Endo, 1998, Kinetic determination of trace cobalt by visual autocatalytic indication, Talanta 47:349-353. |
Engl, 2005, Droplet Traffic at a Simple Junction at Low Capillary Numbers Physical Review Letters, vol. 95, 208304, 1 page. |
Eow, 2002, Electrocoalesce-separators for the separation of aqueous drops from a flowing dielectric viscous liquid, Separation and Purification Tech 29:63-77. |
Eow, 2002, Electrostatic and hydrodynamic separation of aqueous drops in a flowing viscous oil, Chemical Eng Proc 41:649-657. |
Eow, 2002, Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology, Chemical Engineeing Journal 85:357-368. |
Eow, 2003, Motion, deformation and break-up of aqueous drops in oils under high electric field strengths, Chemical Eng Proc 42:259-272. |
Eow, 2003, The behavior of a liquid-liquid interface and drop-interface coalescence under the influence of an electric field, Colloids and Surfaces A: Physiochern. Eng. Aspects 215:101-123. |
Eriksson, 2013, Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies, PLOS Pathogens 9(2):e1003174, 17 pages. |
Faca, 2008, A mouse to human search for plasma proteome changes associated with pancreatic tumor development, PLoS Med 5(6):el23:0953-0967. |
Fahy, 1991, Self-sustained sequence replication (3SR): an isothermal transcription-based amplification system alternative to PCR, PCR Methods Appl 1:25-33. |
Fan, 1994, Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections, Anal Chem 66:177-184. |
Fan, 2007, Detection of Aneuploidy with Digital PCR, available at https://arxiv.org/ftp/arxiv/papers /0705/0705.1 030.pdf, 16 pages. |
Fastrez, 1997, In vivo versus in vitro screening or selection for catalytic activity in enzymes and abzymes, Mol Biotechnol 7(1):37-55. |
Fettinger, 1993, Stacked modules for micro flow systems in chemical analysis: concept and studies using an enlarged model, Sens Actuat B. 17:19-25. |
Fiedler, 1998, Dielectrophoretic sorting of particles and cells in a microsystem, Anal Chem 70(9):1909-1915. |
Field, 1988, Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cervisiae by use of an epitope addition method. Mol Cell Biol, 8: 2159-2165. |
Fields, 1989, A novel genetic system to detect protein-protein interactions, Nature 340(6230):245-6. |
Filella, 1994, TAG-72, CA 19.9 and CEA as tumor markers in gastric cancer, Acta Oncol. 33(7):747-751. |
Finch, 1993, Encapsulation and controlled release, Spec Publ R Soc Chem, 138:35, 12 pages. |
Fingas, 1997, Studies of Water-In-Oil Emulsions: Stability Studies, Environment Canada, Proceedings of the Twentieth Arctic Marine Oilspill Program Technical Seminer, 1-20. |
Fire, 1995, Rolling replication of short DNA circles, PNAS 92(10):4641-5. |
Firestine, 2000, Using an AraC-based three hybrid system to detect biocatalysts in vivo, Nat Biotechnol 18: 544-547. |
Fisher, 2004, Cell Encapsulation on a Microfluidic Platform, The Eighth International Conference on Miniaturised Systems for Chemistry and Life Scieces, MicroTAS, Malmo, Sweden. |
Fletcher, 2002, Micro reactors: principles and applications in organic synthesis, Tetrahedron 58:4735-4757. |
Fluri, 1996, Integrated capillary electrophoresis devices with an efficient postcolumn reactor in planar quartz and glass chips, Anal Chem 68:4285-4290. |
Fornusek, 1986, Polymeric microspheres as diagnostic tools for cell surface marker tracing, Crit Rev Ther Drug Carrier Syst, 2:137-74. |
Fowler, 2002, Enhancement of Mixing by Droplet-Based Microfluidics, Int Conf MEMS 97-100. |
Frenz, 2008, Reliable microfluidic on-chip incubation of droplets in delay-lines, Lab on a Chip 9:1344-1348. |
Fu, 1999, A microfabricated fluorescence-activated cell sorter, Nature Biotechnology, 17(11):1109-1111. |
Fu, 2002, An Integrated Microfabricated Cell Sorter, Anal. Chem., 74: 2451-2457. |
Fulton, 1997, Advanced multiplexed analysis with the FlowMetrix system, Clin Chem 43:1749-1756. |
Fulwyler, 1965, Electronic Separation of Biological Cells by Volume, Science 150(3698):910-911. |
Galan, 2010, A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies., BMC Genomics 11(296):1-15. |
Gallarate, 1999, On the stability of ascorbic acid in emulsified systems for topical and cosmetic use, Int J Pharm 188(2):233-241. |
Ganan-Calvo, 1998, Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays and Gas Streams, Phys Rev Lett 80(2):285-288. |
Ganan-Calvo, 2001, Perfectly Monodisperse Microbubbling by Capillary Flow Focusing, Phys Rev Lett 87(27):274501-1-4. |
Garcia-Ruiz, 1994, Investigation on protein crystal growth by the gel acupuncture method, Acta, Cryst., D50, 99. pp. 484-490. |
Garcia-Ruiz, 2001, A super-saturation wave of protein crystallization, J. Crystal Growth, 232:149-155. |
Garstecki, 2004, Formation of monodisperse bubbles in a microfiuidic flow-focusing device, Appl Phys Lett 85(13):2649-2651. |
Gasperlin, 1994, The structure elucidation of semisolid w/o emulsion systems containing silicone surfactant, Intl J Pharm, 107:51-6. |
Gasperlin, 2000, Viscosity prediction of lipophillic semisolid emulsion systems by neural network modeling, Intl J Pharm, 196:37-50. |
Gelderblom, 2008, Viral complemntation allows HIV-1 replication without integration, Retrovirology 5:60. |
Georgiou, 1997, Display of heterologous proteins on the surface of microorganisms: from the screenign of combinatiorial libraires to live recombinant vaccines. Nat Biotechnol 15(1), 29-34. |
Georgiou, 2000, Analysis of large libraries of protein mutants using flow cytometry, Adv Protein Chem, 55: 293-315. |
Gerdts, 2004, A Synthetic Reaction NetWork: Chemical Amplification Using Nonequilibrium Autocatalytic Reactions Coupled in Time, J. Am. Chem. Soc 126:6327-6331. |
Ghadessy, 2001, Directed Evolution of Polymerase Function by Compartmentalized Self-Replication, PNSAS 98(8):4552-4557. |
Gibbs, 1989, Detection of single DNA base differences by competitive oligonucleotide priming, Nucleic Acids Res. 17(7): 2437-48. |
Gilliland, 1990, Analysis of cytokine mRNA and DNA: Detection and quantitation by competitive polymerase chain reaction, PNAS, 87(7):2725-9. |
Xing, 2011, Novel structurally related compounds reactivate latent HIV-1 in a bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation, Journal of Antimicrobial Chemotherapy, 67(2):398-403. |
Xu, 2005, Generation of monodisperse particles by using microfluidics: control over size, shape, and composition, Angew. Chem. Int. Ed. 44:724-728. |
Xu, 2009, Design of 240, 000 orthogonal 25mer DNA barcode probes, PNAS, 106(7) p. 2289-2294. |
Yamagishi, 1990, Mutational analysis of structure-activity relationships in human tumor necrosis factor-alpha, Protein Eng, 3:713-9. |
Yamaguchi, 2002, Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives, Journal of Controlled Release, 81(3): 235-249. |
Yelamos, 1995, Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376(6537):225-9. |
Yershov, 1996, DNA analysis and diagnostics on oligonucleotide microchips, PNAS 93(10):4913-4918. |
Yonezawa, 2003, DNA display for in vitro selection of diverse peptide libraries, Nucleic Acids Research, 31(19): e118, 6 pages. |
Yu, 1997, Specific inhibition of PCR by non-extendable oligonucleotides using a 5′ to 3′ exonuclease-deficient DNA polymerase, Biotechniques 23(4):714-6, 718-20. |
Yu, 2001, Responsive biomimetic hydrogel valve for microfluidics. Appl. Phys. Lett 78:2589-2591. |
Yu, 2002, Environmental Carcinogenic Polycyclic Aromatic Hydrocarbons: Photochemisrty and Phototoxicity, J Environ Scie Health C Environ Carcinog Exotoxicol Rev, 20(2), 1-43. |
Yu, 2007, Quantum dot and silica nanoparticle doped polymer optical fibers, Optics Express 15(16):9989-9994. |
Zaccolo, 1996, An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J Mol Biol 255(4):589-603. |
Zakrzewski, 1980, Preparation of tritiated dihydrofolic acid of high specific activity, Methods Enzymol, 529-533. |
Zaug, 1986, The intervening sequence RNA of Tetrahymena is an enzyme, Science 231(4737):470-5. |
Zaug, 1986, The Tetrahymena intervening sequence ribonucleic acid enzyme is a phosphotransferase and an acid phosphatase, Biochemistry 25(16):4478-82. |
Zaug, 1986, The Tetrahymena ribozyme acts like an RNA restriction endonuclease, Nature 324(6096):429-33. |
Zhang, 1993, Substrate specificity of the protein tyrosine phosphatases, PNAS 90: 4446-4450. |
Zhang, 1999, A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays, Journal of Biomolecular Screening, 4(2): 67-73. |
Zhao, 1998, Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16(3):258-61. |
Zhao, 2002, Control and Applications of Immiscible Liquids in Microchannels, J. Am. Chem. Soc, vol. 124:5284-5285. |
Zheng, 2003, Screening of Protein Crystallization Conditions on a Microfluidic Chip Using Nanoliter-Size Droplets, J Am Chem Soc 125(37):11170-11171. |
Zheng, 2004, A Droplet-Based, Composite PDMS/Glass Capillary Microfluidic System for Evaluating Protein Crystallization Conditions by Microbatch and Vapor-Diffusion Methods with On-Chip X-Ray Diffraction, Angew. Chem., 116:1-4. |
Zheng, 2004, Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications to Indexing of Concentrations in Droplet-Based /Assays, Anal. Chem.,76: 4977-4982. |
Zheng, 2005, A Microiuidic Approach for Screening Submicroliter Volumes against Multiple Reagents by Using Performed Arrays of Nanoliter Plugs in a Three-Phase Liquid/Liquid/Gas Flow, Angew. Chem. Int. Ed., 44(17):2520-2523. |
Zhong, 2011, Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR, Lab on a Chip 11(13):2167-2174. |
Zimmermann, 1974, Dielectric Breakdown of Cell Membranes, Biophys J 14(11):881-889. |
Zimmermann, 1992, Microscale Production of Hybridomas by Hypo-Osmolar Electrofusion, Hum. Antibod. Hybridomas, 3(1): 14-18. |
Zimmermann, 2008, Digital PCR: a powerful new tool for noninvasive prenatal diagnosis?, Prenat Diagn 28, 1087-1093. |
Zubay, 1973, In vitro synthesis of protein in microbial systems, Annu Rev Genet, 7: 267-87. |
Zubay, 1980, The isolation and properties of CAP, the catabolite gene activator, Methods Enzymol, 65: 856-77. |
Zuckermann, 1987, Efficient Methods for Attachment of Thiol-Specific Probes to the 3-end of Synthetic Oligodeoxyribonucleotides, Nucleic Acids Res. 15:5305-5321. |
Moudrianakis, 1965, Base sequence determination in nucelic acids with the electron microscope 3. Chemistry and microscopy of guanine-labeled DNA, PNAS 53:564-71. |
Mueth, 1996, Origin of stratification in creaming emulsions, Physical Review Letters 77(3):578-581. |
Mulbry, 1989, Parathion hydrolase specified by the Flavobacterium opd gene: relationshio between the gene and protein. J Bacteriol, 171: 6740-6746. |
Mulder, 1993, Characterization of two human monoclonal antibodies reactive with HLA-B12 and HLA-B60, respectively, raised by in vitro secondary immunization of peripheral blood lymphocytes, Hum. Immunol 36(3):186-192. |
Munson, 1980, Ligand: a versatile computerized approach for characterization of ligand-binding systems, Analytical Biochemistry, 107:220-239. |
Nakano, 1994, High speed polymerase chain reaction in constant flow, Biosci Biotech and Biochem, 58:349-52. |
Nakano, 2003, Single-molecule PCR using water-in-oil emulsion, J Biotech, 102:117-124. |
Nakano, 2005, Single-molecule reverse transcription polymerase chain reaction using water-in-oil emulsion, J Biosci Bioeng 99:293-295. |
Nametkin, 1992, Cell-free translation in reversed micelles, FEB Letters, 309(3):330-32. |
Narang, 1979, Improved phosphotriester method for the synthesis of gene fragments, Methods Enzymol, 68:90-98. |
Neiman, 2011, Decoding a substantial set of samples in parallel by massive sequencing, PLoS ONE 6(3):1-7. |
Nelson, 1989, Bifunctional oligonucleotide probes synthesized using a novel CPG support are able to detect single base pair mutations, Nucl Acids Res 17(18): 7187-7194. |
Nemoto, 1997, In vitro virus: bonding of mRNA bearing puromycin at the 3 terminal end to the C-terminal end of its encoded protein on the ribosome in vitro, Federation of European Biochemical Societies, 414:405-8. |
Ness, 2000, Molecular Breeding: the natural approach to protein design. Adv Protein Chem, 55: 261-292. |
Ng, 2003, Protein crystallization by capillary counter-diffusion for applied crystallographic structure determination, J. Struct. Biol, 142:218-231. |
Ng, 2006, Factors affecting flow karyotype resolution, Cytometry, Part A 69A: 1028-1036. |
Nguyen, 2006, Optical detection for droplet size control in microfluidic droplet-based analysis systems, Sensors and Actuators B 117(2):431-436. |
Nihant, 1994, Polylactide Microparticles Prepared by Double Emulsion/Evaporation Technique. I. Effect of Primary Emulsion Stability, Pharmaceutical Research, 11(10):1479-1484. |
Nisisako, 2002, Droplet formation in a microchannel network, Lab Chip 2:24-26. |
Nisisako, 2002, Formation of droplets using branch channels in a microfluidic circuit, Proceedings of the SICE Annual Conference. International Session Papers 1262-1264. |
Nisisako, 2005, Controlled formulation of monodisperse double emulsions in a multiple-phase microluidic system, Sot Matter, 1:23-27. |
Nisisako, 2008, Microstructured Devices for Preparing Controlled Multiple Emulsions. Chem. Eng. Technol 31(8):1091-1098. |
Nof, 2002, Drug-releasing scaffolds fabricated from drug-loaded microspheres, J. Biomed Mater Res 59:349-356. |
Norman, 1980, Flow Cytometry, Med. Phys., 7(6):609-615. |
Nygren, 1982, Conjugation of horseradish peroxidase to Fab fragments with different homobifunctional and heterobifunctional cross-linking reagents. A comparative study, J. Histochem. and Cytochem. 30:407-412. |
Oberholzer, 1995, Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell, Biochem Biophys Res Commun 207(1):250-7. |
Oberholzer, 1995, Polymerase chain reaction in liposomes, Chem. Biol. 2(10):677-82. |
Obukowicz, 1988, Secretion and export of IGF-1 in Escerichia coli strain JM101, Mol Gen Genet, 215:19-25. |
Ogura, 1955, Catalase activity at high concentrations of hydrogen peroxide, Archs Biochem Biophys, 57: 288-300. |
Oh, 2002, Distribution of Macropores in Silica Particles Prepared by Using Multiple Emulsions, Journal of Colloid and Interface Science, 254(1): 79-86. |
Oh, 2005, World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays, Lab Chip, 5, 845-850. |
Okuno, 2003, Recent Advances in Optical Switches Using Silica-based PLC Technology, NTT Technical Review 1(7):20-30. |
Okushima, 2004, Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices, Langmuir 20(23): 9905-8. |
Olsen, 2000, Function-based isolation of novel enzymes from a large library, Nat Bioteoltnol 13(10):1071-4. |
Omburo, 1992, Characterization of the zinc binding site of bacterial phosphotriesterase, J of Biological Chem, 267:13278-83. |
Proskar, 1996, Detection of immobilized amplicons by ELISA-like techniques, Clin. Chem. 42:1547-1555. |
Ostermeier, 1999, A combinatorial approach to hybrid enzymes independent of DNA homology, Nat Biotechnol, 17(12):1205-9. |
Ott, 1967, Biological and medical research annual report, Los Alamos Scientific Laboratory, 14 pages. |
Ouelette, 2003, A new wave of microfluidic devices, Indust Physicist pp. 14-17. |
Pabit, 2002, Laminar-Flow Fluid Mixer for Fast Fluorescence Kinetics Studies, Biophys J 83:2872-2878. |
Paddison, 2002, Stable suppression of gene expression by RNAi in mammalian cells, PNAS 99(3):1443-1448. |
Pain, 1981, Preparation of protein A-peroxidase mono conjugate using a heterobifunctional reagent, and its use in enzyme immunoassays, J Immunol Methods, 40:219-30. |
Pannacci, 2008, Equilibrium and Nonequilibrium States in Microluidic Double Emulsions Physical Review Leters, 101(6):164502. |
Park, 2001, Model of Formation of Monodispersed Colloids, J. Phys. Chem. B 105:11630-11635. |
Park, 2003, Cylindrical compact thermal-cycling device for continuous-flow polymeras chain reaction, Anal Chem, ACS, 75:6029-33. |
Parker, 2000, Development of high throughput screening assays using fluorescence polarization: nuclear receptor-ligand-binding and kinase/phosphatase assays, J Biomol Screen, 5(2): 77-88. |
Pasternak, 2013, Cell-associated HIV RNA: a dynmic biomarker of viral persistence, Retrovirology 10:41. |
Patel, 2003, Formation of Fluorinated Nonionic Surfactant Microemulsions in Hydrfuorocarbon 134a, Journal of Colloid and Interface Science, 258, 345-353. |
Pedersen, 1998, A method for directed evolution and functional cloning of enzymes, PNAS 95(18):10523-8. |
Pekin, 2011, Quantitative and sensitive detection of rare mutations using droplet-based microfluidics, Lab on a Chip 11(13):2156-2166. |
Tuzel, 2006, Region Covariance: A Fast Descriptor for Detection and Classification, European Conference on Computer Vision (ECCV), 14 pages. |
Umbanhowar, 2000, Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream, Langmuir 16(2):347-351. |
Unger, 2000, Monolithic microfabricated valves and pumps by multylayer soft lithography, Science 288(5463):113-116. |
Utada, 2005, Monodisperse double emulsions generated from a microcapillary device, Science, 308:537-541. |
Vainshtein, 1996, Peptide rescue of an N-terminal truncation of the stoffel fragment of Taq DNA polymerase, Protein Science, 5:1785-92. |
Van der Sluis, 2013, Dendritic Cell-induced Activation of Latent HIV-1 Provirus in Actively Proliferating Primary T Lymphocytes, PLOS Pathog. 9(3): 16 pages. |
Van Dilla, 1968, The fluorescent cell photometer: a new method for the rapid measurement of biological cells stained with fluorescent dyes, Annual Report of the Los Alamos Scientific Laboratory of the University of California (Los Alamos, NM), Biological and Medical Research Groupp (H-4) of the Health Division, Compiled by D. G. Ott, pp. 100-105. |
Van Dilla, 1969, Cell Microfluorometry: A Method for Rapid Fluorescence Measurement, Science 163(3872):1213-1214. |
Vanhooke, 1996, Three-dimensional structure of the zinc-containing phosphotrieesterase with the bound substrate analog diethy 4-methylbenzylphosphonate, Biochemistry 35:6020-6025. |
Varga, 1991, Mechanism of allergic cross-reactions—I. Multispecific binding of ligands to a mouse monoclonal anti-DNP IgE antibody. Mol Immunol 28(6), 641-54. |
Vary, 1987, A homogeneous nucleic acid hybridization assay based on strand displacement, Nucl Acids Res 15(17):6883-6897. |
Venkateswaran, 1992, Production of Anti-Fibroblast Growth Factor Receptor Monoclonal Antibodies by In Vitro Immunization, Hybirdoma, 11(6):729-739. |
Verhoeyen, 1988, Reshaping human antibodies: grafting an antilysozyme activity, Science, 239:1534-1536. |
Vogelstein, 1999, Digital PCR, PNAS 96(16):9236-9241. |
Voss, 1993, Kinetic measurements of molecular interactions by spectrofluorometry, J Mol Recognit, 6:51-58. |
Wahler, 2001, Novel methods for biocatalyst screening. Curr Opin Chem Biol, 5: 152-158. |
Walde, 1988, Structure and activity of trypsin in reverse micelles, Eur J Biochem, 173(2):401-9. |
Walde, 1993, Spectroscopic and kinetic studies of lipases solubilized in reverse micelles, Biochemistry, 32(15):4029-34. |
Walde, 1994, Oparin's reactions revisited: enzymatic synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J Am Chem Soc, 116: 7541-7547. |
Walker, 1992, Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system, PNAS 89(1):392-6. |
Walker, 1992, Strand displacement amplification—an isothermal, in vitro DNA amplification technique, Nucleic Acid Res, 20(7):1691-6. |
Wang, 1989, Quantitation of mRNA by the polymerase chain reaction. Proc natl Acad Sci USA 86(24), 9717-21. |
Wang, 1990, Design and synthesis of new fluorogenic HIV protease substrates based on resonance energy transfer, Tetrahedron Lett., 31:6493. |
Wang, 2002, Preparation of Titania Particles Utilizing the Insoluble Phase Interface in a MicroChannel Reactor, Chemical Communications 14:1462-1463. |
Wang, 2008, DEP actuated nanoliter droplet dispensing using feedback control, Lab on a Chip 9:901-909. |
Wang, 2010, Quantifying EGFR Alterations in the Lung Cancer Genome with Nanofluidic Digital PCR Arrays, Clinical Chemistry 56:4. |
Warburton, 1993, Microcapsules for Multiple Emulsions, Encapsulation and Controlled Release, Spec Publ R Soc Chem, 35-51. |
Wasserman, 1989, Structure and reactivity of allyl-siloxane monolayers formed by reaction of allcyltrichlorosilanes on silicon substrates, Langmuir 5:1074-1087. |
Weaver, 2010, Taking qPCR to a higher level: Analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution, Methods 50, 271-276. |
Weil, 1979, Selective and accurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA, Cell, 18(2):469-84. |
Werle, 1994, Convenient single-step, one tube purification of PCR products for direct sequencing, Nucl Acids Res 22(20):4354-4355. |
Wetmur, 2005, Molecular haplotyping by linking emulsion PCR: analysis of paraoxonase 1 haplotypes and phenotypes, Nucleic Acids Res 33(8):2615-2619. |
White, 2009, Digital PCR provides sensitive and absolute calibration for high throughput sequencing, BMC Genomics 10:116. |
Wick, 1996, Enzyme-containing liposomes can endogenously produce membrane-constituting lipids, Chem Biol 3(4):277-85. |
Wiggins, 2004, Foundations of chaotic mixing, Philos Transact A Math Phys Eng Sci 362(1818):937-70. |
Williams, 1979, Methotrexate, a high-affinity pseudosubstrate of dihydrofolate reductase, Biochemistry, 18(12):2567-73. |
Williams, 2006, Amplification of complex gene libraries by emulsion PCR, Nature Methods 3(7):545-550. |
Wilson, 1999, In vitro selection of functional nucleic acids, Ann. Rev. Biochem. 68: 611-647. |
Wittrup, 2001, Protein engineering by cell-surface display. Curr Opin Biotechnology, 12: 395-399. |
Wittwer, 1989, Automated polymerase chain reaction in capillary tubes with hot air, Nucleic Acids Res., 17(11) 4353-4357. |
Wittwer, 1990, Minimizing the Time Required for DNA Amplification by Efficient Heat Transfer to Small Samples, Anal. Biochem., 186, 328-331. |
Wolff, 2003, Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter, Lab Chip, 3(1): 22-27. |
Woolley, 1994, Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips, Proc. Natl. Acad. Sci. USA, 91, 11348-11352. |
Woolley, 1996, Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device, Anal. Chem. 68, 4081-4086. |
Wronski, 2002, Two-color, fluorescence-based microplate assay for apoptosis detection. Biotechniques, 32:666-668. |
Wu, 1989, The ligation amplification reaction (LAR)-amplification of specific DNA sequences using sequential rounds of template dependent ligation, Genomics 4(4):560-9. |
Wyatt, 1991, Synthesis and purification of large amounts of RNA oligonucleotides, Biotechniques 11(6):764-9. |
Xia, 1998, Soft Lithography, Angew. Chem. Int. Ed. 37:550-575. |
Xia, 1998, Soft Lithography, Ann. Rev. Mat. Sci. 28:153-184. |
Xiao, 2007, Rapid DNA mapping by fluorescent single molecule detection, Nucleic Acids Research 35:1-12. |
Lunderberg, 1995, Solid-phase technology: magnetic beads to improve nucleic acid detection and analysis, Biotech Ann Rev 1:373-401. |
Lundstrom, 2002, Breakthrough in cancer therapy: Encapsulation of drugs and viruses, Curr Drug Disc 19-23. |
Lyne, 2002, Structure-based virtual screening: an overview, Drug Disc Tod 7(20):1047-1055. |
Ma, 1993, In vitro protein engineering using synthetic tRNA(Ala) with different anticodons, Biochemistry 32(31):7939-45. |
Mackenzie, 1985, IABS Symposium on Reduction of Animal Usage in the Development and Control of Biological Products, London, UK, 16 pages. |
Mackenzie, 1986, The application of flow microfluorimetry to biomedical research and diagnosis: a review, Dev Biol Stand 64:181-193. |
Maclean, 1999, Glossary of terms used in combinatorial chemistry, Pure Appl. Chem. 71(12):2349-2365. |
Magdassi, 1984, Multiple Emulsions: HLB Shift Caused by Emulsifier Migration to External Interface, J. Colloid Interface Sci 97:374-379. |
Mahajan, 1998, Bcl-2 and Bax Interactions in Mitochondria Probed with Green Florescent Protein and Fluorescence Resonance Energy Transfer, Nat. Biotechnol. 16(6): 547-552. |
Mahjoob, 2008, Rapid microfluidic thermal cycler for polymerase chain reaction nucleic acid amplification. Int J HeatMass Transfer;51:2109-22. |
Manafi, 2000, New developments in chromogenic and fluorogenic culture media, 2000, International Journal of Food Microbiology, 60, 205-218. |
Manley, 1983, In vitro transcription: whole cell extract, Methods Enzymol, 101:568-82. |
Manz, 1991, Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century's technology or just a fashionable craze, Trends in Analytical Chemistry 10(5):144-149. |
Mao, 1991, Substrate effects on the enzymatic activity of alphachymotrypsin in reverse micelles, Biochem Biophys Res Commun, 178(3):1105-12. |
Mao, 1992, Kinetic behaviour of alpha-chymotrypsin in reverse micelles: a stopped-flow study, Eur J Biochem 208(1):165-70. |
Mardis, 2008, The impact of next-generation sequencing technology on genetics, Trends Genet 24:133-141. |
Margulies, 2005, Genome sequencing in microfabricated high-density picolitre reactors, Nature 437(7057):376-380. |
Marks, 1992, Bypassing immunization: building high affinity human antibodies by chain shuffling, BioTechnol 10:779-783. |
Marques, 1996, Porous Flow within Concentric Cylinders, Bull Am Phys Soc Div Fluid Dyn 41:1768, 1 page. |
Maruno, 1991, Fluorine containing optical adhesives for optical communications systems, J. Appl. Polymer. Sci. 42:2141-2148. |
Mason, 1997, Shear Rupturing of Droplets in Complex Fluids, Langmuir, 13(17):4600-4613. |
Mastrobattista, 2005, High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions, Chem. Biol. 12(12): 1291-1300. |
Masui, 1998, Probing of DNA-Binding Sites of Escherichia coli RecA Protein Utilizing 1-anilinonaphthalene-8-Sulfonic Acid, Biochem 37(35):12133-12143. |
Matayoshi, 1990, Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer, Science 247:954. |
Matsubara, 2003, Detection of Single Nucleotide Substitution by Competitive Allele-Specific Short Oligonucleotide Hybridization (CASSOH) With Ummunochromatographic Strip, Human Mutation 22:166-172. |
Mattheakis, 1994, An in vitro polysome display system for identifying ligands from very large peptide libraries, PNAS 91:9022-6. |
Mayr, 2008, The Future of High-Throughput Screening, JBiomol Screen 13:443-448. |
Mazutis, 2009, Droplet-Based Microfluidic Systems for High-Throughput Single DNA Molecule Isothermal Amplification and Analysis, Anal Chem 81(12):4813-4821. |
Mazutis, 2009, Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme, Lab Chip 9:2902-2908. |
McDonald, 2000, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21(1):27-40. |
McDonald, 2002, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices, Account Chem. Res. 35:491-499. |
Melton, 1984, Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter, Nucl. Acids Res. 12(18):7035-7056. |
Mendel, 1995, Site-Directed Mutagenesis with an Expanded Genetic Code, Annu Rev Biophys Biomol Struct, 24:435-62. |
Mendieta, 1996, Complementary sequence correlations with applications to reflectometry studies, Instrumentation and Development 3(6):37-46. |
Metzker, 2010, Sequencing Technologies—the next generation, Nature Reviews, vol. 11, pp. 31-46. |
Meylan, 1995, Atom/fragment contribution method for estimating octanol-water partition coefficients, J Pharm Sci. 84(1):83-92. |
Michalatos-Beloin, 1996, Molecular haplotyping of genetic markers 10 kb apart by allele-specific long-range PCR, Nucleic Acids Research, 24:4841-4843. |
Miele, 1983, Autocatalytic replication of a recombinant RNA, J Mol Biol, 171:281-95. |
Milstein, 1983, Hybrid hybridomas and their use in immunohistochemistry, Nature 305:537-540. |
Mindlin, 1936, A force at a point of a semi-infinite solid, Physics, 7:195-202. |
Minshuil, 1999, Protein evolution by molecular breeding, Curr Opin Chem Biol 3(3): 284-90. |
Miroux, 1996, Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels, J of Mol Biol 260(3):289-98. |
Miyawaki, 1997, Fluorescent Indicators for Ca2+ Based on Green Fluorescent Proteins and Calmodulin, Nature, 388:882-887. |
Mize, 1989, Dual-enzyme cascade—an amplified method for the detection of alkaline phosphatase, Anal Biochem 179(2): 229-35. |
Mock, 1985, A fluorometric assay for the biotin-avidin interaction based on displacement of the fluorescent probe 2-anilinonaphthalene-6-sulfonic acid, Anal Biochem, 151:178-81. |
Moldavan, 1934, Photo-electric technique for the counting of microscopical cells, Science 80:188-189. |
Monie, 2005, A Novel Assay Allows Genotyping of the Latent Reservoir for Human Imnunodefi ciency Virus Type 1 in the Resting CD4+ T Cells of Viremic Patients, Journal of Virology, 79(8):5185-5202. |
Montigiani, 1996, Alanine substitutions in calmodulin-binding peptides result in unexpected affinity enhancement, J Mol Biol, 258:6-13. |
Moore, 1995, Exploration by lamp light, Nature, 374:766-7. |
Morrison, 1984, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains, PNAS 81:6851-6855. |
Giusti, 1993, Synthesis and characterization of 5′ fluorescent dye labeled oligonucleotides, Genome Res 2:223-227. |
Glass, 1995, Development of primer sets designed for use with the PCR to amlify conserved genes from filamentous ascomycetes, Applied and Environmental Microbiology, vol. 6, pp. 1323-1330. |
Gold, 1995, Diversity of Oligonucleotide Functions Annu Rev Biochem, 64: 763-97. |
Gong, 2015, Simple method to prepare oligonucleotide conjugated antibodies and its applicaiotn in multiplex protein detection in single cells, Bioconjugate Chm 27(1):271-225. |
Goodall, 1998, Operation of Mixed-Culture Immobilized Cell Reactors for the Metabolism of Meta- and Para-Nitrobenzoate by Comamonas Sp. JS46 and Comamonas Sp. JS47, Biotechnology and Bioengineering, 59 (1): 21-27. |
Gordon, 1999, Solid phase synthesis—designer linkers for combinatorial chemistry: a review, J. Chem. Technol. Biotechnol., 74(9):835-851. |
Grasland-Mongrain, 2003, Droplet coalescence in microfluidic devices, 30 pages, From internet: http://w.eleves.ens.fr/home/grasland/rapports/stage4.pdf. |
Gray, 1987, High speed crhomosome sorting, Science 238(4825):323-329. |
Green, 1992, Selection of a Ribozyme That Functions as a Superior Template in a Self Copying Reaction, Science, 258: 1910-5. |
Gregoriadis, 1976, Enzyme entrapment in liposomes, Methods Enzymol 44:218-227. |
Griffiths, 2000, Man-made enzymes-from design to in vitro compartmentalisation, Curr Opin Biotechnol 11:338-353. |
Griffiths, 2003, Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization, EMBO J, 22:24-25. |
Griffiths, 2006, Miniaturising the laboratory in emulsion droplets, Trend Biotech 24(9):395-402. |
Grinwood, 2004, The DNA sequence and biology of human chromosome 19, Nature 428:529-535. |
Grothues, 1993, PCR amplification of megabase DNA with tagged random primers (T-PCR), Nucl. Acids Res vol. 21(5):1321-1322. |
Grund, 2010, Analysis of biomarker data logs, odds, ratios and ROC curves, Curr Opin HIV AIDS 5(6):473-479. |
Guatelli, 1990, Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication, PNAS, 87(5):1874-8. |
Guixe, 1998, Ligand-Induced Conformational Transitions in Escherichia coli Phosphofructokinase 2: Evidence for an Allosteric Site for MgATP2n, Biochem., 37: 13269-12375. |
Gupta, 1991, A general method for the synthesis of 3′-sulfhydryl and phosphate group containing oligonucleotides, Nucl Acids Res 19 (11): 3019-3026. |
Haber, 1993, Activity and spectroscopic properties of bovine liver catalase in sodium bis(2-ethylhexyl) sulfosuccinate/isooctane reverse micelles, Eur J Biochem 217(2): 567-73. |
Habig, 1981, Assays for differentiation of glutathione S-transferases, Methods in Enzymology, 77: 398-405. |
Hadd, 1997, Microchip Device for Performing Enzyme Assays, Anal. Chem 69(17): 3407-3412. |
Haeberle, 2007, Microfluidic platforms for lab-on-a-chip applications, Lab on a Chip 7:1081-1220. |
Hagar, 1992, The effect of endotoxemia on concanavalin A induced alterations in cytoplasmic free calcium in rat spleen cells as determined with Fluo-3, Cell Calcium 13:123-130. |
Hai, 2004, Investigation on the release of fluorescent markers from the w/o/w emulsions by fluorescence-activated cell sorter, J Control Release, 96(3): 393-402. |
Haies, 1981, Morphometric study of rat lung cells. I. Numerical and dimensional characteristics of parenchymal cell population, Am. Rev. Respir. Dis. 123:533-54. |
Hall, 2003, The EBG system of E. coli: origin and evolution of a novel beta-galactosidase for the metabolism of lactose, Genetica 118(2-3):143-56. |
Hamady, 2008, Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Nethods vol. 5, No. 3, p. 235-237. |
Han, 2001, Quantum-dot-tagged Microbeads for Multiplexed Optical Coding of Biomolecules, Nat Biotech 19(7):631-635. |
Handen, 2002, High-throughput screening- challenges for the future, Drug Discov World, 47-50. |
Handique, 2001, On-Chip Thermopneumatic Pressure for Discrete Drop Pumping, Analytical Chemistry, 73:1831-1838. |
Hanes, 1997, In vitro selection and evolution of functional proteins by using ribosome display, PNAS 94:4937-42. |
Hanes, 1998, Degradation of porous poly(anhydide-co-imide) microspheres and implication for controlled macromolecule delivery, Biomaterials, 19(1-3): 163-172. |
Hansen, 2002, A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion, PNAS 99(26):16531-16536. |
Harada, 1993, Monoclonal antibody G6K12 specific for membrane-associated differentiation marker of human stratified squamous epithelia and squamous cell carcinoma, J. Oral Pathol. Med 22(4):145-152. |
Harder, 1994, Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase beta (HPTP beta) using synthetic phosphopeptides, Biochem J 298 (Pt 2): 395-401. |
Harries, 2006, A Numerical Model for Segmented Flow in a Microreactor, Int J of Heat and Mass Transfer, 46:3313-3322. |
Harris, 2008, Single-molecule DNA sequencing of a viral genome, Science 320(5872):106-109. |
Harrison, 1993, Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip, Science 261(5123):895-897. |
Hasina, 2003, Plasminogen activator inhibitor-2: a molecular biomarker for head and neck cancer progression, Cancer Research 63:555-559. |
Haynes, 2012, Digital PCR: A Technology Primer, Principles of Digital PCR and Measurement Issues: The certification of Cytomegalovirus Standard Reference Material (SRM 2366) as a model for future SRMs, National Institute of Standards and Tecnology, San Diego, CA, 4 pages. |
Hayward, 2006, Dewetting Instability during the Formation of Polymersomes from BloceCopolymer-Stabilized Double Emulsions, Langmuir, 22(10): 4457-4461. |
He, 2005, Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets, Anal Chem 77(6):1539-1544. |
Head, 2014, Library construction for next generation sequencing, Biotech Rap Disp 56(2):61. |
Heim, 1996, Engineering Green Fluorescent Protein for Improved Brightness, Longer Wavelengths and Fluorescence Response Energy Transfer, Carr. Biol, 6(2): 178-182. |
Hellman, 2009, Differential tissue-specific protein markers of vaginal carcinoma, Br J Cancer, 100(8): 1303-131. |
Henrich, 2012, Low-level detection and quantitation of cellular HIV-1 DNA and 2-ILTR circles using droplet dPCR, J Virol Meth 186(1-2):68-72. |
Hergenrother, 2000, Small-Molecule Microarrays: Covalent Attachment and Screening of Alcohol-Containing Small Molecules on Glass Slides, J. Am. Chem. Soc, 122: 7849-7850. |
Hermankova, 2003, Analysis of human immunodeficiency virus type 1 gene expression in lately infected reseting CD4 T lymphocytes in vivo, J Virology 77(13) 7383-7392. |
Herzer, 2001, DNA Purification, in Molecular Biology Problem Solver: A Laboratory Guide, Edited by Alan S. Gerstein, Ch. 1. |
Branebjerg, 1996, Fast mixing by lamination, MEMS Proc 9th Ann 9:441-446. |
Braslavsky, 2003, Sequence information can be obtained from single DNA molecules, PNAS 100(7):3960-3964. |
Breslauer, 2006, Microfluidics based systems biology, Mol Bio Syst 2:97-112. |
Bringer, 2004, Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets, Phil Trans A Math Phys Eng Sci 362:1-18. |
Brown, 1979, Chemical synthesis and cloning of a tyrosine tRNA gene, Methods Enzymol 68:109-151. |
Bru, 1991, Product inhibition of alpha-chymotrypsin in reverse micelles. Eur J Biochem 199(1):95-103. |
Bru, 1993, Catalytic activity of elastase in reverse micelles, Biochem Mol Bio Int, 31(4):685-92. |
Brummelkamp, 2002, A system for stable expression of short interfering RNAs in mammalian cells, Science 296(5567):550-3. |
Buican, 1987, Automated single-cell manipulation and sorting by light trapping, Appl Optics 26(24):5311-5316. |
Burbaum, 1998, Miniaturization technologies in HTS, Drug Disc Today 3:313-322. |
Burns, 1996, Microfabricated structures for integrated DNA analysis, PNAS 93:5556-5561. |
Burns, 1998, An integrated nanoliter DNA analysis device, Science 282:484-487. |
Burns, 2002, The intensification of rapid reactions in multiphase systems using slug flow in capillaries, Lab on a Chip 1:10-15. |
Byrnes, 1982, Sensitive fluorogenic substrates for the detection of trypsin-like proteases and pancreatic elastase, Anal Biochem 126:447. |
Cahill, 1991, Polymerase chain reaction and Q beta replicase amplification, Clin Chem 37(9):1482-5. |
Caldwell, 1991, Limits of diffusion in the hydrolysis of substrates by the phosphodiesterase from Pseudomonas diminuta, Biochem 30:7438-7444. |
Calvert, 2001, Inkjet printing for materials and devices, Chem Mater 13:3299-3305. |
Caruccio, 2009, Nextura technology for NGS DNA library preparation: simulaneous fragmentation and tagging by in vitro transposition, Epibio Newsletter. |
Caruthers, 1985, Gene synthesis machines: DNA chemistry and its uses, Science 230:281-285. |
Cavalli, 2010, Nanosponge formulations as oxygen delivery systems, Int J Pharmaceutics 402:254-257. |
Chakrabarti, 1994, Production of RNA by a polymerase protein encapsulated within phospholipid vesicles, J Mol Evol 39(6):555-9. |
Chamberlain, 1973, Characterization of T7-specific ribonucleic acid polymerase. 1. General properties of the enzymatic reaction and the template specificity of the enzyme, J Biol Chem 248:2235-44. |
Chan, 2003, Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors, Nano Lett 3(2):199-201. |
Chan, 2008, New trends in immunoassays, Adv Biochem Engin/Biotech 109:123-154. |
Chang, 1987, Recycling of NAD(P) by multienzyme systems immobilized by microencapsulation in artifical cells, Methods Enzymol, 136(67):67-82. |
Chang, 2008, Controlled double emulsification utilizing 3D PDMS microchannels, Journal of Micromechanics and Microengineering 18:1-8. |
Chao, 2004, Control of Concentration and Volume Gradients in Microfluidic Droplet Arrays for Protein Crystallization Screening, 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, California Sep. 1-5. |
Chao, 2004, Droplet Arrays in Microfluidic Channels for Combinatorial Screening Assays, Hilton Head: A Solid State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, Jun. 6-10. |
Chapman, 1994, In vitro selection of catalytic RNAs, Curr. op. Struct. Biol., 4:618-22. |
Chayen, 1999, Crystallization with oils: a new dimension in macromolecular crystal growth Journal of Crystal Growth, 196:434-441. |
Chen, 2001, Capturing a Photoexcited Molecular Structure Through Time-Domain X-ray Absorption Fine Structure, Science 292(5515):262-264. |
Chen, 2003, Microfluidic Switch for Embryo and Cell Sorting The 12th International Conference on Solid State Sensors, Actuators, and Microsystems, Boston, MA, Transducers, 1: 659-662. |
Chen-Goodspeed, 2001, Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues, Biochemistry, 40: 1332-1339. |
Chen-Goodspeed, 2001, Structural Determinants of the substrate and stereochemical specificity of phosphotriesterase, Biochemistry, 40(5):1325-31. |
Cheng, 2003, Electro flow focusing inmicrofluidic devices, Microfluidics Poster, presented at DBAS, Frontiers in Nanoscience, 1 page. |
Cheng, 2006, Nanotechnologies for biomolecular detection and medical diagnostics, Current Opinion in Chemical Biology, 10:11-19. |
Chetverin, 1995, Replicable RNA vectors: prospects for cell-free gene amplification, expression, and cloning, Prog Nucleic Acid Res Mol Biol, 51:225-70. |
Chiang, 1993, Expression and purification of general transcription factors by FLAG epitope-tagging and peptide elution, Pept Res, 6:62-64. |
Chiba, 1997, Controlled protein delivery from biodegradable tyrosino-containing poly(anhydride-co-imide) microspheres, Biomaterials, 18(13):893-901. |
Chiou, 2001, A closed-cycle capillary polymerase chain reaction machine, Analytical Chemistry, American Chamical Society, 73:2018-21. |
Chiu, 1999, Chemical transformations in individual ultrasmall biomimetic containers, Science, 283:1892-1895. |
Chou, 1998, A microfabricated device for sizing and sorting DNA molecules 96:11-13. |
Clackson, 1994, In vitro selection from protein and peptide libraries, Trends Biotechnol, 12:173-84. |
Clausell-Tormos, 2008, Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms, Chem Biol 15(5):427-437. |
Cohen, 1991, Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres, Pharm Res, 8(6):713-720. |
Collins, 2003, Optimization of Shear Driven Droplet Generation in a Microluidic Device, ASME International Mechanical Engineering Congress and R&D Expo, Washington, 4 pages. |
Collins, 2004, Microfluidic flow transducer based on the measurements of electrical admittance, Lab on a Chip, 4:7-10. |
Compton, 1991, Nucleic acid sequence-based amplification, Nature, 350(6313):91-2. |
Cook, 2007, Use and misuse of receiver operating characteristic curve in risk prediction, Circulation 115(7):928-35. |
Cooper, 2000, The Central Role of Enzymes as Biological Catalysts, The Cell: A Molecular Approach, 2nd Edition, pp. 1-6. |
Cormack, 1996, FACS-optimized mutants of the green fluorescent protein (GFP), Gene 173(1):33-38. |
Cortesi, 2002, Production of lipospheres as carriers for bioactive compounds, Biomateials, 23(11): 2283-2294. |
Courrier, 2004, Reverse water-in-fluorocarbon emulsions and microemulsions obtained with a fluorinated surfactant, Colloids and Surfaces A: Physicochem. Eng. Aspects 244:141-148. |
Craig, 1995, Fluorescence-based enzymatic assay by capillary electrophoresis laser-induced fluoresence detection for the determinination of a few alpha-galactosidase molecules, Anal. Biochem. 226:147. |
Creagh, 1993, Structural and catalytic properties of enzymes in reverse micelles, Enzyme Microb Technol 15(5):383-92. |
Crosland-Taylor, 1953, A Device for Counting Small Particles suspended in a Fluid through a Tube, Nature 171:37-38. |
Crowley, 1973, Electrical breakdown of bimolecular lipid membranes as an electromechanical instability, Biophys J. 13(7):711-724. |
Cull, 1992, Screening for receptor ligands using large libraries of peptides linked to the C terminus of the lac repressor, PNAS 89:1865-9. |
Curran, 1998, Strategy-level separations in organic synthesis: from planning to practice. Angew Chem Int Ed, 37:1174-11-96. |
Czarnik, 1997, Encoding methods for combinatorial chemistry, Curr Opin Chem Biol 1:60-66. |
Dankwardt, 1995, Combinatorial synthesis of small-molecule libraries using 3-amino-5-hydroxybenzoic acid, 1:113-120. |
David, 1974, Protein iodination with solid-state lactoperoxidase, Biochemistry 13:1014-1021. |
Davis, 1987, Multiple emulsions as targetable delivery systems, Meth Enzymol 149:51-64. |
Davis, 2006, Deterministic hydrodynamics: Taking blood apart, PNAS 103:14779-14784. |
De Gans, 2004, Inkjet printing of polymers: state of the art and future developments, Advanced materials, 16: 203-213. |
De Wildt, 2002, Isolation of receptor-ligand pairs by capture of long-lived multivalent interaction complexes, Proceedings of the National Academy of Sciences of the United States, 99, 8530-8535. |
DelRaso, 1993, In vitro methodologies for enhanced toxicity testing, Toxicol. Lett. 68:91-99. |
Deng, 2008, Design and analysis of mismatch probes for long oligonucleotide microarrays, BMC Genomics; 9:491, 13 pages. |
Dickinson, 1994, Emulsions and droplet size control, Wedlock, D.J., Ed., in Controlled Particle Droplet and Bubble Formulation, ButterWorth-Heine-mann, 191-257. |
DiMatteo, 2008, Genetic conversion of an SMN2 gene to SMN1: A novel approach to the treatment of spinal muscular atrophy, Exp Cell Res. 314(4):878-886. |
Ding, 2001, Scheduling of microfluidic operations for reconfigurable two-dimensional electrowetting arrays, IEEE Trans CADICS 20(12):1463-1468. |
Ding, 2003, Direct molecular haplotyping of long-range genomic DNA with M1-PCR, Proc. Natl. Acad. Sci. USA, 100(33):7449-7453. |
Dinsmore, 2002, Colioidosomes: Selectively Permeable Capsules Composed of Colloidal Particles, Science 298(5595):1006-1009. |
Dittrich, 2005, A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices, Chembiochem 6(5):811-814. |
Doi, 1999, STABLE: protein-DNA fusion system for screening of combinatorial protein libraries in vitro, FEBS Lett., 457: 227-230. |
Doi, 2004, In vitro selection of restriction endonucleases by in vitro compartmentilization, Nucleic Acids Res, 32(12):e95. |
Doman, 2002, Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B, J Med Chem, 45: 2213-2221. |
Domling, 2000, Multicomponent Reactions with Isocyanides, Angew Chem Int Ed 39(18):3168-3210. |
Domling, 2002, Recent advances in isocyanide-based multicomponent chemistry, Curr Opin Chem Biol, 6(3):306-13. |
Dorfman, 2005, Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications, Anal Chem 77:3700-3704. |
Dove, 2002, Research News Briefs, Nature Biotechnology 20:1213, 1 page. |
Dower, 1988, High efficiency transformation of E. coli by high voltage electroporation, Nucleic Acids Res 16:6127-6145. |
Dressman, 2003, Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations, PNAS 100:8817-22. |
Dreyfus, 2003, Ordered and disordered patterns in two phase flows in microchannels, Phys Rev Lett 90(14):144505-1-144505-4. |
Drmanac, 1992, Sequencing by hybridization: towards an automated sequencing of one million M13 clones arrayed on membranes, Elctrophoresis 13:566-573. |
Du, 2009, SlipChip, Lab Chip, 9, 2286-2292. |
Dubertret, 2002, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 298: 1759-1762. |
Duffy, 1998, Rapid Protyping of Microfluidic Systems and Polydimethylsiloxane, Anal Chem 70:474-480. |
Duggleby, 1995, Analysis of Enzyme Progress Curves by Nonlinear Regression, Pt D. Academic Press 249:61-90. |
Dumas, 1989, Purification and properties of the phosphotriesterase from Psuedomonas diminuta, J Biol Chem 264:19659-19665. |
Eckert, 1991, DNA polymerase fidelity and the polymerase chain reaction, Genome Res 1:17-24. |
Ecole Polytech Federale de Lausanne, 2014, Tracing water channels in cell surface receptors, PhysOrg News (2 pages). |
Edel, 2002, Microfluidic Routes to the Controlled Production of Nanopaticles, Chemical Communications, 1136-1137. |
Edris, 2001, Encapsulation of orange oil in a spray dried double emulsion, Nahrung/Food, 45(2):133-137. |
Effenhauser, 1993, Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights, Anal Chem 65:2637-2642. |
Eggers, 1999, Coalescence of Liquid Drops, J Fluid Mech 401:293-310. |
Ehrig, 1995, Green-fluorescent protein mutants with altered fluorescence excitation spectra, Febs Lett, 367(2):163-66. |
Eigen, 1980, Hypercycles and compartments: compartments assists—but does not replace—hypercyclic organization of early genetic information, J Theor Biol, 85:407-11. |
Elghanian, 1997, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 277(5329):1078-1080. |
Ellington, 1990, In vitro selection of RNA molecules that bind specific ligands, Nature, 346:818-822. |
Pelham, 1976, An efficient mRNA-dependent translation system from reticulocyte lysates, Eur J Biochem 67:247-56. |
Pelletier, 1999, An in vivo library-versus-library selection of optimized protein-protein interactions, Nature Biotechnology, 17:683-90. |
Peng, 1998, Controlled Production of Emulsions Using a Crossflow Membrane, Particle & Particle Systems Characterization 15:21-25. |
Pepe, 2004, Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker, American Journal of Epidemiology 159(9):882-890. |
Perelson, 1979, Theorectical studies of clonal selection: minimal antibody repertoire size and relaibility of self-non-self discrimination. J Theor Biol 81(4):645-70. |
Perez-Gilabert, 1992, Application of active-phase plot to the kinetic analysis of lipoxygenase in reverse micelles, Biochemistry J. 288:1011-1015. |
Petrounia, 2000, Designed evolution of enzymatic properties, Curr Opin Biotechnol, 11:325-330. |
Pirrung, 1996, A General Method for the Spatially Defined Immobilization of Biomolecules on Glass Surfaces Using ‘Caged’ Biotin, Bioconjug Chem 7: 317-321. |
Ploem, 1993, in Fluorescent and Luminescent Probes for Biological Activity Mason, T. G. Ed., Academic Press, Landon, pp. 1-11. |
Pluckthun, 2000, In vitro selection and evolution of proteins, Adv Protein Chem, 55: 367-403. |
Pollack, 1986, Selective chemical catalysis by an antibody, Science 234(4783):1570-3. |
Pollack, 2002, Electrowetting-based actuation of droplets for integrated microfluidics, Lab Chip 2:96-101. |
Pons, 2009, Synthesis of Near-Infrared-Emitting, Water-Soluble CdTeSe/CdZnS Core/Shell Quantum Dots, Chemistry of Materials 21(8):1418-1424. |
Posner, 1996, Engineering specificity for folate into dihydrofolate reductase from Escherichia coli, Biochemistry, 35:1653-63. |
Priest, 2006, Generation of Monodisperse Gel Emulsions in a Microfluidic Device, Applied Physics Letters, 88:024106, 3 pages. |
Qi, 1998, Acid Beta-Glucosidase: Intrinsic Fluorescence and Conformational Changes Induced by Phospholipids and Saposin C, Biochem., 37(33): 11544-11554. |
Raghuraman, 1994, Emulston Liquid Membranes for Wastewater Treatment: Equillibrium Models for Some Typical Metal-Extractant Systems,Environ. Sci. Technol 28:1090-1098. |
Ralhan, 2008, Discovery and Verification of Head-and-neck Cancer Biomarkers by Differential Protein Expression Analysis Using iTRAQ Labeling, Multidimensional Liquid Chromatography, and Tandem Mass Spectrometry, Mol Cell Proteomics 7(6):1162-1173. |
Ramanan, 2016, Algae-bacteria interactions, Biotech ADv 34:14-29. |
Ramsey, 1999, The burgeoning power of the shrinking laboratory, Nat Biotechnol 17(11):1061-2. |
Ramstrom, 2002, Drug discovery by dynamic combinatorial libraries, Nat Rev Drug Discov 1:26-36. |
Rasmussen, 2013, Comparison of HDAC inhibitors in clinical development, Human Vacc Immunother 9(5):993-1001. |
Raushel, 2000, Phosphotriesterase: an enzyme in search of its natural substrate, Adv Enzymol Relat Areas Mol Biol, 74:51-93. |
Rech, 1990, Introduction of a yeast artificial chromosome vector into Sarrachomyeces cervesia by electroporation, Nucleic Acids Res 18:1313. |
Reyes, 2002, Micro Total Analysis Systems. 1. Introduction, Theory and Technology, Anal Chem 74(12):2623-2636. |
Riechmann, 1988, Reshaping human antibodies for therapy, Nature, 332:323-327. |
Riess, 2002, Fluorous micro- and nanophases with a biomedical perspective, Tetrahedron 58(20):4113-4131. |
Roach, 2005, Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling inteifacial chemistry using fluorous-phase surfactants, Anal. Chem. 77:785-796. |
Roberts, 1969, Termination factor for RNA synthesis, Nature, 224: 1168-74. |
Roberts, 1975, Simian virus 40 DNA directs synthesis of authentic viral polypeptides in a linked transcription-translation cell-free system 72(5):1922-1926. |
Roberts, 1997, RNA-peptide fusion for the in vitro selection of peptides and proteins, PNAS 94:12297-302. |
Roberts, 1999, In vitro selection of nucleic acids and proteins: What are we learning, Curr Opin Struct Biol 9(4): 521-9. |
Roberts, 1999, Totally in vitro protein selection using mRNA-protein fusions and ribosome display. Curr Opin Chem Biol 3(3), 268-73. |
Roche, 2011, 454 Sequencing System Guidelines for Amplicon Experimental Design, 50 pages. |
Rodriguez-Antona, 2000, Quantitative RT-PCR measurement of human cytochrome P-450s: application to drug induction studies. Arch. Biochem. Biophys., 376:109-116. |
Rolland, 1985, Fluorescence Polarization Assay by Flow Cytometry, J. Immunol. Meth., 76(1): 1-10. |
Rosenberg, 1975, Inhibition of Human Factor IX by Human Antithrombin, J Biol Chem, 250: 4755-64. |
Rosenberry, 1975, Acetylcholinesterase, Adv Enzymol Relat Areas Mol Biol, 43: 103-218. |
Rotman, 1961, Measurement of activities of single molecules of beta-galactosidase, PNAS, 47:1981-91. |
Rouzioux, 2013, How to best measure HIV reservoirs, Curr Op HIV AIDS 8(3):170-175. |
Russon et al., Single-nucleotide polymorphism analysis by allele-specific extension of fluorescently labeled nucleotides in a microfluidic flow-through device, Electrophoresis, 24:158-61 (2003). |
Saarela, 2006, Re-usable multi-inlet PDMS fluidic connector, Sensors Actuators B 114(1):552-57. |
Sadtler, 1996, Achieving stable, reverse water-in-fluorocarbon emulsions, Angew Chem Int Ed 35(17):1976-1978. |
Sadtler, 1999, Reverse water-In-fluorocarbon emulsions as a drug delivery system: an in vitro study, Colloids & Surfaces A: Phys Eng Asp 147:309-315. |
Saiki, 1988, Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science 239(4839):487-91. |
Sakamoto, 2005, Rapid and simple quantification of bacterial cells by using a microfluidic device, Appl Env Microb 71:2. |
Sano, 1992, Immuno-PCR: very sensitive antigen-detection by means of sepcific Ab-DNA conjugates, Science 258(5079):120-122. |
SantaLucia, 1998, A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics, PNAS 95(4):1460-5. |
Santra, 2006, Fluorescence lifetime measurements to determine the core-shell nanostructure of FITC-doped silica nanoparticles, J Luminescence 117(1):75-82. |
Sawada, 1996, Synthesis and surfactant properties of novel fluoroalkylated amphiphilic oligomers, Chem Commun 2:179-190. |
Abate, 2011, Synthesis of monidisperse microparticles from non-Newtonian polymer solutions with microfluidic devices, Adv Mat 23(15):1757-1760. |
Chiu, 2008, Noninvasive prenatal diagnosis of chromosomal aneuploidy by massively paralel genomic seuqencing of DNA in maternal plasma, PNAS 105(51):20458-20463. |
Dickinson, 1992, Interfacial interactions and the stability of oil-in-water emulsions, Pure Appl Chem 64(11):1721-1724. |
Eijk-Van Os, 2011, Multiplex ligation-dependent probe amplification (MLPA(R)) for the detection of copy number variation in genomic sequences, Meth Mol Biol 688:97-126. |
Gruner, 2015, Stabilisers for water-in-fluorinated-oil dispersions, Curr Op Coll Int Sci 20:183-191. |
Guo, 2010, Simultaneous detection of trisomies 13, 18, and 21 with multiplex ligation dependent probe amplification-based real-time PCR, Clin Chem 56(9):1451-1459. |
Luft, 20001, Detection of integrated papillomavirus sequences by ligation-mediaated PCR (DIPS-PCR) and molecular characterization in cervical cancer cells, In J Cancer 92:9-17. |
Rogers, 2005, Closing bacterial genoimc sequence gaps with adaptor-PCR, BioTechniques 39(1):1-3. |
Shendure, 2008, Next-generation DNA sequencing, Nature Biotechnology, 26(10):1135-1145. |
Number | Date | Country | |
---|---|---|---|
20150099266 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
61887103 | Oct 2013 | US |