Digital assistant hardware abstraction

Information

  • Patent Grant
  • 12301635
  • Patent Number
    12,301,635
  • Date Filed
    Monday, January 8, 2024
    a year ago
  • Date Issued
    Tuesday, May 13, 2025
    17 hours ago
Abstract
This relates to intelligent automated assistants and, more specifically, to intelligent context sharing and task performance among a collection of devices with intelligent automated assistant capabilities. An example method includes, at a first electronic device participating in a context-sharing group associated with a first location: receiving a user voice input; receiving, from a context collector, an aggregate context of the context-sharing group; providing at least a portion of the aggregate context and data corresponding to the user voice input to a remote device; receiving, from the remote device, a command to perform one or more tasks and a device identifier corresponding to a second electronic device; and transmitting the command to the second electronic device based on the device identifier, wherein the command causes the second electronic device to perform the one or more tasks.
Description
FIELD

This relates generally to intelligent automated assistants and, more specifically, to intelligent context sharing and task performance among a collection of devices with intelligent automated assistant capabilities.


BACKGROUND

Intelligent automated assistants (or digital assistants) can provide a beneficial interface between human users and electronic devices. Such assistants can allow users to interact with devices or systems using natural language in spoken and/or text forms. For example, a user can provide a speech input containing a user request to a digital assistant operating on an electronic device. The digital assistant can interpret the user's intent from the speech input and operationalize the user's intent into tasks. The tasks can then be performed by executing one or more services of the electronic device, and a relevant output responsive to the user request can be returned to the user.


SUMMARY

A location, such as a home or an office, may contain multiple devices with digital assistant capabilities. It thus can be desirable for the multiple devices to share context information among one another so that the digital assistants of the multiple devices may intelligently coordinate the performance of tasks in response to user requests based on, for example, events that are occurring (and that have recently occurred) at each device, the location of users with respect to each device, and/or what device capabilities the tasks require. In this manner, a user-requested task may be performed at a device of the multiple devices even if a user does not directly provide a user request to the digital assistant of that device. This in turn creates an appearance of a single digital assistant that interacts with a user across the multiple devices, instead of multiple individual digital assistants at each of the multiple devices.


Example methods are disclosed herein. An example method includes, at a first electronic device: joining a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes at least a second electronic device. After joining the context-sharing group, electing one electronic device of the collection of at least two electronic devices as a context collector of the context-sharing group, wherein electing the context collector includes: determining a first context collector score corresponding to the first electronic device based at least on a strength of connectivity between the first electronic device and a wireless network of the first location; receiving, from at least the second electronic device, one or more context collector scores corresponding to at least the second electronic device; and determining, based on the first context collector score and the one or more context collector scores corresponding to at least the second electronic device, which electronic device of the electronic devices included in the context-sharing group to elect as the context collector of the context-sharing group. In accordance with a determination to elect the first electronic device as the context collector, receiving context information from at least the second electronic device in response to at least the second electronic device undergoing a device state change.


Another example method includes, at a first electronic device participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes at least a second electronic device and a context collector: receiving a user voice input; receiving, from the context collector, an aggregate context of the context-sharing group; after receiving the aggregate context, providing at least a portion of the aggregate context and data corresponding to the user voice input to a remote device that is not participating in the context-sharing group; receiving, from the remote device, a command to perform one or more tasks and a device identifier corresponding to the second electronic device, wherein the remote device determines the one or more tasks and the device identifier based on the data corresponding to the user voice input and context information included in the at least a portion of the aggregate context; and transmitting the command to the second electronic device based on the device identifier, wherein the command causes the second electronic device to perform the one or more tasks.


Another example method includes, at one or more servers: receiving a user voice input and at least a portion of an aggregate context of a context-sharing group associated with a first location from a first electronic device that is participating in the context-sharing group, wherein the context-sharing group is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection; determining a user intent based on the user voice input; determining one or more tasks corresponding to the user intent; identifying a second electronic device of the plurality of electronic devices to perform the one or more tasks based on the one or more tasks and context information included in the at least a portion of the aggregate context; and transmitting, to the first electronic device, a command to perform the one or more tasks and a device identifier corresponding to the second electronic device, wherein the first electronic transmits the command to the second electronic device based on the device identifier, and wherein the command causes the second electronic device to perform the one or more tasks.


Another example method includes, at a first electronic device participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes a context collector: receiving a user voice input; receiving, from the context collector, an aggregate context of the context-sharing group; after receiving the aggregate context, providing at least a portion of the aggregate context and data corresponding to the user voice input to a remote device that is not participating in the context-sharing group, wherein the remote device determines a plurality of tasks based on the data corresponding to the user voice input; receiving, from the remote device: a first command to perform a first set of tasks of the plurality of tasks and a second command to perform a second set of tasks of the plurality of tasks; and a first device identifier corresponding to a second electronic device of the plurality of electronic devices and a second device identifier corresponding to a third electronic device of the plurality of electronic devices; transmitting the first command to the second electronic device based on the first device identifier, wherein the first command causes the second electronic device to perform the first set of tasks; and transmitting the second command to the third electronic device based on the second device identifier, wherein the second command causes the third electronic device to perform the second set of tasks.


Another example method includes, at a system including at least a first electronic device and a second electronic device that are participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes a context collector: receiving, at the first electronic device, a first user voice input; outputting, at the first electronic device, a first digital assistant response based on the first user voice input, wherein the first electronic device transmits context information including a digital assistant dialog session history for the first electronic device to the context collector after outputting the first digital assistant response; receiving, at the second electronic device, a second user voice input; receiving, at the second electronic device, an updated aggregate context of the context-sharing group from the context collector, wherein the updated aggregate context includes the digital assistant dialog session history for the first electronic device; and outputting, at the second electronic device, a second digital assistant response based on the second user voice input and the digital assistant dialog history for the first electronic device.


Another example method includes, at a first electronic device participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device participating in the collection, and wherein the collection includes at least a second electronic device and a context collector: receiving a user voice input, wherein the user voice input includes a digital assistant trigger; in response to detecting the digital assistant trigger, transmitting a first trigger advertisement to the context collector, wherein the first trigger advertisement indicates a first time at which the digital assistant trigger ended according to the first electronic device; receiving, from the context collector, a second trigger advertisement, wherein the second trigger advertisement indicates a second time at which the digital assistant trigger ended according to the second electronic device; determining whether the second time is within a predetermined time range before the first time; and in accordance with a determination that the second time is within the predetermined time range before the first time, forgoing further processing of the user voice input.


Example non-transitory computer-readable media are disclosed herein. An example non-transitory computer-readable storage medium stores one or more programs. The one or more programs comprise instructions, which when executed by one or more processors of a first electronic device, cause the first electronic device to: join a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes at least a second electronic device; after joining the context-sharing group, elect one electronic device of the collection of at least two electronic devices as a context collector of the context-sharing group, wherein electing the context collector includes: determining a first context collector score corresponding to the first electronic device based at least on a strength of connectivity between the first electronic device and a wireless network of the first location; receiving, from at least the second electronic device, one or more context collector scores corresponding to at least the second electronic device; and determining, based on the first context collector score and the one or more context collector scores corresponding to at least the second electronic device, which electronic device of the electronic devices included in the context-sharing group to elect as the context collector of the context-sharing group; and in accordance with a determination to elect the first electronic device as the context collector, receive context information from at least the second electronic device in response to at least the second electronic device undergoing a device state change.


Another example non-transitory computer-readable storage medium stores one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of a first electronic device, cause the first electronic device to: while the first electronic device is participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes at least a second electronic device and a context collector: receive a user voice input; receive, from the context collector, an aggregate context of the context-sharing group; after receiving the aggregate context, provide at least a portion of the aggregate context and data corresponding to the user voice input to a remote device that is not participating in the context-sharing group; receive, from the remote device, a command to perform one or more tasks and a device identifier corresponding to the second electronic device, wherein the remote device determines the one or more tasks and the device identifier based on the data corresponding to the user voice input and context information included in the at least a portion of the aggregate context; and transmit the command to the second electronic device based on the device identifier, wherein the command causes the second electronic device to perform the one or more tasks.


Another example non-transitory computer-readable storage medium stores one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of one or more servers, cause the one or more servers to: receive a user voice input and at least a portion of an aggregate context of a context-sharing group associated with a first location from a first electronic device that is participating in the context-sharing group, wherein the context-sharing group is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection; determine a user intent based on the user voice input; determine one or more tasks corresponding to the user intent; identify a second electronic device of the plurality of electronic devices to perform the one or more tasks based on the one or more tasks and context information included in the at least a portion of the aggregate context; and transmit, to the first electronic device, a command to perform the one or more tasks and a device identifier corresponding to the second electronic device, wherein the first electronic transmits the command to the second electronic device based on the device identifier, and wherein the command causes the second electronic device to perform the one or more tasks.


Another example non-transitory computer-readable storage medium stores one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of a first electronic device, cause the first electronic device to: while the first electronic device is participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes a context collector: receive a user voice input; receive, from the context collector, an aggregate context of the context-sharing group; after receiving the aggregate context, provide at least a portion of the aggregate context and data corresponding to the user voice input to a remote device that is not participating in the context-sharing group, wherein the remote device determines a plurality of tasks based on the data corresponding to the user voice input; receive, from the remote device: a first command to perform a first set of tasks of the plurality of tasks and a second command to perform a second set of tasks of the plurality of tasks; and a first device identifier corresponding to a second electronic device of the plurality of electronic devices and a second device identifier corresponding to a third electronic device of the plurality of electronic devices; transmit the first command to the second electronic device based on the first device identifier, wherein the first command causes the second electronic device to perform the first set of tasks; and transmit the second command to the third electronic device based on the second device identifier, wherein the second command causes the third electronic device to perform the second set of tasks.


A non-transitory computer-readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of a first electronic device, cause the first electronic device to: while a first electronic device and a second electronic device are participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes a context collector: receive, at the first electronic device, a first user voice input; output, at the first electronic device, a first digital assistant response based on the first user voice input, wherein the first electronic device transmits context information including a digital assistant dialog session history for the first electronic device to the context collector after outputting the first digital assistant response; receive, at the second electronic device, a second user voice input; receive, at the second electronic device, an updated aggregate context of the context-sharing group from the context collector, wherein the updated aggregate context includes the digital assistant dialog session history for the first electronic device; and output, at the second electronic device, a second digital assistant response based on the second user voice input and the digital assistant dialog history for the first electronic device.


A non-transitory computer-readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of a first electronic device, cause the first electronic device to: while the first electronic device is participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device participating in the collection, and wherein the collection includes at least a second electronic device and a context collector: receive a user voice input, wherein the user voice input includes a digital assistant trigger; in response to detecting the digital assistant trigger, transmit a first trigger advertisement to the context collector, wherein the first trigger advertisement indicates a first time at which the digital assistant trigger ended according to the first electronic device; receive, from the context collector, a second trigger advertisement, wherein the second trigger advertisement indicates a second time at which the digital assistant trigger ended according to the second electronic device; determine whether the second time is within a predetermined time range before the first time; and in accordance with a determination that the second time is within the predetermined time range before the first time, forgo further processing of the user voice input.


Example electronic devices and systems are disclosed herein. An example first electronic device comprises one or more processors; a memory; and one or more programs, where the one or more programs are stored in the memory and are configured to be executed by the one or more processors, the one or more programs including instructions for: joining a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes at least a second electronic device. After joining the context-sharing group, electing one electronic device of the collection of at least two electronic devices as a context collector of the context-sharing group, wherein electing the context collector includes: determining a first context collector score corresponding to the first electronic device based at least on a strength of connectivity between the first electronic device and a wireless network of the first location; receiving, from at least the second electronic device, one or more context collector scores corresponding to at least the second electronic device; and determining, based on the first context collector score and the one or more context collector scores corresponding to at least the second electronic device, which electronic device of the electronic devices included in the context-sharing group to elect as the context collector of the context-sharing group. In accordance with a determination to elect the first electronic device as the context collector, receiving context information from at least the second electronic device in response to at least the second electronic device undergoing a device state change.


Another example first electronic device comprises one or more processors; a memory; and one or more programs, where the one or more programs are stored in the memory and are configured to be executed by the one or more processors, the one or more programs including instructions for: while the first electronic device is participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes at least a second electronic device and a context collector: receiving a user voice input; receiving, from the context collector, an aggregate context of the context-sharing group; after receiving the aggregate context, providing at least a portion of the aggregate context and data corresponding to the user voice input to a remote device that is not participating in the context-sharing group; receiving, from the remote device, a command to perform one or more tasks and a device identifier corresponding to the second electronic device, wherein the remote device determines the one or more tasks and the device identifier based on the data corresponding to the user voice input and context information included in the at least a portion of the aggregate context; and transmitting the command to the second electronic device based on the device identifier, wherein the command causes the second electronic device to perform the one or more tasks.


An example system comprises one or more processors; memory; and one or more programs, where the one or more programs are stored in the memory and are configured to be executed by the one or more processors, the one or more programs including instructions for: receiving a user voice input and at least a portion of an aggregate context of a context-sharing group associated with a first location from a first electronic device that is participating in the context-sharing group, wherein the context-sharing group is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection; determining a user intent based on the user voice input; determining one or more tasks corresponding to the user intent; identifying a second electronic device of the plurality of electronic devices to perform the one or more tasks based on the one or more tasks and context information included in the at least a portion of the aggregate context; and transmitting, to the first electronic device, a command to perform the one or more tasks and a device identifier corresponding to the second electronic device, wherein the first electronic transmits the command to the second electronic device based on the device identifier, and wherein the command causes the second electronic device to perform the one or more tasks.


Another example first electronic device comprises one or more processors; a memory; and one or more programs, where the one or more programs are stored in the memory and are configured to be executed by the one or more processors, the one or more programs including instructions for: while the first electronic device is participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes a context collector: receiving a user voice input; receiving, from the context collector, an aggregate context of the context-sharing group; after receiving the aggregate context, providing at least a portion of the aggregate context and data corresponding to the user voice input to a remote device that is not participating in the context-sharing group, wherein the remote device determines a plurality of tasks based on the data corresponding to the user voice input; receiving, from the remote device: a first command to perform a first set of tasks of the plurality of tasks and a second command to perform a second set of tasks of the plurality of tasks; and a first device identifier corresponding to a second electronic device of the plurality of electronic devices and a second device identifier corresponding to a third electronic device of the plurality of electronic devices; transmitting the first command to the second electronic device based on the first device identifier, wherein the first command causes the second electronic device to perform the first set of tasks; and transmitting the second command to the third electronic device based on the second device identifier, wherein the second command causes the third electronic device to perform the second set of tasks.


Another example system comprises one or more processors; memory; and one or more programs, where the one or more programs are stored in the memory and are configured to be executed by the one or more processors, the one or more programs including instructions for: while a first electronic device and a second electronic device are participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes a context collector: receiving, at the first electronic device, a first user voice input; outputting, at the first electronic device, a first digital assistant response based on the first user voice input, wherein the first electronic device transmits context information including a digital assistant dialog session history for the first electronic device to the context collector after outputting the first digital assistant response; receiving, at the second electronic device, a second user voice input; receiving, at the second electronic device, an updated aggregate context of the context-sharing group from the context collector, wherein the updated aggregate context includes the digital assistant dialog session history for the first electronic device; and outputting, at the second electronic device, a second digital assistant response based on the second user voice input and the digital assistant dialog history for the first electronic device.


Another example first electronic device comprises one or more processors; a memory; and one or more programs, where the one or more programs are stored in the memory and are configured to be executed by the one or more processors, the one or more programs including instructions for: while the first electronic device is participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device participating in the collection, and wherein the collection includes at least a second electronic device and a context collector: receiving a user voice input, wherein the user voice input includes a digital assistant trigger; in response to detecting the digital assistant trigger, transmitting a first trigger advertisement to the context collector, wherein the first trigger advertisement indicates a first time at which the digital assistant trigger ended according to the first electronic device; receiving, from the context collector, a second trigger advertisement, wherein the second trigger advertisement indicates a second time at which the digital assistant trigger ended according to the second electronic device; determining whether the second time is within a predetermined time range before the first time; and in accordance with a determination that the second time is within the predetermined time range before the first time, forgoing further processing of the user voice input.


An example first electronic device comprises means for joining a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes at least a second electronic device. After joining the context-sharing group, means for electing one electronic device of the collection of at least two electronic devices as a context collector of the context-sharing group, wherein electing the context collector includes: determining a first context collector score corresponding to the first electronic device based at least on a strength of connectivity between the first electronic device and a wireless network of the first location; receiving, from at least the second electronic device, one or more context collector scores corresponding to at least the second electronic device; and determining, based on the first context collector score and the one or more context collector scores corresponding to at least the second electronic device, which electronic device of the electronic devices included in the context-sharing group to elect as the context collector of the context-sharing group. In accordance with a determination to elect the first electronic device as the context collector, means for receiving context information from at least the second electronic device in response to at least the second electronic device undergoing a device state change.


Another example first electronic device comprises means for: while the first electronic device is participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes at least a second electronic device and a context collector: receiving a user voice input; means for receiving, from the context collector, an aggregate context of the context-sharing group; after receiving the aggregate context, means for providing at least a portion of the aggregate context and data corresponding to the user voice input to a remote device that is not participating in the context-sharing group; means for receiving, from the remote device, a command to perform one or more tasks and a device identifier corresponding to the second electronic device, wherein the remote device determines the one or more tasks and the device identifier based on the data corresponding to the user voice input and context information included in the at least a portion of the aggregate context; and means for transmitting the command to the second electronic device based on the device identifier, wherein the command causes the second electronic device to perform the one or more tasks.


Another example system comprises means for: receiving a user voice input and at least a portion of an aggregate context of a context-sharing group associated with a first location from a first electronic device that is participating in the context-sharing group, wherein the context-sharing group is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection; means for determining a user intent based on the user voice input; means for determining one or more tasks corresponding to the user intent; means for identifying a second electronic device of the plurality of electronic devices to perform the one or more tasks based on the one or more tasks and context information included in the at least a portion of the aggregate context; and means for transmitting, to the first electronic device, a command to perform the one or more tasks and a device identifier corresponding to the second electronic device, wherein the first electronic transmits the command to the second electronic device based on the device identifier, and wherein the command causes the second electronic device to perform the one or more tasks.


Another example first electronic device comprises means for: while the first electronic device is participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes a context collector: receiving a user voice input; means for receiving, from the context collector, an aggregate context of the context-sharing group; after receiving the aggregate context, means for providing at least a portion of the aggregate context and data corresponding to the user voice input to a remote device that is not participating in the context-sharing group, wherein the remote device determines a plurality of tasks based on the data corresponding to the user voice input; means for receiving, from the remote device: a first command to perform a first set of tasks of the plurality of tasks and a second command to perform a second set of tasks of the plurality of tasks; and a first device identifier corresponding to a second electronic device of the plurality of electronic devices and a second device identifier corresponding to a third electronic device of the plurality of electronic devices; means for transmitting the first command to the second electronic device based on the first device identifier, wherein the first command causes the second electronic device to perform the first set of tasks; and means for transmitting the second command to the third electronic device based on the second device identifier, wherein the second command causes the third electronic device to perform the second set of tasks.


Another example system comprises means for: while a first electronic device and a second electronic device are participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the collection includes a context collector: receiving, at the first electronic device, a first user voice input; means for outputting, at the first electronic device, a first digital assistant response based on the first user voice input, wherein the first electronic device transmits context information including a digital assistant dialog session history for the first electronic device to the context collector after outputting the first digital assistant response; means for receiving, at the second electronic device, a second user voice input; means for receiving, at the second electronic device, an updated aggregate context of the context-sharing group from the context collector, wherein the updated aggregate context includes the digital assistant dialog session history for the first electronic device; and means for outputting, at the second electronic device, a second digital assistant response based on the second user voice input and the digital assistant dialog history for the first electronic device.


Another example first electronic device comprises means for: while the first electronic device is participating in a context-sharing group associated with a first location, wherein the context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device participating in the collection, and wherein the collection includes at least a second electronic device and a context collector: receiving a user voice input, wherein the user voice input includes a digital assistant trigger; in response to detecting the digital assistant trigger, transmitting a first trigger advertisement to the context collector, wherein the first trigger advertisement indicates a first time at which the digital assistant trigger ended according to the first electronic device; receiving, from the context collector, a second trigger advertisement, wherein the second trigger advertisement indicates a second time at which the digital assistant trigger ended according to the second electronic device; determining whether the second time is within a predetermined time range before the first time; and in accordance with a determination that the second time is within the predetermined time range before the first time, forgoing further processing of the user voice input.


In some examples, determining a first context collector score corresponding to a first electronic device based at least on a strength of connectivity between the first electronic device and a wireless network of the first location, and subsequently determining, based on the first context collector score and one or more context collector scores corresponding to at least a second electronic device, which electronic device of the electronic devices included in a context-sharing group to elect as the context collector of the context-sharing group, may improve a user's digital assistant experience. Specifically, determining the first context collector scores based at least on a strength of connectivity between the first electronic device and the wireless network of the first location helps ensure that an electronic device that has a strong connection to the wireless network will be elected as the context collector, as the context collector election is based on determined context collector scores. This in turn improves the stability of the context collector because the context collector is much less likely to lose its connection to the wireless network and leave the context-sharing group. In this manner, the collector will be able to consistently receive and transmit context information to electronic devices participating in the context-sharing group, which will allow the digital assistants of the electronic devices to respond to user requests based on the context information provided to and received from the context collector.


In some examples, providing at least a portion of an aggregate context and data corresponding to a user voice input to a remote device that is not participating in a context-sharing group so that the remote device may determine one or more tasks and a device identifier based on the data corresponding to the user voice input and context information included in at least a portion of the aggregate context, may improve a user's digital assistant experience. Specifically, by performing the above, the remote device is able to, for example, more accurately determine a user intent corresponding to the user voice input, as the context information included in the aggregate context informs the remote device of a user's context when providing the user voice input with respect to all of the devices participating in a context-sharing group instead of only the first electronic device that receives the user voice input. This in turn allows the remote device to determine an optimal electronic device for responding to the user based on the one or more tasks corresponding to the determined user intent and the context information included in the aggregate context. Thus, even if the first electronic device receives the user voice input, the first electronic device may transmit the one or more tasks to another electronic device that is more suitable for performing the one or more tasks (e.g., more closely positioned to the user, better device capabilities for performing the one or more tasks, etc.) based on the device identifier provided by the remote device. Thus, the first electronic device's provision of the aggregate context to the remote device, as well as the first electronic device's transmission of the one or more tasks to a second electronic device based on the received device identifier, allows the digital assistants of the electronic devices participating in a context-sharing group to intelligently coordinate the performance of tasks among one another, which creates an appearance of a single digital assistant that is interacting with the user across the multiple devices instead of multiple individual digital assistants at each of the multiple device.


In some examples, identifying a second electronic device of a plurality of electronic devices participating in a context-sharing group to perform one or more tasks based on the one or more tasks and context information included in at least a portion of an aggregate context of the context-sharing group, may improve a user's digital assistant experience. Specifically, as mentioned above, an electronic device that receives a user's digital assistant request may not be the most optimal device for performing the requested tasks. For example, the electronic device that receives a user's request may not be the most optimal device because the device may have a small display (or no display at all), the request may be directed to an event (e.g., an alarm, a timer, media playback, etc.) occurring at another electronic device, and/or there may be another electronic device that is more conveniently positioned relative to the user. Thus, because the aggregate context includes context information (associated with multiple devices participating in the context-sharing group) that indicates, for example, device capabilities, device position, and current and/or previous device activities and user interactions, a remote device (e.g., one or more servers) may identify a second, more suitable electronic device for performing the one or more tasks based on the context information instead of simply instructing the electronic device that receives the user's request to perform the one or more tasks. This in turn improves the user's digital assistant experience, as it creates an appearance of a single digital assistant that is intelligently interacting with the user across multiple devices in order to provide an optimal response to the user's request.


Transmitting a first command to perform a first set of tasks of a plurality of tasks to a second electronic device and transmitting a second command to perform a second set of tasks of the plurality of tasks to a third electronic device, may improve a user's digital assistant experience. Specifically, when a user's digital assistant request requires the performance of a plurality of tasks such as, for example, the output of a digital assistant response and the display of corresponding data/information, assigning the performance of certain tasks to different devices helps ensure that those tasks are being performed by optimal devices. For example, while the second electronic device may have suitable audio capabilities for providing a digital assistant response, it may have a small display (or no display at all). Thus, instead of displaying data/information on a small display (or not displaying it at all), the second electronic device may be instructed to provide an audio digital assistant response via the first command while the third electronic device (e.g., that has a larger display than the second electronic device) may be instructed to display the corresponding data/information. This in turn improves the user's digital assistant experience, as it creates an appearance of a single digital assistant that is intelligently interacting with the user across multiple devices in order to provide an optimal response to the user's request.


In some examples, outputting, at a second electronic device, a second digital assistant response based on a second user voice input and a digital assistant dialog history for a first electronic device may improve a user's digital assistant experience. Specifically, using a digital assistant dialog history for a first electronic device to determine the second digital assistant response allows a digital assistant of the second electronic device to provide a digital assistant response that is based on, and/or is in furtherance to, a first user input even though the first user input was provided to the first electronic device instead of the second electronic device. In this manner, a user of the second electronic device may provide a digital assistant request (e.g., in the second user input) in a more natural and conversational manner, and without having to repeat certain aspects of a request if those aspects were already introduced in the first user input. For example, if the first user voice input includes the user request “Hey Siri, what's the weather like in Palo Alto?”, a user of the second electronic device can subsequently request weather information with respect to New York by providing the second user voice input “Hey Siri, how about in New York?” instead of having to repeat that weather information is desired (e.g., “Hey Siri, what's the weather like in New York?”). This in turn improves the user's digital assistant experience, as it creates an appearance of a single digital assistant that is interacting with the user across multiple devices instead of multiple individual digital assistants at each of the multiple devices.


In some examples, determining whether a second time at which a digital assistant trigger included in a user voice input ended according to a second electronic device is within a predetermined time range before a first time at which the digital assistant trigger ended according to a first electronic device, and forgoing further processing of the user voice input in accordance with a determination that the second time is within the predetermined time range before the first time, may improve a user's digital assistant experience. Specifically, if an electronic device's digital assistant trigger detection is delayed, the electronic device will begin processing a user voice input even if another nearby electronic device (that did not have a delayed digital assistant trigger detection) has already begun processing the user voice input and/or has already provided a response to the user voice input. This in turn may result in multiple devices providing a response to the same user voice input at different times, which may result in a poor digital assistant experience for the user (e.g., due to user confusion and/or annoyance). Accordingly, forgoing further processing of a user voice input if an electronic device determines that another electronic device has already detected a digital assistant trigger (within a predetermined time range) will ensure that multiple devices do not provide a response to the same user voice input at different times, which in turn will improve a user's digital assistant experience.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating a system and environment for implementing a digital assistant, according to various examples.



FIG. 2A is a block diagram illustrating a portable multifunction device implementing the client-side portion of a digital assistant, according to various examples.



FIG. 2B is a block diagram illustrating exemplary components for event handling, according to various examples.



FIG. 3 illustrates a portable multifunction device implementing the client-side portion of a digital assistant, according to various examples.



FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface, according to various examples.



FIG. 5A illustrates an exemplary user interface for a menu of applications on a portable multifunction device, according to various examples.



FIG. 5B illustrates an exemplary user interface for a multifunction device with a touch-sensitive surface that is separate from the display, according to various examples.



FIG. 6A illustrates a personal electronic device, according to various examples.



FIG. 6B is a block diagram illustrating a personal electronic device, according to various examples.



FIG. 7A is a block diagram illustrating a digital assistant system or a server portion thereof, according to various examples.



FIG. 7B illustrates the functions of the digital assistant shown in FIG. 7A, according to various examples.



FIG. 7C illustrates a portion of an ontology, according to various examples.



FIG. 8 illustrates a system and technique for electing a context collector of a context-sharing group, according to various examples.



FIG. 9 illustrates a system and technique for performing one or more tasks in a context-sharing group, according to various examples.



FIG. 10 illustrates a system and technique for suppressing a delayed digital assistant trigger detection using a context collector of a context-sharing group, according to various examples.



FIG. 11 is a block diagram illustrating a system for task determination and device selection in a context-sharing group, according to various examples.



FIGS. 12A-12B illustrate a system and technique for multimodal task performance in a context-sharing group, according to various examples.



FIG. 13 illustrates a system and technique for continuous digital assistant conversations across multiple devices participating in a context-sharing group, according to various examples.



FIGS. 14A-14C illustrate a flow chart representing a process for electing a context collector of a context-sharing group, according to various examples.



FIGS. 15A-15B illustrate a flow chart representing a process for performing one or more tasks in a context-sharing group, according to various examples.



FIGS. 16A-16E illustrate a flow chart representing a process for identifying an electronic device participating in a context-sharing group to perform one or more tasks, according to various examples.



FIGS. 17A-17C illustrate a flow chart representing a process for multimodal task performance in a context-sharing group, according to various examples.



FIGS. 18A-18B illustrate a flow chart representing a process for a continuous digital assistant conversation across multiple electronic devices participating in a context-sharing group, according to various examples.



FIGS. 19A-19B illustrate a flow chart representing a process for suppressing a delayed digital assistant trigger detection using a context collector of a context-sharing group, according to various examples.





DETAILED DESCRIPTION

In the following description of examples, reference is made to the accompanying drawings in which are shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the various examples.


Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first input could be termed a second input, and, similarly, a second input could be termed a first input, without departing from the scope of the various described examples. The first input and the second input are both inputs and, in some cases, are separate and different inputs.


The terminology used in the description of the various described examples herein is for the purpose of describing particular examples only and is not intended to be limiting. As used in the description of the various described examples and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


The term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.


1. System and Environment



FIG. 1 illustrates a block diagram of system 100 according to various examples. In some examples, system 100 implements a digital assistant. The terms “digital assistant,” “virtual assistant,” “intelligent automated assistant,” or “automatic digital assistant” refer to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent, and performs actions based on the inferred user intent. For example, to act on an inferred user intent, the system performs one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent, inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g., speech) and/or visual form.


Specifically, a digital assistant is capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request seeks either an informational answer or performance of a task by the digital assistant. A satisfactory response to the user request includes a provision of the requested informational answer, a performance of the requested task, or a combination of the two. For example, a user asks the digital assistant a question, such as “Where am I right now?” Based on the user's current location, the digital assistant answers, “You are in Central Park near the west gate.” The user also requests the performance of a task, for example, “Please invite my friends to my girlfriend's birthday party next week.” In response, the digital assistant can acknowledge the request by saying “Yes, right away,” and then send a suitable calendar invite on behalf of the user to each of the user's friends listed in the user's electronic address book. During performance of a requested task, the digital assistant sometimes interacts with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant also provides responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.


As shown in FIG. 1, in some examples, a digital assistant is implemented according to a client-server model. The digital assistant includes client-side portion 102 (hereafter “DA client 102”) executed on user device 104 and server-side portion 106 (hereafter “DA server 106”) executed on server system 108. DA client 102 communicates with DA server 106 through one or more networks 110. DA client 102 provides client-side functionalities such as user-facing input and output processing and communication with DA server 106. DA server 106 provides server-side functionalities for any number of DA clients 102 each residing on a respective user device 104.


In some examples, DA server 106 includes client-facing I/O interface 112, one or more processing modules 114, data and models 116, and I/O interface to external services 118. The client-facing I/O interface 112 facilitates the client-facing input and output processing for DA server 106. One or more processing modules 114 utilize data and models 116 to process speech input and determine the user's intent based on natural language input. Further, one or more processing modules 114 perform task execution based on inferred user intent. In some examples, DA server 106 communicates with external services 120 through network(s) 110 for task completion or information acquisition. I/O interface to external services 118 facilitates such communications.


User device 104 can be any suitable electronic device. In some examples, user device 104 is a portable multifunctional device (e.g., device 200, described below with reference to FIG. 2A), a multifunctional device (e.g., device 400, described below with reference to FIG. 4), or a personal electronic device (e.g., device 600, described below with reference to FIGS. 6A-6B.) A portable multifunctional device is, for example, a mobile telephone that also contains other functions, such as PDA and/or music player functions. Specific examples of portable multifunction devices include the Apple Watch®, iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California. Other examples of portable multifunction devices include, without limitation, earphones/headphones, speakers, and laptop or tablet computers. Further, in some examples, user device 104 is a non-portable multifunctional device. In particular, user device 104 is a desktop computer, a game console, a speaker, a television, or a television set-top box. In some examples, user device 104 includes a touch-sensitive surface (e.g., touch screen displays and/or touchpads). Further, user device 104 optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick. Various examples of electronic devices, such as multifunctional devices, are described below in greater detail.


Examples of communication network(s) 110 include local area networks (LAN) and wide area networks (WAN), e.g., the Internet. Communication network(s) 110 is implemented using any known network protocol, including various wired or wireless protocols, such as, for example, Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VoIP), Wi-MAX, or any other suitable communication protocol.


Server system 108 is implemented on one or more standalone data processing apparatus or a distributed network of computers. In some examples, server system 108 also employs various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 108.


In some examples, user device 104 communicates with DA server 106 via second user device 122. Second user device 122 is similar or identical to user device 104. For example, second user device 122 is similar to devices 200, 400, or 600 described below with reference to FIGS. 2A, 4, and 6A-6B. User device 104 is configured to communicatively couple to second user device 122 via a direct communication connection, such as Bluetooth, NFC, BTLE, or the like, or via a wired or wireless network, such as a local Wi-Fi network. In some examples, second user device 122 is configured to act as a proxy between user device 104 and DA server 106. For example, DA client 102 of user device 104 is configured to transmit information (e.g., a user request received at user device 104) to DA server 106 via second user device 122. DA server 106 processes the information and returns relevant data (e.g., data content responsive to the user request) to user device 104 via second user device 122.


In some examples, user device 104 is configured to communicate abbreviated requests for data to second user device 122 to reduce the amount of information transmitted from user device 104. Second user device 122 is configured to determine supplemental information to add to the abbreviated request to generate a complete request to transmit to DA server 106. This system architecture can advantageously allow user device 104 having limited communication capabilities and/or limited battery power (e.g., a watch or a similar compact electronic device) to access services provided by DA server 106 by using second user device 122, having greater communication capabilities and/or battery power (e.g., a mobile phone, laptop computer, tablet computer, or the like), as a proxy to DA server 106. While only two user devices 104 and 122 are shown in FIG. 1, it should be appreciated that system 100, in some examples, includes any number and type of user devices configured in this proxy configuration to communicate with DA server system 106.


Although the digital assistant shown in FIG. 1 includes both a client-side portion (e.g., DA client 102) and a server-side portion (e.g., DA server 106), in some examples, the functions of a digital assistant are implemented as a standalone application installed on a user device. In addition, the divisions of functionalities between the client and server portions of the digital assistant can vary in different implementations. For instance, in some examples, the DA client is a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the digital assistant to a backend server.


2. Electronic Devices


Attention is now directed toward embodiments of electronic devices for implementing the client-side portion of a digital assistant. FIG. 2A is a block diagram illustrating portable multifunction device 200 with touch-sensitive display system 212 in accordance with some embodiments. Touch-sensitive display 212 is sometimes called a “touch screen” for convenience and is sometimes known as or called a “touch-sensitive display system.” Device 200 includes memory 202 (which optionally includes one or more computer-readable storage mediums), memory controller 222, one or more processing units (CPUs) 220, peripherals interface 218, RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, input/output (I/O) subsystem 206, other input control devices 216, and external port 224. Device 200 optionally includes one or more optical sensors 264. Device 200 optionally includes one or more contact intensity sensors 265 for detecting intensity of contacts on device 200 (e.g., a touch-sensitive surface such as touch-sensitive display system 212 of device 200). Device 200 optionally includes one or more tactile output generators 267 for generating tactile outputs on device 200 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 212 of device 200 or touchpad 455 of device 400). These components optionally communicate over one or more communication buses or signal lines 203.


As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).


As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.


It should be appreciated that device 200 is only one example of a portable multifunction device, and that device 200 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in FIG. 2A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application-specific integrated circuits.


Memory 202 includes one or more computer-readable storage mediums. The computer-readable storage mediums are, for example, tangible and non-transitory. Memory 202 includes high-speed random access memory and also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 222 controls access to memory 202 by other components of device 200.


In some examples, a non-transitory computer-readable storage medium of memory 202 is used to store instructions (e.g., for performing aspects of processes described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In other examples, the instructions (e.g., for performing aspects of the processes described below) are stored on a non-transitory computer-readable storage medium (not shown) of the server system 108 or are divided between the non-transitory computer-readable storage medium of memory 202 and the non-transitory computer-readable storage medium of server system 108.


Peripherals interface 218 is used to couple input and output peripherals of the device to CPU 220 and memory 202. The one or more processors 220 run or execute various software programs and/or sets of instructions stored in memory 202 to perform various functions for device 200 and to process data. In some embodiments, peripherals interface 218, CPU 220, and memory controller 222 are implemented on a single chip, such as chip 204. In some other embodiments, they are implemented on separate chips.


RF (radio frequency) circuitry 208 receives and sends RF signals, also called electromagnetic signals. RF circuitry 208 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 208 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 208 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 208 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.


Audio circuitry 210, speaker 211, and microphone 213 provide an audio interface between a user and device 200. Audio circuitry 210 receives audio data from peripherals interface 218, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 211. Speaker 211 converts the electrical signal to human-audible sound waves. Audio circuitry 210 also receives electrical signals converted by microphone 213 from sound waves. Audio circuitry 210 converts the electrical signal to audio data and transmits the audio data to peripherals interface 218 for processing. Audio data are retrieved from and/or transmitted to memory 202 and/or RF circuitry 208 by peripherals interface 218. In some embodiments, audio circuitry 210 also includes a headset jack (e.g., 312, FIG. 3). The headset jack provides an interface between audio circuitry 210 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).


I/O subsystem 206 couples input/output peripherals on device 200, such as touch screen 212 and other input control devices 216, to peripherals interface 218. I/O subsystem 206 optionally includes display controller 256, optical sensor controller 258, intensity sensor controller 259, haptic feedback controller 261, and one or more input controllers 260 for other input or control devices. The one or more input controllers 260 receive/send electrical signals from/to other input control devices 216. The other input control devices 216 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 260 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 308, FIG. 3) optionally include an up/down button for volume control of speaker 211 and/or microphone 213. The one or more buttons optionally include a push button (e.g., 306, FIG. 3).


A quick press of the push button disengages a lock of touch screen 212 or begin a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 306) turns power to device 200 on or off. The user is able to customize a functionality of one or more of the buttons. Touch screen 212 is used to implement virtual or soft buttons and one or more soft keyboards.


Touch-sensitive display 212 provides an input interface and an output interface between the device and a user. Display controller 256 receives and/or sends electrical signals from/to touch screen 212. Touch screen 212 displays visual output to the user. The visual output includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output correspond to user-interface objects.


Touch screen 212 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 212 and display controller 256 (along with any associated modules and/or sets of instructions in memory 202) detect contact (and any movement or breaking of the contact) on touch screen 212 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 212. In an exemplary embodiment, a point of contact between touch screen 212 and the user corresponds to a finger of the user.


Touch screen 212 uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies may be used in other embodiments. Touch screen 212 and display controller 256 detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 212. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, California.


A touch-sensitive display in some embodiments of touch screen 212 is analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 212 displays visual output from device 200, whereas touch-sensitive touchpads do not provide visual output.


A touch-sensitive display in some embodiments of touch screen 212 is as described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.


Touch screen 212 has, for example, a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user makes contact with touch screen 212 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.


In some embodiments, in addition to the touch screen, device 200 includes a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is a touch-sensitive surface that is separate from touch screen 212 or an extension of the touch-sensitive surface formed by the touch screen.


Device 200 also includes power system 262 for powering the various components. Power system 262 includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.


Device 200 also includes one or more optical sensors 264. FIG. 2A shows an optical sensor coupled to optical sensor controller 258 in I/O subsystem 206. Optical sensor 264 includes charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. Optical sensor 264 receives light from the environment, projected through one or more lenses, and converts the light to data representing an image. In conjunction with imaging module 243 (also called a camera module), optical sensor 264 captures still images or video. In some embodiments, an optical sensor is located on the back of device 200, opposite touch screen display 212 on the front of the device so that the touch screen display is used as a viewfinder for still and/or video image acquisition. In some embodiments, an optical sensor is located on the front of the device so that the user's image is obtained for video conferencing while the user views the other video conference participants on the touch screen display. In some embodiments, the position of optical sensor 264 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a single optical sensor 264 is used along with the touch screen display for both video conferencing and still and/or video image acquisition.


Device 200 optionally also includes one or more contact intensity sensors 265. FIG. 2A shows a contact intensity sensor coupled to intensity sensor controller 259 in I/O subsystem 206. Contact intensity sensor 265 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface). Contact intensity sensor 265 receives contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment. In some embodiments, at least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212). In some embodiments, at least one contact intensity sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.


Device 200 also includes one or more proximity sensors 266. FIG. 2A shows proximity sensor 266 coupled to peripherals interface 218. Alternately, proximity sensor 266 is coupled to input controller 260 in I/O subsystem 206. Proximity sensor 266 is performed as described in U.S. patent application Ser. No. 11/241,839, “Proximity Detector In Handheld Device”; Ser. No. 11/240,788, “Proximity Detector In Handheld Device”; Ser. No. 11/620,702, “Using Ambient Light Sensor To Augment Proximity Sensor Output”; Ser. No. 11/586,862, “Automated Response To And Sensing Of User Activity In Portable Devices”; and Ser. No. 11/638,251, “Methods And Systems For Automatic Configuration Of Peripherals,” which are hereby incorporated by reference in their entirety. In some embodiments, the proximity sensor turns off and disables touch screen 212 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call).


Device 200 optionally also includes one or more tactile output generators 267. FIG. 2A shows a tactile output generator coupled to haptic feedback controller 261 in I/O subsystem 206. Tactile output generator 267 optionally includes one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device). Contact intensity sensor 265 receives tactile feedback generation instructions from haptic feedback module 233 and generates tactile outputs on device 200 that are capable of being sensed by a user of device 200. In some embodiments, at least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 200) or laterally (e.g., back and forth in the same plane as a surface of device 200). In some embodiments, at least one tactile output generator sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.


Device 200 also includes one or more accelerometers 268. FIG. 2A shows accelerometer 268 coupled to peripherals interface 218. Alternately, accelerometer 268 is coupled to an input controller 260 in I/O subsystem 206. Accelerometer 268 performs, for example, as described in U.S. Patent Publication No. 20050190059, “Acceleration-based Theft Detection System for Portable Electronic Devices,” and U.S. Patent Publication No. 20060017692, “Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer,” both of which are incorporated by reference herein in their entirety. In some embodiments, information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers. Device 200 optionally includes, in addition to accelerometer(s) 268, a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 200.


In some embodiments, the software components stored in memory 202 include operating system 226, communication module (or set of instructions) 228, contact/motion module (or set of instructions) 230, graphics module (or set of instructions) 232, text input module (or set of instructions) 234, Global Positioning System (GPS) module (or set of instructions) 235, Digital Assistant Client Module 229, and applications (or sets of instructions) 236. Further, memory 202 stores data and models, such as user data and models 231.


Furthermore, in some embodiments, memory 202 (FIG. 2A) or 470 (FIG. 4) stores device/global internal state 257, as shown in FIGS. 2A and 4. Device/global internal state 257 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views or other information occupy various regions of touch screen display 212; sensor state, including information obtained from the device's various sensors and input control devices 216; and location information concerning the device's location and/or attitude.


Operating system 226 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.


Communication module 228 facilitates communication with other devices over one or more external ports 224 and also includes various software components for handling data received by RF circuitry 208 and/or external port 224. External port 224 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.


Contact/motion module 230 optionally detects contact with touch screen 212 (in conjunction with display controller 256) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 230 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 230 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 230 and display controller 256 detect contact on a touchpad.


In some embodiments, contact/motion module 230 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 200). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).


Contact/motion module 230 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.


Graphics module 232 includes various known software components for rendering and displaying graphics on touch screen 212 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.


In some embodiments, graphics module 232 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 232 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 256.


Haptic feedback module 233 includes various software components for generating instructions used by tactile output generator(s) 267 to produce tactile outputs at one or more locations on device 200 in response to user interactions with device 200.


Text input module 234, which is, in some examples, a component of graphics module 232, provides soft keyboards for entering text in various applications (e.g., contacts module 237, email client module 240, IM module 241, browser module 247, and any other application that needs text input).


GPS module 235 determines the location of the device and provides this information for use in various applications (e.g., to telephone module 238 for use in location-based dialing; to camera module 243 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).


Digital assistant client module 229 includes various client-side digital assistant instructions to provide the client-side functionalities of the digital assistant. For example, digital assistant client module 229 is capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., microphone 213, accelerometer(s) 268, touch-sensitive display system 212, optical sensor(s) 264, other input control devices 216, etc.) of portable multifunction device 200. Digital assistant client module 229 is also capable of providing output in audio (e.g., speech output), visual, and/or tactile forms through various output interfaces (e.g., speaker 211, touch-sensitive display system 212, tactile output generator(s) 267, etc.) of portable multifunction device 200. For example, output is provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, digital assistant client module 229 communicates with DA server 106 using RF circuitry 208.


User data and models 231 include various data associated with the user (e.g., user-specific vocabulary data, user preference data, user-specified name pronunciations, data from the user's electronic address book, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the digital assistant. Further, user data and models 231 include various models (e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.) for processing user input and determining user intent.


In some examples, digital assistant client module 229 utilizes the various sensors, subsystems, and peripheral devices of portable multifunction device 200 to gather additional information from the surrounding environment of the portable multifunction device 200 to establish a context associated with a user, the current user interaction, and/or the current user input. In some examples, digital assistant client module 229 provides the contextual information or a subset thereof with the user input to DA server 106 to help infer the user's intent. In some examples, the digital assistant also uses the contextual information to determine how to prepare and deliver outputs to the user. Contextual information is referred to as context data.


In some examples, the contextual information that accompanies the user input includes sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc. In some examples, the contextual information can also include the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc. In some examples, information related to the software state of DA server 106, e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., and of portable multifunction device 200 is provided to DA server 106 as contextual information associated with a user input.


In some examples, the digital assistant client module 229 selectively provides information (e.g., user data 231) stored on the portable multifunction device 200 in response to requests from DA server 106. In some examples, digital assistant client module 229 also elicits additional input from the user via a natural language dialogue or other user interfaces upon request by DA server 106. Digital assistant client module 229 passes the additional input to DA server 106 to help DA server 106 in intent deduction and/or fulfillment of the user's intent expressed in the user request.


A more detailed description of a digital assistant is described below with reference to FIGS. 7A-7C. It should be recognized that digital assistant client module 229 can include any number of the sub-modules of digital assistant module 726 described below.


Applications 236 include the following modules (or sets of instructions), or a subset or superset thereof:

    • Contacts module 237 (sometimes called an address book or contact list);
    • Telephone module 238;
    • Video conference module 239;
    • E-mail client module 240;
    • Instant messaging (IM) module 241;
    • Workout support module 242;
    • Camera module 243 for still and/or video images;
    • Image management module 244;
    • Video player module;
    • Music player module;
    • Browser module 247;
    • Calendar module 248;
    • Widget modules 249, which includes, in some examples, one or more of: weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, dictionary widget 249-5, and other widgets obtained by the user, as well as user-created widgets 249-6;
    • Widget creator module 250 for making user-created widgets 249-6;
    • Search module 251;
    • Video and music player module 252, which merges video player module and music player module;
    • Notes module 253;
    • Map module 254; and/or
    • Online video module 255.


Examples of other applications 236 that are stored in memory 202 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, contacts module 237 are used to manage an address book or contact list (e.g., stored in application internal state 292 of contacts module 237 in memory 202 or memory 470), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone module 238, video conference module 239, e-mail client module 240, or IM module 241; and so forth.


In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, telephone module 238 are used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 237, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication uses any of a plurality of communications standards, protocols, and technologies.


In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, optical sensor 264, optical sensor controller 258, contact/motion module 230, graphics module 232, text input module 234, contacts module 237, and telephone module 238, video conference module 239 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, e-mail client module 240 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 244, e-mail client module 240 makes it very easy to create and send e-mails with still or video images taken with camera module 243.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, the instant messaging module 241 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, map module 254, and music player module, workout support module 242 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.


In conjunction with touch screen 212, display controller 256, optical sensor(s) 264, optical sensor controller 258, contact/motion module 230, graphics module 232, and image management module 244, camera module 243 includes executable instructions to capture still images or video (including a video stream) and store them into memory 202, modify characteristics of a still image or video, or delete a still image or video from memory 202.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and camera module 243, image management module 244 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, browser module 247 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, e-mail client module 240, and browser module 247, calendar module 248 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, widget modules 249 are mini-applications that can be downloaded and used by a user (e.g., weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, and dictionary widget 249-5) or created by the user (e.g., user-created widget 249-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, the widget creator module 250 are used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, search module 251 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 202 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, and browser module 247, video and music player module 252 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 212 or on an external, connected display via external port 224). In some embodiments, device 200 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, notes module 253 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, and browser module 247, map module 254 are used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, text input module 234, e-mail client module 240, and browser module 247, online video module 255 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 224), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 241, rather than e-mail client module 240, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.


Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules can be combined or otherwise rearranged in various embodiments. For example, video player module can be combined with music player module into a single module (e.g., video and music player module 252, FIG. 2A). In some embodiments, memory 202 stores a subset of the modules and data structures identified above. Furthermore, memory 202 stores additional modules and data structures not described above.


In some embodiments, device 200 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 200, the number of physical input control devices (such as push buttons, dials, and the like) on device 200 is reduced.


The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 200 to a main, home, or root menu from any user interface that is displayed on device 200. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.



FIG. 2B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments. In some embodiments, memory 202 (FIG. 2A) or 470 (FIG. 4) includes event sorter 270 (e.g., in operating system 226) and a respective application 236-1 (e.g., any of the aforementioned applications 237-251, 255, 480-490).


Event sorter 270 receives event information and determines the application 236-1 and application view 291 of application 236-1 to which to deliver the event information. Event sorter 270 includes event monitor 271 and event dispatcher module 274. In some embodiments, application 236-1 includes application internal state 292, which indicates the current application view(s) displayed on touch-sensitive display 212 when the application is active or executing. In some embodiments, device/global internal state 257 is used by event sorter 270 to determine which application(s) is (are) currently active, and application internal state 292 is used by event sorter 270 to determine application views 291 to which to deliver event information.


In some embodiments, application internal state 292 includes additional information, such as one or more of: resume information to be used when application 236-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 236-1, a state queue for enabling the user to go back to a prior state or view of application 236-1, and a redo/undo queue of previous actions taken by the user.


Event monitor 271 receives event information from peripherals interface 218. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 212, as part of a multi-touch gesture). Peripherals interface 218 transmits information it receives from I/O subsystem 206 or a sensor, such as proximity sensor 266, accelerometer(s) 268, and/or microphone 213 (through audio circuitry 210). Information that peripherals interface 218 receives from I/O subsystem 206 includes information from touch-sensitive display 212 or a touch-sensitive surface.


In some embodiments, event monitor 271 sends requests to the peripherals interface 218 at predetermined intervals. In response, peripherals interface 218 transmits event information. In other embodiments, peripherals interface 218 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).


In some embodiments, event sorter 270 also includes a hit view determination module 272 and/or an active event recognizer determination module 273.


Hit view determination module 272 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 212 displays more than one view. Views are made up of controls and other elements that a user can see on the display.


Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is called the hit view, and the set of events that are recognized as proper inputs is determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.


Hit view determination module 272 receives information related to sub events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 272 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 272, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.


Active event recognizer determination module 273 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 273 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 273 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.


Event dispatcher module 274 dispatches the event information to an event recognizer (e.g., event recognizer 280). In embodiments including active event recognizer determination module 273, event dispatcher module 274 delivers the event information to an event recognizer determined by active event recognizer determination module 273. In some embodiments, event dispatcher module 274 stores in an event queue the event information, which is retrieved by a respective event receiver 282.


In some embodiments, operating system 226 includes event sorter 270. Alternatively, application 236-1 includes event sorter 270. In yet other embodiments, event sorter 270 is a stand-alone module, or a part of another module stored in memory 202, such as contact/motion module 230.


In some embodiments, application 236-1 includes a plurality of event handlers 290 and one or more application views 291, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 291 of the application 236-1 includes one or more event recognizers 280. Typically, a respective application view 291 includes a plurality of event recognizers 280. In other embodiments, one or more of event recognizers 280 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 236-1 inherits methods and other properties. In some embodiments, a respective event handler 290 includes one or more of: data updater 276, object updater 277, GUI updater 278, and/or event data 279 received from event sorter 270. Event handler 290 utilizes or calls data updater 276, object updater 277, or GUI updater 278 to update the application internal state 292. Alternatively, one or more of the application views 291 include one or more respective event handlers 290. Also, in some embodiments, one or more of data updater 276, object updater 277, and GUI updater 278 are included in a respective application view 291.


A respective event recognizer 280 receives event information (e.g., event data 279) from event sorter 270 and identifies an event from the event information. Event recognizer 280 includes event receiver 282 and event comparator 284. In some embodiments, event recognizer 280 also includes at least a subset of: metadata 283, and event delivery instructions 288 (which include sub-event delivery instructions).


Event receiver 282 receives event information from event sorter 270. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.


Event comparator 284 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 284 includes event definitions 286. Event definitions 286 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (287-1), event 2 (287-2), and others. In some embodiments, sub-events in an event (287) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (287-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (287-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 212, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 290.


In some embodiments, event definition 287 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 284 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 212, when a touch is detected on touch-sensitive display 212, event comparator 284 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 290, the event comparator uses the result of the hit test to determine which event handler 290 should be activated. For example, event comparator 284 selects an event handler associated with the sub-event and the object triggering the hit test.


In some embodiments, the definition for a respective event (287) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.


When a respective event recognizer 280 determines that the series of sub-events do not match any of the events in event definitions 286, the respective event recognizer 280 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.


In some embodiments, a respective event recognizer 280 includes metadata 283 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.


In some embodiments, a respective event recognizer 280 activates event handler 290 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 280 delivers event information associated with the event to event handler 290. Activating an event handler 290 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 280 throws a flag associated with the recognized event, and event handler 290 associated with the flag catches the flag and performs a predefined process.


In some embodiments, event delivery instructions 288 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.


In some embodiments, data updater 276 creates and updates data used in application 236-1. For example, data updater 276 updates the telephone number used in contacts module 237, or stores a video file used in video player module. In some embodiments, object updater 277 creates and updates objects used in application 236-1. For example, object updater 277 creates a new user-interface object or updates the position of a user-interface object. GUI updater 278 updates the GUI. For example, GUI updater 278 prepares display information and sends it to graphics module 232 for display on a touch-sensitive display.


In some embodiments, event handler(s) 290 includes or has access to data updater 276, object updater 277, and GUI updater 278. In some embodiments, data updater 276, object updater 277, and GUI updater 278 are included in a single module of a respective application 236-1 or application view 291. In other embodiments, they are included in two or more software modules.


It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 200 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.



FIG. 3 illustrates a portable multifunction device 200 having a touch screen 212 in accordance with some embodiments. The touch screen optionally displays one or more graphics within user interface (UI) 300. In this embodiment, as well as others described below, a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 302 (not drawn to scale in the figure) or one or more styluses 303 (not drawn to scale in the figure). In some embodiments, selection of one or more graphics occurs when the user breaks contact with the one or more graphics. In some embodiments, the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward and/or downward), and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with device 200. In some implementations or circumstances, inadvertent contact with a graphic does not select the graphic. For example, a swipe gesture that sweeps over an application icon optionally does not select the corresponding application when the gesture corresponding to selection is a tap.


Device 200 also includes one or more physical buttons, such as “home” or menu button 304. As described previously, menu button 304 is used to navigate to any application 236 in a set of applications that is executed on device 200. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 212.


In one embodiment, device 200 includes touch screen 212, menu button 304, push button 306 for powering the device on/off and locking the device, volume adjustment button(s) 308, subscriber identity module (SIM) card slot 310, headset jack 312, and docking/charging external port 224. Push button 306 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 200 also accepts verbal input for activation or deactivation of some functions through microphone 213. Device 200 also, optionally, includes one or more contact intensity sensors 265 for detecting intensity of contacts on touch screen 212 and/or one or more tactile output generators 267 for generating tactile outputs for a user of device 200.



FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments. Device 400 need not be portable. In some embodiments, device 400 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child's learning toy), a gaming system, or a control device (e.g., a home or industrial controller). Device 400 typically includes one or more processing units (CPUs) 410, one or more network or other communications interfaces 460, memory 470, and one or more communication buses 420 for interconnecting these components. Communication buses 420 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Device 400 includes input/output (I/O) interface 430 comprising display 440, which is typically a touch screen display. I/O interface 430 also optionally includes a keyboard and/or mouse (or other pointing device) 450 and touchpad 455, tactile output generator 457 for generating tactile outputs on device 400 (e.g., similar to tactile output generator(s) 267 described above with reference to FIG. 2A), sensors 459 (e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 265 described above with reference to FIG. 2A). Memory 470 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 470 optionally includes one or more storage devices remotely located from CPU(s) 410. In some embodiments, memory 470 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored in memory 202 of portable multifunction device 200 (FIG. 2A), or a subset thereof. Furthermore, memory 470 optionally stores additional programs, modules, and data structures not present in memory 202 of portable multifunction device 200. For example, memory 470 of device 400 optionally stores drawing module 480, presentation module 482, word processing module 484, website creation module 486, disk authoring module 488, and/or spreadsheet module 490, while memory 202 of portable multifunction device 200 (FIG. 2A) optionally does not store these modules.


Each of the above-identified elements in FIG. 4 is, in some examples, stored in one or more of the previously mentioned memory devices. Each of the above-identified modules corresponds to a set of instructions for performing a function described above. The above-identified modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are combined or otherwise rearranged in various embodiments. In some embodiments, memory 470 stores a subset of the modules and data structures identified above. Furthermore, memory 470 stores additional modules and data structures not described above.


Attention is now directed towards embodiments of user interfaces that can be implemented on, for example, portable multifunction device 200.



FIG. 5A illustrates an exemplary user interface for a menu of applications on portable multifunction device 200 in accordance with some embodiments. Similar user interfaces are implemented on device 400. In some embodiments, user interface 500 includes the following elements, or a subset or superset thereof:


Signal strength indicator(s) 502 for wireless communication(s), such as cellular and Wi-Fi signals;

    • Time 504;
    • Bluetooth indicator 505;
    • Battery status indicator 506;
    • Tray 508 with icons for frequently used applications, such as:
      • Icon 516 for telephone module 238, labeled “Phone,” which optionally includes an indicator 514 of the number of missed calls or voicemail messages;
      • Icon 518 for e-mail client module 240, labeled “Mail,” which optionally includes an indicator 510 of the number of unread e-mails;
      • Icon 520 for browser module 247, labeled “Browser;” and
      • Icon 522 for video and music player module 252, also referred to as iPod (trademark of Apple Inc.) module 252, labeled “iPod;” and
    • Icons for other applications, such as:
      • Icon 524 for IM module 241, labeled “Messages;”
      • Icon 526 for calendar module 248, labeled “Calendar;”
      • Icon 528 for image management module 244, labeled “Photos;”
      • Icon 530 for camera module 243, labeled “Camera;”
      • Icon 532 for online video module 255, labeled “Online Video;”
      • Icon 534 for stocks widget 249-2, labeled “Stocks;”
      • Icon 536 for map module 254, labeled “Maps;”
      • Icon 538 for weather widget 249-1, labeled “Weather;”
      • Icon 540 for alarm clock widget 249-4, labeled “Clock;”
      • Icon 542 for workout support module 242, labeled “Workout Support;”
      • Icon 544 for notes module 253, labeled “Notes;” and
      • Icon 546 for a settings application or module, labeled “Settings,” which provides access to settings for device 200 and its various applications 236.


It should be noted that the icon labels illustrated in FIG. 5A are merely exemplary. For example, icon 522 for video and music player module 252 is optionally labeled “Music” or “Music Player.” Other labels are, optionally, used for various application icons. In some embodiments, a label for a respective application icon includes a name of an application corresponding to the respective application icon. In some embodiments, a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon.



FIG. 5B illustrates an exemplary user interface on a device (e.g., device 400, FIG. 4) with a touch-sensitive surface 551 (e.g., a tablet or touchpad 455, FIG. 4) that is separate from the display 550 (e.g., touch screen display 212). Device 400 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 457) for detecting intensity of contacts on touch-sensitive surface 551 and/or one or more tactile output generators 459 for generating tactile outputs for a user of device 400.


Although some of the examples which follow will be given with reference to inputs on touch screen display 212 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in FIG. 5B. In some embodiments, the touch-sensitive surface (e.g., 551 in FIG. 5B) has a primary axis (e.g., 552 in FIG. 5B) that corresponds to a primary axis (e.g., 553 in FIG. 5B) on the display (e.g., 550). In accordance with these embodiments, the device detects contacts (e.g., 560 and 562 in FIG. 5B) with the touch-sensitive surface 551 at locations that correspond to respective locations on the display (e.g., in FIG. 5B, 560 corresponds to 568 and 562 corresponds to 570). In this way, user inputs (e.g., contacts 560 and 562, and movements thereof) detected by the device on the touch-sensitive surface (e.g., 551 in FIG. 5B) are used by the device to manipulate the user interface on the display (e.g., 550 in FIG. 5B) of the multifunction device when the touch-sensitive surface is separate from the display. It should be understood that similar methods are, optionally, used for other user interfaces described herein.


Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.



FIG. 6A illustrates exemplary personal electronic device 600. Device 600 includes body 602. In some embodiments, device 600 includes some or all of the features described with respect to devices 200 and 400 (e.g., FIGS. 2A-4). In some embodiments, device 600 has touch-sensitive display screen 604, hereafter touch screen 604. Alternatively, or in addition to touch screen 604, device 600 has a display and a touch-sensitive surface. As with devices 200 and 400, in some embodiments, touch screen 604 (or the touch-sensitive surface) has one or more intensity sensors for detecting intensity of contacts (e.g., touches) being applied. The one or more intensity sensors of touch screen 604 (or the touch-sensitive surface) provide output data that represents the intensity of touches. The user interface of device 600 responds to touches based on their intensity, meaning that touches of different intensities can invoke different user interface operations on device 600.


Techniques for detecting and processing touch intensity are found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, each of which is hereby incorporated by reference in their entirety.


In some embodiments, device 600 has one or more input mechanisms 606 and 608. Input mechanisms 606 and 608, if included, are physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 600 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 600 to be worn by a user.



FIG. 6B depicts exemplary personal electronic device 600. In some embodiments, device 600 includes some or all of the components described with respect to FIGS. 2A, 2B, and 4. Device 600 has bus 612 that operatively couples I/O section 614 with one or more computer processors 616 and memory 618. I/O section 614 is connected to display 604, which can have touch-sensitive component 622 and, optionally, touch-intensity sensitive component 624. In addition, I/O section 614 is connected with communication unit 630 for receiving application and operating system data, using Wi-Fi, Bluetooth, near field communication (NFC), cellular, and/or other wireless communication techniques. Device 600 includes input mechanisms 606 and/or 608. Input mechanism 606 is a rotatable input device or a depressible and rotatable input device, for example. Input mechanism 608 is a button, in some examples.


Input mechanism 608 is a microphone, in some examples. Personal electronic device 600 includes, for example, various sensors, such as GPS sensor 632, accelerometer 634, directional sensor 640 (e.g., compass), gyroscope 636, motion sensor 638, and/or a combination thereof, all of which are operatively connected to I/O section 614.


Memory 618 of personal electronic device 600 is a non-transitory computer-readable storage medium, for storing computer-executable instructions, which, when executed by one or more computer processors 616, for example, cause the computer processors to perform the techniques and processes described below. The computer-executable instructions, for example, are also stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. Personal electronic device 600 is not limited to the components and configuration of FIG. 6B, but can include other or additional components in multiple configurations.


As used here, the term “affordance” refers to a user-interactive graphical user interface object that is, for example, displayed on the display screen of devices 200, 400, and/or 600 (FIGS. 2A, 4, and 6A-6B). For example, an image (e.g., icon), a button, and text (e.g., hyperlink) each constitutes an affordance.


As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 455 in FIG. 4 or touch-sensitive surface 551 in FIG. 5B) while the cursor is over a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations that include a touch screen display (e.g., touch-sensitive display system 212 in FIG. 2A or touch screen 212 in FIG. 5A) that enables direct interaction with user interface elements on the touch screen display, a detected contact on the touch screen acts as a “focus selector” so that when an input (e.g., a press input by the contact) is detected on the touch screen display at a location of a particular user interface element (e.g., a button, window, slider, or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations, focus is moved from one region of a user interface to another region of the user interface without corresponding movement of a cursor or movement of a contact on a touch screen display (e.g., by using a tab key or arrow keys to move focus from one button to another button); in these implementations, the focus selector moves in accordance with movement of focus between different regions of the user interface. Without regard to the specific form taken by the focus selector, the focus selector is generally the user interface element (or contact on a touch screen display) that is controlled by the user so as to communicate the user's intended interaction with the user interface (e.g., by indicating, to the device, the element of the user interface with which the user is intending to interact). For example, the location of a focus selector (e.g., a cursor, a contact, or a selection box) over a respective button while a press input is detected on the touch-sensitive surface (e.g., a touchpad or touch screen) will indicate that the user is intending to activate the respective button (as opposed to other user interface elements shown on a display of the device).


As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds includes a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.


In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location is based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm is applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.


The intensity of a contact on the touch-sensitive surface is characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.


An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.


In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).


In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).


For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.


3. Digital Assistant System



FIG. 7A illustrates a block diagram of digital assistant system 700 in accordance with various examples. In some examples, digital assistant system 700 is implemented on a standalone computer system. In some examples, digital assistant system 700 is distributed across multiple computers. In some examples, some of the modules and functions of the digital assistant are divided into a server portion and a client portion, where the client portion resides on one or more user devices (e.g., devices 104, 122, 200, 400, or 600) and communicates with the server portion (e.g., server system 108) through one or more networks, e.g., as shown in FIG. 1. In some examples, digital assistant system 700 is an implementation of server system 108 (and/or DA server 106) shown in FIG. 1. It should be noted that digital assistant system 700 is only one example of a digital assistant system, and that digital assistant system 700 can have more or fewer components than shown, can combine two or more components, or can have a different configuration or arrangement of the components. The various components shown in FIG. 7A are implemented in hardware, software instructions for execution by one or more processors, firmware, including one or more signal processing and/or application specific integrated circuits, or a combination thereof.


Digital assistant system 700 includes memory 702, one or more processors 704, input/output (I/O) interface 706, and network communications interface 708. These components can communicate with one another over one or more communication buses or signal lines 710.


In some examples, memory 702 includes a non-transitory computer-readable medium, such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).


In some examples, I/O interface 706 couples input/output devices 716 of digital assistant system 700, such as displays, keyboards, touch screens, and microphones, to user interface module 722. I/O interface 706, in conjunction with user interface module 722, receives user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and processes them accordingly. In some examples, e.g., when the digital assistant is implemented on a standalone user device, digital assistant system 700 includes any of the components and I/O communication interfaces described with respect to devices 200, 400, or 600 in FIGS. 2A, 4, 6A-6B, respectively. In some examples, digital assistant system 700 represents the server portion of a digital assistant implementation, and can interact with the user through a client-side portion residing on a user device (e.g., devices 104, 200, 400, or 600).


In some examples, the network communications interface 708 includes wired communication port(s) 712 and/or wireless transmission and reception circuitry 714. The wired communication port(s) receives and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry 714 receives and sends RF signals and/or optical signals from/to communications networks and other communications devices. The wireless communications use any of a plurality of communications standards, protocols, and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol. Network communications interface 708 enables communication between digital assistant system 700 with networks, such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.


In some examples, memory 702, or the computer-readable storage media of memory 702, stores programs, modules, instructions, and data structures including all or a subset of: operating system 718, communications module 720, user interface module 722, one or more applications 724, and digital assistant module 726. In particular, memory 702, or the computer-readable storage media of memory 702, stores instructions for performing the processes described below. One or more processors 704 execute these programs, modules, and instructions, and reads/writes from/to the data structures.


Operating system 718 (e.g., Darwin, RTXC, LINUX, UNIX, iOS, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.


Communications module 720 facilitates communications between digital assistant system 700 with other devices over network communications interface 708. For example, communications module 720 communicates with RF circuitry 208 of electronic devices such as devices 200, 400, and 600 shown in FIGS. 2A, 4, 6A-6B, respectively. Communications module 720 also includes various components for handling data received by wireless circuitry 714 and/or wired communications port 712.


User interface module 722 receives commands and/or inputs from a user via I/O interface 706 (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone), and generate user interface objects on a display. User interface module 722 also prepares and delivers outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.) to the user via the I/O interface 706 (e.g., through displays, audio channels, speakers, touch-pads, etc.).


Applications 724 include programs and/or modules that are configured to be executed by one or more processors 704. For example, if the digital assistant system is implemented on a standalone user device, applications 724 include user applications, such as games, a calendar application, a navigation application, or an email application. If digital assistant system 700 is implemented on a server, applications 724 include resource management applications, diagnostic applications, or scheduling applications, for example.


Memory 702 also stores digital assistant module 726 (or the server portion of a digital assistant). In some examples, digital assistant module 726 includes the following sub-modules, or a subset or superset thereof: input/output processing module 728, speech-to-text (STT) processing module 730, natural language processing module 732, dialogue flow processing module 734, task flow processing module 736, service processing module 738, and speech synthesis processing module 740. Each of these modules has access to one or more of the following systems or data and models of the digital assistant module 726, or a subset or superset thereof: ontology 760, vocabulary index 744, user data 748, task flow models 754, service models 756, and ASR systems 758.


In some examples, using the processing modules, data, and models implemented in digital assistant module 726, the digital assistant can perform at least some of the following: converting speech input into text; identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user's intent (e.g., by disambiguating words, games, intentions, etc.); determining the task flow for fulfilling the inferred intent; and executing the task flow to fulfill the inferred intent.


In some examples, as shown in FIG. 7B, I/O processing module 728 interacts with the user through I/O devices 716 in FIG. 7A or with a user device (e.g., devices 104, 200, 400, or 600) through network communications interface 708 in FIG. 7A to obtain user input (e.g., a speech input) and to provide responses (e.g., as speech outputs) to the user input. I/O processing module 728 optionally obtains contextual information associated with the user input from the user device, along with or shortly after the receipt of the user input. The contextual information includes user-specific data, vocabulary, and/or preferences relevant to the user input. In some examples, the contextual information also includes software and hardware states of the user device at the time the user request is received, and/or information related to the surrounding environment of the user at the time that the user request was received. In some examples, I/O processing module 728 also sends follow-up questions to, and receive answers from, the user regarding the user request. When a user request is received by I/O processing module 728 and the user request includes speech input, I/O processing module 728 forwards the speech input to STT processing module 730 (or speech recognizer) for speech-to-text conversions.


STT processing module 730 includes one or more ASR systems 758. The one or more ASR systems 758 can process the speech input that is received through I/O processing module 728 to produce a recognition result. Each ASR system 758 includes a front-end speech pre-processor. The front-end speech pre-processor extracts representative features from the speech input. For example, the front-end speech pre-processor performs a Fourier transform on the speech input to extract spectral features that characterize the speech input as a sequence of representative multi-dimensional vectors. Further, each ASR system 758 includes one or more speech recognition models (e.g., acoustic models and/or language models) and implements one or more speech recognition engines. Examples of speech recognition models include Hidden Markov Models, Gaussian-Mixture Models, Deep Neural Network Models, n-gram language models, and other statistical models. Examples of speech recognition engines include the dynamic time warping based engines and weighted finite-state transducers (WFST) based engines. The one or more speech recognition models and the one or more speech recognition engines are used to process the extracted representative features of the front-end speech pre-processor to produce intermediate recognitions results (e.g., phonemes, phonemic strings, and sub-words), and ultimately, text recognition results (e.g., words, word strings, or sequence of tokens). In some examples, the speech input is processed at least partially by a third-party service or on the user's device (e.g., device 104, 200, 400, or 600) to produce the recognition result. Once STT processing module 730 produces recognition results containing a text string (e.g., words, or sequence of words, or sequence of tokens), the recognition result is passed to natural language processing module 732 for intent deduction. In some examples, STT processing module 730 produces multiple candidate text representations of the speech input. Each candidate text representation is a sequence of words or tokens corresponding to the speech input. In some examples, each candidate text representation is associated with a speech recognition confidence score. Based on the speech recognition confidence scores, STT processing module 730 ranks the candidate text representations and provides the n-best (e.g., n highest ranked) candidate text representation(s) to natural language processing module 732 for intent deduction, where n is a predetermined integer greater than zero. For example, in one example, only the highest ranked (n=1) candidate text representation is passed to natural language processing module 732 for intent deduction. In another example, the five highest ranked (n=5) candidate text representations are passed to natural language processing module 732 for intent deduction.


More details on the speech-to-text processing are described in U.S. Utility application Ser. No. 13/236,942 for “Consolidating Speech Recognition Results,” filed on Sep. 20, 2011, the entire disclosure of which is incorporated herein by reference.


In some examples, STT processing module 730 includes and/or accesses a vocabulary of recognizable words via phonetic alphabet conversion module 731. Each vocabulary word is associated with one or more candidate pronunciations of the word represented in a speech recognition phonetic alphabet. In particular, the vocabulary of recognizable words includes a word that is associated with a plurality of candidate pronunciations. For example, the vocabulary includes the word “tomato” that is associated with the candidate pronunciations of custom character and custom characterFurther, vocabulary words are associated with custom candidate pronunciations that are based on previous speech inputs from the user. Such custom candidate pronunciations are stored in STT processing module 730 and are associated with a particular user via the user's profile on the device. In some examples, the candidate pronunciations for words are determined based on the spelling of the word and one or more linguistic and/or phonetic rules. In some examples, the candidate pronunciations are manually generated, e.g., based on known canonical pronunciations.


In some examples, the candidate pronunciations are ranked based on the commonness of the candidate pronunciation. For example, the candidate pronunciation custom character is ranked higher than custom character, because the former is a more commonly used pronunciation (e.g., among all users, for users in a particular geographical region, or for any other appropriate subset of users). In some examples, candidate pronunciations are ranked based on whether the candidate pronunciation is a custom candidate pronunciation associated with the user. For example, custom candidate pronunciations are ranked higher than canonical candidate pronunciations. This can be useful for recognizing proper nouns having a unique pronunciation that deviates from canonical pronunciation. In some examples, candidate pronunciations are associated with one or more speech characteristics, such as geographic origin, nationality, or ethnicity. For example, the candidate pronunciation custom character is associated with the United States, whereas the candidate pronunciation custom character is associated with Great Britain. Further, the rank of the candidate pronunciation is based on one or more characteristics (e.g., geographic origin, nationality, ethnicity, etc.) of the user stored in the user's profile on the device. For example, it can be determined from the user's profile that the user is associated with the United States. Based on the user being associated with the United States, the candidate pronunciation custom character (associated with the United States) is ranked higher than the candidate pronunciation custom character (associated with Great Britain). In some examples, one of the ranked candidate pronunciations is selected as a predicted pronunciation (e.g., the most likely pronunciation).


When a speech input is received, STT processing module 730 is used to determine the phonemes corresponding to the speech input (e.g., using an acoustic model), and then attempt to determine words that match the phonemes (e.g., using a language model). For example, if STT processing module 730 first identifies the sequence of phonemes custom character corresponding to a portion of the speech input, it can then determine, based on vocabulary index 744, that this sequence corresponds to the word “tomato.”


In some examples, STT processing module 730 uses approximate matching techniques to determine words in an utterance. Thus, for example, the STT processing module 730 determines that the sequence of phonemes custom character corresponds to the word “tomato,” even if that particular sequence of phonemes is not one of the candidate sequence of phonemes for that word.


Natural language processing module 732 (“natural language processor”) of the digital assistant takes the n-best candidate text representation(s) (“word sequence(s)” or “token sequence(s)”) generated by STT processing module 730, and attempts to associate each of the candidate text representations with one or more “actionable intents” recognized by the digital assistant. An “actionable intent” (or “user intent”) represents a task that can be performed by the digital assistant, and can have an associated task flow implemented in task flow models 754. The associated task flow is a series of programmed actions and steps that the digital assistant takes in order to perform the task. The scope of a digital assistant's capabilities is dependent on the number and variety of task flows that have been implemented and stored in task flow models 754, or in other words, on the number and variety of “actionable intents” that the digital assistant recognizes. The effectiveness of the digital assistant, however, also dependents on the assistant's ability to infer the correct “actionable intent(s)” from the user request expressed in natural language.


In some examples, in addition to the sequence of words or tokens obtained from STT processing module 730, natural language processing module 732 also receives contextual information associated with the user request, e.g., from I/O processing module 728. The natural language processing module 732 optionally uses the contextual information to clarify, supplement, and/or further define the information contained in the candidate text representations received from STT processing module 730. The contextual information includes, for example, user preferences, hardware, and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like. As described herein, contextual information is, in some examples, dynamic, and changes with time, location, content of the dialogue, and other factors.


In some examples, the natural language processing is based on, e.g., ontology 760. Ontology 760 is a hierarchical structure containing many nodes, each node representing either an “actionable intent” or a “property” relevant to one or more of the “actionable intents” or other “properties.” As noted above, an “actionable intent” represents a task that the digital assistant is capable of performing, i.e., it is “actionable” or can be acted on. A “property” represents a parameter associated with an actionable intent or a sub-aspect of another property. A linkage between an actionable intent node and a property node in ontology 760 defines how a parameter represented by the property node pertains to the task represented by the actionable intent node.


In some examples, ontology 760 is made up of actionable intent nodes and property nodes. Within ontology 760, each actionable intent node is linked to one or more property nodes either directly or through one or more intermediate property nodes. Similarly, each property node is linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes. For example, as shown in FIG. 7C, ontology 760 includes a “restaurant reservation” node (i.e., an actionable intent node). Property nodes “restaurant,” “date/time” (for the reservation), and “party size” are each directly linked to the actionable intent node (i.e., the “restaurant reservation” node).


In addition, property nodes “cuisine,” “price range,” “phone number,” and “location” are sub-nodes of the property node “restaurant,” and are each linked to the “restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.” For another example, as shown in FIG. 7C, ontology 760 also includes a “set reminder” node (i.e., another actionable intent node). Property nodes “date/time” (for setting the reminder) and “subject” (for the reminder) are each linked to the “set reminder” node. Since the property “date/time” is relevant to both the task of making a restaurant reservation and the task of setting a reminder, the property node “date/time” is linked to both the “restaurant reservation” node and the “set reminder” node in ontology 760.


An actionable intent node, along with its linked property nodes, is described as a “domain.” In the present discussion, each domain is associated with a respective actionable intent, and refers to the group of nodes (and the relationships there between) associated with the particular actionable intent. For example, ontology 760 shown in FIG. 7C includes an example of restaurant reservation domain 762 and an example of reminder domain 764 within ontology 760. The restaurant reservation domain includes the actionable intent node “restaurant reservation,” property nodes “restaurant,” “date/time,” and “party size,” and sub-property nodes “cuisine,” “price range,” “phone number,” and “location.” Reminder domain 764 includes the actionable intent node “set reminder,” and property nodes “subject” and “date/time.” In some examples, ontology 760 is made up of many domains. Each domain shares one or more property nodes with one or more other domains. For example, the “date/time” property node is associated with many different domains (e.g., a scheduling domain, a travel reservation domain, a movie ticket domain, etc.), in addition to restaurant reservation domain 762 and reminder domain 764.


While FIG. 7C illustrates two example domains within ontology 760, other domains include, for example, “find a movie,” “initiate a phone call,” “find directions,” “schedule a meeting,” “send a message,” and “provide an answer to a question,” “read a list,” “providing navigation instructions,” “provide instructions for a task” and so on. A “send a message” domain is associated with a “send a message” actionable intent node, and further includes property nodes such as “recipient(s),” “message type,” and “message body.” The property node “recipient” is further defined, for example, by the sub-property nodes such as “recipient name” and “message address.”


In some examples, ontology 760 includes all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some examples, ontology 760 is modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within the ontology 760.


In some examples, nodes associated with multiple related actionable intents are clustered under a “super domain” in ontology 760. For example, a “travel” super-domain includes a cluster of property nodes and actionable intent nodes related to travel. The actionable intent nodes related to travel includes “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest,” and so on. The actionable intent nodes under the same super domain (e.g., the “travel” super domain) have many property nodes in common. For example, the actionable intent nodes for “airline reservation,” “hotel reservation,” “car rental,” “get directions,” and “find points of interest” share one or more of the property nodes “start location,” “destination,” “departure date/time,” “arrival date/time,” and “party size.”


In some examples, each node in ontology 760 is associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node. The respective set of words and/or phrases associated with each node are the so-called “vocabulary” associated with the node. The respective set of words and/or phrases associated with each node are stored in vocabulary index 744 in association with the property or actionable intent represented by the node. For example, returning to FIG. 7B, the vocabulary associated with the node for the property of “restaurant” includes words such as “food,” “drinks,” “cuisine,” “hungry,” “eat,” “pizza,” “fast food,” “meal,” and so on. For another example, the vocabulary associated with the node for the actionable intent of “initiate a phone call” includes words and phrases such as “call,” “phone,” “dial,” “ring,” “call this number,” “make a call to,” and so on. The vocabulary index 744 optionally includes words and phrases in different languages.


Natural language processing module 732 receives the candidate text representations (e.g., text string(s) or token sequence(s)) from STT processing module 730, and for each candidate representation, determines what nodes are implicated by the words in the candidate text representation. In some examples, if a word or phrase in the candidate text representation is found to be associated with one or more nodes in ontology 760 (via vocabulary index 744), the word or phrase “triggers” or “activates” those nodes. Based on the quantity and/or relative importance of the activated nodes, natural language processing module 732 selects one of the actionable intents as the task that the user intended the digital assistant to perform. In some examples, the domain that has the most “triggered” nodes is selected. In some examples, the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) is selected. In some examples, the domain is selected based on a combination of the number and the importance of the triggered nodes. In some examples, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user.


User data 748 includes user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user. In some examples, natural language processing module 732 uses the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” natural language processing module 732 is able to access user data 748 to determine who the “friends” are and when and where the “birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request.


It should be recognized that in some examples, natural language processing module 732 is implemented using one or more machine learning mechanisms (e.g., neural networks). In particular, the one or more machine learning mechanisms are configured to receive a candidate text representation and contextual information associated with the candidate text representation. Based on the candidate text representation and the associated contextual information, the one or more machine learning mechanisms are configured to determine intent confidence scores over a set of candidate actionable intents. Natural language processing module 732 can select one or more candidate actionable intents from the set of candidate actionable intents based on the determined intent confidence scores. In some examples, an ontology (e.g., ontology 760) is also used to select the one or more candidate actionable intents from the set of candidate actionable intents.


Other details of searching an ontology based on a token string are described in U.S. Utility application Ser. No. 12/341,743 for “Method and Apparatus for Searching Using An Active Ontology,” filed Dec. 22, 2008, the entire disclosure of which is incorporated herein by reference.


In some examples, once natural language processing module 732 identifies an actionable intent (or domain) based on the user request, natural language processing module 732 generates a structured query to represent the identified actionable intent. In some examples, the structured query includes parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user says “Make me a dinner reservation at a sushi place at 7.” In this case, natural language processing module 732 is able to correctly identify the actionable intent to be “restaurant reservation” based on the user input. According to the ontology, a structured query for a “restaurant reservation” domain includes parameters such as {Cuisine}, {Time}, {Date}, {Party Size}, and the like. In some examples, based on the speech input and the text derived from the speech input using STT processing module 730, natural language processing module 732 generates a partial structured query for the restaurant reservation domain, where the partial structured query includes the parameters {Cuisine=“Sushi” } and {Time=“7 pm” }. However, in this example, the user's utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as {Party Size} and {Date} are not specified in the structured query based on the information currently available. In some examples, natural language processing module 732 populates some parameters of the structured query with received contextual information. For example, in some examples, if the user requested a sushi restaurant “near me,” natural language processing module 732 populates a {location} parameter in the structured query with GPS coordinates from the user device.


In some examples, natural language processing module 732 identifies multiple candidate actionable intents for each candidate text representation received from STT processing module 730. Further, in some examples, a respective structured query (partial or complete) is generated for each identified candidate actionable intent. Natural language processing module 732 determines an intent confidence score for each candidate actionable intent and ranks the candidate actionable intents based on the intent confidence scores. In some examples, natural language processing module 732 passes the generated structured query (or queries), including any completed parameters, to task flow processing module 736 (“task flow processor”). In some examples, the structured query (or queries) for the m-best (e.g., m highest ranked) candidate actionable intents are provided to task flow processing module 736, where m is a predetermined integer greater than zero. In some examples, the structured query (or queries) for the m-best candidate actionable intents are provided to task flow processing module 736 with the corresponding candidate text representation(s).


Other details of inferring a user intent based on multiple candidate actionable intents determined from multiple candidate text representations of a speech input are described in U.S. Utility application Ser. No. 14/298,725 for “System and Method for Inferring User Intent From Speech Inputs,” filed Jun. 6, 2014, the entire disclosure of which is incorporated herein by reference.


Task flow processing module 736 is configured to receive the structured query (or queries) from natural language processing module 732, complete the structured query, if necessary, and perform the actions required to “complete” the user's ultimate request. In some examples, the various procedures necessary to complete these tasks are provided in task flow models 754. In some examples, task flow models 754 include procedures for obtaining additional information from the user and task flows for performing actions associated with the actionable intent.


As described above, in order to complete a structured query, task flow processing module 736 needs to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances. When such interactions are necessary, task flow processing module 736 invokes dialogue flow processing module 734 to engage in a dialogue with the user. In some examples, dialogue flow processing module 734 determines how (and/or when) to ask the user for the additional information and receives and processes the user responses. The questions are provided to and answers are received from the users through I/O processing module 728. In some examples, dialogue flow processing module 734 presents dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., clicking) responses. Continuing with the example above, when task flow processing module 736 invokes dialogue flow processing module 734 to determine the “party size” and “date” information for the structured query associated with the domain “restaurant reservation,” dialogue flow processing module 734 generates questions such as “For how many people?” and “On which day?” to pass to the user. Once answers are received from the user, dialogue flow processing module 734 then populates the structured query with the missing information, or pass the information to task flow processing module 736 to complete the missing information from the structured query.


Once task flow processing module 736 has completed the structured query for an actionable intent, task flow processing module 736 proceeds to perform the ultimate task associated with the actionable intent. Accordingly, task flow processing module 736 executes the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, the task flow model for the actionable intent of “restaurant reservation” includes steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time. For example, using a structured query such as: {restaurant reservation, restaurant=ABC Café, date=Mar. 12, 2012, time=7 pm, party size=5}, task flow processing module 736 performs the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar.


In some examples, task flow processing module 736 employs the assistance of service processing module 738 (“service processing module”) to complete a task requested in the user input or to provide an informational answer requested in the user input. For example, service processing module 738 acts on behalf of task flow processing module 736 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third-party services (e.g., a restaurant reservation portal, a social networking website, a banking portal, etc.). In some examples, the protocols and application programming interfaces (API) required by each service are specified by a respective service model among service models 756. Service processing module 738 accesses the appropriate service model for a service and generates requests for the service in accordance with the protocols and APIs required by the service according to the service model.


For example, if a restaurant has enabled an online reservation service, the restaurant submits a service model specifying the necessary parameters for making a reservation and the APIs for communicating the values of the necessary parameter to the online reservation service. When requested by task flow processing module 736, service processing module 738 establishes a network connection with the online reservation service using the web address stored in the service model, and sends the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.


In some examples, natural language processing module 732, dialogue flow processing module 734, and task flow processing module 736 are used collectively and iteratively to infer and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user's intent. The generated response is a dialogue response to the speech input that at least partially fulfills the user's intent. Further, in some examples, the generated response is output as a speech output. In these examples, the generated response is sent to speech synthesis processing module 740 (e.g., speech synthesizer) where it can be processed to synthesize the dialogue response in speech form. In yet other examples, the generated response is data content relevant to satisfying a user request in the speech input.


In examples where task flow processing module 736 receives multiple structured queries from natural language processing module 732, task flow processing module 736 initially processes the first structured query of the received structured queries to attempt to complete the first structured query and/or execute one or more tasks or actions represented by the first structured query. In some examples, the first structured query corresponds to the highest ranked actionable intent. In other examples, the first structured query is selected from the received structured queries based on a combination of the corresponding speech recognition confidence scores and the corresponding intent confidence scores. In some examples, if task flow processing module 736 encounters an error during processing of the first structured query (e.g., due to an inability to determine a necessary parameter), the task flow processing module 736 can proceed to select and process a second structured query of the received structured queries that corresponds to a lower ranked actionable intent. The second structured query is selected, for example, based on the speech recognition confidence score of the corresponding candidate text representation, the intent confidence score of the corresponding candidate actionable intent, a missing necessary parameter in the first structured query, or any combination thereof.


Speech synthesis processing module 740 is configured to synthesize speech outputs for presentation to the user. Speech synthesis processing module 740 synthesizes speech outputs based on text provided by the digital assistant. For example, the generated dialogue response is in the form of a text string. Speech synthesis processing module 740 converts the text string to an audible speech output. Speech synthesis processing module 740 uses any appropriate speech synthesis technique in order to generate speech outputs from text, including, but not limited, to concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis. In some examples, speech synthesis processing module 740 is configured to synthesize individual words based on phonemic strings corresponding to the words. For example, a phonemic string is associated with a word in the generated dialogue response. The phonemic string is stored in metadata associated with the word. Speech synthesis processing module 740 is configured to directly process the phonemic string in the metadata to synthesize the word in speech form.


In some examples, instead of (or in addition to) using speech synthesis processing module 740, speech synthesis is performed on a remote device (e.g., the server system 108), and the synthesized speech is sent to the user device for output to the user. For example, this can occur in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it is possible to obtain higher quality speech outputs than would be practical with client-side synthesis.


Additional details on digital assistants can be found in the U.S. Utility application Ser. No. 12/987,982, entitled “Intelligent Automated Assistant,” filed Jan. 10, 2011, and U.S. Utility application Ser. No. 13/251,088, entitled “Generating and Processing Task Items That Represent Tasks to Perform,” filed Sep. 30, 2011, the entire disclosures of which are incorporated herein by reference.


4. System and Technique for Electing a Context Collector of a Context-Sharing Group



FIG. 8 illustrates a system and technique for electing a context collector of a device circle, according to various examples. System 800 includes user device 802, communal device 804, user device 806, and user device 808. User device 802, user device 806, and user device 808 are all client devices (e.g., user devices 104, 122, 200, 400, or 600). For example, user device 802 is an iPhone®, user device 806 is an Apple Watch®, and user device 808 is an iPad®. A client device is registered to a single user. For example, user device 802 may be registered to a first user and user device 806 and user device 808 may be registered to a second user. Communal device 804 is a smart speaker that has the same or similar digital assistant capabilities as the various user devices. A communal device is an electronic device that is not registered to a single user or that is registered to multiple users (e.g., such that the communal device may be used by multiple users without additional user registration and/or user authentication requirements). For example, communal device 804 is a HomePod®. Another example of a communal device is a smart TV (e.g., Apple TV®).


System 800 further includes network 810. Network 810 is a wireless communications network (e.g., network(s) 110). In some examples, system 800 includes one or more remote devices (e.g., one or more remote servers (e.g., DA server 106), a local server, a cloud-computing system, or the like). It should be recognized that, in these examples, any of the operations performed by user device 802, communal device 804, user device 806, and/or user device 808 can instead be performed by the one or more remote devices. For example, the one or more servers can perform the operations of the respective DA client modules (e.g., DA client module 229) of user device 802, communal device 804, user device 806, and/or user device 808.


As represented by arrow 812, user device 802 connects to network 810. At this point in the process, communal device 804, user device 806, and user device 808 are also connected to network 810. After user device 802 connects to network 810, user 802 joins context-sharing group 814, which also includes communal device 804, user device 806, and user device 808. A “context-sharing group” (also referred to as a “device circle”) is a collection of two or more electronic devices (e.g., within a specific location) that share context information with at least one electronic device participating in the context-sharing group (e.g., with a “context collector” of the context-sharing group). Context-sharing group 814 is associated with a specific location (e.g., a home, an office, or the like). As such, the electronic devices participating in context-sharing group 814 are each located in an area (e.g., a room, a floor, or the like) of the specific location. In some examples, context-sharing group 814 is not associated with a specific location and thus the electronic devices participating in context-sharing group 814 do not need to be located in a single location (e.g., the electronic devices may be located in two separate homes).


In some examples, electronic devices participating in a context-sharing group automatically share context information with a “context collector” of the context-sharing group in response to undergoing a “device state change” (device state changes are described in greater detail below). A context collector is an electronic device that receives, aggregates, and stores context information from electronic devices participating in the context-sharing group. Further, a context collector provides the “aggregate context” of the context-sharing group (which includes context information received from one or more electronic devices participating in the context-sharing group) to one or more electronic devices participating in the context-sharing group (e.g., in response to, for example, requests for the aggregated context information received from the one or more electronic devices). In some examples, the context collector of a context-sharing group is an electronic device (e.g., a user device or a communal device) that is participating in the context-sharing group. In other examples, the context collector is a remote device that is not participating in the context-sharing group and thus does not share its own context information with the electronic devices participating in the context-sharing group. Examples of remote devices that can serve as a context collector include one or more servers (e.g., DA server 106), one or more cloud-computing systems, one or more local servers, or the like.


As will be described below with reference to FIG. 8, an electronic device participating in the context-sharing group is first “elected” (i.e., selected) to be the context collector before it begins receiving and aggregating context information from the other electronic devices participating in the context-sharing group. Note, while FIG. 8 and the corresponding description below discuss the election of a single context collector for context-sharing group 814, in some examples, context-sharing group 814 includes more than one context collector (e.g., two or three context collectors).


In some examples, user device 802 automatically joins context-sharing group 814 in response to connecting to network 810. In some examples, user device 802 must connect to network 810 in order to join context-sharing group 814. In these examples, each of the electronic devices participating in context-sharing group 814 are also connected to network 810. In other words, in these examples, each electronic device participating in context-sharing group 814 must be connected to network 810. In some examples, user device 802 joins context-sharing group 814 without having to connect to network 810. In some of these examples, user device 802 joins context-sharing group 814 upon establishing a communications connection (e.g., a short distance communications connection (e.g., a Bluetooth connection, a Bluetooth Low Energy (BTLE) connection, or the like)) with at least one electronic device that is already participating in the context-sharing group (e.g., with communal device 804).


In some examples, user device 802 must be enrolled in context-sharing group 814 in order to join context-sharing group 814. For example, enrolling user device 802 in context-sharing group 814 may include a user of user device 802 registering user device 802 with context-sharing group 814 via a software application stored on user device 802 that has context-sharing group functionality (e.g., via the HomeKit® application) and/or via a website that has context-sharing group functionality. This may include user device 802 registering with an already-existing context-sharing group 814 (e.g., created by another electronic device participating in context-sharing group 814) or creating context-sharing group 814 and subsequently registering with context-sharing group 814 after it has been created. In some examples, enrolling in context-sharing group 814 includes user device 802 granting access to/allowing other electronic devices enrolled in context-sharing group 814 to receive, share, store, and/or utilize context information, personal information (e.g., email addresses, home addresses, payment information, or the like), and/or user data (e.g., a user's media, contacts, speech profiles, preferences, or the like) associated with user device 802 (which includes context information, user data, and/or personal information locally stored on user device 802 and/or remotely stored on one or more remote devices (e.g., synced from user device 802 onto one or more servers)).


In the above examples, prior to user device 802 joining context-sharing group 814, user device 802 determines whether or not it is enrolled in context-sharing group 814. Then, user device 802 joins context-sharing group 813 only if it determines that it is enrolled in context-sharing group 814. If user device 802 determines that is it not enrolled in context-sharing group 814, user device 802 forgoes joining context-sharing group 814.


After user device 802 joins context-sharing group 814 (e.g., immediately after or soon after (e.g., several minutes after)), the electronic devices participating in context-sharing group 814 perform a context collector “election,” which is a process via which one electronic device of the electronic devices participating in context-sharing group 814 is elected (i.e., selected) as a context collector of the context-sharing group. As mentioned above, in some examples, more than one electronic device participating in context-sharing group 814 is elected as context collector. In some examples, user device 802 (and the other electronic devices participating in context-sharing group 814) performs the context collector election in response to joining context-sharing group 814 (e.g., immediately after joining). In some examples, user device 802 (and the other electronic devices participating in context-sharing group 814) performs the context collector election in response to an electronic device participating in context-sharing group 814 (e.g., a current context collector) leaving the context-sharing group (e.g., disconnecting from network 810, disconnecting from a communications connection with another electronic device participating in context-sharing group 814, and/or leaving the specific location associated with context-sharing group 814). Note, as will be discussed below, the electronic devices participating in context-sharing group 814 may perform a context collector election even if context-sharing group 814 already includes a context collector and even if context-sharing group 814 only allows for a single context collector.


The context collector election begins with user device 802 (and each of the other electronic devices participating in context-sharing group 814) determining a collector score based on a strength of connectivity between user device 802 and network 810 and/or based on a power source status of user device 802 (e.g., wired power connection versus battery power and/or amount of battery power remaining). For example, a stronger connection between user device 802 and network 810 will result in a higher context collector score. Similarly, the more stable the power source of user device 802 is, the higher the context collector score for user device 802 will be (e.g., with a wired power connection being more stable than battery power, and with a full battery being more stable than a low battery). In some examples, the collector score is further based on a frequency of movement of user device 802 in and out of context-sharing group 814 (e.g., a frequency of user device 802 connecting to/disconnecting from network 810 and/or a frequency of user device 802 entering and/or leaving the specific location associated with context-sharing group 814). In some examples, the context collector score is further based on a stability with which user device 802 holds context information in its memory. In some examples, the context collector score is further based on a stability of communication connections between user device 802 and the other electronic devices participating in context-sharing group 814. In some examples, the context collector score is further based on a reachability of user device 802 to other electronic devices participating in context-sharing group 814 (e.g., the more devices user device 802 can reach through various network/other communication protocols, the higher the context collector score). The above factors that are considered when determining a context collector score emphasize the stability of an electronic device's participation in a context-sharing group, ability to communicate with other electronic devices, and/or ability to store context information, as it is desirable for context-sharing group 814 to have a context collector that is available as often as possible to receive, aggregate, store, and/or transmit context information.


As represented by arrows 816, after user device 802 determines a context collector score, user device 802 transmits the context collector score (e.g., data corresponding to the context collector score) to each of the other electronic devices participating in context-sharing group 814 (i.e., communal device 804, user device 806, and user device 808) via network 810. In some examples, user device 802 further transmits a context collector indication (also referred to as a context collector “flag”) that indicates whether or not user device 802 is currently a context collector. For example, user device 802 transmits the context collector indication at the same time as, or soon after, transmitting its context collector score. The context collector indication of user device 802 will indicate that user device 802 is a context collector if (1) user device 802 was previously elected as context collector after joining context-sharing group 814 (i.e., after connecting to network 810 as represented by arrow 812) and/or if (2) user device 802 was elected as context collector the last time user device 802 participated in context-sharing group 814 (i.e., prior to leaving context-sharing group 814 and once again joining context-sharing 814 after connecting to network 810 as represented by arrow 812). Otherwise, the context collector indication will indicate that user device 802 is not a context collector.


As represented by arrows 818, communal device 804, user device 806, and user device 808 each transmit their respective context collector scores (and, in some examples, their respective context collector indications) to user device 802 before, at the same time, or soon after user device 802 transmits is context collector score (and, in some examples, its context collector indication as represented by arrow 816). Although not shown in FIG. 8, communal device 804, user device 806, and user device 808 also transmit their respective context collector scores (and, in some examples, their respective context collector indications) to one another. In this manner, after arrows 816 and arrows 818, each electronic device that is participating in context-sharing group 814 will possess a context collector score (and, in some examples, a context collector indication) corresponding to each of the other electronic devices participating in context-sharing group 814.


After receiving the context collector scores, user device 802 (and the other electronic devices participating in context-sharing group 814) determines which electronic device of the electronic devices participating in context-sharing group 814 to elect as the context collector based on the context collector scores. The other electronic devices also make this determination based on the context collectors scores that have been provided. Determining which electronic device of the electronic devices included in context-sharing group 814 to elect as the context collector includes user device 802 comparing its own context collector score to the context collector scores received from communal device 804, user device 806, and user device 808. The other electronic devices also compare their own context collector score to the scores they have received. Then, based on the comparison, user device 802 (and the other electronic devices participating in context-sharing group 814) identifies the highest context collector score and elects the electronic device with the highest context collector score as context collector.


Since communal device 804, user device 806, and user device 808 make the above determination based on the same data and information as user device 802, they each also elect the same electronic device to be context collector as user device 802. Thus, an electronic device participating in context-sharing group 814 will be aware of whether or not it is elected as context collector based on its own context collector score comparison. However, in some examples, each electronic device participating in context-sharing group 814 transmits an election indication to the other electronic devices that indicates the context collector that each electronic device elected.


In the examples described above where user device 802, communal device 804, user device 806, and user device 808 each transmit a context collection indication, determining which electronic device of the electronic devices participating in context-sharing group 814 to elect as the context collect further includes user device 802 (and the other electronic devices participating in context-sharing group 814) determining whether or not context-sharing group 814 currently includes a context collector based on the received context collector indications. In these examples, if user device 802 determines that context-sharing group 814 already includes a context collector, then user device 802 elects the existing context collector as context collector of context-sharing group 814 regardless of the context collector score comparison outcome. If user device 802 determines that context-sharing group 814 already includes two or more context collectors, then user device 802 elects a context collector based on the determined context collector scores (as described above). This in turn improves the stability of the context collector, as it ensures that the context collector of context-sharing group 814 will not change unless the existing context collector leaves context-sharing group 814.


Note, in the examples mentioned above in which context-sharing group 814 includes more than one (e.g., two) context collectors, user device 802 (and the other electronic devices participating in context-sharing group 814) will elect a context collector based on a comparison of the determined context collector scores if the received context collector indications indicate that context-sharing group 814 includes more than the allowable number of context collectors. For example, if context-sharing group can include two context collectors and the received context collector indications indicate that there are currently two context collectors participating in context-sharing group 814, then user device 802 will elect the two existing context collectors regardless of the context collector score comparison outcome. However, if the received context collector indications indicate that there are currently three or more context collectors participating in context-sharing group 814, then user device 802 will elect a context collector based on a comparison of the determined context collector scores.


If, for example, user device 802 (and the other electronic devices participating in context-sharing group 814) elect user device 802 as context collector of context-sharing group 814, user device 802 will establish a communications connection with communal device 804, user device 806, and user device 808 (via network 810) so that user device 802 may receive context information from one or more of those electronic devices and transmit an aggregate context of context-sharing group (e.g., a stored collection of context information received from one or more (e.g., each) electronic devices participating in context-sharing group 814) to one or more of those electronic devices (e.g., in response to a received request for the aggregate context). Communal device 804, user device 806, and user device 808 will similarly establish communications connections with the other electronic device participating in context-sharing group 814 if one of those electronic devices is elected as context collector.


As mentioned above, in some examples, electronic devices participating in a context-sharing group automatically share context information with a context collector of a context-sharing group in response to undergoing a “device state change.” Examples of a device state change include media playback, activation (e.g., opening) of a stored software application, a timer event (e.g., a timer of an electronic device going off), an alarm event (e.g., an alarm of an electronic device going off), a change in power state (e.g., an electronic device is turned on or off), a change in display visibility (e.g., a display of an electronic device is repositioned from a display down position to a display up position (such that the display is visible to a user of the electronic device in the display up position)), detection of a digital assistant trigger word or phrase (e.g., “Hey Siri,” “Siri,” or the like), initiation of a digital assistant dialog session via the pressing or holding of a physical button on a device, and an end of a digital assistant dialog session (e.g., after a digital assistant of an electronic device provides/outputs a digital assistant response to a user request).


For example, as shown in FIG. 8, user device 808 undergoes a device state change once alarm event 820 begins. Thus, user device 808 transmits context information associated with user device 808 to the elected context collector of context-sharing group 814 soon after (e.g., immediately after or several seconds after (e.g., 0.5 seconds after, 1 second after, or the like)) alarm event 820 begins. As represented by arrows 822a, if user device 802 is elected as context collector, user device 808 transmits context information to user device 802. Alternatively, as represented by arrows 822b, if communal device 804 is elected as context collector, user device 808 transmits context information to communal device 804. In addition to transmitting the context information to the context collector (e.g., user device 802 or communal device 804), user device 808 transmits a device identification (also referred to as a device identifier) to the context collector (e.g., with the context information). In some examples, the device identifier is predetermined (e.g., a predetermined serial number or the like). In some examples, the device identifier is randomly generated by user device 808 (e.g., a randomly generated number). In some examples, user device 808 is assigned a device identifier by the context collector of context-sharing group 814 upon joining context-sharing group 814.


In response to receiving the device identifier, the context collector stores an association between user device 808 and the device identifier. As will be described in greater detail below with reference to FIG. 9, the stored associations between electronic devices and their device identifiers are used to transmit commands to specific electronic devices. Specifically, in some examples, the context collector informs the electronics devices participating in a context-sharing group of the stored associations so that each of the electronic devices is capable of relaying/transmitting commands (e.g., that are received from a remote device) to one or more other electronic devices based on the device identifiers corresponding to the one or more other electronic devices. The context collector also associates the device identifier corresponding to user device 808 with the context information received from user device 808 when adding the context information to the stored aggregate context of context-sharing group 814. In this manner, the context information included in the aggregate context may be organized based on its associated device identifier. As will be described in greater detail below with reference to FIG. 9, one or more remote devices (e.g., one or more servers) use the device identifiers included in the aggregate context when selecting one or more electronic devices to perform one or more tasks in response to a user request.


The context information transmitted by an electronic device (e.g., user device 808) in response to undergoing a device state change includes various types of context information associated with the electronic device. Examples of context information that an electronic device transmits in response to undergoing a device state change include device state change information (e.g., a state change type (e.g., timer event, alarm event, end of digital assistant dialog session, etc.), a state change time, or the like), device capability information (e.g., type of device, processing power, memory availability, display information (e.g., whether a device has a display and/or a size of the display), speaker information (e.g., whether a device has a speaker and/or a loudness of the speaker), and/or the like), and contextual state information (e.g., device location (e.g., based on GPS data from GPS module 235 and/or information from a software application that has context-sharing group functionality (e.g., HomeKit®)), display visibility (e.g., display up or down), user attention information (e.g., whether a user is currently looking at the device display (e.g., based on information from an optical sensor 264 on the front and/or back of a device)), strength of network connection (e.g., to network 810), amount of battery power, type of power source (e.g., battery vs wired power source), and/or the like).


As discussed above, the elected context collector of context-sharing group 814 receives the above context information from one or more electronic device participating in context-sharing group 814 and subsequently aggregates and stores that context information in an aggregate context. Further, the context collector updates the aggregate context as it receives additional context information from the one or more electronic devices. For example, if user device 808 were to undergo another device state change after alarm event 820, user device 808 would send its most up-to-date/recent context information to the context collector of context-sharing group 814 so that the context collector may incorporate new context information associated with user device 808 into the aggregate context and/or remove outdated/previous context information associated with user device 808 from the aggregate context (e.g., remove previous context information that is different from/conflicts with newly-received context information).


In some examples, the context collector only stores the most recent context information received from each electronic device participating in context-sharing group 814 (because the context collector removes/deletes previously-received context information associated with a device after receiving new context information associated with the same device). In some examples, the context collector stores context information associated with an electronic device for a predetermined period of time (e.g., 1 hour, 1 day, 1 week, or the like) before removing/deleting the context information. In some examples, the context collector stores context information associated with an electronic device from a predetermined number (e.g., 3, 5, 10, or the like) of previous context information transmissions. For example, the context collector may store context information from each electronic device's last five context information transmissions. In some examples, the context collector stores a short history of events for each electronic device. In some examples, this short history is based on a type of event. For example, the context collector may store data corresponding to each electronic device's last three alarm events. In some examples, the context collector removes/deletes an electronic device's context information when the electronic device leaves context-sharing group 814.


Then, as will be described in greater detail below with reference to FIGS. 9, 10, and 12A-13, the context collector transmits the aggregate context (or, at least a portion of the aggregate context) to one or more electronic devices participating in context-sharing group 814 in response to receiving a request for the aggregate context from the one or more electronic devices. In some examples, transmitting the aggregate context to the one or more electronic devices causes the one or more electronic devices to obtain a digital assistant response to a user request based on the aggregate context (or, based on at least a portion of the aggregate context).


5. System and Technique for Task Performance in a Context-Sharing Group



FIG. 9 illustrates a system and technique for performing one or more tasks in a context-sharing group, according to various examples. System 900 includes communal device 904, user device 906, communal device 908, and user device 910, all of which are participating in context-sharing group 914 (which is associated with a specific location (e.g., a home, an office, or the like)). User device 906 and user device 910 are both client devices (e.g., user devices 104, 122, 200, 400, or 600). For example, user device 906 and user device 910 are both an iPhone®. In the examples described below, user device 906 is registered to user 902 whereas user device 910 is not registered to user 902. Communal device 904 is a smart speaker that has the same or similar digital assistant capabilities as the user devices. Communal device 908 is a smart TV (connected display not shown) that has the same or similar digital assistant capabilities as the user devices. Communal device 908 is the context collector of context-sharing group 914 (e.g., because communal device 908 was previously elected to be context collector). As discussed above with reference to FIG. 8, communal devices are not registered to a single user or are registered to multiple users (e.g., such that the communal device may be used by multiple users without additional user registration and/or user authentication requirements). For example, communal device 904 is a HomePod® and communal device 910 is an Apple TV®.


System 900 further includes network 912 and server 916 (e.g., DA server 106). Network 912 is a wireless communications network (e.g., network(s) 110). As shown, communal device 904, user device 906, communal device 908, and user device 910 communicate with one another and with server 916 via network 912 (and thus are each connected to network 912). Further, server 916 is a remote device that is not participating in context-sharing group 914. In some examples, system 900 includes one or more other remote devices (e.g., a local server, a cloud-computing system, or the like) instead of server 916. It should be recognized that, in these examples, any of the operations performed by communal device 904, user device 906, communal device 908, and/or user device 910 can instead be performed by server 916. For example, server 916 can perform the operations of the respective DA client modules (e.g., DA client module 229) of communal device 904, user device 906, communal device 908, user device 806, and/or user device 910.


As shown in FIG. 9, user 902 provides user voice input 918 (e.g., “Hey Siri, stop the timer.” or “Hey Siri, play music.”), which is received by communal device 904. User voice input 918 includes a digital assistant trigger. A digital assistant trigger is a word or phrase that initiates a dialog session with a digital assistant of an electronic device (e.g., “Hey Siri,” “Siri,” of the like). Thus, after receiving user voice input 918, communal device 904 detects the digital assistant trigger (e.g., determines that user voice input 918 includes the digital assistant trigger), determines that user voice input 918 represents a digital assistant request (based on the detection of the digital assistant trigger), and begins processing user voice input 918 to determine and/or obtain a response to user voice input 918 (e.g., the performance of one or more tasks and/or the output of a digital assistant response).


Typically, it takes a communal device/user device less than 2 seconds (e.g., 1 second, 1.5 seconds, or the like) to begin processing a user voice input as described above from when the communal device/user device detects the digital assistant trigger. During this time, the communal device/user device communicates (e.g., via a wireless network (e.g., network 912) and/or a short distance communication connection (e.g., Bluetooth, BTLE, or the like)) with one or more nearby electronic devices (e.g., a second communal device/user device participating in the same context-sharing group) that also received the user voice input and detected the digital assistant trigger included in the user voice input in order to determine which device should process the received user voice input.


However, in some examples, a communal device/user device (e.g., participating in a context-sharing group) that receives the user voice input takes longer than 2 seconds (e.g., 3 seconds, 5 seconds, or the like) to detect the digital assistant trigger included in the voice input, and thus misses out on the opportunity to communicate with other nearby electronic devices that detected the digital assistant trigger within the two-second window and determine which device will respond to the user voice input. As such, the communal device/user device with the delayed digital assistant trigger detection will begin processing the user voice input even if another communal device/user device (that did not have a delayed digital assistant trigger detection) has already begun processing the user voice input and/or has already provided a response to the user voice input. This in turn may result in multiple devices (participating in the same context-sharing group) providing a response to the same user voice input at different times, which may result in a poor user experience (e.g., due to user confusion and/or annoyance). For example, if user device 906 also receives user voice input 918 but detects the digital assistant trigger included therein 3 seconds after communal device 904 detects the digital assistant trigger, user device 906 and communal device 904 may each end up providing a response to user voice input 918 (e.g., at different times). Accordingly, it can be desirable to suppress a communal device's and/or user device's delayed digital assistant trigger detection.



FIG. 10 illustrates a system and technique for suppressing a delayed digital assistant trigger detection using a context collector of a context-sharing group, according to various examples. System 1000 is similar to system 900. Specifically, system 1000 includes communal device 1004 (corresponding to communal device 904), user device 1006 (corresponding to user device 906), and communal device 1008 (corresponding to communal device 908), all of which are participating in context-sharing group 1012 (corresponding to context-sharing group 914). System 1000 further includes network 1010 (corresponding to network 912). For simplicity, a user device corresponding to user device 910 and a server corresponding to server 916 are not shown. As with system 900, communal device 1008 is the context collector of context-sharing group 1012 in the examples described below (e.g., because communal device 1008 was previously elected to be context collector).


It should be recognized that, in these examples, any of the operations performed by communal device 1004, user device 1006, and communal device 1008 can instead be performed by one or more servers (e.g., a server corresponding to with server 916) and/or one or more other remote devices (e.g., a cloud-computing system). For example, one or more servers can perform the operations of the respective DA client modules (e.g., DA client module 229) of communal device 1004, user device 1006, and/or communal device 1008.


As shown in FIG. 10, user 1002 provides user voice input 1014 (e.g., corresponding to user voice input 918 (e.g., “Hey Siri, stop the timer.” or “Hey Siri, play music.”)) that includes a digital assistant trigger. User voice input 1014 is received by communal device 1004 and user device 1006 (e.g., because communal device 1004 and user device 1006 are located near one another (e.g., in the same room)). However, communal device 1004 detects the digital assistant trigger before user device 1006. Thus, while user device is still determining whether user voice input 1014 includes a digital assistant trigger, communal device 1004 initiates a digital assistant dialog session. Further, as represented by arrows 1016, communal device 1004 transmits contextual information (and a device identifier corresponding to communal device 1004) to communal device 1008 (because the detection of a digital assistant trigger is a device state change and communal device 1008 is the context collector). For example, communal device 1004 transmits the contextual information and device identifier in response to detecting the digital assistant trigger.


Because the device state change of communal device 1004 was the detection of a digital assistant trigger, the contextual information transmitted to communal device 1008 includes a trigger advertisement (e.g., along with other device state change information). The trigger advertisement includes a digital assistant trigger end time, which is a time at which the digital assistant trigger ended according to communal device 1004 (e.g., a time at which communal device 1004 stopped receiving the audio signal corresponding to the digital assistant trigger). In some examples, the trigger advertisement further includes data indicating an energy level (e.g., a decibel level) of the digital assistant trigger (e.g., the energy level of the audio signal corresponding to the digital assistant trigger). In some examples, the first trigger advertisement further includes data indicating a confidence score corresponding to a confidence of communal device 1004 that user voice input 1014 includes a digital assistant trigger.


After receiving the context information and trigger advertisement from communal device 1004, communal device 1008 updates the aggregate context of context-sharing group 1012 to include the context information and trigger advertisement. Further, as represented by arrows 1017, in response to receiving the trigger advertisement, communal device 1008 retrieves and transmits trigger advertisements (associated with one or more other electronic devices participating in the context-sharing group) that are already included in the aggregate context to communal device 1004 (e.g., trigger advertisements received within a predetermined period of time (e.g., within the last 30 seconds, within the last minute, within the last 5 minutes, or the like)). In some examples, communal device 1008 transmits the aggregate context (including the received trigger advertisements) to communal device 1004 instead of only transmitting the trigger advertisements. As will be described in greater detail below with respect to user device 1006, communal device 1004 uses the trigger advertisements received from communal device 1008 (e.g., the data included in the trigger advertisements) to determine whether it should suppress its own digital assistant trigger detection (and thus forgo further processing of user voice input 1014).


However, in this case, communal device 1004 does not suppress the detection of the digital assistant trigger (e.g., because communal device 1004 is the first electronic device to detect the digital assistant trigger included in user voice input 1014) and continues processing user voice input 1014 (e.g., to determine/obtain a response to user voice input 1014 (e.g., the performance of one or more tasks and/or the output of a digital assistant response)). Thus, as represented by arrows 1018, communal device 1004 transmits a request for the aggregate context of context-sharing group 1012 to communal device 1008. As represented by arrows 1020, in response to receiving the request for the aggregate context, communal device 1008 transmits the aggregate context to communal device 1004. In some of the examples mentioned above where communal device 1008 transmits the aggregate context at arrows 1017 instead of only transmitting the trigger advertisements, arrows 1018 and 1020 do not occur because communal device had already received the aggregate context. After communal device 1004 receives the aggregate context (as represented by arrows 1020 or, in some examples, arrows 1017) and determines that it should continue processing user voice input 1014, communal device 1004 obtains a response to user voice input 1014 based on user voice input 1014 and context information included in the aggregate context (as will be described in greater detail below with reference to FIG. 9).


As represented by arrows 1022, in response to detecting the digital assistant trigger included in user voice input 1014, user device 1006 transmits context information (and a device identifier corresponding to user device 1006) to communal device 1008 (because the detection of a digital assistant trigger is a device state change and communal device 1008 is the context collector). Note, while FIG. 10 illustrates user device 1006 transmitting the context information to communal device 1008 after arrows 1020, user device 1006 transmits the context information at any time after communal device 1004 detects the digital assistant trigger and transmits context information to communal device 1008 (as represented by arrows 1016). For example, User device 1006 may transmit context information to communal device 1008 before communal device 1004 receives the aggregate context from communal device 1008 (ad represented by arrows 1020). As discussed above, because the device state change of user device 1006 was the detection of a digital assistant trigger, the contextual information transmitted to communal device 1008 includes a trigger advertisement corresponding to the digital assistant trigger detection of user device 1006. The trigger advertisement transmitted by user device 1006 includes the same type of data and information that is included in the trigger advertisement previously transmitted by communal device 1004 (e.g., data indicating a time at which the digital assistant trigger ended (e.g., a time at which user device 1006 stopped receiving the audio signal corresponding to the digital assistant trigger)).


After receiving the context information and trigger advertisement from user device 1006, communal device 1008 updates the aggregate context of context-sharing group 1012 to include the context information and trigger advertisement. Further, as represented by arrows 1024, in response to receiving the trigger advertisement from user device 1006, communal device 1008 retrieves and transmits trigger advertisements (associated with one or more other electronic devices participating in the context-sharing group, including communal device 1004) that are already included in the aggregate context to user device 1006 (e.g., trigger advertisements received within a predetermined period of time (e.g., within the last 30 seconds, within the last minute, within the last 5 minutes, or the like)). In some examples, communal device 1008 transmits the aggregate context (including the received trigger advertisements) to user device 1006 instead of only transmitting the trigger advertisements.


In some examples, in addition to transmitting the context information and trigger advertisement to communal device 1008 (via network 1010), user device 1006 transmits the trigger advertisement (e.g., data corresponding to the trigger advertisement) to one or more electronic devices with which user device 1006 shares a short distance communications connection (e.g., Bluetooth, BTLE, or the like). For example, if user device 1006 and communal device 1004 share a BTLE connection, user device 1006 will transmit the trigger advertisement directly to communal device 1004 via the BTLE connection (e.g., before or soon after transmitting the context information and trigger advertisement to communal device 1008). Then, in response to receiving the trigger advertisement from user device 1006, the one or more electronic devices transmit their own trigger advertisements to user device 1006 via their respective short distance communications connections. For example, the one or more electronic devices transmit trigger advertisements corresponding to digital assistant triggers that they have detected within a predetermined period of time (e.g., within the last 5 seconds, within the last 30 seconds, within the last minute, or the like)).


After receiving the trigger advertisements from communal device 1008 (and, in some examples, from one or more electronic devices with which user device 1006 shares a short distance communications connection) user device 1006 determines whether it should suppress its own digital assistant trigger detection (and thus forgo further processing of user voice input 1014). Specifically, user device 1006 determines whether or not each trigger advertisement it has received (e.g., within the last second) is “sane” based on the digital assistant trigger end time (i.e., the time at which a digital assistant trigger ends according to an electronic device) included in each trigger advertisement. A trigger advertisement is sane if its digital assistant trigger end time falls within a predetermined time range (e.g., 750 milliseconds, 500 milliseconds, 100 milliseconds, or the like) before the digital assistant trigger end time of user device 1006 (i.e., the time at which the digital assistant trigger included in user voice input 1014 ended according to user device 1006).


If user device 1006 determines that one or more of the trigger advertisements it has received is sane (i.e., includes a digital assistant trigger end time that falls within the predetermined time range before the digital assistant trigger end time of user device 1006), then user device 1006 forgoes further processing of user voice input 1014. For example, if user device 1006 determines that a trigger advertisement corresponding to communal device 1004 (e.g., a trigger advertisement received from communal device 1008 and/or received from communal device 1004) is sane, then user device forgoes further processing of user voice input 1014 so that communal device 1004 will be the only electronic device to provide a response to user voice input 1014. However, in some examples, communal device 1004 receives one or more sane trigger advertisements corresponding to one or more other electronic devices that detected the digital assistant trigger (e.g., from communal device 1008 (e.g., as represented by arrows 1017)) and thus also forgoes further processing of user voice input 1014 (e.g., instead of transmitting a request for the aggregate context to communal device 1008 (e.g., as represented by arrows 1018)).


If user device 1006 determines that none of the trigger advertisements it has received is sane (i.e., none of the trigger advertisements include a digital assistant trigger end time that falls within the predetermined time range before the digital assistant trigger end time of user device 1006), then user device 1006 continues processing user voice input 1014 (e.g., by transmitting a request for the aggregate context to communal device 1008). Such a scenario would occur, for example, if (1) the trigger advertisement of user device 1006 corresponded to a digital assistant trigger detected 30 seconds after communal device 1004 detected the digital assistant trigger included in user voice input 1014 and (2) the predetermined time range was 500 milliseconds before the digital assistant trigger end time corresponding to the digital assistant trigger detected by user device 1006. In this example, the digital assistant trigger end time of communal device 1004 clearly does not fall within the 500-millisecond time range before the digital assistant trigger end time of user device 1006. Thus, the user voice input received by user device 1006 represents a separate user request (e.g., separate from the user request of user voice input 1014) that user device 1006 should continue processing.


Returning to FIG. 9, in some examples, user voice input 918 does not include a digital assistant trigger. For example, communal device 904 may receive user voice input 918 during a digital assistant dialog session initiated in response to user 902 pressing or holding a physical button on communal device 904. In these examples, communal device 904 determines that user voice input 918 represents a digital assistant request and begins processing user voice input 918 (e.g., as represented by arrows 920) to determine and/or obtain a response to user voice input 918 without having to determine whether it should suppress the detection of a digital assistant trigger (e.g., according to the process described above with reference to FIG. 10). Note, in these examples, the initiation of the digital assistant dialog session via the pressing or holding of a physical button on communal device 904 represents a device state change and thus communal device 904 transmits context information (and a device identifier corresponding to communal device 904) to communal device 908 in response to initiating the dialog session.


As represented by arrows 920, in response to receiving user voice input 918 (or, in some examples, in response to detecting the digital assistant trigger included in user voice input 918), communal device 904 transmits a request (via network 912) to communal device 908 (i.e., the context collector of context-sharing group 914) for communal device 908 to transmit an aggregate context of context-sharing group 914 to communal device 904. Because the detection of a digital assistant trigger is a device state change, communal device 904 also transmits context information (and a device identifier corresponding to communal device 904) to communal device 908 before transmitting the request for the aggregate context (although this step is not shown in FIG. 9).


As represented by arrows 922, after receiving the request for the aggregate context from communal device 904, communal device 908 transmits the aggregate context (or, in some examples, at least a portion of the aggregate context) to communal device 904. In some examples, the request for the aggregate context causes communal device 908 to transmit the aggregate context (e.g., data corresponding to the aggregate context), or at least a portion of the aggregate context, to communal device 904. The aggregate context transmitted to communal device 904 includes context information (e.g., device state change information, contextual state information, device capability information, and/or the like) associated with at least communal device 904, user device 906, and user device 910 (e.g., because communal device 904, user device 906, and user device 910 each recently transmitted context information to communal device 908 in response to undergoing a device state change (e.g., a timer event)). Specifically, the context information is associated with at least communal device 904, user device 906, and user device 910 based on the device identifiers that communal device 908 receives with the context information from at least communal device 904, user device 906, and user device 910. In some examples, the aggregate context does not include any other type of device identification or identifying information other than the device identifiers received with context information included in the aggregate context. This in turn helps ensure the anonymity of the electronic devices participating in context-sharing group 914 when server 916 receives the aggregate context (e.g., as represented by arrows 924).


In other examples, the aggregate context does include other types of device identifications and/or information identifying a registered user of each electronic device (in addition to the device identifiers). This in turn allows server 916 to determine whether electronic devices participating in a context-sharing group are registered to a single user or two or more different users (as this information may influence the commands that server 916 provides). In some examples, device identifications and/or information identifying a registered user of each electronic device included in the aggregate context allows server 916 to determine whether or not a user voice input is provided by a registered. Further, as will be described below, in some examples, server 916 uses this additional identifying information to access and/or utilize user data that is stored on server 916 and that is associated with one or more of the electronic devices (e.g., user data that an electronic device participating in the context-sharing group 914 previously synced/transmitted to the remote devices (e.g., during an automatic and/or periodic user data sync)).


As represented by arrows 924, after receiving the aggregate context from communal device 908, communal device 904 provides (e.g., transmits) data corresponding to user voice input 918 and at least a portion of the aggregate context to server 916.


In some examples, communal device 904 provides audio data corresponding to user voice input 918 to server 916. In some examples, communal device 904 performs speech-to-text processing of user voice input 918 (e.g., using STT processing module 730) and provides text data corresponding to user voice input 918 (e.g., a textual representation of user voice input 918) to server 916. In some examples, communal device 904 further performs natural language processing of the text data corresponding to user voice input 918 (e.g., using natural language processing module 732) and provides results of the natural language processing (e.g., one or more user intents) to server 916.


In some examples, communal device 904 provides all of the aggregate context to server 916. In some examples, communal device 904 determines what context information included in the aggregate context is relevant to user voice input 918 (e.g., when communal device 904 performs natural language processing of user voice input 918) and only provides the relevant context information to server 916. In some examples, communal device 904 determines what context information is relevant based on one or more domains of an active ontology (e.g., ontology 760) that correspond to user voice input 918 (e.g., by identifying the context information that is related to or associated with the one or more domains corresponding to user voice input 918). In some examples, communal device 904 removes personal information (e.g., email addresses, home addresses, payment information, or the like) and/or user data (e.g., a user's preferences, media, contacts, speech profiles, or the like) included in the aggregate context prior to providing the aggregate context to server 916. In some examples, communal device 904 encrypts personal information and/or user data included in the aggregate context prior to providing the aggregate context to server 916.


In some examples, prior to transmitting the at least a portion of the aggregate context to server 916, communal device 904 transmits a request to each electronic device participating in context-sharing group 914 (including user device 906, communal device 908, and user device 910) for each electronic device to provide communal device 904 with an indication of whether or not it detected the digital assistant trigger included in user voice input 918. In some examples, communal device 904 requests each electronic device to provide communal device 904 with an indication of whether the electronic device has detected a digital assistant trigger within a predetermined period of time (e.g., within the last 2 seconds, 5 seconds, or 10 seconds). In response to receiving the request, the electronic devices transmit the requested indications (also referred to as trigger indications) with their respective device identifier.


After receiving a trigger indication from one or more (e.g., all) of the electronic devices participating in context-sharing group 914 (indicating whether each of the one or more electronic devices did or did not detect the digital assistant trigger included in user voice input 918), communal device 904 incorporates the trigger indications into the aggregate context based on the device identifiers received with the trigger indications. Specifically, communal device 904 incorporates the trigger indication received from each electronic device into the context information of the electronic device that is included in the at least a portion of the aggregate context (according to the device identifier of each electronic device). For example, communal device 904 would incorporate a trigger indication received from user device 906 into the context information associated with the device identifier of user device 906 that is included in the at least a portion of the aggregate context. In some examples, a trigger indication includes data indicating an energy level (e.g., decibel level) of the detected digital assistant trigger (e.g., the energy level of the digital assistant trigger when received by an electronic device). In some examples, a trigger indication includes a confidence score corresponding to a confidence of an electronic device (e.g., user device 906) that user voice input 918 includes a digital assistant trigger.


Note, in some examples, user devices participating in a context-sharing group are not aware of other user devices that are also participating in the context-sharing group (and that are not a context collector). For example, user device 906 is not aware of user device 910. Thus, in these examples, user devices cannot transmit trigger indication requests or trigger indications directly to other user devices. Accordingly, in these examples, user devices transmit trigger indication requests to the context collector of a context-sharing group so that the context-collector may transmit the trigger indication requests to all other electronic devices participating in the context-sharing group. Then, the context collector transmits all trigger indications it receives back to the user devices that transmitted the trigger indication requests to the context collector. For example, in order to receive a trigger indication from user device 910, user device 906 transmits a trigger indication request to communal device 908 so that communal device 908 may transmit the trigger indication request to both user device 910 and communal device 904. As a result, communal device will receive trigger indications from communal device 904 and user device 910, and subsequently transmit those trigger indications (along with its own trigger indication) to user device 906. In some examples, user device 906 transmits the trigger indication request directly to communal device 904 (e.g., in addition to transmitting the request to communal device 908), as user device 906 is still aware of communal devices participating in context-sharing group 914.


As will be described in greater detail below, in some examples, server 916 determines a physical proximity of user device 906, communal device 908, and/or user device 910 to communal device 904 (e.g., within the specific location associated with context-sharing group 914) based on trigger indications corresponding to user device 906, communal device 908, and/or user device 910 that are included in the aggregate context. For example, based on the trigger indications (e.g., data included in the trigger indications), server 916 can determine whether user device 906 or communal device 908 is closer to communal device 904 and/or determine whether user device 906 or communal device 908 is within a same area of the location associated with context-sharing group 914 as communal device 904 (e.g., within a same room or office). In some examples, each individual device determines its own physical proximity to communal device 904. In these examples, a trigger indication includes data indicating a physical proximity of the associated electronic device (e.g., user device 906, communal device 908, or user device 910) to communal device 904, and thus server 916 is informed of the proximity of each device to communal device 904 based on the data included in the trigger indication (instead of server 916 determining the physical proximity of each device to communal device 904).


As will be described in greater detail below with reference to FIG. 11, upon receiving the data corresponding to user voice input 918, server 916 (specifically, one or more modules of server 916) processes the data corresponding to user voice input 918 (e.g., based on context information included in the aggregate context) and determines one or more user intents corresponding to user voice input 918, one or more tasks corresponding to the one or more user intents, one or more electronic devices participating in context-sharing group 914 to perform the one or more tasks, and one or more commands to perform the one or more tasks. Note, in some examples, communal device 904 does not transmit the data corresponding to user voice input 918 and aggregate context to server 916. In these examples, communal device 904 (specifically, one or more modules of communal device) processes the data corresponding to user voice input 918 (e.g., based on context information included in the aggregate context) and performs the determinations listed above (instead of server 916).



FIG. 11 is a block diagram illustrating a system for task determination and device selection in a context-sharing group, according to various examples. System 1100 is implemented on one or more remote devices that are communicatively connected (e.g., via one or more networks (e.g., network 912)) to one or more electronic devices (e.g., one or more user devices and/or one or more communal devices) that are participating in a context-sharing group (e.g., context-sharing group 914). For example, system 1100 is implemented on server 916. In some examples, system 1100 is implemented one or more electronic devices that are participating in a context-sharing group (e.g., communal device 904, user device 906, communal device 908, and/or user device 910). In some examples, the modules and functions of system 1100 are distributed between one or more remote devices and one or more electronic devices that a participating in a context-sharing group.


System 1100 is implemented using hardware, software, or a combination of hardware and software to carry out the functions discussed herein. Further, system 1100 is exemplary, and thus system 1100 can have more or fewer components than shown, can combine two or more components, or can have a different configuration or arrangement of the components. Although the below discussion describes functions being performed at a single module of system 1100, it is to be understood that such functions can be performed at other modules of system 1100 and that such functions can be performed at more than one module of system 1100.


To illustrate the examples discussed herein, system 1100 is described with reference to FIG. 9 and the various components of system 900. Unless otherwise stated, system 1100 is implemented on server 916 in the examples described below.


System 1100 includes voice input receiver module 1102. Voice input receiver module 1102 receives data corresponding to a user voice input (e.g., audio data, text data, natural language processing results, and/or the like) from an electronic device participating in a context-sharing group (e.g., from communal device 904). For example, voice input receiver module 1102 receives data corresponding to user voice input 918 from communal device 904 (e.g., as represented by arrows 924). In some examples, voice input receiver module 1102 receives a user voice input directly from a user. For example, voice input receiver module 1102 receives user voice input 918 directly from user 902 when system 1100, or just voice input receiver module 1102, is implemented on communal device 904 (as communal device 904 receives user voice input 918 from user 902). After voice input receiver module 1102 receives data corresponding to a user voice input, voice input receiver module 1102 provides the data corresponding to the user voice input to user intent module 1106.


System 1100 includes aggregate context receiver module 1104. Aggregate context receiver module 1104 receives at least a portion of an aggregate context of a context-sharing group from an electronic device participating in a context-sharing group (e.g., from communal device 904). As described above, the at least a portion of the aggregate context includes one or more device identifiers corresponding to one or more electronic devices participating in the context-sharing group. For example, aggregate context receiver module 1104 receives at least a portion of an aggregate context of context-sharing group 914 from communal device 904 (e.g., as represented by arrows 924). In some examples, aggregate context receiver module 1104 receives the at least a portion of the aggregate context from a context collector of a context-sharing group. For example, aggregate context receiver module 1104 receives the at least a portion of the aggregate context from communal device 908 (the context collector of context-sharing group 914) when system 1100, or just aggregate context receiver module 1104, is implemented on communal device 904 (as communal device 904 receives the at least a portion of the aggregate context from communal device 908 (e.g., as represented by arrows 922)). After receiving the at least a portion of the aggregate context of a context-sharing group, aggregate context receiver module 1104 provides context information (e.g., device state change information, contextual state information, and/or device capability information) and device identifiers associated with the context information to user intent module 1106, device selection module 1110, and/or command module 1112.


System 1100 includes user intent module 1106. User intent module 1106 determines one or more user intents based on data corresponding to a user voice input (received from voice input receiver module 1102). For example, user intent module 1106 determines one or more user intents based on the data corresponding to user voice input 918. After determining one or more user intents, user intent module 1106 provides the one or more user intents to task determination module 1108.


In some examples, determining the one or more user intents includes user intent module 1106 performing speech-to-text processing, natural language processing, and/or the like based on the data corresponding to the user voice input. In these examples, user intent module 1106 includes a speech-to-text processing module (e.g., STT processing module 730), a natural language processing module (e.g., natural language processing module 732), and/or the like. For example, if the data corresponding to user voice input 918 is audio data (e.g., an audio signal of user voice input 918), determining the one or more user intents includes user intent module 1106 performing speech-to-text processing based on the audio data. As another example, if the data corresponding to user voice input 918 is text data (e.g., a textual representation of user voice input 918), determining the one or more user intents includes user intent module 1106 performing natural language processing based on the text data (but not speech-to-text processing, as user voice input 918 has already been recognized (e.g., by communal device 904)).


In some of the examples where user intent module 1106 performs speech-to-text processing of the data corresponding to user voice input, user intent module 1106 determines one or more recognition results (e.g., one or more candidate text representations) corresponding to the user voice input based on user data (e.g., stored contacts, user speech profiles, media (e.g., songs), and/or the like) that is associated with a user that provided the user voice input. For example, if user voice input 918 includes a unique and/or uncommon word and/or name (e.g., “Hey Siri, call Daenerys Targaryen.”), user intent module 1106 can utilize speech profile data associated with user 902 (e.g., speech profile data associated with stored contacts of user 902) to recognize the unique and/or uncommon word and/or name. For example, user intent module 1106 can match the utterance of “Daenerys Targaryen” included in user voice input 918 (e.g., an audio signal or intermediate recognition result corresponding to the utterance) to an utterance of the stored contact name “Daenerys Targaryen” included in a user speech profile of user 902.


In some examples, the user data utilized by user intent module 1106 includes user data that is stored on the electronic device that provides the data corresponding to the user voice input to voice input receiver module 1102 (e.g., communal device 904). For example, communal device 904 may transmit stored user data to server 916 when transmitting the data corresponding to user voice input 918 to server 916 (e.g., the user data may be included in the aggregate context). The user data may then be accessed and utilized by user intent module 1106. In some examples, the user data utilized by user intent module 1106 includes user data that is stored on the remote device that is implementing user intent module 1106 (e.g., server 916). For example, the user data may already be stored on server 916 because communal device 904 previously synced/transmitted the user data to server 916 (e.g., during an automatic and/or periodic user data sync).


In some examples, the user data utilized by user intent module 1106 includes user data associated with an electronic device that (1) is participating in a context sharing group and (2) does not provide the data corresponding to the user voice input to voice input receiver module 1102. For example, the user data that user intent module 1106 utilizes when performing speech-to-text processing of the data corresponding to user voice input 918 can include user data that user device 906 previously synced/transmitted to server 916. For example, if user voice input 918 includes the unique name “Daenerys Targaryen,” user intent module 1106 can recognize the unique name based on speech profile data associated with user 902 that user device 906 previously synced/transmitted to server 916. In this example, the user data associated with user device 906 is not stored on communal device 904 and has not been synced/transmitted to server 916 by communal device 904.


In some examples, an electronic device participating in context-sharing group that does not provide data corresponding to a user voice input to voice input receiver module 1102 (e.g., user device 906, communal device 908, or user device 910)) must be registered to the user that provides the user voice input (e.g., user 902) in order for user intent module 1106 to utilize user data associated with the electronic device. For example, if user device 906 is not registered to user 902, user intent module 1106 will not be able to utilize user data associated with user device 906 to recognize the unique name “Daenerys Targaryen” included in user voice input 918. In some examples, user intent module 1106 utilizes user data from an electronic device registered to the user that provides the user voice input only if the electronic device is participating in the same context-sharing group as the electronic device that receives the user voice input. For example, if an electronic device registered to user 902 is not participating in context-sharing group 914, then user intent module 1106 cannot access user data associated with that electronic device when processing the data corresponding to user voice input 918. As another example, if user device 906 is registered to user 902, but user device 906 leaves context-sharing group 914 (e.g., by disconnecting from network 912) before user intent module 1106 receives the data corresponding to user voice input 918, then user intent module 1106 will not be able to utilize user data associated with user device 906 (e.g., that is stored on server 916) to recognize user voice input 918. Note, in some examples, communal devices (e.g., communal device 904) do not store user data and/or do not sync user data to remote devices (e.g., server 916). In these examples, user intent module 1106 can only access and utilize user data associated with user devices (e.g., user device 906 and/or user device 910) that are registered to the user that provides the user voice input.


As mentioned above, aggregate context receiver module 1104 provides context information (e.g., device state change information, contextual state information, and/or device capability information) and device identifiers associated with the context information to user intent module 1106. In some examples, user intent module 1106 determines the one or more user intents further based on context information (associated with one or more electronic devices) received from aggregate context receiver module 1104.


In some examples, determining the one or more user intents further based on context information included in the at least apportion of the aggregate context includes user intent module 1106 disambiguating a user voice input based on the context information. For example, if user voice input 918 is ambiguous with respect to a user-requested task (e.g., “Hey Siri, stop.” is ambiguous with respect to what task user 902 wants a device to perform as it is unclear whether user 902 wants to stop media playback, stop an alarm, stop a timer, or the like)), user intent module 1106 can use device state change information associated with communal device 904, user device 906, communal device 908, and/or user device 910 (e.g., a type of device state change and/or a time of device state change) to determine/disambiguate what task user 902 is referring to in user voice input 918. For example, if device state change information associated with user device 906 (e.g., data indicating a type of device state change at user device 906) indicates that there is a timer event currently occurring at user device 906 (e.g., a timer is going off at user device 906), user intent module 1106 may determine that user 902 wants to stop the timer event at user device 906. Thus, in this example, user intent module 1106 would determine a user intent of stopping a timer.


In some examples, when a user voice input is ambiguous with respect to a user-requested task, and two or more events (e.g., timer event, alarm event, media playback, and/or the like) are occurring at two or more separate electronic devices in a context-sharing group, user intent module 1106 uses device state change time information (e.g., data indicating a time when each event began) to determine the one or more user intents based on the most recent device state change. For example, if in the example above (where user voice input 918 is “Hey Siri, stop.”), the device state change information also indicates that there is a media playback event occurring at communal device 904 (e.g., communal device 904 is currently playing music while a timer is going off at user device 906 (e.g., in another room)), user intent module 1106 can disambiguate user voice input 918 based on device state change time information indicating a time when each event began. Specifically, user intent module 1106 can determine which event began most recently based on the device state change time data, as that it the event user 902 is most likely referring to. Thus, if the timer event at user device 906 began more recently than the media playback event at communal device 904, user intent module 1106 would determine a user intent of stopping a timer instead of a user intent of stopping media playback.


In some examples, when a user voice input is ambiguous with respect to a user-requested task, and two or more events (e.g., timer event, alarm event, media playback, and/or the like) are occurring at two or more separate electronic devices in a context-sharing group, user intent module 1106 uses device state change type information (e.g., data indicating a type of event) to determine the one or more user intents based on the type of events occurring at the two or more separate electronic devices. Specifically, in these examples, user intent module 1106 determines the one or more user intents based on event priority rules that indicate which event types are given preference when determining a user intent. For example, the event type priority rules may indicate that alarm events are prioritized over media playback events. Thus, if in the example above (where user voice input 918 is “Hey Siri, stop.”), the device state change information also indicates that there is a media playback event occurring at communal device 904 (e.g., communal device 904 is currently playing music while a timer is going off at user device 906 (e.g., in another room)), user intent module 1106 can disambiguate user voice input 918 based on the event priority rules and thus determine a user intent of stopping a timer instead of a user intent of stopping media playback (as timer events are prioritized over media playback events).


Similarly, in yet another example, if user voice input 918 is “Hey Siri, resume” and device state change information included in the at least a portion of the aggregate context indicates that music previously playing at user device 906 was stopped 10 minutes ago whereas a movie playing at communal device 908 was stopped 5 minutes ago (because stopping or pausing a media playback is a device state change), user intent module 1106 would determine, based on the device state change time data, that the movie playing at communal device 908 was stopped or paused more recently. Thus, user intent module 1106 would determine a user intent of resuming a movie instead of a user intent of resuming music.


As will be described in greater detail below with reference to FIG. 13, in some examples, user intent module 1106 uses one or more digital assistant dialog session histories associated with one or more electronic devices (included in the aggregate context) to disambiguate a user voice input and determine one or more user intents corresponding to the user voice input.


System 1100 includes task determination module 1108. Task determination module 1108 determines one or more tasks to be performed by one or more electronic devices that are participating in a context-sharing group based on one or more user intents received from user intent module 1106. For example, task determination module 1108 determines one or more tasks to be performed by communal device 904, user device 906, communal device 908, and/or user device 910 based on one or more user intents that user intent module 1106 determines based on data corresponding to user voice input 918 received by voice input receiver module 1102 (and, in some examples, further based on context information included in the aggregate context received by aggregate context receiver module 1104). After determining one or more tasks, task determination module 1108 provides the one or more tasks and the one or more user intents to device selection module 1110.


As will be described in greater detail below, the one or more tasks are performed by one or more electronic devices participating in a context-sharing group to fulfill the one or more user intents. For example, if user intent module 1106 determines a user intent of stopping an alarm (e.g., based on the user voice input “Hey Siri, stop.” or “Hey Siri, stop the alarm.”), task determination module 1108 will determine one or more tasks that, when performed by an electronic device, would result in the electronic device stopping an alarm. In some examples, the one or more tasks that task determination module 1108 determines are predetermined based on the one or more user intents (e.g., a determined user intent corresponds to one or more tasks). Examples of the one or more tasks that can be determined by task determination module 1108 include performing a search, retrieving information/data, opening an application stored on an electronic device, playing media (e.g., songs, videos, movies, and/or the like), making a purchase, user authentication, displaying retrieved information/data, and/or the like.


As will be described in greater detail below with reference to FIG. 13, in some examples, task determination module 1108 uses one or more digital assistant dialog session histories associated with one or more electronic devices to disambiguate a user voice input and determine one or more parameters for one or more tasks determined based on the user intent corresponding to the user voice input.


System 1100 includes device selection module 1110. Device selection module 1110 selects/identifies one or more electronic devices participating in a context-sharing group to perform one or more tasks (received from task determination module 1108) based at least on context information included in the aggregate context (received from aggregate context receiver module 1104). For example, device selection module 1110 can select one electronic device that is participating in context-sharing group 914 (e.g., user device 906) to perform the one or more tasks. As another example, as will be discussed in greater detail below with reference to FIGS. 12A-12B, device selection module 1110 can select two or more electronic devices that are participating in context-sharing group 914 (e.g., communal device 904 and user device 906) to perform at least one task each (e.g., when task determination module 1108 determines at least two tasks). In some examples, device selection module 1110 selects the electronic device that provides the data corresponding to a user voice input to voice input receiver module 1102 (e.g., communal device 904). In some examples, device selection module 1110 selects an electronic device that does not provide the data corresponding to a user voice input to voice input receiver module 1102 (e.g., user device 906, communal device 908, and/or user device 910). In some examples, device selection module 1110 selects a context collector of a context-sharing group (e.g., communal device 908).


After receiving the one or more tasks, the one or more user intents, and the aggregate context, device selection module 1110 determines, based on device state change information included in the aggregate context (e.g., device state change information associated with one or more electronic devices participating in a context-sharing group), whether an event (e.g., a timer event, an alarm event, media playback, or the like) that corresponds to a user intent of the one or more user intents is currently occurring at one or more electronic devices participating in a context sharing group. For example, if device selection module 1110 receives a user intent of stopping a timer (e.g., based on the user voice input “Hey Siri, stop.”), user intent module 1110 will determine whether there is a timer event occurring at one or more electronic devices based on the device state change information (e.g., data indicating a type of device state change) associated with the electronic devices (e.g., associated with the device identifier of the one or more electronic devices included in the aggregate context). As another example, if device selection module 1110 receives a user intent of playing a next song (e.g., based on the user voice input “Hey Siri, play the next song.”), device selection module 1110 will determine whether there is a music playback event occurring at one or more electronic devices based on the device state change information associated with the electronic devices.


If device selection module 1110 determines that an event that corresponds to the user intent is currently occurring at a single electronic device participating in the context-sharing group, device selection module 1110 selects the single electronic device (at which the event is occurring) to perform the one or more tasks.


If device selection module 1110 determines that an event that corresponds to the user intent is currently occurring at two or more electronic devices participating in the context-sharing group, device selection module 1110 determines which event (of the two or more events) began most recently based on data indicating a time of device state change included in device state change information associated with the two or more electronic devices. For example, if device selection module 1110 receives a user intent of stopping an alarm (e.g., based on the user voice input “Hey Siri, stop.”) and device selection module 1110 determines that an alarm event is occurring at user device 906 and user device 910 (i.e., a separate alarm is going off at each device), then device selection module 1110 will determine whether the alarm event at user device 906 began more recently than the alarm event at user device 910 (based on the device state change data indicating a time at which each alarm event began). Then, after device selection module 1110 determines which event (of the two or more events) began most recently, device selection module 1110 selects the electronic device at which the event began most recently to perform the one or more tasks. Returning to the previous example, if device selection module 1110 determines that the alarm event at user device 910 began more recently than the alarm event at user device 906 (e.g., the alarm at user device 910 started going off when the alarm at user device 906 was already going off), device selection module 1110 will select user device 910 (specifically, device selection module 1110 will select the device identifier corresponding to user device 910).


In some examples, if device selection module 1110 determines that an event that corresponds to the user intent is currently occurring at two or more electronic devices participating in the context-sharing group, device selection module 1110 determines, based on proximity information included in the aggregate context, which electronic device of the two or more electronic devices is physically closest to the electronic device that provided the user voice input data to voice input receiver module 1102. Then, device selection module 1110 selects the electronic device that is physically closest to the electronic device that provided the user voice input data. For example, if device selection module 1110 receives a user intent of stopping an alarm (e.g., based on the user voice input “Hey Siri, stop.”) and device selection module 1110 determines that an alarm event is occurring at user device 906 and user device 910 (i.e., a separate alarm is going off at each device), device selection module 1110 will determine (based on proximity information associated with user device 906 and user device 910) whether user device 906 or user device 910 is physically closest to communal device 904. Then, if device selection module 1110 determines that user device 906 is physically closest to communal device 904, device selection module 1110 will select user device 906.


In some examples, device selection module 1110 determines, based on device state change information included in the aggregate context (e.g., device state change information associated with one or more electronic devices participating in a context-sharing group), whether an event that corresponds to a user intent of the one or more user intents previously occurred at one or more electronic devices (participating in a context sharing group) within a predetermined period of time (e.g., within the last 5 minutes, 10 minutes, 30 minutes, or the like). For example, if the one or more user intents include a user intent of resuming movie playback and the predetermined period of time is 10 minutes, device selection module 1110 will determine whether a movie was paused within the last 10 minutes at one or more of the electronic devices participating in context-sharing group 914 (based on data indicating a type of device state change and a time of device state change included in the device state change information) because the event of pausing a movie corresponds to the user intent of resuming movie playback. In some examples, device selection module 1110 makes this determination in response to determining that an event that corresponds to a user intent of the one or more user intents is not currently occurring at one or more electronic devices participating in the context sharing group. In some examples, device selection module 1110 determines whether an event that corresponds to a user intent of the one or more user intents previously occurred at one or more electronic devices in response to determining that the one or more user intents include a user intent of resuming media playback (e.g., resuming music playback, movie playback, or the like). In some of these examples, in response to determining that the one or more user intents include a user intent of resuming media playback, device selection module 1110 determines whether an event that corresponds to a user intent of the one or more user intents previously occurred at one or more electronic devices within a predetermined period of time instead of determining whether an event that corresponds to a user intent of the one or more user intents is currently occurring at one or more electronic device.


In the above examples, if device selection module 1110 determines that an event that corresponds to a user intent of the one or more user intents previously occurred at a single electronic device participating in the context-sharing group within the predetermined period of time, device selection module 1110 selects the single electronic device (at which the event previously occurred) to perform the one or more tasks. For example, if a user intent is resuming music playback and device selection module 1110 determines that communal device 904 was the only electronic device participating in context-sharing group 914 to pause music playback within the predetermined period of time (e.g., 30 minutes), then device selection module 1110 selects communal device 904.


Alternatively, if device selection module 1110 determines that an event that corresponds to a user intent of the one or more user intents previously occurred at two or more electronic devices participating in the context-sharing group within the predetermined period of time, device selection module 1110 determines, based on proximity information included in the aggregate context (e.g., proximity information associated with one or more electronic devices participating in the context sharing group), which electronic device of the two or more electronic devices is physically closest to the electronic device that provided the user voice input data to voice input receiver module 1102 (e.g., because that electronic device is likely the closest device to the user that provided the user voice input). Returning to the previous example, if device selection module 1110 determines that user device 906 also paused music playback within the predetermined period of time (in addition to communal device 904), device selection module 1110 will determine whether user device 906 or communal device 904 is closer to communal device 904 (i.e., the device that provided the data corresponding to user voice input 918 to voice input receiver module 1102). In this case, communal device 904 is the closest device because communal device 904 itself provided the data corresponding to user voice input 918 to voice input receiver module 1102. Thus, in this example, device selection module 1110 would select communal device 904 to perform the one or more tasks. Determining which electronic device is closest in these examples prevents an electronic device that is located in an entirely different area of the location associated with the context-sharing group (e.g., from where the user is located) from being selected (e.g., and subsequently resuming media playback).


In some examples, the proximity information is based on data included in one or more trigger indications (e.g., associated with one or more electronic devices participating in the context-sharing group) that are included in the aggregate context. Specifically, as discussed above, each trigger indication includes data indicating whether or not an electronic device detected a digital assistant trigger included in the user voice input, such as data indicating an energy level (e.g., decibel level) of the detected digital assistant trigger (e.g., the energy level of the digital assistant trigger when received by an electronic device). In these examples, determining which electronic device of the two or more electronic devices is physically closest to the electronic device that provided the user voice input data to voice input receiver module 1102 includes device selection module 1110 comparing the digital assistant trigger energy levels of the two or more electronic devices and determining which electronic device corresponds to the highest energy level. Device selection module then selects the electronic device with the highest digital assistant trigger energy level to perform the one or more tasks.


In some examples, device selection module 1110 determines which electronic device of the two or more electronic devices is physically closest to the electronic device that provides the user voice input data to voice input receiver module 1102 based on contextual state information included in the aggregate context (e.g., instead of, or in addition to, proximity information). Specifically, in examples where the contextual state information includes a current location of electronic devices participating in the context-sharing group (e.g., based on GPS data from GPS module 235 and/or information from a software application that has context-sharing group functionality (e.g., HomeKit®)), device selection module 1110 compares the current location of the two or more electronic devices and determines which electronic device is physically closest to the electronic device that provided the voice input data to voice input receiver module 1102 based on the comparison. Device selection module 1110 then selects the closest electronic device to perform the one or more tasks.


In some examples, if device selection module 1110 determines, based on proximity information and/or contextual state information included in the aggregate context, that two or more electronic devices are equally as physically close to the electronic device that provided the user voice input data voice input receiver module 1102, device selection module 1110 selects the two or more electronic devices (instead of selecting a single electronic device). In some examples, two or more electronic devices are equally as physically close to the electronic device that provided the user voice input data to voice input receiver module 1102 if a difference between their respective digital assistant trigger energy levels is less than a predetermined threshold (e.g., less than 5 decibels). For example, if the digital assistant trigger energy levels of communal device 904 and user device 906 are 40 decibels and 42 decibels, respectively, and the predetermined threshold is 5 decibels, device selection module 1110 will determine that communal device 904 and user device 906 are equally as physically close to communal device 904 (i.e., the device that provided the data corresponding to user voice input 918). In some examples, two or more electronic devices are equally as physically close to the electronic device that provided the user voice input data to voice input receiver module 1102 if contextual state information associated with each of two or more electronic devices indicates that the two or more electronic devices are each currently located within a same area of the location associated with the context sharing group (e.g., the same room, same office, or the like)).


In some examples, in response to determining that an event that corresponds to a user intent of the one or more user intents previously occurred at two or more electronic devices within the predetermined period of time, device selection module 1110 simply selects the two or more electronic devices instead of determining which electronic device of the two or more electronic devices is physically closest to the electronic device that provided the user voice input data to voice input receiver module 1102.


As will be described in greater detail below, when device selection module 1110 selects two or more electronic devices in the above examples, device selection module 1110 provides command module 1112 with (1) device identifiers corresponding to the two or more electronic devices, (2) the one or more tasks, and (3) an instruction to provide a command that causes the electronic device that provided the user voice input data to voice input receiver module 1102 (e.g., communal device 904) to output a query requesting the user to select an electronic device of the two or more electronic devices to perform the one or more tasks.


If device selection module 1110 determines that an event that corresponds to a user intent of the one or more user intents is not currently occurring at an electronic device participating in the context-sharing group (and, in some examples, that an event that corresponds to a user intent did not previously occur at an electronic device within a predetermined period of time), device selection module 1110 determines that the user intent corresponds to a user request for causing a new event to occur at one or more electronic devices participating in the context-sharing group. For example, if the user intent is playing music (e.g., based on the user voice input “Hey Siri, play a Taylor Swift song.”) and device selection module 1110 determines (based on device state change information included in the aggregate context) that a music playback event is not occurring at any of the electronic devices participating in context-sharing group 914, device selection module 1110 will determine that the user intent corresponds to a user request for causing a new event (in this case, music playback) to occur at one or more electronic devices of context-sharing group 914.


After determining that the user intent corresponds to a user request for causing a new event to occur, device selection module 1110 determines, based on device state change information included in the aggregate context (e.g., time of device state change, type of device state change, etc.), whether one or more electronic devices participating in the context-sharing group are available to perform the one or more tasks. In some examples, device selection module 1110 determines whether one or more electronic device is available further based on contextual state information associated with the electronic device (e.g., data indicating a display visibility of the electronic device). An electronic device is not available to perform the one or more tasks if the device state change information and/or contextual state information associated with the electronic device indicates that the electronic device is currently being used by a user (e.g., open/active software applications), currently performing a task, and/or currently unable to provide an audio and/or visual output (e.g., because the electronic device is face down, muted, playing media, and/or the like). For example, if the device state change information associated with communal device 908 indicates that communal device 908 is currently playing a movie, device selection module 1110 will determine that communal device 908 is not available to perform the one or more tasks. As another example, if the device state change information associated with user device 906 indicates that a gaming software application stored on user device 906 is currently open (e.g., such that a user is interacting with the gaming software application), device selection module 1110 will determine that user device 906 is not available to perform the one or more tasks.


If device selection module 1110 determines that one or more electronic devices are available to perform the one or more tasks, device selection module 1110 determines, based on device capability information included in the aggregate context (e.g., type of device, processing power, memory availability, display information (e.g., a size of display), speaker information (e.g., a loudness of the speaker), and/or the like), whether each of the one or more available electronic devices is capable of performing the one or more tasks. For example, if the one or more tasks include a task of displaying information, images, videos, and/or the like, an electronic device is capable of performing the one or more tasks only if the device has a display (or is communicatively connected to a display). As another example, if performing the one or more tasks requires an electronic device to have a minimum amount of processing power and/or memory, an electronic device will not be capable of performing the one or more tasks if the device capability information associated with the electronic device indicates that the electronic device does not have the minimum amount of processing power and/or memory. In some examples, device selection model determines whether the one or more available electronic devices are capable of performing the one or more tasks further based on contextual state information associated with the one or more available electronic devices (e.g., strength of network connection, amount of battery power, and/or the like). In some examples, device selection module 1110 determines that an electronic device is a capable electronic device if the electronic device is capable of performing at least one task of the one or more tasks.


If device selection module 1110 determines that only a single electronic device participating in the context-sharing group is both available and capable of performing the one or more tasks, device selection module selects the single electronic device to perform the one or more tasks.


If device selection module 1110 determines that two or more electronic devices participating in the context-sharing group are both available and capable of performing the one or more tasks, device selection module 1110 determines, based on proximity information associated with the two or more available and capable electronic devices, which of the two or more electronic devices is physically closest to the electronic device that provided the user voice input data to voice input receiver module 1102. For example, if device selection module 1110 determines that user device 906 and communal device 908 are both available and capable of performing the one or more tasks, device selection module 1110 will determine whether user device 906 or communal device 908 is physically closer to communal device 904. Determining which electronic device is physically closest to communal device 904 ensures that, for example, device selection module 1110 does not select user device 906 to perform the one or more tasks if user device 906 is in a different area of the location associated with the context-sharing group 914 (e.g., in a different room, on a different floor, and/or the like) relative to communal device 904 (and thus relative to user 902 (e.g., because a user is typically located near the electronic device that provides the user voice input data to voice input receiver module 1102)). This in turn improves a user's experience.


As discussed above, in some examples, the proximity information is based on data included in one or more trigger indications that are included in the aggregate context. Specifically, each trigger indication includes data indicating whether or not an electronic device detected a digital assistant trigger included in the user voice input, such as data indicating an energy level (e.g., decibel level) of the detected digital assistant trigger (e.g., the energy level of the digital assistant trigger when received by an electronic device). In these examples, determining which electronic device of the two or more available and capable electronic devices is physically closest to the electronic device that provided the user voice input data to voice input receiver module 1102 includes device selection module 1110 comparing the digital assistant trigger energy levels of the two or more available and capable electronic devices and determining which electronic device corresponds to the highest energy level. Device selection module then selects the electronic device with the highest digital assistant trigger energy level to perform the one or more tasks.


In some examples, device selection module 1110 determines which electronic device of the two or more available and capable electronic devices is physically closest to the electronic device that provides the user voice input data to voice input receiver module 1102 based on contextual state information included in the aggregate context (e.g., instead of, or in addition to, proximity information). Specifically, in examples where the contextual state information includes a current location of electronic devices participating in the context-sharing group (e.g., based on GPS data from GPS module 235 and/or information from a software application that has context-sharing group functionality (e.g., HomeKit®)), device selection module 1110 compares the current location of the two or more available and capable electronic devices and determines which electronic device is physically closest to the electronic device that provided the voice input data to voice input receiver module 1102 based on the comparison. Device selection module 1110 then selects the closest electronic device to perform the one or more tasks.


In some examples, if device selection module 1110 determines, based on proximity information and/or contextual state information included in the aggregate context, that two or more available and capable electronic devices are equally as physically close to the electronic device that provided the user voice input data voice input receiver module 1102, device selection module 1110 determines, based on user attention information included in the aggregate context (e.g., data indicating whether a user is currently looking at a display of an electronic device (e.g., based on information from an optical sensor 264 on the front and/or back of the electronic device)), whether a user of the electronic device that provided the voice input data to voice input receiver module 1102 (e.g., the user that provided the user voice input) is looking at a display of an electronic device of the two or more available and capable electronic devices. As described above, in some examples, two or more electronic devices are equally as physically close to the electronic device that provided the user voice input data to voice input receiver module 1102 if a difference between their respective digital assistant trigger energy levels is less than a predetermined threshold (e.g., less than 5 decibels). In some examples, two or more electronic devices are equally as physically close to the electronic device that provided the user voice input data to voice input receiver module 1102 if contextual state information associated with each of two or more electronic devices indicates that the two or more electronic devices are each currently located within a same area of the location associated with the context sharing group (e.g., the same room, same office, or the like)).


In some examples, if device selection module 1110 determines, based on the user attention information associated with the two or more available and capable electronic devices, that a user of the electronic device that provided the user voice input data to voice input receiver module 1102 is looking at a single electronic device of the two or more available and capable electronic devices, device selection module 1110 selects the single electronic device to perform the two or more tasks. For example, if user device 906 and user device 910 are both (1) available and capable of performing the one or more tasks and (2) equally as physically close to communal device 904 (e.g., both devices are in the same room), but user attention information associated with the devices indicates that user 902 is looking at user device 906 (and not at user device 910), device selection module 1110 will select user device 906 to perform the one or more tasks. Selecting and electronic device that a user is looking at when two or more available and capable electronic devices are equally as physically close (as described above) improves a user's experience. For example, if the one or more tasks include the display of information, images, videos, or the like, a user will already be looking at the correct display to view the displayed information, images, videos, or the like instead of having to turn his or her attention to a display of another electronic device. This in turn improves a user's experience.


In some of the above examples, if the two or more available, capable, and physically close electronic devices includes the electronic device that provided the user voice input data to voice input receiver module 1102, but device selection module 1110 determines that a user is only looking at another electronic device of the two or more available and capable electronic devices, device selection module 1110 selects the electronic device that provided the user voice input data to voice input receiver module 1102. As will be described in greater detail below, in some examples, after making the above selection, device selection module 1110 instructs command module 1112 to provide a command that causes the selected electronic device to perform the one or more tasks and/or output (e.g., as an audio output and/or on a display) an offer to handoff the performance of the one or more tasks to the electronic device that the user is looking at. Device selection module provides the above instruction in addition to providing command module 1112 with the device identifier corresponding to the selected electronic device and the one or more tasks.


In some examples, if device selection module 1110 determines, based on the user attention information associated with the two or more available and capable electronic devices, that a user of the electronic device that provided the user voice input data to voice input receiver module 1102 is not looking at any of the two or more available and capable electronic devices (e.g., because none of the two or more available and capable electronic devices has a display or a communicatively connected display), device selection module 1110 determines, based on data indicating a display size included in device capability information associated with the two or more available and capable electronic devices, which electronic device of the two or more available and capable electronic devices has the largest display (including communicatively-connected displays (e.g., displays communicatively-connected to a smart TV)). For example, if device selection module 1110 determines that (1) user device 906 and communal device 908 are both available and capable of performing the one or more tasks, (2) user device 906 and communal device 908 are both equally as physically close to communal device 904 (e.g., both devices are in the same room), and (3) user 902 is not looking at user device 906 or communal device 908, then device selection module 1110 will determine whether user device 906 or communal device 908 has (or is communicatively connected to) the largest display. Device selection module 1110 then selects the single electronic device of the two or more available and capable electronic devices that has (or is communicatively connected to) the largest display.


In some examples, if device selection module 1110 determines, based on the user attention information associated with the two or more available and capable electronic devices, that a user of the electronic device that provided the user voice input data to voice input receiver module 1102 is not looking at any of the two or more available and capable electronic devices, device selection module 1110 determines, based on data indicating a speaker loudness (e.g., maximum decibel level) included in device capability information associated with the two or more available and capable electronic devices, which electronic device of the two or more available and capable electronic devices has (or is communicatively connected to) the loudest speaker(s). For example, if device selection module 1110 determines that (1) user device 906 and communal device 908 are both available and capable of performing the one or more tasks, (2) user device 906 and communal device 908 are both equally as physically close to communal device 904 (e.g., both devices are in the same room), and (3) user 902 is not looking at user device 906 or communal device 908, then device selection module 1110 will determine whether user device 906 or communal device 908 has (or is communicatively connected to) the largest speaker(s). Device selection module 1110 then selects the single electronic device of the two or more available and capable electronic devices that has (or is communicatively connected to) the loudest speaker(s).


In some examples, if device selection module 1110 determines, based on the user attention information associated with the two or more available and capable electronic devices, that a user of the electronic device that provided the user voice input data to voice input receiver module 1102 is not looking at any of the two or more available and capable electronic devices, device selection module 1110 simply selects the two or more available and capable electronic devices. As will be described in greater detail below, when device selection module 1110 selects two or more available and capable electronic devices in the above examples, device selection module 1110 provides command module 1112 with (1) device identifiers corresponding to the two or more available and capable electronic devices, (2) the one or more tasks, and (3) an instruction to provide a command that causes the electronic device that provided the user voice input data to voice input receiver module 1102 (e.g., communal device 904) to output a query requesting the user to select an electronic device of the two or more electronic devices to perform the one or more tasks.


As will be described in greater detail below with reference to FIGS. 12A-12B, in some examples, if task determination module 1108 determines a plurality of tasks (e.g., more than one task) and device selection module 1110 determines, based on proximity information and/or contextual state information included in the aggregate context, that two or more available and capable electronic devices are equally as physically close to the electronic device that provided the user voice input data voice input receiver module 1102, device selection module 1110 selects at least two of the two or more electronic devices to each perform at least one task of the plurality of tasks. These examples are referred to as “multimodal task performance,” as the above selection results in two or more electronic devices concurrently performing tasks (of the plurality of tasks) to fulfill a user request. For example, if device selection module 1110 determines that user device 906 and communal device 908 are both available, capable, and proximate to communal device 904 (e.g., in the same room), device selection module may select both user device 906 and communal device 908 to perform at least one task of the plurality of tasks. In these examples, after selecting at least two electronic devices to perform the one or more tasks, device selection module 1110 assigns a set of tasks of the plurality of tasks to each of the selected electronic devices. A set of tasks can include one task of the plurality of tasks or multiple tasks of the plurality of tasks. Returning to the above example, device selection module 1110 may assign a first set of tasks to user device 906 (e.g., performing a search, retrieving data/information, and providing an audio output including the retrieved data/information (e.g., a digital assistant response)) and a second set of tasks to communal device 908 (e.g., performing a search, retrieving data/information, and providing (e.g., displaying) a visual output including the retrieved data/information (e.g., a textual representation of the digital assistant response output by user device 906)). As noted in the example above, in some examples, device selection module assigns one or more of the same tasks to each of the at least two selected electronic devices. For example, device selection module 1110 may assign the tasks of performing a search and retrieving data/information based on the search to all of the selected electronic devices (e.g., such that each electronic device is able to provide an output including the retrieved data/information).


In some examples, device selection module 1110 selects at least two of the two or more available, capable, and proximate electronic devices for multimodal task performance instead of determining, based on user attention information included in the aggregate context, whether a user is looking at an electronic device of the two or more electronic devices. In some examples, device selection module 1110 selects at least two of the two or more available, capable, and proximate electronic devices for multimodal task performance even if device selection module 1110 determines that a user of the electronic device that provided the user voice input data to voice input receiver module 1102 is looking at a single electronic device of the two or more available, capable, and proximate electronic devices.


In some examples, device selection module 1110 selects the at least two electronic devices for multimodal task performance based on the plurality of tasks including one or more specific tasks (e.g., if the plurality of tasks include displaying a particular type of information (e.g., images, recipes, or the like), if the plurality of tasks include providing an audio output and a visual output, if the plurality of tasks include user authentication (e.g., to make a purchase), or the like). In these examples, if device selection module 1110 determines that the plurality of tasks includes one or more specific tasks, device selection module 1110 selects the at least two electronic devices for multimodal task performance instead of (1) determining whether a user is looking at an electronic device and/or (2) selecting a single electronic device that the user is looking at. For example, device selection module 1110 may select the at least two electronic devices for multimodal task performance if device selection module 1110 determines that the plurality of tasks includes a task of user authentication.


In some examples, device selection module selects the at least two electronic devices for multimodal task performance based on the determined user intent corresponding to the plurality of tasks. In these examples, device selection module selects the at least two electronic devices for multimodal task performance instead of (1) determining whether a user is looking at an electronic device and/or (2) selecting a single electronic device that the user is looking at. For example, if the plurality of tasks correspond to a user intent of providing a food recipe or a user intent of purchasing a movie, device selection module 1110 will select at least two electronic devices for multimodal task performance in response to determining that the at least two electronic devices are available, capable, and proximate to the electronic device that provided the user voice input data to voice input receiver module 1102.


As will be described in greater detail below, when device selection module 1110 selects at least two electronic devices for multimodal task performance in the above examples, device selection module 1110 provides command module 1112 with (1) device identifiers corresponding to the at least two electronic devices, (2) a set of tasks (of the plurality of tasks) associated with each device identifier, and (3) an instruction to provide a command to each of the selected electronic devices that causes each electronic device to perform its associated set of tasks.


In some examples, device selection module 1110 determines that none of the electronic devices participating in the context-sharing group are available. For example, all of the electronic devices in context-sharing group would be unavailable if context information included in the aggregate context indicates that user device 906 and user device 910 are face down (and thus do not have visible displays) and if communal device 904 and communal device 908 are already performing a task for a user and/or have an open/active software application (e.g., that a user is interacting with). In these examples, device selection module 1110 selects a single capable and/or proximate electronic device (proximate to the electronic device that provided the voice input data to voice input receiver module 1102) as described above. In some examples, device selection module selects more than one capable and/or proximate electronic device. Then, as will be described in greater detail below, device selection module 1110 provides command module 1112 with (1) a device identifier corresponding to the selected electronic device, (2) the one or more tasks, and (3) an instruction to provide a command that causes the selected electronic device to output results of the performance of the one or more tasks (e.g., data retrieved based on the performance of the one or more tasks, audio and/or text output data generated based on the performance of the one or more tasks, etc.) within a notification. In some examples, the notification includes retrieved data/information. In some examples, the notification provides a link or an affordance that, when selected (e.g., pressed) by a user of the electronic device, causes the electronic device to output a digital assistant response as an audio output and/or as text on a display of the electronic device (e.g., a digital assistant response that includes retrieved data/information).


As described above, in some examples, system 1100 is able to access and utilize user data associated with one or more electronic devices participating in a context-sharing group when that user data is, for example, stored on the one or more remote devices that are implementing system 1100 (e.g., server 916). For example, user intent module 1106 may access and utilize user data when determining the one or more user intents. Similarly, in some of the above examples, after device selection module 1110 selects an electronic device to perform the one or more tasks (e.g., before device selection module provides device identifiers, the one or more tasks, and/or instructions to command module 1112), device selection module 1110 determines, based on the determined user intent and/or the one or more tasks, whether or not there is user data (e.g., a user's media, contacts, speech profiles, preferences, or the like) that is stored on the one or more remote devices that is needed for the performance of the one or more tasks. For example, if the one or more tasks include a task of playing a specific song (e.g., a song by a specific artist (e.g., based on the user voice input “Hey Siri, play a Taylor Swift song.”)), device selection module may determine that audio data corresponding to the specific song is needed to perform the one or more tasks.


If device selection module 1110 determines that there is stored user data needed for the performance of the one or more tasks, device selection module determines whether the selected electronic device has access to that stored user data (e.g., if the stored user data is also stored locally on the selected electronic device, such that the selected electronic device may access and utilize the user data when performing the one or more tasks). Device selection module 1110 makes this determination based on the user data associated with the selected electronic device that is stored on the one or more remote devices (e.g., because the user data stored on the one or more remote devices indicates what user data is stored on the selected electronic device when, for example, the selected electronic device periodically syncs/transmits its stored user data to the one or more remote devices). Specifically, if the user data that is needed to perform the one or more tasks is not included in the user data associated with the selected electronic device that is stored on the one or more remote devices (e.g., the user data is only included in the stored user data associated with another electronic device participating in the context-sharing group), then device selection module 1110 determines that the selected electronic device does not have access to the user data that is needed. Returning to the previous example, if the selected electronic device is user device 906 and device selection module determines that the user data associated with user device 906 (stored on server 916) does not include the audio data corresponding to the specific song (e.g., the audio data is only included in stored user data associated with one or more other electronic devices (e.g., user device 910)), device selection module 1110 will determine that user device 906 does not have access to the audio data.


If device selection module 1110 determines that the selected electronic device does not have access to the user data needed to perform the one or more tasks, device selection module retrieves the stored user data and provides the user data to command module 1112 (e.g., when device selection module 1110 provides the device identifiers, one or more tasks, and/or instructions to command module 1112). Specifically, device selection module provides command module 1112 with (1) a device identifier corresponding to the selected electronic device, (2) the one or more tasks associated with the device identifier, (3) the retrieved user data, and (4) an instruction to provide a command to the selected electronic device that causes the selected electronic device to perform the one or more tasks based on the retrieved user data. Returning to the previous example, after determining that user device 906 does not have access to the stored audio data corresponding to the specific song, device selection module 1110 will retrieve the audio from the stored user data associated with another electronic device participating in context-sharing group 914 (e.g., user device 910) and subsequently provide the audio data to command module 1112 with the device identifier corresponding to user device 906 so that command module 1112 may generate a command that will cause user device 906 to play the specific song using the retrieved audio data.


In some examples, the other electronic device that is associated with the retrieved user data (e.g., user device 910) must be registered to the user that provides the user voice input (e.g., user 902) in order for device selection module 1110 to retrieve the user data for task performance at the selected electronic device (e.g., user device 906). For example, if user device 906 and user device 910 are registered to two separate users, device selection module 1110 will not be able to retrieve stored user data associated with user device 910 for task performance at user device 906 (and vice versa). In other examples, device selection module 1110 can retrieve stored user data associated with any electronic device that is currently participating in the context-sharing group (even if the registered user for an electronic device is different from the registered user that provided the user voice input).


In some examples, device selection module 1110 retrieves stored user data associated with an electronic device registered to the user that provides the user voice input only if the electronic device is participating in the same context-sharing group as the selected electronic device. For example, if user 902 is the registered user of another electronic device that is not currently participating in context-sharing group 914, then device selection module 1110 cannot retrieve user data associated with that other electronic device until that other electronic device joins context-sharing group 914. As another example, if user device 910 is registered to user 902, but user device 910 leaves context-sharing group 914 (e.g., by disconnecting from network 912) before device selection module 1110 retrieves user data from the stored user data associated with user device 910, then device selection module 1110 will not be able to retrieve user data from the stored user data associated with user device 910 or provide that user data to command module 1112. Note, in some examples, communal devices (e.g., communal device 904) do not store user data and/or do not sync user data to remote devices (e.g., server 916). In these examples, device selection module 1110 can only retrieve and provide user data associated with user devices (e.g., user device 906 and/or user device 910) that are registered to the user that provides the user voice input.


System 1100 includes command module 1112. Command module 1112 (1) receives device identifiers, tasks, instructions, and/or user data from device selection module 1110, (2) generates one or more commands based on the received device identifiers, tasks, instructions, and/or user data, and (3) provides the one or more commands with associated device identifiers (and, in some examples, user data) to the electronic device that provided the voice input data to voice input receiver module 1102 (e.g., because that is the only electronic device participating in the context-sharing group that the remote device (e.g., server 916) is in communication with). For example, after determining one or more commands, command module 1112 will transmit the one or more commands and a device identifier associated with each command to communal device 904. As discussed above, the commands generated by command module 1112 will cause electronic devices to perform various tasks based on the determinations and selections made by device selection module 1110. Specifically, there are several ways in which the one or more commands generated by command module 1112 may vary based on the device identifiers, tasks, instructions, and/or user data received from device selection module 1110, each of which is discussed in turn below.


If command module 1112 receives (1) a single device identifier corresponding to a selected electronic device and (2) one or more tasks, command module 1112 will generate a command that will cause the selected electronic device to perform the one or more tasks. In some examples, the command further causes the selected electronic device to output an audio and/or visual digital assistant response based on the performance of the one or more tasks (e.g., “I have stopped your alarm.” or “Now playing Taylor Swift.”). In some examples, command module 1112 generates an additional command that will cause the electronic device that provided the user voice input data to voice input receiver module 1102 (e.g., communal device 904) to output an audio and/or visual digital assistant response that indicates which electronic device was selected to perform the one or more tasks (e.g., “Directions to San Jose Airport are ready on your phone.” or “Now showing photos on your TV.”).


If command module 1112 receives (1) two or more device identifiers corresponding to two or more electronic devices, (2) the one or more tasks, and (3) an instruction to provide a command that causes the electronic device that provided the user voice input data to voice input receiver module 1102 (e.g., communal device 904) to output a query requesting the user to select an electronic device of the two or more electronic devices to perform the one or more tasks, command module 1112 will generate two commands. The first command will cause the user-selected electronic device to perform the one or more tasks. The second command will cause the electronic device that provided the user voice input data to voice input receiver module 1102 to (1) output a query (e.g., as an audio output and/or as text on a display) requesting the user to select an electronic device of the two or more selected electronic devices to perform the one or more tasks (e.g., “Do you want to see your photos on your iPhone or your iPad?”) and (2) transmit the first command to the user-selected electronic device (e.g., after receiving the user's response to the query (e.g., the user's response being a second user voice input or a selection of a displayed affordance corresponding to one of the two or more electronic devices)).


In some examples, the first command further causes the user-selected electronic device to output an audio and/or visual digital assistant response based on the performance of the one or more tasks (e.g., “I have stopped your alarm.” or “Now playing Taylor Swift.”). In some examples, the second command further causes the electronic device that provided the user voice input data to voice input receiver module 1102 to output an audio and/or visual digital assistant response after receiving the user selection that indicates the electronic device that was selected to perform the one or more tasks (e.g., “Now showing photos on your iPad.”).


If command module 1112 receives (1) a device identifier corresponding to the selected electronic device, (2) the one or more tasks, and (3) an instruction to provide a command that causes the selected electronic device to output results of the performance of the one or more tasks within a notification, command module 1112 will generate a command that will cause the selected electronic device to perform the one or more tasks and subsequently provide a notification (e.g., a notification that appears on a lock-screen interface of the selected electronic device, in a notification history interface of the selected electronic device, and/or the like) that includes results of the performance of the one or more tasks. In some examples, the command further causes the selected electronic device to output an audio indication when the notification is provided. In some examples, command module 1112 generates an additional command that will cause the electronic device that provided the user voice input data to voice input receiver module 1102 (e.g., communal device 904) to output an audio and/or visual digital assistant response that indicates that none of the electronic devices participating in the context-sharing group are available to perform the one or more tasks and/or indicates that further information related to the user's request may be found on the selected electronic device (e.g., “None of your devices can show pictures at the moment. Please see your iPhone for more information.”).


If command module 1112 receives (1) a device identifier corresponding to the selected electronic device, (2) the one or more tasks, (3) an instruction to provide a command that causes the selected electronic device to output (e.g., as an audio output and/or on a display) an offer to handoff the performance of the one or more tasks to another electronic device (e.g., an electronic device that the user is looking at), and (4) a second device identifier corresponding to the other electronic device, command module 1112 will generate a command that will cause the selected electronic device to output the offer to handoff the performance of the one or more tasks to the other electronic device corresponding to the second device identifier (e.g., “Would you prefer to see the lasagna recipe on your iPad?”). In some examples, the command further causes the selected electronic device to perform the one or more tasks and subsequently output the offer to handoff the performance of the one or more tasks to the other electronic device along with results of the performance of the one or more tasks (e.g., “Here is a lasagna recipe that I found. Did you want to see that on your iPad?”).


If command module receives (1) device identifiers corresponding to two or more selected electronic devices, (2) a set of tasks associated with each device identifier, and (3) an instruction to provide a command to each of the two or more selected electronic devices that causes each electronic device to perform its associated set of tasks, command module 1112 will generate a command for each device identifier. For example, if command module 1112 receives a device identifier corresponding to user device 906, a device identifier corresponding to communal device 908, and a sets of tasks associated with each device identifier, command module 1112 will generate a first command that will cause user device 906 to perform its associated set of tasks and a second command that will cause communal device 908 to perform its associated set of tasks. In some examples, at least one command of the two or more commands that command module 1112 generates further causes a selected electronic device to output an audio and/or visual digital assistant response based on the performance of the one or more tasks (e.g., “There are several Star Wars movies to choose from, as shown on your TV. The first movie is . . . ”).


In some examples, command module 1112 determines whether or not a set of tasks received from device selection module 1110 includes a task of user authentication (e.g., user authentication to make a purchase). In these examples, if command module 1112 determines that a set of tasks includes a task of user authentication, command module 1112 will transmit that set of tasks to the electronic device that provided the user voice input data to voice input receiver module 1102 (e.g., communal device 904) and forgo transmitting the commands corresponding to the remaining sets of tasks. Command module 1112 will forgo transmitting the commands corresponding to the remaining sets of tasks until command module 1112 (or one or more other modules of system 1100) authenticates a user (e.g., based on a comparison of stored user authentication data to authentication data provided to the electronic device that performs the set of tasks that includes a task of user authentication) or until command module 1112 (or one or more other modules of system 1100) receives an indication that a user has been authenticated from the electronic device that provided the user voice input data (e.g., when the electronic device that performs the set of tasks locally authenticates a user instead of providing the authentication data for command module 1112 to authenticate the user). After authenticating a user or receiving an indication that a user has been authenticated, command module transmits the commands corresponding to the remaining sets of tasks to the electronic device that provided the user voice input data. An example of this process is described in greater detail below with reference to FIG. 12B.


If command module 1112 receives (1) a device identifier corresponding to a selected electronic device, (2) one or more tasks associated with the device identifier, (3) retrieved user data, and (4) an instruction to provide a command to the selected electronic device that causes the selected electronic device to perform the one or more tasks based on the retrieved user data, command module 1112 will generate a command that will cause the selected electronic device to perform the one or more tasks based on the retrieved user data. In some examples, the command further causes the selected electronic device to output an audio and/or visual digital assistant response based on the performance of the one or more tasks (e.g., “Now playing Taylor Swift.” or “Calling Daenerys Targaryen.”). In some examples, command module 1112 generates an additional command that will cause the electronic device that provided the user voice input data to voice input receiver module 1102 (e.g., communal device 904) to output an audio and/or visual digital assistant response that indicates which electronic device was selected to perform the one or more tasks (e.g., “Now playing Taylor Swift on your HomePod.” or “Calling Daenerys Targaryen on your iPhone.”).


Note, while the above description separately describes the different types of commands that command module 1112 generates, it should be appreciated that, in some examples, command module 1112 generates more than one type of command in response to a single user voice input. For example, if user voice input 918 is “Hey Siri, play a Taylor Swift song,” device selection module 1110 may provide command module 1112 with (1) an instruction to provide a command that causes communal device 904 to output a query requesting user 902 to select an electronic device to perform the one or more tasks, (2) retrieved audio data corresponding to a Taylor Swift song, and (3) an instruction to provide a command to the user-selected electronic device that causes the user-selected electronic device to perform the one or more tasks based on the retrieved audio data. In response, command module 1112 may generate a first command that will cause the user-selected electronic device to perform the one or more tasks based on the retrieved audio data and a second command that will cause communal device 904 to (1) output a query (e.g., as an audio output and/or as text on a display) requesting the user to select an electronic device of two or more selected electronic devices to perform the one or more tasks based on the retrieved audio data and (2) transmit the first command to the user-selected electronic device along with the retrieved audio data. Thus, as shown in the above example, command module 1112 generates a first type of command (e.g., directed to the performance of one or more tasks based on retrieved user data) and a second type of command (e.g., directed to the user selection of an electronic device that will perform the one or more tasks) in response to a single user voice input.


After generating one or more commands (e.g., as described above), command module 1112 transmits the one or more commands (with associated device identifiers) to the electronic device that provided the user voice input data to voice input receiver module 1102. In the examples described above where command module 1112 receives user data retrieved by device selection module 1110, command module 1112 further transmits the user data (with associated device identifiers) to the electronic device that provided the user voice input data to voice input receiver module 1102. As will be described in greater detail below with reference to FIG. 9, after receiving the one or more commands (and, in some examples, user data), the electronic device that provided the user voice input data to voice input receiver module 1102 transmits the one or more commands to one or more electronic device participating in the context-sharing group based on the device identifiers associated with the one or more electronic devices.


Returning to FIG. 9, as represented by arrows 926, communal device 904 receives, from server 916, a command to perform one or more tasks (e.g., generated by command module 1112) and a device identifier (associated with the command) that corresponds to user device 906. In some examples, communal device 904 also receives user data that was stored on server 916 (e.g., when the command is to perform one or more tasks based on the user data). It should be appreciated that although arrows 926 represent communal device receiving a single command to perform one or more tasks at a single selected electronic device, communal device 904 may alternatively or additionally receive any of the types of commands described above with reference to command module 1112 (or any combination of those command types).


As represented by arrows 928 and 928a, after receiving the command to perform the one or more tasks and device identifier corresponding to user device 906, communal device 904 transmits the command to user device 906 (e.g., based on the stored associations between electronic devices participating in context-sharing group 914 and their device identifiers). After user device 906 receives the command, the command causes user device 906 to perform the one or more tasks. As discussed above, in some examples, communal device 904 receives an additional command from server 916 that causes communal device 904 to output an audio and/or visual digital assistant response that indicates that user device 906 was selected to perform the one or more tasks (e.g., “I have stopped the alarm on your iPhone.” “Now showing photos on your iPhone.”).


In some examples, prior to transmitting a command to an electronic device (e.g., as represented by arrows 928 and 928a), communal device 904 determines whether the device identifier associated with the command corresponds to a client device (e.g., user device 906 or user device 910). If communal device 904 determines that the device identifier corresponds to a client device, communal device determines whether user 902 is the registered user of the client device. For example, if the device identifier received by communal device corresponds to user device 910 (instead of user device 906), communal device 904 may determine whether user 902 is the registered user of user device 910. Then, if communal device determines that user 902 is not the registered user of user device 910, communal device 904 determines whether user 902 is an authorized user of user device 910.


In some examples, an authorized user is a user of a client device (other than the registered user of the client device) that the registered user has granted access to control and/or make user requests on the client device. In some examples, an authorized user of a client device may only control and/or make user requests on the client device when the client device is participating in a context-sharing group. Authorized user information is provided by a registered user of a client device (e.g., when the registered user is enrolling the client device in a context-sharing group, or any time after) via a software application stored on the client device (e.g., via the HomeKit® application) and/or via a website that has context-sharing group functionality. Thus, returning to the previous example, communal device 904 determines whether user 902 is an authorized user of user device 910 by accessing the authorized user information associated with user device 910 (e.g., via the software application and/or website). In some examples, determining whether user 902 is an authorized user of user device 910 includes communal device outputting a request for user authentication (e.g., voice authentication, password authentication, and/or biometric authentication (e.g., face and/or fingerprint authentication)). Then, after receiving user authentication data from user 902, communal device compares the user authentication data to user authentication data included in the authorized user information associated with user device 910 to determine whether user 902 is an authorized user of user device 910. As represented by arrows 928 and 928b, in response to determining that user 902 is an authorized user of user device 910, communal device 904 transmits the command to user device 910.


Note, in some examples, server 916 (e.g., device selection module 1110) determines whether user 902 is a registered user of user device 910 prior to transmitting a command and a device identifier (corresponding to user device 910) to communal device 904 (e.g., as represented by arrows 926). For example, server 916 determines whether user 902 is a registered user of user device 910 based on user data associated with user device 910 (e.g., user voice profile information associated with a registered user of user device 910) that is stored on server 916. In these examples, as represented by arrows 925, if server 916 determines that user 902 is not a registered user of user device 910, server 916 (e.g., command module 1112) transmits a command to communal device 904 that causes communal device 904 to output a request for user authentication, receive user authentication data (from user 902), and then determine whether user 902 is an authorized user of user device 910 based on the received authentication data. Then, as represented by arrows 927, if communal device 904 determines that user 902 is an authorized user of user device 910, communal device 904 transmits an indication that user 902 is an authorized user of user device 910 to server 916. After receiving this indication, server 916 transmits the command and the device identifier (corresponding to user device 910) to communal device 904 (e.g., as represented by arrows 926), and communal device 904 transmits the command to user device 910, as represented by arrows 928 and 928b.


6. System and Technique for Multimodal Task Performance in a Context-Sharing Group



FIGS. 12A-12B illustrate a system and technique for multimodal task performance in a context-sharing group, according to various examples. As shown in FIGS. 12A-12B, system 1200 includes communal device 1204, communal device 1206, and user device 1210, all of which are participating in context-sharing group 1214 (which is associated with a specific location (e.g., a home, an office, or the like)). User device 1210 is a client device (e.g., user device 104, 122, 200, 400, or 600). For example, user device 1210 is an iPhone®. In the examples described below, user device 1210 is registered to user 1202. Communal device 1204 is a smart speaker that has the same or similar digital assistant capabilities as user device 1210. Communal device 1206 is a smart TV that has the same or similar digital assistant capabilities as the user devices. Communal device 1206 is communicatively connected to display 1208 (e.g., a TV, a monitor, or the like). Further, communal device 1206 is the context collector of context-sharing group 1214 (e.g., because communal device 1206 was previously elected to be context collector). As discussed above with reference to FIG. 8, communal devices are not registered to a single user or are registered to multiple users (e.g., such that the communal device may be used by multiple users without additional user registration and/or user authentication requirements). For example, communal device 1204 is a HomePod® and communal device 1206 is an Apple TV®.


System 1200 further includes network 1212 and server 1216 (e.g., DA server 106). Network 1212 is a wireless communications network (e.g., network(s) 110). As shown, communal device 1204, communal device 1206, and user device 1210 communicate with one another and with server 1216 via network 1212 (and thus are each connected to network 1212). Server 1216 is a remote device that is not participating in context-sharing group 1214. In some examples, system 1200 includes one or more other remote devices (e.g., a local server, a cloud-computing system, or the like) instead of server 1216. It should be recognized that, in these examples, any of the operations performed by communal device 1204, communal device 1206, and/or user device 1210 can instead be performed by server 1216. For example, server 1216 can perform the operations of the respective DA client modules (e.g., DA client module 229) of communal device 1204, communal device 1206, and/or user device 1210.


As shown in FIG. 12A, user 1202 provides user voice input 1218 (e.g., “Hey Siri, show me Star Wars movies.” or “Hey Siri, what is Star Wars.”), which is received by communal device 1204.


As represented by arrows 1220, in response to receiving user voice input 1218 (or, in some examples, in response to detecting a digital assistant trigger included in user voice input 1218), communal device 1204 transmits a request (via network 1212) to communal device 1206 (i.e., the context collector of context-sharing group 1214) for communal device 1206 to transmit an aggregate context of context-sharing group 1214 to communal device 1204.


As represented by arrows 1222, after receiving the request for the aggregate context from communal device 1204, communal device 1206 transmits the aggregate context (or, in some examples, at least a portion of the aggregate context) to communal device 1204. In some examples, the request for the aggregate context causes communal device 1206 to transmit the aggregate context (e.g., data corresponding to the aggregate context), or at least a portion of the aggregate context, to communal device 1204. The aggregate context transmitted to communal device 1204 includes context information (e.g., device state change information, contextual state information, device capability information, proximity information, and/or the like) associated with at least communal device 1204, communal device 1206, and user device 1210 (e.g., because communal device 1204, communal device 1206, and user device 1210 each recently underwent a device state change (e.g., a timer event, detecting a digital assistant trigger, playing a movie, etc.)). Specifically, the context information is associated with at least communal device 1204, communal device 1206, and user device 1210 based on the device identifiers that communal device 1206 receives with the context information from at least communal device 1204, communal device 1206, and user device 1210. In some examples, the aggregate context does not include any other type of device identification or identifying information other than the device identifiers received with context information included in the aggregate context.


In other examples, the aggregate context does include other types of device identifications and/or information identifying a registered user of each electronic device (in addition to the device identifiers). This in turn allows server 1216 to determine whether electronic devices participating in a context-sharing group are registered to a single user or two or more different users (as this information may influence the commands that server 1216 provides). In some examples, device identifications and/or information identifying a registered user of each electronic device included in the aggregate context allows server 1216 to determine whether or not a user voice input is provided by a registered. Further, in some examples, server 1216 uses this additional identifying information to access and/or utilize user data that is stored on server 1216 and that is associated with one or more of the electronic devices (e.g., user data that an electronic device participating in the context-sharing group 914 previously synced/transmitted to the remote devices (e.g., during an automatic and/or periodic user data sync)).


As represented by arrows 1224, after receiving the aggregate context from communal device 1206, communal device 1204 transmits data corresponding to user voice input 1218 and at least a portion of the aggregate context to server 1216.


In some examples, communal device 1204 provides audio data corresponding to user voice input 1218 to server 1216. In some examples, communal device 1204 performs speech-to-text processing of user voice input 1218 (e.g., using STT processing module 730) and provides text data corresponding to user voice input 1218 (e.g., a textual representation of user voice input 1218) to server 1216. In some examples, communal device 1204 further performs natural language processing of the text data corresponding to user voice input 1218 (e.g., using natural language processing module 732) and provides results of the natural language processing (e.g., one or more user intents) to server 1216.


In some examples, communal device 1204 provides all of the aggregate context to server 1216. In some examples, communal device 1204 determines what context information included in the aggregate context is relevant to user voice input 1218 (e.g., when communal device 1204 performs natural language processing of user voice input 1218) and only provides the relevant context information to server 1216. In some examples, communal device 1204 determines what context information is relevant based on one or more domains of an active ontology (e.g., ontology 760) that correspond to user voice input 1218 (e.g., by identifying the context information that is related to or associated with the one or more domains corresponding to user voice input 1218). In some examples, communal device 1204 removes personal information (e.g., email addresses, home addresses, payment information, or the like) and/or user data (e.g., a user's preferences, media, contacts, speech profiles, or the like) included in the aggregate context prior to providing the aggregate context to server 1216. In some examples, communal device 1204 encrypts personal information and/or user data included in the aggregate context prior to providing the aggregate context to server 1216 (instead of removing the personal information and/or user data).


After receiving the data corresponding to user voice input 1218 and the at least a portion of the aggregate context, server 1216 (1) determines one or more user intents, (2) determines a plurality of tasks corresponding to the one or more user intents, (3) selects two electronic devices to perform the plurality of tasks, and (4) generates two separate commands (based on the data corresponding to user voice input 1218 and context information included in the at least a portion of the aggregate context), as described above with reference to FIG. 11 and the modules of system 1100. Specifically, server 1216 (e.g., device selection module 1110) determines that communal device 1204 and communal device 1206 are both available, capable of performing at least one task of the plurality of tasks, and proximate to communal device 1204 (i.e., the device that provided the data corresponding to user voice input 1218 to server 1216 (e.g., to voice input receiver module 1102)). Thus, server 1216 selects communal device 1204 and communal device 1206 for multimodal task performance and assigns a set of tasks to each device (with each set of tasks including at least one tasks of the plurality of tasks). Accordingly, server 1216 (e.g., command module 1112) generates a first command to perform the first set of tasks and a second command to perform the second set of tasks. The first command is associated with a device identifier corresponding to communal device 1204, and the second command is associated with a device identifier corresponding to communal device 1206. Note, in some examples, one or more tasks of the first set of tasks are identical to one or more tasks of the second set of tasks (e.g., the first set and the second set both include a task of performing a search and a task of retrieving data/information based on the search). Further, in some examples, server 1216 selects more than two electronic devices for multimodal task performance (e.g., three electronic devices, four electronic devices, or the like) and thus assigns a set of tasks to each of the more than two electronic devices and generates a separate command to perform each set of tasks.


As represented by arrows 1226, server 1216 transmits the first and second commands with their associated device identifiers to communal device 1204. In some examples, server 1216 also transmits user data that was stored on server 1216 to communal device 1204 (e.g., so that communal device 1204 and/or communal device 1206 may perform one or more tasks based on the user data).


As represented by arrows 1228, after receiving the first and second commands with their associated device identifiers, communal device 1204 transmits the second command to communal device 1206 based on the device identifier corresponding to communal device 1206 (e.g., based on the stored associations between electronic devices participating in context-sharing group 1214 and their device identifiers). Further, based on the device identifier corresponding to communal device 1204 being associated with the first command, communal device 1204 determines that it is to perform the first set of tasks. Thus, after communal device 1206 receives the second command, communal device 1204 performs the first set of tasks and communal device 1206 performs the second set of tasks. In some examples, communal device 1204 and communal device 1206 concurrently perform their respective sets of tasks such that each device concurrently outputs results of the performance of their respective set of tasks.


In some examples, the performance of the first set of tasks (by communal device 1204) and the second set of tasks (by communal device 1206) causes a division of the audio and visual output of results of the performance of the tasks between communal device 1204 and communal device 1206. For example, if user voice input 1218 is “Hey Siri, show me Star Wars movies”, the first set of tasks and the second set of tasks will each contain the tasks of performing a search for Star Wars movies and retrieving data/information for the Star Wars movies (e.g., movie titles, year of release, director, and/or the like). However, the first set of tasks will include a task of outputting the retrieved data/information within an audio output (e.g., within a digital assistant response) whereas the second set of tasks will include a task of outputting the retrieved data/information within a visual audio output. Thus, as represented by audio output 1230, after performing the first set of tasks, communal device 1204 will, for example, output an audio digital assistant response (via one or more speakers) that includes at least a portion of the retrieved data/information (e.g., “I found several Star Wars movies. Star Wars: A New Hope. Star Wars: The Empire Strikes Back . . . ”). Further, as represented by results interface 1232, after performing the second set of tasks, communal device 906 will, for example, display (on display 1208) an interface including at least a portion of the retrieved data/information (e.g., Star Wars movie titles with corresponding images). Although two separate devices are providing outputs in the above example, the data/information included in the outputs is the same. As such, user 1202 will be able to view the data/information included in interface while listening to the corresponding data/information included in audio output 1230. Accordingly, the division of audio and visual outputs between at least two electronic devices (as described above) improves a user's digital assistant experience, as it ensures that a user is able to both view and hear a response to a user request even if the device that initially receives the user request does not, for example, have a display.


In some examples, the performance of the first set of tasks (by communal device 1204) and the second set of tasks (by communal device 1206) causes one device to provide a summary response and another device to provide a more detailed response. For example, if user voice input 1218 is “Hey Siri, what is Star Wars?”, the first set of tasks and the second set of tasks will each contain the tasks of performing a search for Star Wars and retrieving data/information associated with Star Wars (e.g., genre information, creator information, plot information, country of origin, and/or the like). However, the first set of tasks will include a task of outputting a brief summary of the retrieved data/information, such as outputting short list of data/information and/or a high-level overview of the data/information. Thus, as represented by audio output 1230, after performing the first set of tasks, communal device 1204 will, for example, output an audio digital assistant response (via one or more speakers) that includes a brief summary of the data/information retrieved by communal device 1204. In some examples, audio output 1230 further directs user 1202 to refer to communal device 1206 for a more detailed response (e.g., “More information about Star Wars is displayed on your TV.”). As represented by results interface 1232, after performing the second set of tasks, communal device 1206 will, for example, display (on display 1208) an interface including a detailed summary of the retrieved data/information that includes hyperlinks, images, and/or other information that is not included in the brief summary output by communal device 1204 (e.g., Star Wars movie titles with corresponding images, hyperlinks to Star Wars fan pages, links to purchase Star Wars movies, and/or the like). Note, while the above example separates the brief summary and the detailed summary between audio and visual outputs, in some examples, the brief summary and the detailed summary are both provided as visual outputs (e.g., on displays of two separate devices). Providing a brief summary and a detailed summary of retrieved data/information in response to a user request (as described above) improves a user's digital assistant experience, as it ensures that a user is able to view and/or hear a brief response to the user request while having the option to quickly view and/or hear a more detailed response if the user wants to know more about the topic of the request (e.g., instead of having to provide a follow-up user request or perform manual searching for more detailed information).


Although not illustrated in FIG. 12A, after communal device 1204 provides audio output 1230, communal device 1204 transmits context information to communal device 1206 (e.g., because the provision of audio output 1230 is a device state change (e.g., the end of a digital assistant dialog session)). The context information includes a digital assistant dialog session history that includes data (e.g., text data) corresponding to audio output 1230, as well as data indicating the data/information retrieved as a result of the performance of the first set of tasks. Upon receiving the context information from communal device 1204, communal device 1206 incorporates the context information into the aggregate context. Similarly, after communal device 1206 provides results interface 1232 (via display 1208), communal device incorporates its own context information into the aggregate context (e.g., because the provision of results interface 1232 is a device state change (e.g., the end of a digital assistant response and/or opening/activation of a software application)). The context information that communal device incorporates into the aggregate context includes data indicating the data/information that is displayed in results interface 1232 (e.g., data indicating the results of the performance of the second set of tasks). The aggregate context that includes the new context information associated with communal device 1204 and communal device 1206 is referred to as the “updated aggregate context” in the description below.


As shown in FIG. 12B, after communal device 1204 provides audio output 1230 and communal device 1206 provides results interface 1232, user 1202 provides user voice input 1234, which is received by communal device 1204. In the below examples, user voice input 1234 is a user request to purchase media corresponding to a media item (e.g., a representation of an image, a video, a song, a movie, an e-book, a gaming software application, or the like) that is included in results interface 1232. For example, if results interface 1232 includes media items corresponding to Star Wars movies (or links and/or affordances for purchasing media), user voice input 1234 may be “Hey Siri, purchase Star Wars: The Empire Strikes Back.”


As represented by arrows 1236, in response to receiving user voice input 1234 (or, in some examples, in response to detecting a digital assistant trigger included in user voice input 1234), communal device 1204 transmits a request (via network 1212) to communal device 1206 for communal device 1206 to transmit an aggregate context of context-sharing group 1214 to communal device 1204.


As represented by arrows 1238, after receiving the request for the aggregate context from communal device 1204, communal device 1206 transmits the updated aggregate context to communal device 1204. As discussed above, the updated aggregate context includes updated context information associated with communal device 1204 and updated context information associated with communal device 1206.


As represented by arrows 1240, communal device 1204 transmits data corresponding to user voice input 1234 and at least a portion of the updated aggregate context to server 1216 (e.g., to voice input receiver module 1102 and aggregate context receiver module 1104). After receiving the data corresponding to user voice input 1234 and the at least a portion of the updated aggregate context, server 1216 (1) determines one or more user intents, (2) determines a plurality of tasks corresponding to the one or more user intents, (3) selects two electronic devices to perform the plurality of tasks, and (4) generates two separate commands (based on the data corresponding to user voice input 1234 and context information included in the at least a portion of the updated aggregate context), as described above with reference to FIG. 11 and the modules of system 1100. Specifically, server 1216 (e.g., device selection module 1110) determines that communal device 1206 and user device 1210 are both available, capable of performing at least one task of the plurality of tasks, and proximate to communal device 1204 (i.e., the device that provided the data corresponding to user voice input 1234 to server 1216). Thus, server 1216 selects communal device 1206 and user device 1210 for multimodal task performance and assigns a set of tasks to each device (with each set of tasks including at least one tasks of the plurality of tasks).


Because user voice input 1234 is a user request to purchase media, server 1216 assigns a set of tasks to user device 1210 (referred to as the third set of tasks) that includes one or more tasks for user authentication. Further, server 1216 assigns a separate set of tasks to communal device 1206 (referred to as the fourth set of tasks) that includes one or more tasks for purchasing the requested media. Accordingly, server 1216 (e.g., command module 1112) generates a third command to perform the third set of tasks and a fourth command to perform the fourth set of tasks. The third command is associated with a device identifier corresponding to user device 1210, and the fourth command is associated with a device identifier corresponding to communal device 1206.


Prior to transmitting the third command and the fourth command, server 916 (e.g., command module 1112) determines that the third set of tasks includes one or more tasks for user authentication. Thus, as represented by arrows 1242, server 1216 (1) transmits the third command and the device identifier corresponding to user device 1210 to communal device 1204 and (2) forgoes transmitting the fourth command and the device identifier corresponding to communal device 1206.


As represented by arrows 1244, after receiving the third command and the device identifier corresponding to user device 1210, communal device 1204 transmits the third command to user device 1210. The third command then causes user device 1210 to perform the third set of tasks, including the one or more tasks for user authentication. For example, the third set of tasks includes outputting a request for a user (e.g., user 1202) to provide user device 1210 with user authentication data (e.g., voice authentication data, password authentication data, and/or biometric authentication data (e.g., data corresponding to a face and/or a fingerprint authentication)). In some examples, the request includes user device 1210 displaying a user authentication interface (e.g., a password input interface).


In this example, the third set of tasks includes a task of transmitting the received user authentication data to communal device 1204. Thus, as represented by arrows 1246, after user device 1210 receives user authentication data from a user, user device 1210 transmits the user authentication data to communal device 1204. Then, as represented by arrows 1248, communal device transmits the user authentication data to server 1216. Upon receiving the user authentication data, server 1216 compares the received user authentication to stored user authentication data associated with user device 1210 (e.g., included in stored user data associated with user device 1210 that was previously synced to server 1216).


As represented by arrows 1250, if server 1216 determines, based on the above comparison, that the user that provided the user authentication data is authorized to make the requested purchase (e.g., because server 1216 determines that the received user authentication data matches the stored user authentication data), server 1216 transmits, to communal device 1204, the fourth command and the device identifier corresponding to communal device 1206. Alternatively, if server 1216 determines that the user that provided the user authentication data is not authorized to make the requested purchase (e.g., because server 1216 determines that the received user authentication data does not match the stored user authentication data or because server 1216 determines that stored restrictions associated with the user (e.g., parental restrictions) prevent the user from making the request purchase), server 1216 forgoes transmitting the fourth command to communal device 1204.


In some examples, the third set of tasks includes a task of locally authenticating a user based on received user authentication data instead of a task of transmitting the received user authentication data to communal device 1204. Thus, in these examples, after user device 1210 receives user authentication data from a user, user device 1210 compares the received user authentication to user authentication data stored on user device 1210 and determines whether or not the user that provided the user authentication data is authorized to make the requested purchase. If user device 1210 determines that the user is authorized to make the requested purchase, user device 1210 transmits an indication that the user is authorized to make the requested purchase to communal device 1204. Communal device 1204 then transmits the indication to server 1216. In response to receiving the indication, server 1216 transmits, to communal device 1204, the fourth command and the device identifier corresponding to communal device 1206.


In some of the examples where the third set of tasks includes a task of locally authenticating a user based on received user authentication data instead of a task of transmitting the received user authentication data to communal device 1204, server 1216 concurrently transmits the third command and the fourth command to communal device 1204. Then, communal device transmits the third set of tasks to user device 1210, but forgoes transmitting the fourth command to communal device 1206 until communal device 1204 receives the indication that the user is authorized to make the requested purchase from user device 1210. Thus, communal device 1204 will not transmit the fourth command to communal device 1206 if user device 1210 determines that the user is not authorized to make the requested purchase.


As represented by arrows 1252, communal device 1204 transmits the fourth command to communal device 1206. The fourth command causes communal device 1206 to perform the fourth set of tasks, which results in communal device 1206 purchasing the requested media. In some examples, after purchasing the requested media, communal device 1206 outputs the requested media via display 1208, as represented by media output 1254. Note, while the above examples are directed to purchasing digital media, the above system and process is applicable to other types of user-requested purchases, such as purchasing physical items (e.g., books, groceries, etc.) from a website. Allocating tasks for user authentication and purchasing to separate electronic devices (as described above) allows a user to quickly and easily provide user authentication data when, for example, the electronic device that is to make a user-requested purchase is further away from the user and/or only has less efficient user authentication capabilities (e.g., only performs user authentication via manual password entry).


Overall, multimodal task performance improves a user's digital assistant experience because it creates an appearance of a single digital assistant that is aware of a user's context and surroundings and that interacts with the user across multiple devices (as opposed to an individual digital assistant for each device).


7. System and Technique for a Continuous Digital Assistant Conversation in a Context-Sharing Group



FIG. 13 illustrates a system and technique for continuous digital assistant conversations across multiple devices participating in a context-sharing group, according to various examples. As shown in FIG. 13, system 1300 includes user device 1304, user device 1306, and communal device 1308, all of which are participating in context-sharing group 1312 (which is associated with a specific location (e.g., a home, an office, or the like)). User device 1304 and user device 1306 are client devices (e.g., user device 104, 122, 200, 400, or 600). For example, user device 1304 is an iPhone® and user device 1306 is an Apple Watch®. In the examples described below, user device 1304 and user device 1306 are registered to user 1302. In some examples, only one of user device 1304 and user device 1306 is registered to user 1302. Communal device 1308 is a smart speaker that has the same or similar digital assistant capabilities as user device 1304 and user device 1306. Further, communal device 1308 is the context collector of context-sharing group 1312 (e.g., because communal device 1308 was previously elected to be context collector). As discussed above with reference to FIG. 8, communal devices are not registered to a single user or are registered to multiple users (e.g., such that the communal device may be used by multiple users without additional user registration and/or user authentication requirements). For example, communal device 1308 is a HomePod®.


System 1300 further includes network 1310 and server 1314 (e.g., DA server 106). Network 1310 is a wireless communications network (e.g., network(s) 110). As shown, user device 1304, user device 1306, and communal device 1308 communicate with one another and with server 1314 via network 1310 (and thus are each connected to network 1310). Server 1314 is a remote device that is not participating in context-sharing group 1312. In some examples, system 1300 includes one or more other remote devices (e.g., a local server, a cloud-computing system, or the like) instead of server 1314. It should be recognized that, in these examples, any of the operations performed by user device 1304, user device 1306, and/or communal device 1308 can instead be performed by server 1314. For example, server 1314 can perform the operations of the respective DA client modules (e.g., DA client module 229) of user device 1304, user device 1306, and/or communal device 1308.


As shown in FIG. 13, user 1302 provides user voice input 1316 (e.g., “Hey Siri, what's the temperature in Palo Alto?”), which is received by user device 1304.


As represented by arrows 1318, in response to receiving user voice input 1316 (or, in some examples, in response to detecting a digital assistant trigger included in user voice input 1316), user device 1304 transmits a request (via network 1310) to communal device 1308 (i.e., the context collector of context-sharing group 1312) for communal device 1308 to transmit an aggregate context of context-sharing group 1312 to user device 1304.


As represented by arrows 1320, after receiving the request for the aggregate context from user device 1304, communal device 1308 transmits the aggregate context (or, in some examples, at least a portion of the aggregate context) to user device 1304. In some examples, the request for the aggregate context causes communal device 1308 to transmit the aggregate context (e.g., data corresponding to the aggregate context), or at least a portion of the aggregate context, to user device 1304. The aggregate context transmitted to user device 1304 includes context information (e.g., device state change information, contextual state information, device capability information, proximity information, and/or the like) associated with at least user device 1304, user device 1306, and communal device 1308 (e.g., because user device 1304, user device 1306, and communal device 1308 each recently underwent a device state change (e.g., a timer event, detecting a digital assistant trigger, playing a movie, etc.)). Specifically, the context information is associated with at least user device 1304, user device 1306, and communal device 1308 based on the device identifiers that communal device 1308 receives with the context information from at least user device 1304, user device 1306, and communal device 1308. In some examples, the aggregate context does not include any other type of device identification or identifying information other than the device identifiers received with context information included in the aggregate context.


In other examples, the aggregate context does include other types of device identifications and/or information identifying a registered user of each electronic device (in addition to the device identifiers). This in turn allows server 1314 to determine whether electronic devices participating in a context-sharing group are registered to a single user or two or more different users (as this information may influence the commands that server 1314 provides). In some examples, device identifications and/or information identifying a registered user of each electronic device included in the aggregate context allows server 1314 to determine whether or not a user voice input is provided by a registered. Further, in some examples, server 1314 uses this additional identifying information to access and/or utilize user data that is stored on server 1314 and that is associated with one or more of the electronic devices (e.g., user data that an electronic device participating in the context-sharing group 1312 previously synced/transmitted to the remote devices (e.g., during an automatic and/or periodic user data sync)).


As represented by arrows 1322, after receiving the aggregate context from communal device 1308, user device 1304 transmits data corresponding to user voice input 1316 and at least a portion of the aggregate context to server 1314.


In some examples, user device 1304 provides audio data corresponding to user voice input 1316 to server 1314. In some examples, user device 1304 performs speech-to-text processing of user voice input 1316 (e.g., using STT processing module 730) and provides text data corresponding to user voice input 1316 (e.g., a textual representation of user voice input 1316) to server 1314. In some examples, user device 1304 further performs natural language processing of the text data corresponding to user voice input 1316 (e.g., using natural language processing module 732) and provides results of the natural language processing (e.g., one or more user intents) to server 1314.


In some examples, user device 1304 provides all of the aggregate context to server 1314. In some examples, user device 1304 determines what context information included in the aggregate context is relevant to user voice input 1316 (e.g., when user device 1304 performs natural language processing of user voice input 1316) and only provides the relevant context information to server 1314. In some examples, user device 1304 determines what context information is relevant based on one or more domains of an active ontology (e.g., ontology 760) that correspond to user voice input 1316 (e.g., by identifying the context information that is related to or associated with the one or more domains corresponding to user voice input 1316). In some examples, user device 1304 removes personal information (e.g., email addresses, home addresses, payment information, or the like) and/or user data (e.g., a user's preferences, media, contacts, speech profiles, or the like) included in the aggregate context prior to providing the aggregate context to server 1314. In some examples, user device 1304 encrypts personal information and/or user data included in the aggregate context prior to providing the aggregate context to server 1314 (instead of removing the personal information and/or user data).


As represented by arrows 1324, server 1314 transmits, to user device 1304, a first command to perform one or more tasks and a device identifier corresponding to user device 1304. After user device 1304 receives the first command and determines that it is to perform the one or more tasks based on the associated device identifier corresponding to user device 1304, user device 1304 performs the one or more tasks. For example, if user voice input 1316 is “Hey Siri, what's the temperature in Palo Alto?”, the one or more tasks include performing a search for weather data associated with Palo Alto, retrieving the requested weather data (e.g., temperature data), and generating a digital assistant response including the retrieved weather data). The first command further causes user device 1304 to output a digital assistant response based on the performance of the one or more tasks. Thus, as shown in FIG. 13, user device 1304 outputs digital assistant response 1326 as an audio output (e.g., via one or more speakers). Returning to the previous example, if user voice input 1316 is “Hey Siri, what's the temperature in Palo Alto?”, digital assistant response 1326 may be “It's currently 68 degrees in Palo Alto.”


As represented by arrows 1327, after user device 1304 provides digital assistant response 1326, user device 1304 transmits context information to communal device 1308 (e.g., because the output of digital assistant response 1326 is a device state change (e.g., the end of a digital assistant dialog session)). The context information includes a digital assistant dialog session history that includes data (e.g., text data) corresponding to user voice input 1316 and digital assistant response 1326, as well as the data/information retrieved as a result of the performance of the one or more tasks (e.g., the weather data associated with Palo Alto). In some examples, the digital assistant dialog session history includes data corresponding to a most recent digital assistant dialog session that occurred at user device 1304 (e.g., speech recognition results, natural language processing results, and/or data retrieved and/or provided during the most recent digital assistant dialog session (e.g., data corresponding to the most recent user voice input and digital assistant response)). In some examples, the digital assistant dialog session history includes data corresponding to all digital assistant dialog sessions that have occurred at user device 1304 within a predetermined period of time (e.g., within the past hour, within the past day, etc.). After receiving the context information from user device 1304, communal device 1308 incorporates the context information into the aggregate context and thus generates an updated aggregate context that now additionally includes the digital assistant dialog session history that user device 1304 included in its context information.


As shown in FIG. 13, sometime after user device 1304 outputs digital assistant response 1326, user 1302 moves from a first area (e.g., a living room, an office, or the like) of the location associated with context-sharing group 1312 (e.g., a home of user 1302, an office building where user 1302 works, or the like) where user device 1304 is located to a second area of the location (e.g., a bedroom, another office, a different floor of the location, or the like). While at the second area of the location, user 1302 provides user voice input 1328 (e.g., “Hey Siri, how long will it take me to drive there?” or “Hey Siri, how about in New York?”), which is received by user device 1306. In this case, user device 1306 is a wearable user device (e.g., an Apple Watch®) and thus is also located in the second area when it receives user voice input 1328. In some examples, user device 1306 is in the first area of the location (where user device 1304 is located) when user device 1306 receives user voice input 1328.


As represented by arrows 1330, in response to receiving user voice input 1328 (or, in some examples, in response to detecting a digital assistant trigger included in user voice input 1328), user device 1306 transmits a request to communal device 1308 for communal device 1308 to transmit an aggregate context of context-sharing group 1312 to user device 1306.


As represented by arrows 1332, after receiving the request for the aggregate context from user device 1306, communal device 1308 transmits the updated aggregate context (or, in some examples, at least a portion of the updated aggregate context) to user device 1306. As mentioned above, the updated aggregate context includes the digital assistant dialog session history that user device 1304 provided to communal device 1308 (e.g., in addition to other context information associated with one or more electronic devices participating in context-sharing group 1312 that was included in the aggregate context).


As represented by arrows 1334, after receiving the updated aggregate context from communal device 1308, user device 1306 transmits data corresponding to user voice input 1328 and at least a portion of the updated aggregate context to server 1314. The at least a portion of the updated aggregate context includes the digital assistant dialog session history that user device 1304 provided to communal device 1308.


After receiving the data corresponding to user voice input 1328 and the at least a portion of the updated aggregate context, server 1314 (1) determines one or more user intents, (2) determines one or more tasks corresponding to the one or more user intents, (3) selects an electronic device to perform the one or more tasks (in this case, user device 1306), and (4) generates a command to perform the one or more tasks (based on the data corresponding to user voice input 1328 and context information included in the at least a portion of the updated aggregate context), as described above with reference to FIG. 11 and the modules of system 1100. Specifically, server 1314 uses the data corresponding to user voice input 1316 that is included in the digital assistant dialog session history (that communal device 1308 added to the updated aggregate context) to disambiguate user voice input 1328.


In some examples, server 1314 (e.g., task determination module 1108) uses the data corresponding to user voice input 1316 to determine one or more parameters for the one or more tasks determined based on a user intent corresponding to user voice input 1328. For example, if user voice input 1328 is “Hey Siri, how long will it take me to drive there?”, server 1314 will determine a user intent of navigating to a location. However, user voice input 1328 is ambiguous with respect to a location parameter for the task of navigation. Thus, server 1314 determines a location parameter of “Palo Alto” based on the data corresponding to user voice input 1316, as “Palo Alto” was the location parameter for user voice input 1316.


In some examples, server 1314 (e.g., user intent module 1106) uses the data corresponding to user voice input 1316 to determine a user intent corresponding to user voice input 1328. For example, if user voice input 1328 is “Hey Siri, how about in New York?”, sever 1314 will use the data corresponding to user voice input 1316 (e.g., text data corresponding to user voice input 1316, natural language processing results corresponding to user voice input 1316, etc.) to determine that user voice input 1328 represents a user request for a digital assistant to perform a task previously performed by a digital assistant of user device 1304 using parameters provided in user voice input 1328 (e.g., a location parameter of “New York”). Thus, if the user intent corresponding to user voice input 1316 was a user intent of obtaining weather information (e.g., because user voice input 1316 was “Hey Siri, what's the temperature in Palo Alto?”), server 1314 will determine that the user intent corresponding to user voice input 1328 is also obtaining weather information (but with respect to New York instead of Palo Alto).


As represented by arrows 1336, server 1314 transmits, to user device 1306, a second command to perform one or more tasks and a device identifier corresponding to user device 1306. After user device 1306 receives the second command and determines that it is to perform the one or more tasks based on the associated device identifier corresponding to user device 1306, user device 1306 performs the one or more tasks. For example, if user voice input 1328 is “Hey Siri, how about in New York?” and server 1314 determines that the user intent corresponding to user voice input 1328 is obtaining weather information (as described above), the one or more tasks will include performing a search for weather data associated with New York, retrieving the requested weather data (e.g., temperature data), and generating a digital assistant response including the retrieved weather data). The second command further causes user device 1306 to output a digital assistant response based on the performance of the one or more tasks. Thus, as shown in FIG. 13, user device 1306 outputs digital assistant response 1338 as an audio output (e.g., via one or more speakers) and, in some examples, as a visual output (e.g., as text) on a display of user device 1306. Returning to the previous example, if user voice input 1316 is “Hey Siri, how about in New York?”, digital assistant response 1338 may be “It's currently 45 degrees in New York.”


As represented by arrows 1340, after user device 1306 provides digital assistant response 1338, user device 1306 transmits context information to communal device 1308 (e.g., because the output of digital assistant response 1338 is a device state change (e.g., the end of a digital assistant dialog session)). The context information includes a digital assistant dialog session history that includes data (e.g., text data) corresponding to user voice input 1328 and digital assistant response 1338, as well as the data/information retrieved as a result of the performance of the one or more tasks (e.g., the weather data associated with New York). After receiving the context information from user device 1306, communal device 1308 incorporates the context information into the updated aggregate context and thus generates a second updated aggregate context that now additionally includes the digital assistant dialog session history that user device 1306 included in its context information.


8. Processes for Providing a Digital Assistant in a Context-Sharing Group Including at Least Two Electronic Devices



FIGS. 14A-14C illustrate a flow chart representing a process for electing a context collector of a context-sharing group, according to various examples. Process 1400 is performed, for example, using one or more electronic devices implementing a digital assistant. In some examples, one or more blocks of process 1400 are performed by one or more remote devices (e.g., one or more remotes servers (e.g., DA server 106), one or more local servers, a cloud-computing system, and/or the like). For example, the blocks of process 1400 are divided up in any manner between one or more servers (e.g., DA server 106) and a client device. In other examples, the blocks of process 1400 are divided up between one or more servers and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of process 1400 are described herein as being performed by particular devices, it will be appreciated that process 1400 is not so limited. In other examples, process 1400 is performed using only a client device (e.g., user device 104) or only multiple client devices. In process 1400, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the process 1400.


In some examples, at block 1402, a first electronic device (e.g., a personal or client electronic device (e.g., a mobile device (e.g., iPhone®), a tablet computer (e.g., iPad®), a smart watch (e.g., Apple Watch®), a desktop (e.g., iMac®), or a laptop (e.g., MacBook®)) or a communal electronic device (e.g., a smart TV (e.g., Apple TV®) or a smart speaker (e.g., HomePod®))) (e.g., user device 802) connects to a wireless network of a first location (e.g., a local Wi-Fi network (e.g., of a user's home, office, or the like)) (e.g., as represented by arrow 812 of FIG. 8).


In some examples, at block 1404, the first electronic device determines whether the first electronic device is enrolled in a context-sharing group associated with the first location. In some examples, in accordance with a determination that the first electronic device is not enrolled in the context-sharing group, the first electronic device requests enrollments into the context-sharing group. In some examples, the first electronic device must be enrolled in the context-sharing group in order to join the context-sharing group (e.g., previously enrolled via a software application stored on the first electronic device (e.g., HomeKit) or via a website with context-sharing group functionality.


At block 1406, the first electronic device joins the context-sharing group (e.g., a collection of one or more electronic devices (e.g., within a specific location) that automatically share context information (e.g., with a context collector) in response to device state changes) associated with the first location (e.g., as represented by context-sharing group 814 of FIG. 8). The context sharing group associated with the first location is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection. The context sharing group includes at least a second electronic device. In some examples, the first electronic device must connect to the wireless network in order to join the context-sharing group of the first location. In some examples, each electronic device participating in the context-sharing group is connected to the wireless network. In some examples, the first electronic device joins the context-sharing group by establishing a communication connection (e.g., via which context information and other data may be wirelessly transmitted) with at least one other electronic device participating in the context-sharing group.


At block 1408, after joining the context-sharing group associated with the first location, the first electronic device elects (e.g., selects) one electronic device of the collection of at least two electronic devices as a context collector of the context-sharing group. In some examples, the first electronic device elects the context collector in response to joining the context-sharing group (e.g., immediately after joining). In some examples, the first electronic device elects the context collector in response to an electronic device participating in the context-sharing group (e.g., a current context collector) leaving the context-sharing group (e.g., disconnecting from a wireless network of the first location).


At block 1410, the first electronic device determines a first context collector score corresponding to the first electronic device based at least on a strength of connectivity between the first electronic device and a wireless network of the first location. In some examples, the first context collector score is further based on a power source status of the first electronic device (e.g., wired power connection versus battery power and/or amount of battery power remaining). In some examples, the first context collector score is further based on a frequency of movement of the first electronic device in and out of the context-sharing group (e.g., a frequency of connecting to/disconnecting from the wireless network of the first location).


In some examples, at block 1412, the first electronic device transmits the first context collector score to at least the second electronic device included in context-sharing group (e.g., as represented by arrows 816).


At block 1414, the first electronic device receives, from at least the second electronic device, one or more context collector scores corresponding to at least the second electronic device (e.g., as represented by arrows 818 of FIG. 8). In some examples, the first electronic device further transmits a context collector indication indicating whether the first electronic device was previously elected to be a context collector of the context-sharing group (e.g., when the first electronic device previously participated in the context-sharing group).


At block 1416, the first electronic device determines based on the first context collector score and the one or more context collector scores corresponding to at least the second electronic device, which electronic device of the electronic devices included in the context-sharing group to elect as the context collector of the context-sharing group. In some examples, the first electronic device determines which electronic device of the electronic devices included in the context-sharing group to elect as the context collector of the context-sharing group includes comparing the first context collector score to the one or more context collector scores corresponding to at least the second electronic device, and identifying, based on the comparison, the highest context collector score, wherein an electronic device with the highest context collector score is elected to be the context collector.


In some examples, at block 1418, the first electronic device receives one or more context collector indications from at least the second electronic device (e.g., as represented by arrows 818 of FIG. 8). A context collector indication indicates whether an electronic device is currently the context collector.


In some examples, at block 1420, the first electronic device determines whether the context-sharing group currently includes a context collector based on a context collector indication corresponding to the first electronic device and the one or more context collector indications received from at least the second electronic device.


In some examples, at block 1422, the first electronic device determines which electronic device of the electronic devices included in the context-sharing group to elect as the context collector of the context-sharing group further based on whether the context-sharing group currently includes a context collector.


In some examples, at block 1424, in accordance with a determination that the context-sharing group currently includes a context collector, the first electronic device elects the current context collector to be the context collector of the context-sharing group. In some examples, the second electronic device is the context collector of the context-sharing group.


In some examples, at block 1426, in accordance with a determination that the context-sharing group includes more than one context collector (e.g., because the first electronic device was previously elected to be the context collector of the context-sharing group when previously participating in the context-sharing group), determining which electronic device of the electronic devices included in the context-sharing group to elect as the context collector of the context-sharing group based on the first context collector score and the one or more context collector scores corresponding to at least the second electronic device.


At block 1428, in accordance with a determination to elect the first electronic device as the context collector, the first electronic device receives context information (e.g., device state change information (e.g., device state change type, device state change time, and/or the like), device capability information, contextual state information (e.g., current location, acceleration, display visibility, user attention, and/or the like), user-specific information (e.g., corresponding to a registered user of an electronic device), and/or the like) from at least the second electronic device in response to at least the second electronic device undergoing a device state change (e.g., media playback, activation of an application, timer event, alarm event, change in power state (e.g., on/off), change in display visibility (e.g., turning the second electronic device from a display down position to a display up position (e.g., a display of the second electronic device is visible to a user of the second electronic device in the display up position)), digital assistant trigger (e.g., “Hey Siri,” “Siri,” or the like) detection, and/or an end of digital assistant dialog session) (e.g., as represented by alarm event 820 and arrows 822a of FIG. 8).


In some examples, at block 1430, the first electronic device receives a request for an aggregate context of the context-sharing group (e.g., a stored collection of context information received from one or more (e.g., each) electronic devices participating in the context-sharing group (e.g., when the one or more electronic devices undergo a device state change)) from the second electronic device. In some examples, the second electronic device transmits the request to the first electronic device in response to receiving a user voice input from a user of the second electronic device.


In some examples, at block 1432, the first electronic device transmits the aggregate context to the second electronic device. In some examples, transmitting the aggregate context to the second electronic device causes the second electronic device to obtain a digital assistant response to the user voice input based on context information included in the aggregate context. In some examples, obtaining the digital assistant response includes transmitting the user voice input and at least a portion of the aggregate context to a remote device that is not participating in the context-sharing group (e.g., one or more servers, a local sever, a cloud-computing system, and/or the like) so that the remote device determines the digital assistant response or determines one or more tasks for the second electronic device to perform. In the examples where the remote device determines one or more tasks, the second electronic device performs the one or more tasks and determines the digital assistant response based on results of the performance of the one or more tasks.


In some examples, at block 1434, in accordance with a determination to elect the second electronic device as the context collector, the first electronic device transmits context information associated with the first electronic device to the second electronic device in response to the first electronic device undergoing a device state change (e.g., as represented by alarm event 820 and arrows 822b of FIG. 8).



FIGS. 15A-15B illustrate a flow chart representing a process for performing one or more tasks in a context-sharing group, according to various examples. Process 1500 is performed, for example, using one or more electronic devices implementing a digital assistant. In some examples, one or more blocks of process 1500 are performed by one or more remote devices (e.g., one or more remotes servers (e.g., DA server 106), one or more local servers, a cloud-computing system, and/or the like). For example, the blocks of process 1500 are divided up in any manner between one or more servers (e.g., DA server 106) and a client device. In other examples, the blocks of process 1500 are divided up between one or more servers and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of process 1500 are described herein as being performed by particular devices, it will be appreciated that process 1500 is not so limited. In other examples, process 1500 is performed using only a client device (e.g., user device 104) or only multiple client devices. In process 1500, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the process 1500.


At block 1502, a first electronic device (e.g., communal device 904) participating in a context-sharing group associated with a first location receives a user voice input (e.g., “Hey Siri, stop the timer,” Hey Siri, play music,” or the like) (e.g., as represented by user voice input 918 of FIG. 9). The context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection (e.g., as represented by context-sharing group 914 of FIG. 9). The collection includes at least a second electronic device (e.g., user device 906, user device 910, or communal device 908) and a context collector (e.g., communal device 908). In some examples, the second electronic device is the context collector. In some examples, the context collector is a third electronic device that is participating in the context-sharing group. In some examples, each electronic device participating in the context-sharing group is connected to a single wireless network (e.g., a Wi-Fi network) of the first location.


In some examples, at block 1504, in response to receiving the user voice input, the first electronic device transmits a request to the context collector for the context collector to transmit the aggregate context of the context-sharing group to the first electronic device (e.g., as represented by arrows 920). The request causes the context collector to transmit the aggregate context to the first electronic device (e.g., as represented by arrows 922 of FIG. 9).


At block 1506, the first electronic device receives the aggregate context of the context-sharing group from the context collector (e.g., a collection of context information (e.g., device state change information (e.g., type of state change and time of state change), contextual state information (e.g., device location, display visibility (e.g., display up or down), user attention information (e.g., whether a user is looking at the device display), strength of network connection, amount of battery power, type of power source (e.g., battery vs wired power source), and/or the like), and/or device capability information (e.g., type of device, processing power, memory availability, display information, speaker information, and/or the like) received from one or more (e.g., each) electronic devices participating in the context-sharing group) (e.g., as represented by arrows 922 of FIG. 9). In some examples, the context information included in the aggregate context indicates whether an electronic device is available (e.g., whether the electronic device is currently being used (e.g., open/active applications), currently performing a task, and/or currently unable to provide an audio and/or visual output (e.g., because the electronic device is face down)).


In some examples, prior to receiving the aggregate context, at least the first electronic device and the second electronic device provide the context information included in the aggregate context to the context collector. In some examples, the first electronic device and the second electronic device each provide their respective context information to the context collector in response to undergoing a device state change. In some examples, the context information includes device state change information corresponding to at least the first electronic device and the second electronic device (e.g., data indicating a type of device state change and/or a time of device state change). In some examples, the context information includes contextual state information (e.g., device location, display visibility (e.g., display up or down), user attention information (e.g., whether a user is looking at the device display), strength of network connection, amount of battery power, type of power source (e.g., battery vs wired power source), and/or the like) corresponding to at least the first electronic device and the second electronic device. In some examples, the context information includes device capability information (e.g., type of device, processing power, memory availability, display information, speaker information, and/or the like) corresponding to at least the first electronic device and the second electronic device.


In some examples, at block 1508, prior to transmitting at least a portion of the aggregate context to a remote device that is not participating in the context-sharing group (e.g., one or more servers), the first electronic device transmits a request to the second electronic device for the second electronic device to provide the first electronic device with an indication of whether the second electronic device detected (e.g., received or heard) the digital assistant trigger included in the user voice input (e.g., a trigger indication). The first electronic device transmits the request when the user voice input includes a digital assistant trigger (e.g., a word or phrase that initiates a dialog session with a digital assistant of an electronic device (e.g., “Hey Siri”, “Siri”, or the like). In some examples, the first electronic device requests the second electronic device to provide the first electronic device with an indication (e.g., a trigger indication) of whether the second electronic device has detected a digital assistant trigger within a predetermined period of time (e.g., within the last 2 seconds, 5 seconds, or 10 seconds). In some examples, the first electronic device transmits the request for a trigger indication to each electronic device participating in the context-sharing group. In these examples, the request is for each electronic device to provide an indication of whether each electronic device detected the digital assistant trigger.


In some examples, at block 1510, after receiving the indication from the second electronic device (e.g., indicating that the second electronic device did or did not detect the digital assistant trigger), the first electronic device incorporates the indication into context information associated with the second electronic device included in the aggregate context (e.g., incorporating the indication as device proximity information). After receiving the context information including the indication, a remote device determines a physical proximity of the second electronic device to the first electronic device (e.g., when determining one or more tasks and/or selecting an electronic device to perform the one or more tasks) based on the indication (e.g., based on data included in the indication). In some examples, the indication includes data indicating an energy level (e.g., decibel level) of the digital assistant trigger (e.g., the energy level of the digital assistant trigger when received by the second electronic device). In some examples, the indication includes a confidence score corresponding to a confidence of the second electronic device that the user voice input includes a digital assistant trigger.


At block 1512, the first electronic device provides (e.g., transmits) at least a portion of the aggregate context and data corresponding to the user voice input to a remote device that is not participating in the context-sharing group (e.g., one or more servers) (e.g., as represented by arrows 924 of FIG. 9).


In some examples, the first electronic device provides all of the aggregate context to the remote device. In some examples, the first electronic device determines what context information included in the aggregate context is relevant to the user voice input (e.g., when the first electronic device performs natural language processing of the first user input) and only provides the relevant context information to the remote device. In some examples, the first electronic device determines what context information is relevant based on one or more domains of an active ontology that correspond to the user voice input (e.g., by identifying the context information that is related to the one or more domains). In some examples, the first electronic device removes personal data (e.g., personal information and/or user data) included in the aggregate context prior to providing the aggregate context to the remote device. In some examples, the first electronic device encrypts personal data (e.g., personal information and/or user data) included in the aggregate context prior to providing the aggregate context to the remote device.


In some examples, the first electronic device provides audio data to the remote device. In some examples, the first electronic device performs speech recognition processing (e.g., speech-to-text processing) of the user voice input and provides text data corresponding to the user voice input (e.g., a textual representation of the user voice input) to the remote device. In some examples, the first electronic device performs natural language processing of the user voice input and provides results of the natural language processing (e.g., one or more user intents) to the remote device.


In some examples, the user voice input is ambiguous with respect to defining the electronic device that is to respond to the user voice input (e.g., a user voice input such as “Hey Siri, stop” when an event (e.g., a timer event or alarm event) is occurring at two separate electronic devices participating in the context-sharing group). In some of these examples, after the remote device (e.g., voice input receiver module 1102 and aggregate context receiver module 1104 of FIG. 11) receives the data corresponding to the user voice input and the at least a portion of the aggregate context from the first electronic device, the remote device (e.g., user intent module 1106 of FIG. 11) disambiguates the user voice input based on the context information included in the at least a portion of the aggregate context (e.g., the remote device uses data indicating a time of device state change included in the aggregate context to determine which event began most recently, as that is the event the user is most likely referring to (and thus the electronic device the user is most likely referring to)).


In some examples, the first electronic device and the second electronic device are both personal electronic devices (e.g., client devices) that are each registered to a single user. In some of these examples, after the remote device (e.g., voice input receiver module 1102 and aggregate context receiver module 1104 of FIG. 11) receives the data corresponding to the user voice input and the at least a portion of the aggregate context from the first electronic device, the remote device (e.g., user intent module 1106 of FIG. 11) disambiguates one or more words included in the user voice input based on user data associated with the second electronic device. In some examples, the user data associated with the second electronic device includes contacts stored on the second electronic device, user speech profiles generated based on user voice inputs received at the second electronic device, and/or media (e.g., songs, images, and/or the like) stored on the second electronic device. In some examples, the user data associated with the second electronic device is stored on the remote device (e.g., the second electronic device periodically syncs the user data to the remote device). In some examples, the remote device uses user speech profile data associated with the second electronic device and/or stored contact information associated with the second electronic device to disambiguate the user voice input (e.g., to recognize one or more words included in the user voice input).


At block 1514, the first electronic device receives, from the remote device, a command to perform one or more tasks (e.g., one or more tasks to be performed by an electronic device of the context-sharing group in order to fulfill a user intent corresponding to the user voice input) and a device identifier corresponding to the second electronic device (e.g., data indicating the second electronic device) (e.g., as represented by arrows 926 of FIG. 9). In some examples, an electronic device is assigned a device identifier upon joining the context-sharing group. In some examples, the at least a portion of the aggregate context includes a device identifier for each electronic device currently participating in the context-sharing group (e.g., associated with the context information for each electronic device). The remote device (e.g., task determination module 1108 and device selection module 1110 of FIG. 11) determines the one or more tasks and selects the device identifier based on the data corresponding to the user voice input and context information included in the at least a portion of the aggregate context.


In some examples, the context-sharing group further includes a fourth electronic device. In some examples, the first electronic device, the second electronic device, and the fourth electronic device are all personal electronic devices (e.g., client devices) that are each registered to a single user. In some of these examples, at block 1516, prior to transmitting the command to the second electronic device (based on the device identifier corresponding to the second electronic device), the first electronic device receives, from the remote device, user data associated with the fourth electronic device (e.g., the first electronic device receives the user data before, at the same time as, or soon after receiving the command). In some examples, the user data associated with the fourth electronic device includes contact information stored on the fourth electronic device and/or media (e.g., songs, images, videos, and/or the like) stored on the fourth electronic device. In some examples, the user data associated with the fourth electronic device is also stored on the remote device (e.g., the fourth electronic device periodically syncs the user data to the remote device).


In some examples, the first electronic device and the second electronic device are both personal electronic devices (e.g., client devices) that are each registered to a different user. In some of these examples, at block 1518, prior to transmitting the command to the second electronic device, the first electronic device outputs a request for user authentication (e.g., voice authentication, password authentication, and/or biometric authentication (e.g., face and/or fingerprint authentication). In some examples, the first electronic device determines that the second electronic device is registered to a different user and, in response to this determination, outputs the request for user authentication. In some examples, the remote device determines that the first electronic device and the second electronic device are each registered to a different user. In these examples, prior to outputting the request for user authentication, the first electronic device receives a second command from the remote device and a device identifier corresponding to the first electronic device (e.g., as represented by arrows 925 of FIG. 9). The second command then causes the first electronic device to output the request for authentication. In some examples, the second command is received at the same time as the command (received at block 1514), and the first electronic device executes the second command prior to transmitting the command to the second electronic device.


In some examples, at block 1520, the first electronic device receives authentication data from a user of the first electronic device.


In some examples, at block 1522, after receiving the authentication data, the first electronic device transmits the command in response to determining, based on the received authentication data, that the user of the first electronic device is an authorized user of the second electronic device. In some examples, the user previously registers with the second electronic device to become an authorized user of the second electronic device. In some examples, a user of the second electronic device registers the user of the first electronic device as an authorized user of the second electronic device. In some examples, the user of the first electronic device is registered as an authorized user of the second electronic device via a software application stored on the first electronic device and/or the second electronic device (e.g., HomeKit) and/or via a website. In some examples, the first electronic device transmits authentication information received from the user to the remote device (e.g., as represented by arrows 927 of FIG. 9). In these examples, the remote device determines that the user is an authorized user of the second electronic device and thus instructs the first electronic device to transmit the command to the second electronic device (e.g., via a second command).


At block 1524, the first electronic device transmits the command to the second electronic device based on the device identifier (e.g., as represented by arrows 928a or 928b of FIG. 9). The command causes the second electronic device to perform the one or more tasks. In some examples, the command further causes the second electronic device to output (e.g., as an audio output and/or via a display) a user query after performing the one or more tasks. In some examples, the user query asks whether or not to transmit a second command to perform the one or more tasks to a fourth electronic device that is participating in the context-sharing group. In some examples, the command causes the second electronic device to output the user query before performing the one or more tasks.


In some of the examples described above where the first electronic device receives (at block 1516) user data associated with a fourth electronic device, at block 1526, the first electronic device transmits the user data associated with the fourth electronic device to the second electronic device with the command (e.g., in response to the user voice input “Hey Siri, play a Taylor Swift song” the servers provides data corresponding to a Taylor Swift song stored on the fourth electronic device (e.g., audio data) to the first electronic device so that the second electronic device can then play the Taylor Swift song despite not having the song stored thereon). In these examples, the command transmitted to the second electronic device causes the second electronic device to perform the one or more tasks based on the user data.



FIGS. 16A-16E illustrate a flow chart representing a process for identifying an electronic device participating in a context-sharing group to perform one or more tasks, according to various examples. Process 1600 is performed, for example, by one or more servers (e.g., DA server 106). In some examples, process 1600 is performed, for example, by one or more other remote devices, or a combination of remote devices (e.g., one or more local servers, a cloud-computing system, and/or the like). In some examples, one or more blocks of process 1600 are performed using one or more electronic devices implementing a digital assistant. For example, the blocks of process 1600 are divided up in any manner between one or more servers (e.g., DA server 106) and a client device. In other examples, the blocks of process 1600 are divided up between one or more servers and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of process 1600 are described herein as being performed by particular devices, it will be appreciated that process 1600 is not so limited. In other examples, process 1600 is performed using only a client device (e.g., user device 104) or only multiple client devices. In process 1600, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the process 1600.


At block 1602, one or more servers (e.g., server 916 (e.g., voice input receiver module 1102 and aggregate context receiver module 1104 of FIG. 11)) receives, from a first electronic device participating in a context-sharing group associated with a first location (e.g., communal device 904), a user voice input and at least a portion of an aggregate context of the context-sharing group (e.g., as represented by arrows 924 of FIG. 9). The context-sharing group (e.g., context-sharing group 914) is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection. In some examples, each electronic device of the plurality of electronic devices is connected to a single wireless network of the first location (e.g., a Wi-Fi network). In some examples, at least one of the electronic devices participating in the context-sharing group is connected to the single wireless network and the remaining electronic devices participating in the context-sharing group are connected to the at least one electronic device via one or more wireless communication connections (e.g., short distance communication connections (e.g., Bluetooth and/or BTLE)).


The aggregate context is, for example, a collection of context information (e.g., device state change information (e.g., type of state change and time of state change), contextual state information (e.g., device location, display visibility (e.g., display up or down), user attention information (e.g., whether a user is looking at the device display), strength of network connection, amount of battery power, type of power source (e.g., battery vs wired power source), and/or the like), and/or device capability information (e.g., type of device, processing power, memory availability, display information, speaker information, and/or the like)) received from one or more (e.g., each) electronic devices participating in the context-sharing group. In some examples, the context information (e.g., device state change information and/or contextual state information) indicates whether an electronic device is available (e.g., whether the electronic device is currently being used (e.g., whether there are open/active applications, etc.), currently performing a task, and/or currently unable to provide an audio and/or visual output (e.g., because the electronic device is face down, muted, playing media, and/or the like)). In some examples, the context information included in the aggregate context includes device proximity information that indicates how physically close one or more electronic devices participating in the context-sharing group are to the first electronic device. In some examples, the device proximity information is based on data indicating whether or not the one or more electronic devices participating in the context-sharing group detected (e.g., heard) a digital assistant trigger word or phrase included in the user voice input (e.g., data included in one or more trigger indications).


At block 1604, the one or more servers (e.g., user intent module 1106 of FIG. 11) determine a user intent based on the user voice input. In some examples, determining the user intent includes the one or more servers performing speech recognition processing and/or natural language processing of the user voice input. In some examples, the one or more servers determine the user intent further based on context information included in the at least a portion of aggregate context. In some of these examples, the context information includes device state change information (e.g., context information indicating a time, location, and/or type of a device state change for an electronic device participating in the context-sharing group) associated with a second electronic device that is participating in the context-sharing group. In some examples where the device state change information indicates a type of device state change and a time of device state change for a most recent device state change of the second electronic device, determining the user intent includes disambiguating the user voice input based the type of the device state change and the time of the device state change. For example, if the user voice input is “Hey Siri, stop” and the context information indicates that a timer event is occurring at a device, the one or more servers may determine a user intent of stopping a timer based on timer event indication. In some examples, when two or more events (e.g., timer, alarm, media playback, and/or the like) are occurring at two or more separate electronic devices, the one or more servers use device state change time information to determine the user intent based on the most recent device state change (e.g., if a timer event is more recent than a media playback event, the one or more servers may determine a user intent of stopping the timer event in response to the user voice input “Hey Siri, stop.”).


At block 1606, the one or more servers (e.g., task determination module 1108 of FIG. 11) determine one or more tasks corresponding to the user intent (e.g., one or more tasks to be performed by an electronic device to fulfill the user intent). In some examples, the one or more tasks corresponding to the user intent are predetermined based on the determined user intent. In some examples, the one or more tasks include performing a search, retrieving information/data, opening a software application stored on an electronic device, playing media, making a purchase, displaying retrieved information/data, and/or the like.


At block 1608, the one or more servers (e.g., device selection module 1110 of FIG. 11) identify (e.g., select) a second electronic device of the plurality of electronic devices (e.g., a personal electronic device or a communal electronic device) to perform the one or more tasks based on the one or more tasks and context information included in the at least a portion of the aggregate context (e.g., context information associated with the second electronic device and/or context information associated with one or more electronic devices of the plurality of electronic devices). In some examples, the one or more servers identify the second electronic device further based on the determined user intent. In some examples, the first electronic device is the second electronic device (e.g., when the one or more servers identify the electronic device that provides the user voice input to the one or more servers as the optimal electronic device to perform the one or more tasks). In some examples, the one or more servers identify two or more electronic devices of the plurality of electronic devices instead of only one electronic device (e.g., for multimodal task performance).


In some examples, at block 1610, identifying the second electronic device (at block 1608) includes the one or more servers determining, based on device state change information included in the context information (e.g., device state change information associated with the second electronic device and/or associated with one or more other electronic devices of the plurality of electronic devices (e.g., time of device state change, type of device state change (e.g., timer event, alarm event, media playback, or the like), etc.)), whether an event (e.g., a timer event, an alarm event, media playback, and/or the like) that corresponds to the user intent (e.g., a user intent of stopping a timer, stopping an alarm, stopping or updating media playback (e.g., pausing or changing a song), and/or the like) is currently occurring at one or more electronic devices of the plurality of electronic devices.


In some examples, at block 1612, in accordance with a determination that an event that corresponds to the user intent is currently occurring only at the second electronic device, the one or more servers identify (e.g., select) the second electronic device.


In some examples, at block 1614, in accordance with a determination that an event that corresponds to the user intent is currently occurring at the second electronic device and at least one other electronic device of the plurality of electronic devices, the one or more servers determine which event began most recently based on data indicating a time of device state change included in the device state change information.


In some examples, at block 1616, in accordance with a determination that the event occurring at the second electronic device began most recently, the one or more servers identify (e.g., select) the second electronic device.


In some examples, at block 1618, identifying the second electronic device (at block 1608) includes the one or more servers determining, based on device state change information included in the context information (e.g., time of device state change, type of device state change (e.g., timer event, alarm event, media playback, or the like), etc.)), whether an event (e.g., stopping a timer, pausing media playback, and/or the like) that corresponds to the user intent (e.g., a user intent of restarting a timer, resuming media playback, and/or the like) previously occurred at one or more electronic devices of the plurality of electronic devices within a predetermined period of time (e.g., within the last 5, 10, or 15 minutes).


In some examples, at block 1620, in accordance with a determination that an event that corresponds to the user intent previously occurred only at the second electronic device within the predetermined period of time, the one or more servers identify (e.g., select) the second electronic device.


In some examples, at block 1622, in accordance with a determination that an event that corresponds to the user intent previously occurred at the second electronic device and at least one other electronic device of the plurality of electronic devices within the predetermined period of time, the one or more servers determine, based on proximity information included in the context information (e.g., proximity information associated with the second electronic device and the at least one other electronic device), whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device. In some examples, the one or more servers determine whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device based on contextual state information included in the context information (e.g., a current location of the second electronic device and the at least one other electronic device).


In some examples, at block 1624, in accordance with a determination that the second electronic device is physically closer to the first electronic device than the at least one other electronic device, the one or more servers identify (e.g., select) the second electronic device. In some examples, the one or more servers transmit a command to the first electronic device (e.g., before, or at the same time as, the command for performing the one or more tasks) that causes the first electronic device to request a user of the first electronic device to select an electronic device of the plurality of electronic devices to perform the one or more tasks (e.g., instead of determining which electronic device is closest to the first electronic device or when the second electronic device and the at least one other electronic device are equally as physically close to the first electronic device (or within a same area of the first location (e.g., the same room)).


In some examples, the proximity information discussed above is based on data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice input (e.g., the data indicating whether or not the electronic devices detected the digital assistant trigger is included in the context information that is included in the aggregate context (e.g., included in one or more trigger advertisements that are included in the aggregate context)). In some examples, the data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice input includes data indicating an energy level (e.g., decibel level) of the digital assistant trigger (e.g., the energy level of the digital assistant trigger word or phrase when received by the an electronic device).


In some examples, at block 1626, identifying the second electronic device (at block 1608) includes the one or more servers determining, based on device state change information included in the context information (e.g., time of device state change, type of device state change (e.g., timer event, alarm event, media playback, or the like), etc.)), whether one or more electronic devices of the plurality of electronic devices are available to perform the one or more tasks. For example, an electronic device is not available if the context information included in the aggregate context (specifically, device state change information and/or contextual state information) indicates that the electronic device is currently being used (e.g., open/active applications), currently performing a task, and/or currently unable to provide an audio and/or visual output (e.g., because the electronic device is face down, muted, playing media, and/or the like). In some examples, the one or more servers determine whether one or more electronic devices are available further based on contextual state information included in the context information (e.g., further based on a display visibility of the one or more electronic devices).


In some examples, at block 1628, in accordance with a determination that the second electronic device is available to perform the one or more tasks, the one or more servers determine, based on device capability information included in the context information (e.g., device capability information associated with the second electronic device (e.g., type of device, processing power, memory availability, display information, speaker information, and/or the like)), whether the second electronic device is capable of performing the one or more tasks. For example, if the one or more tasks include the task of displaying information (e.g., results of the task performance), then an electronic device must at least have a display in order to be capable of performing the one or more tasks. In some examples, the one or more servers determine whether the second electronic device is capable of performing the one or more tasks further based on contextual state information included in the context information (e.g., contextual state information associated with the second electronic device, such as strength of network connection, amount of battery power, type of power source (e.g., battery vs wired power source), and/or the like).


In some examples, at block 1630, in accordance with a determination that the second electronic device is capable of performing the one or more tasks, the one or more servers determine whether at least one other electronic device of the plurality of electronic devices is available and capable of performing the one or more tasks.


In some examples, at block 1632, in accordance with a determination that no other electronic device of the plurality of electronic devices is available and capable of performing the one or more tasks, the one or more servers identify (e.g., select) the second electronic device.


In some examples, at block 1634, in accordance with a determination that at least one other electronic device of the plurality of electronic devices is available and capable of performing the one or more tasks, the one or more servers determine, based on proximity information included in the context information (e.g., proximity information associated with the second electronic device and the at least one other electronic device), whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device. The proximity information is based on data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice input (e.g., data included in one or more trigger indications). The data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice input includes data indicating a first energy level of the digital assistant trigger according to the second electronic device and data indicating a second energy level of the digital assistant trigger according to the at least one other electronic device. In some examples, the one or more servers determine whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device further based on contextual state information included in the context information (e.g., a current location of the second electronic device and a current locations of the at least one other electronic device).


In some examples, at block 1636, determining whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device (at block 1634) includes the one or more servers comparing a first energy level of the digital assistant trigger according to the second electronic device to a second energy level of the digital assistant trigger according to the at least one other electronic device.


In some examples, at block 1638, the one or more servers determine whether a difference between the first energy level and the second energy level is less than a predetermined threshold (e.g., a predetermined decibel level difference (e.g., 2 decibels, 5 decibels, or the like)).


In some examples, at block 1640, in accordance with a determination that the difference is less than the predetermined threshold, the one or more servers determine, based on user attention information included in the context information, whether a user of the first electronic device is looking at a display of the second electronic device or at a display of the at least one other electronic device.


In some examples, at block 1642, in accordance with a determination that the user is looking at the display of the second electronic device, the one or more servers identify (e.g., select) the second electronic device.


In some examples, at block 1642, in accordance with a determination that the second electronic device is physically closer to the first electronic device than the at least one other electronic device (at block 1634), the one or more servers identify (e.g., select) the second electronic device.


In some examples, at block 1646, the one or more severs identify (e.g., select), based on the one or more tasks and the context information, a third electronic device of the plurality of electronic devices to perform at least one task (e.g., displaying retrieved information/data, providing an audio output based on retrieved information/data, and/or the like) of the one or more tasks (e.g., before, after, or concurrently with the second electronic device's performance of the remaining tasks).


At block 1648, the one or more servers (e.g., command module 1112) transmit, to the first electronic device, a command to perform the one or more tasks and a device identifier corresponding to the second electronic device (e.g., data indicating the second electronic device) (e.g., as represented by arrows 926 of FIG. 9). After receiving the command, the first electronic device transmits the command to the second electronic device based on the device identifier. The command then causes the second electronic device to perform the one or more tasks. In some examples, the command further causes the second electronic device to provide an audio and/or visual digital assistant response based on the performance of the one or more tasks (e.g., “Now playing Taylor Swift” or “Resuming Star Wars: The Empire Strikes Back.”).


In some examples, an electronic device is assigned a device identifier upon joining the context-sharing group. In some examples, the at least a portion of the aggregate context includes a device identifier for each electronic device currently participating in the context-sharing group (e.g., associated with the context information for each electronic device).


In some of the examples described above where the one or more servers identify a third electronic device to perform at least one task of the one or more tasks (at block 1646), at block 1650, the one or more servers transmit, to the first electronic device, a second command to perform the at least one task and a device identifier corresponding to the third electronic device. In some examples, the one or more servers concurrently transmit the command and the second command to the first electronic device.



FIGS. 17A-17C illustrate a flow chart representing a process for multimodal task performance in a context-sharing group, according to various examples. Process 1700 is performed, for example, using one or more electronic devices implementing a digital assistant. In some examples, one or more blocks of process 1700 are performed by one or more remote devices (e.g., one or more remotes servers (e.g., DA server 106), one or more local servers, a cloud-computing system, and/or the like). For example, the blocks of process 1700 are divided up in any manner between one or more servers (e.g., DA server 106) and a client device. In other examples, the blocks of process 1700 are divided up between one or more servers and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of process 1700 are described herein as being performed by particular devices, it will be appreciated that process 1700 is not so limited. In other examples, process 1700 is performed using only a client device (e.g., user device 104) or only multiple client devices. In process 1700, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the process 1700.


At block 1702, a first electronic device participating in a context-sharing group associated with a first location (e.g., communal device 1204) receives a user voice input (e.g., user voice input 1218). The context-sharing group is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection. The collection includes a context collector (e.g., communal device 1206).


At block 1704, the first electronic device receives, from the context collector, an aggregate context of the context-sharing group (e.g., as represented by arrows 1222 of FIG. 12A).


At block 1706, after receiving the aggregate context, the first electronic device provides at least a portion of the aggregate context and data corresponding to the user voice input to a remote device that is not participating in the context-sharing group (e.g., as represented by arrows 1224 of FIG. 12A). The remote device determines a plurality of tasks based on the data corresponding to the user voice input (e.g., a plurality of tasks to be performed by one or more electronic devices participating in the context-sharing group in order to fulfill a user intent corresponding to the user voice input). In some examples, the remote device determines the plurality of tasks further based on context information included in the at least a portion of the aggregate context (e.g., further based on device state change information).


In some examples, the first electronic device provides all of the aggregate context to the remote device. In some examples, the first electronic device determines what context information included in the aggregate context is relevant to the user voice input (e.g., when the first electronic device performs natural language processing of the first user input) and only provides the relevant context information to the remote device. In some examples, the first electronic device determines what context information is relevant based on one or more domains of an active ontology that correspond to the user voice input (e.g., by identifying the context information that is related to the one or more domains). In some examples, the first electronic device removes personal data (e.g., personal information and/or user data) included in the aggregate context prior to providing the aggregate context to the remote device. In some examples, the first electronic device encrypts personal data (e.g., personal information and/or user data) included in the aggregate context prior to providing the aggregate context to the remote device.


At block 1708, the first electronic device receives, from the remote device, a first command to perform a first set of tasks of the plurality of tasks and a second command to perform a second set of tasks of the plurality of tasks (e.g., as represented by arrows 1226 of FIG. 12A). In some examples, one or more tasks of the first set of tasks are identical to one or more tasks of the second set of tasks (e.g., performing a search, retrieving information/data based on the search, opening a software application stored on the first and second electronic devices, and/or the like).


In some examples, the at least a portion of the aggregate context includes context information associated with the second electronic device and context information associated with a third electronic device of the plurality of electronic devices. In some of these examples, the remote device determines the first set of tasks based on device capability information included the context information associated with the second electronic device (e.g., whether the second electronic device has a display and/or a size of the display, whether the second electronic device has a speaker and/or a loudness of the speaker, device processing power, and/or the like), and the remote device determines the second set of tasks based on device capability information included the context information associated with the third electronic device (e.g., whether the third electronic device has a display and/or a size of the display, whether the third electronic device has a speaker and/or a loudness of the speaker, device processing power, and/or the like). Further, in some of these examples, the remote device determines the first set of tasks and the second set of tasks in response to determining, based on the context information associated with the second electronic device and the context information associated with the third electronic device, that the second electronic device and the third electronic device are both available (e.g., not currently being used (e.g., open/active applications), not currently performing a task, and/or currently able to provide an audio and/or visual output (e.g., because the electronic device is face up)), capable of performing at least one task of the plurality of tasks, and proximate to the first electronic device (e.g., located within a same area of the first location (e.g., the same room) as the first electronic device. In some examples, the remote device determines whether an electronic device is located within a same area of the first location as the first electronic device based on proximity information included in the context information (e.g., based on an energy level (e.g., decibel level) of the digital assistant trigger word or phrase according to the second electronic device and the third electronic device, respectively (e.g., the energy level of the digital assistant trigger word or phrase when received by the second electronic device compared to the energy level of the digital assistant trigger word or phrase when received by the third electronic device).


At block 1710, the first electronic device receives, from the remote device, a first device identifier corresponding to a second electronic device of the plurality of electronic devices (e.g., data indicating the second electronic device) and a second device identifier corresponding to a third electronic device of the plurality of electronic devices (e.g., as represented by arrows 1226 of FIG. 12A). In some examples, the second electronic device or the third electronic device is the first electronic device.


At block 1712, the first electronic device transmits the first command to the second electronic device based on the first device identifier (e.g., as represented by arrows 1228 of FIG. 12A). The first command causes the second electronic device to perform the first set of tasks. As mentioned above, in some examples, the first electronic device is the second electronic device. In these examples, the first electronic device performs the first set of tasks in response to receiving the first command from the remote device (instead of transmitting the first command).


At block 1714, the first electronic device transmits the second command to the third electronic device based on the second device identifier. The second command causes the third electronic device to perform the second set of tasks. As mentioned above, in some examples, the first electronic device is the third electronic device. In these examples, the first electronic device performs the second set of tasks in response to receiving the second command from the remote device (instead of transmitting the second command).


In some examples, the second electronic device only outputs an audio output based on the performance of the first set of tasks (e.g., a digital assistant response naming the titles of all Star Wars movies), and the third electronic device only displays a visual output based on the performance of the second set of tasks (e.g., displays the titles of the Star Wars movies with corresponding movie poster images).


In some examples, in response to performing the first set of tasks, the second electronic device outputs (e.g., on a display of the second electronic device and/or as an audio output) a brief summary of data or information retrieved based on the performance of the first set of tasks (e.g., a brief summary of text, hyperlinks, images, and/or the like corresponding to Star Wars movie titles, historical information, cast information, and/or the like).


In some examples, in response to performing the second set of tasks, the third electronic device outputs (e.g., on a display of the third electronic device and/or as an audio output) a detailed summary of data or information retrieved based on the performance of the second set of tasks (e.g., a detailed summary of text, hyperlinks, images, and/or the like corresponding to Star Wars movie titles, historical information, cast information, and/or the like). In some examples, the detailed summary includes at least one of hyperlinks, images, audio data, or text data that is not included in the brief summary.


In some examples, at block 1716, the first electronic device receives a second user voice input (e.g., user voice input 1234) representing a user request to make a purchase (e.g., “Hey Siri, purchase Star Wars: The Empire Strikes Back.”).


In some examples, at block 1718, the first electronic device receives, from the context collector, an updated aggregate context (e.g., as represented by arrows 1238 of FIG. 12B). The updated aggregate context includes updated context information associated with the second electronic device and updated context information associated with the third electronic device (e.g., the updated context information for both devices include data indicating results of the performance of the first set of tasks and results of the performance of the second set of tasks, respectively (e.g., any audio output that was provided, what is currently displayed, etc.)). In some examples, the second electronic device transmits the updated context information associated with the second electronic to the context collector after performing the first set of tasks, and the third electronic device transmits the updated context information associated with the third electronic to the context collector after performing the second set of tasks


In some examples, at block 1720, the first electronic device transmits, to the remote device, data corresponding to the second user voice input and at least a portion of the updated aggregate context (e.g., as represented by arrows 1240 of FIG. 12B). The remote device then determines a second plurality of tasks based on the data corresponding to the second user voice input. In some examples, the remote device determines the plurality of tasks further based on context information included in the at least a portion of the updated aggregate context (e.g., further based on device state change information).


In some examples, at block 1722, the first electronic device receives, from the remote device, a third command to perform a third set of tasks of the second plurality of tasks and a third device identifier corresponding to a fourth electronic device of the plurality of electronic devices (e.g., as represented by arrows 1242 of FIG. 12B). The third set of tasks includes a task of user authentication. In some examples, the fourth electronic device is the second electronic device.


In some examples, at block 1724, the first electronic device transmits the third command to the fourth electronic device based on the third device identifier (e.g., as represented by arrows 1244 of FIG. 12B). The third command causes the fourth electronic device to perform the third set of tasks.


In some examples, after transmitting the third command to the fourth electronic device (at block 1724), at block 1726, the first electronic device receives, from the fourth electronic device, user authentication data corresponding to a user of the first electronic device (e.g., voice authentication data, password authentication data, and/or biometric authentication data (e.g., data corresponding to a face and/or a fingerprint authentication)) (e.g., as represented by arrows 1246 of FIG. 12B).


In some examples, at block 1728, the first electronic device transmits the user authentication data to the remote device (e.g., as represented by arrows 1248 of FIG. 12B).


In some examples, at block 1730, the first electronic device receives, from the remote device, a fourth command to perform a fourth set of tasks of the second plurality of tasks and the second device identifier corresponding to the third electronic device (e.g., as represented by arrows 1250 of FIG. 12B). The remote device transmits the fourth command to the first electronic device in response to determining, based on the user authentication data, that the user of the first electronic device is authorized to make the requested purchase. The fourth set of tasks includes a task of performing the requested purchase. In some examples, the remote device transmits the fourth command before, at the same time as, or soon after the third command. In these examples, the first electronic device does not transmit the fourth command to the third electronic device until the remote device informs the first electronic device that the user of the first electronic device is authorized to make the requested purchase).


In some examples, at block 1732, the first electronic device transmits the fourth command to the third electronic device based on the second device identifier (e.g., as represented by arrows 1252 of FIG. 12B). The fourth command causes the third electronic device to perform the fourth set of tasks.


In some examples, after transmitting the third command to the fourth electronic device (at block 1724), at block 1734, the first electronic device receives, from the fourth electronic device, an indication that a user of the first electronic device is authorized to make the requested purchase (e.g., the fourth electronic device locally authenticates the user (e.g., based on user authentication data stored on the fourth electronic device) and transmits the indication in response to the authentication).


In some examples, at block 1736, the first electronic device transmits the indication to the remote device.


In some examples, at block 1738, the first electronic device receives, from the remote device, a fifth command to perform a fifth set of tasks of the second plurality of tasks and the second device identifier corresponding to the third electronic device. The remote device transmits the fifth command to the first electronic device in response to receiving the indication that the user of the first electronic device is authorized to make the requested purchase. The fifth set of tasks includes a task of performing the requested purchase.


In some examples, the remote device transmits the fifth command before, at the same time as, or soon after the third command. In these examples, the first electronic device does not transmit the fifth command to the third electronic device until the first electronic device receives the indication that the user of the first electronic device is authorized to make the requested purchase (in this manner, the servers are not involved in the user authentication decision). If the user is not authorized to make the requested purchase, the first electronic device does not transmit the fifth command to the third electronic device.


In some examples, at block 1740, the first electronic device transmits the fifth command to the third electronic device based on the second device identifier. The fifth command causes the third electronic device to perform the fifth set of tasks.



FIGS. 18A-18B illustrate a flow chart representing a process for a continuous digital assistant conversation across multiple electronic devices participating in a context-sharing group, according to various examples. Process 1800 is performed, for example, using one or more electronic devices implementing a digital assistant. In some examples, one or more blocks of process 1800 are performed by one or more remote devices (e.g., one or more remotes servers (e.g., DA server 106), one or more local servers, a cloud-computing system, and/or the like). For example, the blocks of process 1800 are divided up in any manner between one or more servers (e.g., DA server 106) and a client device. In other examples, the blocks of process 1800 are divided up between one or more servers and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of process 1800 are described herein as being performed by particular devices, it will be appreciated that process 1800 is not so limited. In other examples, process 1800 is performed using only a client device (e.g., user device 104) or only multiple client devices. In process 1800, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the process 1800.


At block 1802, a first electronic device participating in a context-sharing group associated with a first location (e.g., user device 1304) receives a first user voice input (e.g., user voice input 1316 of FIG. 13 (e.g., “Hey Siri, what's the temperature in Palo Alto?”)). The context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device included in the collection. The collection includes a second electronic device (e.g., user device 1306) and a context collector (e.g., communal device 1308). In some examples, the context collector is a third electronic device that is participating in the context-sharing group. In some examples, the context collector is the first electronic device or the second electronic device. In some examples, the first electronic device and the second electronic device are located within two separate areas (e.g., two separate rooms) of the first location.


In some examples, at block 1804, prior to outputting a first digital assistant response, the first electronic receives an aggregate context of the context-sharing group from the context collector (e.g., as represented by arrows 1320 of FIG. 13). In these examples, the aggregate context includes context information associated with the first electronic device and context information associated with the second electronic device.


In some examples, at block 1806, the first electronic device transmits data corresponding to the first user voice input and at least a portion of the aggregate context to a remote device that is not participating in the context-sharing group (e.g., one or more remote servers, one or more local servers, a cloud-computing system, and/or the like) (e.g., as represented by arrows 1322 of FIG. 13).


In some examples, at block 1808, the first electronic device receives a first command to perform one or more tasks and a first device identifier corresponding to the first electronic device from the remote device (e.g., as represented by arrows 1324 of FIG. 13). In these examples, the remote device determines the one or more tasks and the device identifier corresponding to the first electronic device based at least on the data corresponding to the first user voice input and context information included in the aggregate context (e.g., the context information associated with the first electronic device and/or context information associated with one or more other electronic devices participating in the context-sharing group). The first command causes the first electronic device to perform the one or more tasks and determine a first digital assistant response based on results of the performance of the one or more tasks.


At block 1810, the first electronic device outputs a first digital assistant response based on the first user voice input (e.g., digital assistant response 1326 (e.g., “It's currently 68 degrees in Palo Alto.”)).


After outputting the first digital assistant response (e.g., immediately after or several second after (e.g., after the current dialog session has ended (e.g., 1 or 2 seconds after the first electronic device provides the first digital assistant response with no additional user voice inputs received at the first electronic device))), at block 1812, the first electronic device transmits context information including a digital assistant dialog session history for the first electronic device to the context collector (e.g., as represented by arrows 1327 of FIG. 13). In some examples, the digital assistant dialog session history includes data corresponding to a most recent digital assistant dialog session (e.g., ASR results, NLP results, and/or data retrieved and/or provided during the most recent digital assistant dialog session (e.g., data corresponding to the most recent user voice input and digital assistant response)). For example, the digital assistant dialog session history includes data corresponding to the first user voice input and the first digital assistant response. In some examples, the digital assistant dialog session history includes data corresponding to digital assistant dialog sessions that have occurred within a predetermined period of time (e.g., within the past hour, within the past day, etc.).


At block 1814, the second electronic device receives a second user voice input (e.g., user voice input 1328 (e.g., “Hey Siri, how long will it take me to drive there?”)). In some examples, the first electronic device and the second electronic device receive the first user voice input and the second user voice input from a single user. In other examples, the first electronic device and the second electronic device receive the first user voice input and the second user voice input from different users.


In some examples, at block 1816, the second electronic device transmits a request for an updated aggregate context of the context-sharing group to the context collector (e.g., as represented by arrows 1330 of FIG. 13). In some examples, the second electronic device transmits the request for the updated aggregate context in response to receiving the second user voice input.


At block 1818, the second electronic device receives an updated aggregate context of the context-sharing group from the context collector (e.g., as represented by arrows 1332 of FIG. 13). The updated aggregate context includes the digital assistant dialog session history for the first electronic device. In some examples, the context collector generates the updated aggregate context (e.g., in response to receiving the context information from the first electronic device). In these examples, generating the updated aggregate context includes the context collector updating context information associated with the first electronic device included in an aggregate context of the context-sharing group based at least on the digital assistant dialog session history for the first electronic device.


In some examples, at block 1820, prior to the second electronic device outputting a second digital assistant response, the second electronic device transmits data corresponding to the second user voice input and at least a portion of the updated aggregate context to a remote device that is not participating in the context-sharing group (e.g., one or more remote servers, one or more local servers, a cloud-computing system, and/or the like) (e.g., as represented by arrows 1334 of FIG. 13). In these examples, the at least a portion of the updated aggregate context includes the digital assistant dialog session history for the first electronic device.


In some examples, at block 1822, the second electronic device receives a second command to perform one or more tasks and a second device identifier corresponding to the second electronic device from the remote device (e.g., the device identifier causes the second electronic device to perform the one or more tasks) (e.g., as represented by arrows 1336 of FIG. 13). The remote device (e.g., user intent module 1106 and/or task determination module 1108 of FIG. 11) determines the one or more tasks and the device identifier corresponding to the second electronic device based at least on the data corresponding to the second user voice input and the digital assistant dialog session history for the first electronic device. The second command causes the second electronic device to perform the one or more tasks and determine the second digital assistant response based on results of the performance of the one or more tasks.


In some examples, the digital assistant dialog session history for the first electronic device includes data corresponding to the first user voice input. In these examples, determining the one or more tasks based at least on the data corresponding to the second user voice input and the digital assistant dialog session history for the first electronic device includes the remote device disambiguating the second user voice input based on the first user voice input. In some examples, disambiguating the second user voice input based on the first user voice input includes the remote device (e.g., task determination module 1108) determining one or more parameters for the second user voice input based on one or more parameters of the first user voice input (e.g., a location, contact name, website, email address, etc. included in the first user voice input). In some examples, disambiguating the second user voice input (e.g., “Hey Siri, how about in New York?”) includes the remote device (e.g., user intent module 1106) determining that the second user voice input represents a user request for a digital assistant to perform a task previously performed by the digital assistant of the first electronic device (e.g., weather determination) using parameters provided in the second user voice input (e.g., a location (“New York”), contact name, website, email address, etc. included in the second user voice input).


At block 1824, the second electronic device outputs a second digital assistant response based on the second user voice input and the digital assistant dialog session history for the first electronic device (e.g., digital assistant response 1338 of FIG. 13 (e.g., “Traffic to Palo Alto is light, so I'm estimating 15 minutes via El Camino Real.”)).



FIGS. 19A-19B illustrate a flow chart representing a process for suppressing a delayed digital assistant trigger detection using a context collector of a context-sharing group, according to various examples. Process 1900 is performed, for example, using one or more electronic devices implementing a digital assistant. In some examples, one or more blocks of process 1900 are performed by one or more remote devices (e.g., one or more remotes servers (e.g., DA server 106), one or more local servers, a cloud-computing system, and/or the like). For example, the blocks of process 1900 are divided up in any manner between one or more servers (e.g., DA server 106) and a client device. In other examples, the blocks of process 1900 are divided up between one or more servers and multiple client devices (e.g., a mobile phone and a smart watch). Thus, while portions of process 1900 are described herein as being performed by particular devices, it will be appreciated that process 1900 is not so limited. In other examples, process 1900 is performed using only a client device (e.g., user device 104) or only multiple client devices. In process 1900, some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted. In some examples, additional steps may be performed in combination with the process 1900.


At block 1902, a first electronic device participating in a context-sharing group associated with a first location (e.g., user device 1006 of FIG. 10) receives a user voice input (e.g., user voice input 1014 of FIG. 10). The user voice input includes a digital assistant trigger (e.g., a word or phrase that initiates a dialog session with a digital assistant of an electronic device (e.g., “Hey Siri . . . ”, “Siri”, or the like)). The context-sharing group is a collection of at least two electronic devices that each share context information with at least one other electronic device participating in the collection. The collection includes at least a second electronic device (e.g., communal device 1004) and a context collector (e.g., communal device 1008). In some examples, the second electronic device is the context collector. In some examples, the context collector is a third electronic device participating in the context-sharing group. In some examples, each electronic device participating in the context-sharing group is connected to a single wireless network of the first location.


At block 1904, in response to detecting the digital assistant trigger (e.g., determining that the user voice input includes the digital assistant trigger), the first electronic device transmits a first trigger advertisement to the context collector (e.g., via a wireless network of the first location) (e.g., as represented by arrows 1022 of FIG. 10). The first trigger advertisement indicates a first time at which the digital assistant trigger ended according to the first electronic device. In some examples, the first trigger advertisement includes data indicating an energy level (e.g., decibel level) of the digital assistant trigger word or phrase (e.g., the energy level of the digital assistant trigger word or phrase when received by the first electronic device). In some examples, the first trigger advertisement includes a confidence score corresponding to a confidence of the first electronic device that the user voice input includes a digital assistant trigger word or phrase.


In some examples, the first electronic device and the second electronic device share a short distance communication connection (e.g., a Bluetooth or Bluetooth Low Energy (BTLE) connection). In some of these examples, at block 1906, in response to detecting the digital assistant trigger, the first electronic device transmits the first trigger advertisement to the second electronic device via the short distance communication connection (e.g., the first electronic device transmits the first trigger advertisements via Bluetooth or BTLE before, at the same time as, or soon after transmitting the first trigger advertisement to the context collector).


At block 1908, the first electronic device receives, from the context collector, a second trigger advertisement (e.g., as represented by arrows 1024 of FIG. 10). The second trigger advertisement indicates a second time at which the digital assistant trigger ended according to the second electronic device. In some examples, the second electronic device transmits the second trigger advertisement to the context collector in response to detecting the digital assistant trigger included in the user voice input (before the context collector transmits the second trigger advertisement to the first electronic device). In some examples, the second electronic device includes the second trigger advertisement (e.g., data corresponding to the second trigger advertisement) in context information that the second electronic device transmits to the context collector after detecting the digital assistant trigger included in the user voice input (e.g., as represented by arrows 1016 of FIG. 10).


In some of the examples where the first electronic device and the second electronic device share a short distance communication connection (e.g., described above with reference to block 1906), at block 1910, the first electronic device receives a third trigger advertisement from the second electronic device via the short distance communication connection. The third trigger advertisement indicates a third time at which the digital assistant trigger ended according to the second electronic device. In some examples, the third time is identical to the second time indicated by the second trigger advertisement. In some examples, the second electronic device transmits the third trigger advertisement via the short distance communication connection in response to receiving the first trigger advertisement from the first electronic device via the short distance communication connection.


At block 1912, the first electronic device determines whether the second time is within a predetermined time range (e.g., 750 milliseconds, 500 milliseconds, 100 milliseconds, or the like) before the first time (e.g., determining whether the second trigger advertisement is “sane”).


In some of the examples where the first electronic device and the second electronic device share a short distance communication connection (e.g., described above with reference to blocks 1906 and 1910), at block 1914, after determining whether the second time is within the predetermined time range before the first time, the first electronic device determines whether the third time is within the predetermined time range (e.g., 750 milliseconds, 500 milliseconds, 100 milliseconds, or the like) before the first time (e.g., determining whether the third trigger advertisement is “sane”).


At block 1916, in accordance with a determination that the second time is within the predetermined time range before the first time (e.g., if the predetermined time range is 500 milliseconds, the second time is less than 500 milliseconds before the first time), the first electronic device forgoes further processing of the user voice input. In some examples, forgoing further processing of the user voice input includes the first electronic device forgoing transmitting a request to the context collector for an aggregate context of the context-sharing group.


In some of the examples where the first electronic device and the second electronic device share a short distance communication connection (e.g., described above with reference to blocks 1906, 1910, and 1914), at block 1918, in accordance with a determination that the third time is within the predetermined range before the first time, the first electronic device forgoes further processing of the user voice input even if the second time is not within the predetermined time range before the first time.


In some examples, at block 1920, in accordance with a determination that the second time is not within the predetermined time range (e.g., if the predetermined time range is 500 milliseconds, the second time is equal to or more than 500 milliseconds before the first time), the first electronic device continues processing the user voice input. In some examples, continuing processing of the user voice input includes the first electronic device transmitting a request to the context collector for an aggregate context of the context-sharing group.


The operations described above with reference to FIGS. 14A-14C, 15A-15B, 16A-16E, 17A-17C, 18A-18B, and 19A-19B are optionally implemented by components depicted in FIGS. 1-4, 6A-6B, and 7A-7C. For example, the operations of process 1400, process 1500, process 1600, process 1700, process 1800, and/or process 1900 may be implemented by system 100. It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1-4, 6A-6B, and 7A-7C.


In accordance with some implementations, a computer-readable storage medium (e.g., a non-transitory computer readable storage medium) is provided, the computer-readable storage medium storing one or more programs for execution by one or more processors of an electronic device, the one or more programs including instructions for performing any of the methods or processes described herein.


In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises means for performing any of the methods or processes described herein.


In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises a processing unit configured to perform any of the methods or processes described herein.


In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises one or more processors and memory storing one or more programs for execution by the one or more processors, the one or more programs including instructions for performing any of the methods or processes described herein.


The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.


Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.


As described above, one aspect of the present technology is the gathering and use of data (e.g., user data, user-specific context information, and/or the like) available from various sources to assist with/improve the determination of digital assistant responses during a video communication session. The present disclosure contemplates that in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, twitter IDs, home addresses, data or records relating to a user's health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, or any other identifying or personal information.


The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to determine one or more parameters of a task to be performed by digital assistant of a user device and/or communal device in response to a user request. Accordingly, use of such personal information data enables a digital assistant of a user device to provide a digital assistant response (based on the performance of the above task) that is more relevant and/or useful to users. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure. For instance, health and fitness data may be used to provide insights into a user's general wellness, or may be used as positive feedback to individuals using technology to pursue wellness goals.


The present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes. Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices. In addition, policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the US, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and Accountability Act (HIPAA); whereas health data in other countries may be subject to other regulations and policies and should be handled accordingly. Hence different privacy practices should be maintained for different personal data types in each country.


Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of gathering and using user data to assist with/improve the determination of digital assistant responses, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter. In another example, users can select not to provide user data (e.g., a user's media, contacts, speech profiles, preferences, and/or the like) to assist with/improve the determination of digital assistant responses. In yet another example, users can select to prevent the gathering and use of certain types/forms of personal information data (e.g., email addresses, home addresses, payment information, and/or the like) for the determination of digital assistant responses. In addition to providing “opt in” and “opt out” options, the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an app that their personal information data will be accessed and then reminded again just before personal information data is accessed by the app.


Moreover, it is the intent of the present disclosure that personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed. In addition, and when applicable, including in certain health related applications, data de-identification can be used to protect a user's privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data at a city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.


Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, digital assistant responses can be determined based on non-personal information data/user data or a bare minimum amount of personal information and/or user data, such as the content being requested by the device associated with a user, other non-personal information available to the digital assistant, or publicly available information.

Claims
  • 1. A method, comprising: at one or more servers: receiving a user voice input and at least a portion of an aggregate context of a context-sharing group associated with a first location from a first electronic device that is participating in the context-sharing group, wherein the context-sharing group is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the aggregate context includes a collection of context information received from at least two electronic devices participating in the context-sharing group associated with the first location;determining a user intent based on the user voice input;determining one or more tasks corresponding to the user intent;identifying a second electronic device of the plurality of electronic devices to perform the one or more tasks based on the one or more tasks and context information included in the at least a portion of the aggregate context; andtransmitting, to the first electronic device, a command to perform the one or more tasks and a device identifier corresponding to the second electronic device, wherein the first electronic transmits the command to the second electronic device based on the device identifier, andwherein the command causes the second electronic device to perform the one or more tasks.
  • 2. The method of claim 1, wherein each electronic device of the plurality of electronic devices is connected to a single wireless network of the first location.
  • 3. The method of claim 1, wherein the aggregate context is a collection of context information associated with one or more electronic devices of the plurality of electronic devices participating in the context-sharing group, and wherein the first electronic device receives the aggregate context from a context collector of the context-sharing group after the first electronic device receives the user voice input from a user.
  • 4. The method of claim 1, wherein the context information included in the aggregate context includes at least one of device state change information, contextual state information, device capability information, and device proximity information associated with the second electronic device.
  • 5. The method of claim 1, wherein the user intent is determined further based on context information included in the aggregate context.
  • 6. The method of claim 5, wherein the context information includes device state change information associated with the second electronic device, wherein the device state change information indicates a type of device state change and a time of device state change for a most recent device state change of the second electronic device, and wherein determining the user intent includes disambiguating the user voice input based the type of the device state change and the time of the device state change.
  • 7. The method of claim 1, wherein identifying the second electronic device includes: determining, based on device state change information included in the context information is currently occurring at one or more electronic devices of the plurality of electronic devices; andin accordance with a determination that an event that corresponds to the user intent is currently occurring only at the second electronic device, identifying the second electronic device.
  • 8. The method of claim 7, further comprising: in accordance with a determination that an event that corresponds to the user intent is currently occurring at the second electronic device and at least one other electronic device of the plurality of electronic devices: determining which event began most recently based on data indicating a time of device state change included in the device state change information; andin accordance with a determination that the event occurring at the second electronic device began most recently, identifying the second electronic device.
  • 9. The method of claim 1, wherein identifying the second electronic device includes: determining, based on device state change information included in the context information, whether an event that corresponds to the user intent previously occurred at one or more electronic devices of the plurality of electronic devices within a predetermined period of time; andin accordance with a determination that an event that corresponds to the user intent previously occurred only at the second electronic device within the predetermined period of time, identifying the second electronic device.
  • 10. The method of claim 1, further comprising: in accordance with a determination that an event that corresponds to the user intent previously occurred at the second electronic device and at least one other electronic device of the plurality of electronic devices within the predetermined period of time: determining, based on proximity information included in the context information, whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device; andin accordance with a determination that the second electronic device is physically closer to the first electronic device than the at least one other electronic device, identifying the second electronic device.
  • 11. The method of claim 10, wherein the proximity information is based on data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice.
  • 12. The method of claim 1, wherein identifying the second electronic device includes determining, based on device state change information included in the context information, whether one or more electronic devices of the plurality of electronic devices are available to perform the one or more tasks.
  • 13. The method of claim 12, further comprising: in accordance with a determination that the second electronic device is available to perform the one or more tasks, determining, based on device capability information included in the context information, whether the second electronic device is capable of performing the one or more tasks.
  • 14. The method of claim 13, further comprising: in accordance with a determination that the second electronic device is capable of performing the one or more tasks: determining whether at least one other electronic device of the plurality of electronic devices is available and capable of performing the one or more tasks; andin accordance with a determination that no other electronic device of the plurality of electronic devices is available and capable of performing the one or more tasks, identifying the second electronic device.
  • 15. The method of claim 14, further comprising: in accordance with a determination that at least one other electronic device of the plurality of electronic devices is available and capable of performing the one or more tasks: determining, based on proximity information included in the context information, whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device; andin accordance with a determination that the second electronic device is physically closer to the first electronic device than the at least one electronic device, identifying the second electronic device.
  • 16. The method of claim 15, wherein the proximity information is based on data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice input, and wherein the data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice input includes: data indicating a first energy level of the digital assistant trigger according to the second electronic device, anddata indicating a second energy level of the digital assistant trigger according to the at least one other electronic device, wherein determining whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device includes comparing the first energy level to the second energy level.
  • 17. The method of claim 16, further comprising: determining whether a difference between the first energy level and the second energy level is less than a predetermined threshold;in accordance with a determination that the difference is less than the predetermined threshold, determining, based on user attention information included in the context information, whether a user of the first electronic device is looking at a display of the second electronic device or at a display of the at least one other electronic device; andin accordance with a determination that the user is looking at the display of the second electronic device, identifying the second electronic device.
  • 18. The method of claim 1, further comprising: identifying, based on the one or more tasks and the context information, a third electronic device of the plurality of electronic devices to perform at least one task of the one or more tasks; andtransmitting, to the first electronic device, a second command to perform the at least one task and a device identifier corresponding to the third electronic device.
  • 19. A system, comprising: one or more processors;memory; andone or more programs, wherein the one or more programs are stored in the memory and are configured to be executed by the one or more processors, wherein the one or more programs include instructions for: receiving a user voice input and at least a portion of an aggregate context of a context-sharing group associated with a first location from a first electronic device that is participating in the context-sharing group, wherein the context-sharing group is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the aggregate context includes a collection of context information received from at least two electronic devices participating in the context-sharing group associated with the first location;determining a user intent based on the user voice input;determining one or more tasks corresponding to the user intent;identifying a second electronic device of the plurality of electronic devices to perform the one or more tasks based on the one or more tasks and context information included in the at least a portion of the aggregate context; andtransmitting, to the first electronic device, a command to perform the one or more tasks and a device identifier corresponding to the second electronic device, wherein the first electronic transmits the command to the second electronic device based on the device identifier, andwherein the command causes the second electronic device to perform the one or more tasks.
  • 20. The system of claim 19, wherein each electronic device of the plurality of electronic devices is connected to a single wireless network of the first location.
  • 21. The system of claim 19, wherein the aggregate context is a collection of context information associated with one or more electronic devices of the plurality of electronic devices participating in the context-sharing group, and wherein the first electronic device receives the aggregate context from a context collector of the context-sharing group after the first electronic device receives the user voice input from a user.
  • 22. The system of claim 19, wherein the context information included in the aggregate context includes at least one of device state change information, contextual state information, device capability information, and device proximity information associated with the second electronic device.
  • 23. The system of claim 19, wherein the user intent is determined further based on context information included in the aggregate context.
  • 24. The system of claim 23, wherein the context information includes device state change information associated with the second electronic device, wherein the device state change information indicates a type of device state change and a time of device state change for a most recent device state change of the second electronic device, and wherein determining the user intent includes disambiguating the user voice input based the type of the device state change and the time of the device state change.
  • 25. The system of claim 19, wherein identifying the second electronic device includes: determining, based on device state change information included in the context information is currently occurring at one or more electronic devices of the plurality of electronic devices; andin accordance with a determination that an event that corresponds to the user intent is currently occurring only at the second electronic device, identifying the second electronic device.
  • 26. The system of claim 25, wherein the one or more programs further include instructions for: in accordance with a determination that an event that corresponds to the user intent is currently occurring at the second electronic device and at least one other electronic device of the plurality of electronic devices: determining which event began most recently based on data indicating a time of device state change included in the device state change information; andin accordance with a determination that the event occurring at the second electronic device began most recently, identifying the second electronic device.
  • 27. The system of claim 19, wherein identifying the second electronic device includes: determining, based on device state change information included in the context information, whether an event that corresponds to the user intent previously occurred at one or more electronic devices of the plurality of electronic devices within a predetermined period of time; andin accordance with a determination that an event that corresponds to the user intent previously occurred only at the second electronic device within the predetermined period of time, identifying the second electronic device.
  • 28. The system of claim 19, wherein the one or more programs further include instructions for: in accordance with a determination that an event that corresponds to the user intent previously occurred at the second electronic device and at least one other electronic device of the plurality of electronic devices within the predetermined period of time: determining, based on proximity information included in the context information, whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device; andin accordance with a determination that the second electronic device is physically closer to the first electronic device than the at least one other electronic device, identifying the second electronic device.
  • 29. The system of claim 28, wherein the proximity information is based on data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice.
  • 30. The system of claim 19, wherein identifying the second electronic device includes determining, based on device state change information included in the context information, whether one or more electronic devices of the plurality of electronic devices are available to perform the one or more tasks.
  • 31. The system of claim 30, wherein the one or more programs further include instructions for: in accordance with a determination that the second electronic device is available to perform the one or more tasks, determining, based on device capability information included in the context information, whether the second electronic device is capable of performing the one or more tasks.
  • 32. The system of claim 31, wherein the one or more programs further include instructions for: in accordance with a determination that the second electronic device is capable of performing the one or more tasks: determining whether at least one other electronic device of the plurality of electronic devices is available and capable of performing the one or more tasks; andin accordance with a determination that no other electronic device of the plurality of electronic devices is available and capable of performing the one or more tasks, identifying the second electronic device.
  • 33. The system of claim 32, wherein the one or more programs further include instructions for: in accordance with a determination that at least one other electronic device of the plurality of electronic devices is available and capable of performing the one or more tasks: determining, based on proximity information included in the context information, whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device; andin accordance with a determination that the second electronic device is physically closer to the first electronic device than the at least one electronic device, identifying the second electronic device.
  • 34. The system of claim 33, wherein the proximity information is based on data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice input, and wherein the data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice input includes: data indicating a first energy level of the digital assistant trigger according to the second electronic device, anddata indicating a second energy level of the digital assistant trigger according to the at least one other electronic device, wherein determining whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device includes comparing the first energy level to the second energy level.
  • 35. The system of claim 34, wherein the one or more programs further include instructions for: determining whether a difference between the first energy level and the second energy level is less than a predetermined threshold;in accordance with a determination that the difference is less than the predetermined threshold, determining, based on user attention information included in the context information, whether a user of the first electronic device is looking at a display of the second electronic device or at a display of the at least one other electronic device; andin accordance with a determination that the user is looking at the display of the second electronic device, identifying the second electronic device.
  • 36. The system of claim 19, wherein the one or more programs further include instructions for: identifying, based on the one or more tasks and the context information, a third electronic device of the plurality of electronic devices to perform at least one task of the one or more tasks; andtransmitting, to the first electronic device, a second command to perform the at least one task and a device identifier corresponding to the third electronic device.
  • 37. A non-transitory computer-readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of one or more servers, cause the one or more servers to: receive a user voice input and at least a portion of an aggregate context of a context-sharing group associated with a first location from a first electronic device that is participating in the context-sharing group, wherein the context-sharing group is a collection of a plurality of electronic devices that each share context information with at least one other electronic device included in the collection, and wherein the aggregate context includes a collection of context information received from at least two electronic devices participating in the context-sharing group associated with the first location;determine a user intent based on the user voice input;determine one or more tasks corresponding to the user intent;identify a second electronic device of the plurality of electronic devices to perform the one or more tasks based on the one or more tasks and context information included in the at least a portion of the aggregate context; andtransmit, to the first electronic device, a command to perform the one or more tasks and a device identifier corresponding to the second electronic device, wherein the first electronic transmits the command to the second electronic device based on the device identifier, andwherein the command causes the second electronic device to perform the one or more tasks.
  • 38. The non-transitory computer-readable storage medium of claim 37, wherein each electronic device of the plurality of electronic devices is connected to a single wireless network of the first location.
  • 39. The non-transitory computer-readable storage medium of claim 37, wherein the aggregate context is a collection of context information associated with one or more electronic devices of the plurality of electronic devices participating in the context-sharing group, and wherein the first electronic device receives the aggregate context from a context collector of the context- sharing group after the first electronic device receives the user voice input from a user.
  • 40. The non-transitory computer-readable storage medium of claim 37, wherein the context information included in the aggregate context includes at least one of device state change information, contextual state information, device capability information, and device proximity information associated with the second electronic device.
  • 41. The non-transitory computer-readable storage medium of claim 37, wherein the user intent is determined further based on context information included in the aggregate context.
  • 42. The non-transitory computer-readable storage medium of claim 41, wherein the context information includes device state change information associated with the second electronic device, wherein the device state change information indicates a type of device state change and a time of device state change for a most recent device state change of the second electronic device, and wherein determining the user intent includes disambiguating the user voice input based the type of the device state change and the time of the device state change.
  • 43. The non-transitory computer-readable storage medium of claim 37, wherein identifying the second electronic device includes: determining, based on device state change information included in the context information is currently occurring at one or more electronic devices of the plurality of electronic devices; andin accordance with a determination that an event that corresponds to the user intent is currently occurring only at the second electronic device, identifying the second electronic device.
  • 44. The non-transitory computer-readable storage medium of claim 43, wherein the one or more programs further include instructions, which when executed by the one or more processors of the one or more servers, cause the one or more servers to: in accordance with a determination that an event that corresponds to the user intent is currently occurring at the second electronic device and at least one other electronic device of the plurality of electronic devices: determine which event began most recently based on data indicating a time of device state change included in the device state change information; andin accordance with a determination that the event occurring at the second electronic device began most recently, identify the second electronic device.
  • 45. The non-transitory computer-readable storage medium of claim 37, wherein identifying the second electronic device includes: determining, based on device state change information included in the context information, whether an event that corresponds to the user intent previously occurred at one or more electronic devices of the plurality of electronic devices within a predetermined period of time; andin accordance with a determination that an event that corresponds to the user intent previously occurred only at the second electronic device within the predetermined period of time, identifying the second electronic device.
  • 46. The non-transitory computer-readable storage medium of claim 37, wherein the one or more programs further include instructions, which when executed by the one or more processors of the one or more servers, cause the one or more servers to: in accordance with a determination that an event that corresponds to the user intent previously occurred at the second electronic device and at least one other electronic device of the plurality of electronic devices within the predetermined period of time: determine, based on proximity information included in the context information, whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device; andin accordance with a determination that the second electronic device is physically closer to the first electronic device than the at least one other electronic device, identify the second electronic device.
  • 47. The non-transitory computer-readable storage medium of claim 46, wherein the proximity information is based on data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice.
  • 48. The non-transitory computer-readable storage medium of claim 37, wherein identifying the second electronic device includes determining, based on device state change information included in the context information, whether one or more electronic devices of the plurality of electronic devices are available to perform the one or more tasks.
  • 49. The non-transitory computer-readable storage medium of claim 48, wherein the one or more programs further include instructions, which when executed by the one or more processors of the one or more servers, cause the one or more servers to: in accordance with a determination that the second electronic device is available to perform the one or more tasks, determine, based on device capability information included in the context information, whether the second electronic device is capable of performing the one or more tasks.
  • 50. The non-transitory computer-readable storage medium of claim 49, wherein the one or more programs further include instructions, which when executed by the one or more processors of the one or more servers, cause the one or more servers to: in accordance with a determination that the second electronic device is capable of performing the one or more tasks: determine whether at least one other electronic device of the plurality of electronic devices is available and capable of performing the one or more tasks; andin accordance with a determination that no other electronic device of the plurality of electronic devices is available and capable of performing the one or more tasks, identify the second electronic device.
  • 51. The non-transitory computer-readable storage medium of claim 50, wherein the one or more programs further include instructions, which when executed by the one or more processors of the one or more servers, cause the one or more servers to: in accordance with a determination that at least one other electronic device of the plurality of electronic devices is available and capable of performing the one or more tasks: determine, based on proximity information included in the context information, whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device; andin accordance with a determination that the second electronic device is physically closer to the first electronic device than the at least one electronic device, identify the second electronic device.
  • 52. The non-transitory computer-readable storage medium of claim 51, wherein the proximity information is based on data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice input, and wherein the data indicating whether or not one or more electronic devices of the plurality of electronic devices detected a digital assistant trigger included in the user voice input includes: data indicating a first energy level of the digital assistant trigger according to the second electronic device, and data indicating a second energy level of the digital assistant trigger according to the at least one other electronic device, wherein determining whether the second electronic device or the at least one other electronic device is physically closer to the first electronic device includes comparing the first energy level to the second energy level.
  • 53. The non-transitory computer-readable storage medium of claim 52, wherein the one or more programs further include instructions, which when executed by the one or more processors of the one or more servers, cause the one or more servers to: determine whether a difference between the first energy level and the second energy level is less than a predetermined threshold;in accordance with a determination that the difference is less than the predetermined threshold, determine, based on user attention information included in the context information, whether a user of the first electronic device is looking at a display of the second electronic device or at a display of the at least one other electronic device; andin accordance with a determination that the user is looking at the display of the second electronic device, identify the second electronic device.
  • 54. The non-transitory computer-readable storage medium of claim 37, wherein the one or more programs further include instructions, which when executed by the one or more processors of the one or more servers, cause the one or more servers to: identify, based on the one or more tasks and the context information, a third electronic device of the plurality of electronic devices to perform at least one task of the one or more tasks; andtransmit, to the first electronic device, a second command to perform the at least one task and a device identifier corresponding to the third electronic device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 17/306,489, entitled “DIGITAL ASSISTANT HARDWARE ABSTRACTION,” filed May 3, 2021 which is a continuation of U.S. application Ser. No. 16/990,876, entitled “DIGITAL ASSISTANT HARDWARE ABSTRACTION,” filed Aug. 11, 2020, which claims priority to U.S. Provisional Application No. 63/022,942, entitled “DIGITAL ASSISTANT HARDWARE ABSTRACTION,” filed May 11, 2020, the contents of which are hereby incorporated by reference in their entirety for all purposes.

US Referenced Citations (3127)
Number Name Date Kind
7251696 Horvitz Jul 2007 B1
7831270 Kalley et al. Nov 2010 B2
8296383 Lindahl Oct 2012 B2
8473485 Wong et al. Jun 2013 B2
8626681 Jurca et al. Jan 2014 B1
8630841 Van Caldwell et al. Jan 2014 B2
8635073 Chang Jan 2014 B2
8638363 King et al. Jan 2014 B2
8639516 Lindahl et al. Jan 2014 B2
8645128 Agiomyrgiannakis Feb 2014 B1
8645137 Bellegarda et al. Feb 2014 B2
8645138 Weinstein et al. Feb 2014 B1
8654936 Eslambolchi et al. Feb 2014 B1
8655646 Lee et al. Feb 2014 B2
8655901 Li et al. Feb 2014 B1
8660843 Falcon et al. Feb 2014 B2
8660849 Gruber et al. Feb 2014 B2
8660924 Hoch et al. Feb 2014 B2
8660970 Fiedorowicz Feb 2014 B1
8661112 Creamer et al. Feb 2014 B2
8661340 Goldsmith et al. Feb 2014 B2
8670979 Gruber et al. Mar 2014 B2
8675084 Bolton et al. Mar 2014 B2
8676273 Fujisaki Mar 2014 B1
8676583 Gupta et al. Mar 2014 B2
8676904 Lindahl Mar 2014 B2
8677377 Cheyer et al. Mar 2014 B2
8681950 Mack et al. Mar 2014 B2
8682667 Haughay Mar 2014 B2
8687777 Lavian et al. Apr 2014 B1
8688446 Yanagihara Apr 2014 B2
8688453 Joshi et al. Apr 2014 B1
8689135 Portele et al. Apr 2014 B2
8694322 Snitkovskiy et al. Apr 2014 B2
8695074 Saraf et al. Apr 2014 B2
8696364 Cohen Apr 2014 B2
8706472 Ramerth et al. Apr 2014 B2
8706474 Blume et al. Apr 2014 B2
8706503 Cheyer et al. Apr 2014 B2
8707195 Fleizach et al. Apr 2014 B2
8707419 Kurapati et al. Apr 2014 B2
8712778 Thenthiruperai Apr 2014 B1
8713119 Lindahl et al. Apr 2014 B2
8713418 King et al. Apr 2014 B2
8719006 Bellegarda May 2014 B2
8719014 Wagner May 2014 B2
8719039 Sharifi May 2014 B1
8731610 Appaji May 2014 B2
8731912 Tickner et al. May 2014 B1
8731942 Cheyer et al. May 2014 B2
8739208 Davis et al. May 2014 B2
8744852 Seymour et al. Jun 2014 B1
8751971 Fleizach et al. Jun 2014 B2
8760537 Johnson et al. Jun 2014 B2
8762145 Ouchi et al. Jun 2014 B2
8762156 Chen Jun 2014 B2
8762469 Lindahl Jun 2014 B2
8768693 Somekh et al. Jul 2014 B2
8768702 Mason et al. Jul 2014 B2
8775154 Clinchant et al. Jul 2014 B2
8775177 Heigold et al. Jul 2014 B1
8775341 Commons Jul 2014 B1
8775931 Fux et al. Jul 2014 B2
8781456 Prociw Jul 2014 B2
8781841 Wang Jul 2014 B1
8793301 Wegenkittl et al. Jul 2014 B2
8798255 Lubowich et al. Aug 2014 B2
8798995 Edara Aug 2014 B1
8799000 Guzzoni et al. Aug 2014 B2
8805684 Aleksic et al. Aug 2014 B1
8805690 Lebeau et al. Aug 2014 B1
8812299 Su Aug 2014 B1
8812302 Xiao et al. Aug 2014 B2
8812321 Gilbert et al. Aug 2014 B2
8823507 Touloumtzis Sep 2014 B1
8823793 Clayton et al. Sep 2014 B2
8825474 Zhai et al. Sep 2014 B1
8831947 Wasserblat et al. Sep 2014 B2
8831949 Smith et al. Sep 2014 B1
8838457 Cerra et al. Sep 2014 B2
8843369 Sharifi Sep 2014 B1
8855915 Furuhata et al. Oct 2014 B2
8861925 Ohme Oct 2014 B1
8862252 Rottler et al. Oct 2014 B2
8868111 Kahn et al. Oct 2014 B1
8868400 Susarla et al. Oct 2014 B2
8868409 Mengibar et al. Oct 2014 B1
8868431 Yamazaki et al. Oct 2014 B2
8868469 Xu et al. Oct 2014 B2
8868529 Lerenc Oct 2014 B2
8880405 Cerra et al. Nov 2014 B2
8886534 Nakano et al. Nov 2014 B2
8886540 Cerra et al. Nov 2014 B2
8886541 Friedlander Nov 2014 B2
8892446 Cheyer et al. Nov 2014 B2
8893023 Perry et al. Nov 2014 B2
8897822 Martin Nov 2014 B2
8898064 Thomas et al. Nov 2014 B1
8898568 Bull et al. Nov 2014 B2
8903716 Chen et al. Dec 2014 B2
8909693 Frissora et al. Dec 2014 B2
8918321 Czahor Dec 2014 B2
8922485 Lloyd Dec 2014 B1
8930176 Li et al. Jan 2015 B2
8930191 Gruber et al. Jan 2015 B2
8938394 Faaborg et al. Jan 2015 B1
8938450 Spivack et al. Jan 2015 B2
8938688 Bradford et al. Jan 2015 B2
8942986 Cheyer et al. Jan 2015 B2
8943423 Merrill et al. Jan 2015 B2
8954440 Gattani et al. Feb 2015 B1
8964947 Noolu et al. Feb 2015 B1
8965770 Petrushin Feb 2015 B2
8972240 Brockett et al. Mar 2015 B2
8972432 Shaw et al. Mar 2015 B2
8972878 Mohler et al. Mar 2015 B2
8976063 Hawkins et al. Mar 2015 B1
8976108 Hawkins et al. Mar 2015 B2
8977255 Freeman et al. Mar 2015 B2
8983383 Haskin Mar 2015 B1
8984098 Tomkins et al. Mar 2015 B1
8989713 Doulton Mar 2015 B2
8990235 King et al. Mar 2015 B2
8994660 Neels et al. Mar 2015 B2
8995972 Cronin Mar 2015 B1
8996350 Dub et al. Mar 2015 B1
8996376 Fleizach et al. Mar 2015 B2
8996381 Mozer et al. Mar 2015 B2
8996550 Ko et al. Mar 2015 B2
8996639 Faaborg et al. Mar 2015 B1
9002714 Kim et al. Apr 2015 B2
9009046 Stewart Apr 2015 B1
9013992 Perkins Apr 2015 B2
9015036 Zangvil et al. Apr 2015 B2
9020804 Barbaiani et al. Apr 2015 B2
9026425 Nikoulina et al. May 2015 B2
9026426 Wu et al. May 2015 B2
9031834 Coorman et al. May 2015 B2
9031970 Das et al. May 2015 B1
9037967 Al-Jefri et al. May 2015 B1
9043208 Koch et al. May 2015 B2
9043211 Haiut et al. May 2015 B2
9043319 Burns et al. May 2015 B1
9046932 Medlock et al. Jun 2015 B2
9049255 Macfarlane et al. Jun 2015 B2
9049295 Cooper et al. Jun 2015 B1
9053706 Jitkoff et al. Jun 2015 B2
9058105 Drory et al. Jun 2015 B2
9058332 Darby et al. Jun 2015 B1
9058811 Wang et al. Jun 2015 B2
9063979 Chiu et al. Jun 2015 B2
9064495 Torok et al. Jun 2015 B1
9065660 Ellis et al. Jun 2015 B2
9070247 Kuhn et al. Jun 2015 B2
9070366 Mathias et al. Jun 2015 B1
9071701 Donaldson et al. Jun 2015 B2
9075435 Noble et al. Jul 2015 B1
9075824 Gordo et al. Jul 2015 B2
9076448 Bennett et al. Jul 2015 B2
9076450 Sadek et al. Jul 2015 B1
9081411 Kalns et al. Jul 2015 B2
9081482 Zhai et al. Jul 2015 B1
9082402 Yadgar et al. Jul 2015 B2
9083581 Addepalli et al. Jul 2015 B1
9092433 Rodriguez Jul 2015 B2
9092789 Anshul Jul 2015 B2
9094576 Karakotsios Jul 2015 B1
9094636 Sanders et al. Jul 2015 B1
9098467 Blanksteen et al. Aug 2015 B1
9101279 Ritchey et al. Aug 2015 B2
9112984 Sejnoha et al. Aug 2015 B2
9117212 Sheets et al. Aug 2015 B2
9117447 Gruber et al. Aug 2015 B2
9122697 Bono et al. Sep 2015 B1
9123338 Sanders et al. Sep 2015 B1
9143907 Caldwell et al. Sep 2015 B1
9159319 Hoffmeister Oct 2015 B1
9164983 Liu et al. Oct 2015 B2
9171541 Kennewick et al. Oct 2015 B2
9171546 Pike Oct 2015 B1
9172747 Walters et al. Oct 2015 B2
9183845 Gopalakrishnan et al. Nov 2015 B1
9190062 Haughay Nov 2015 B2
9196245 Larcheveque et al. Nov 2015 B2
9197848 Felkai et al. Nov 2015 B2
9201955 Quintao et al. Dec 2015 B1
9202520 Tang Dec 2015 B1
9208153 Zaveri et al. Dec 2015 B1
9213754 Zhan et al. Dec 2015 B1
9214137 Bala et al. Dec 2015 B2
9218122 Thoma et al. Dec 2015 B2
9218809 Bellegard et al. Dec 2015 B2
9218819 Stekkelpa et al. Dec 2015 B1
9223529 Khafizova Dec 2015 B1
9223537 Brown et al. Dec 2015 B2
9230561 Ostermann et al. Jan 2016 B2
9232293 Hanson Jan 2016 B1
9236047 Rasmussen Jan 2016 B2
9241073 Rensburg et al. Jan 2016 B1
9245151 LeBeau et al. Jan 2016 B2
9245388 Poulos et al. Jan 2016 B2
9246984 Zises Jan 2016 B2
9247377 Pai et al. Jan 2016 B2
9250703 Hernandez-Abrego et al. Feb 2016 B2
9251713 Giovanniello et al. Feb 2016 B1
9251787 Hart et al. Feb 2016 B1
9255812 Maeoka et al. Feb 2016 B2
9256596 Nissan et al. Feb 2016 B2
9257120 Guevara et al. Feb 2016 B1
9258604 Bilobrov et al. Feb 2016 B1
9262412 Yang et al. Feb 2016 B2
9262612 Cheyer Feb 2016 B2
9263058 Huang et al. Feb 2016 B2
9274598 Beymer et al. Mar 2016 B2
9280535 Varma et al. Mar 2016 B2
9282211 Osawa Mar 2016 B2
9286727 Kim et al. Mar 2016 B2
9286910 Li et al. Mar 2016 B1
9292487 Weber Mar 2016 B1
9292489 Sak et al. Mar 2016 B1
9292492 Sarkaya et al. Mar 2016 B2
9298358 Wilden et al. Mar 2016 B1
9299344 Braho et al. Mar 2016 B2
9300718 Khanna Mar 2016 B2
9301256 Mohan et al. Mar 2016 B2
9305543 Fleizach et al. Apr 2016 B2
9305548 Kennewick et al. Apr 2016 B2
9311308 Sankarasubramaniam et al. Apr 2016 B2
9311912 Swietlinski et al. Apr 2016 B1
9313317 LeBeau et al. Apr 2016 B1
9318108 Gruber et al. Apr 2016 B2
9325809 Barros et al. Apr 2016 B1
9325842 Siddiqi et al. Apr 2016 B1
9330659 Ju et al. May 2016 B2
9330668 Nanavati et al. May 2016 B2
9330720 Lee May 2016 B2
9335983 Breiner et al. May 2016 B2
9338057 Jangra et al. May 2016 B2
9338242 Suchland et al. May 2016 B1
9338493 Van Os et al. May 2016 B2
9342829 Zhou et al. May 2016 B2
9342930 Kraft et al. May 2016 B1
9349368 Lebeau et al. May 2016 B1
9355472 Kocienda et al. May 2016 B2
9361084 Costa Jun 2016 B1
9361625 Parker et al. Jun 2016 B2
9367541 Servan et al. Jun 2016 B1
9368114 Larson et al. Jun 2016 B2
9377865 Berenson et al. Jun 2016 B2
9377871 Waddell et al. Jun 2016 B2
9378456 White et al. Jun 2016 B2
9378740 Rosen et al. Jun 2016 B1
9380155 Reding et al. Jun 2016 B1
9383827 Faaborg et al. Jul 2016 B1
9384185 Medlock et al. Jul 2016 B2
9390726 Smus et al. Jul 2016 B1
9396722 Chung et al. Jul 2016 B2
9400779 Convertino et al. Jul 2016 B2
9401140 Weber et al. Jul 2016 B1
9401147 Jitkoff et al. Jul 2016 B2
9405741 Schaaf et al. Aug 2016 B1
9406224 Sanders et al. Aug 2016 B1
9406299 Gollan et al. Aug 2016 B2
9408182 Hurley et al. Aug 2016 B1
9412392 Lindahl Aug 2016 B2
9418650 Bharadwaj et al. Aug 2016 B2
9423266 Clark et al. Aug 2016 B2
9424246 Spencer et al. Aug 2016 B2
9424840 Hart et al. Aug 2016 B1
9431021 Scalise et al. Aug 2016 B1
9432499 Hajdu et al. Aug 2016 B2
9436918 Pantel et al. Sep 2016 B2
9437186 Liu et al. Sep 2016 B1
9437189 Epstein et al. Sep 2016 B2
9442687 Park et al. Sep 2016 B2
9443527 Watanabe et al. Sep 2016 B1
9445230 Sipher et al. Sep 2016 B1
9454599 Golden et al. Sep 2016 B2
9454957 Mathias et al. Sep 2016 B1
9465798 Lin Oct 2016 B2
9465833 Aravamudan et al. Oct 2016 B2
9465864 Hu et al. Oct 2016 B2
9466027 Byrne et al. Oct 2016 B2
9466121 Yang et al. Oct 2016 B2
9466294 Tunstall-Pedoe et al. Oct 2016 B1
9471566 Zhang et al. Oct 2016 B1
9472196 Wang et al. Oct 2016 B1
9483388 Sankaranarasimhan et al. Nov 2016 B2
9483461 Fleizach et al. Nov 2016 B2
9483529 Pasoi et al. Nov 2016 B1
9484021 Mairesse et al. Nov 2016 B1
9485286 Sellier et al. Nov 2016 B1
9495129 Fleizach et al. Nov 2016 B2
9501741 Cheyer et al. Nov 2016 B2
9502025 Kennewick et al. Nov 2016 B2
9508028 Bannister et al. Nov 2016 B2
9510044 Pereira et al. Nov 2016 B1
9514470 Topatan et al. Dec 2016 B2
9516014 Zafiroglu et al. Dec 2016 B2
9519453 Perkuhn et al. Dec 2016 B2
9524355 Forbes et al. Dec 2016 B2
9529500 Gauci et al. Dec 2016 B1
9531803 Chen et al. Dec 2016 B2
9531823 Suchland et al. Dec 2016 B1
9531862 Vadodaria Dec 2016 B1
9535906 Lee et al. Jan 2017 B2
9536518 Itoh et al. Jan 2017 B2
9536527 Carlson Jan 2017 B1
9536544 Osterman et al. Jan 2017 B2
9547647 Badaskar Jan 2017 B2
9548050 Gruber et al. Jan 2017 B2
9548979 Johnson et al. Jan 2017 B1
9569549 Jenkins et al. Feb 2017 B1
9571995 Scheer et al. Feb 2017 B1
9575964 Yadgar et al. Feb 2017 B2
9576575 Heide Feb 2017 B2
9578173 Sanghavi et al. Feb 2017 B2
9584946 Lyren et al. Feb 2017 B1
9586318 Djugash et al. Mar 2017 B2
9602946 Karkkainen et al. Mar 2017 B2
9606986 Bellegarda Mar 2017 B2
9607612 Deleeuw Mar 2017 B2
9612999 Prakah-Asante et al. Apr 2017 B2
9619200 Chakladar et al. Apr 2017 B2
9619459 Hebert et al. Apr 2017 B2
9620113 Kennewick et al. Apr 2017 B2
9620126 Chiba Apr 2017 B2
9626695 Balasubramanian et al. Apr 2017 B2
9626799 McArdle et al. Apr 2017 B2
9626955 Fleizach et al. Apr 2017 B2
9633004 Giuli et al. Apr 2017 B2
9633191 Fleizach et al. Apr 2017 B2
9633660 Haughay Apr 2017 B2
9633674 Sinha Apr 2017 B2
9646313 Kim et al. May 2017 B2
9648107 Penilla et al. May 2017 B1
9652453 Mathur et al. May 2017 B2
9658746 Cohn et al. May 2017 B2
9659002 Medlock et al. May 2017 B2
9659298 Lynch et al. May 2017 B2
9665567 Liu et al. May 2017 B2
9665662 Gautam et al. May 2017 B1
9668121 Naik et al. May 2017 B2
9672725 Dotan-Cohen et al. Jun 2017 B2
9672822 Brown et al. Jun 2017 B2
9678664 Zhai et al. Jun 2017 B2
9679570 Edara Jun 2017 B1
9690542 Reddy et al. Jun 2017 B2
9691161 Yalniz et al. Jun 2017 B1
9691378 Meyers et al. Jun 2017 B1
9691384 Wang et al. Jun 2017 B1
9696963 Son et al. Jul 2017 B2
9697016 Jacob Jul 2017 B2
9697822 Naik et al. Jul 2017 B1
9697827 Lilly et al. Jul 2017 B1
9697828 Prasad et al. Jul 2017 B1
9697829 Tickner et al. Jul 2017 B1
9698999 Mutagi Jul 2017 B2
9711148 Sharifi et al. Jul 2017 B1
9720907 Bangalore et al. Aug 2017 B2
9721566 Newendorp et al. Aug 2017 B2
9721570 Beal et al. Aug 2017 B1
9723130 Rand Aug 2017 B2
9734817 Putrycz Aug 2017 B1
9734839 Adams Aug 2017 B1
9741343 Miles et al. Aug 2017 B1
9747083 Roman et al. Aug 2017 B1
9747093 Latino et al. Aug 2017 B2
9754591 Kumar et al. Sep 2017 B1
9755605 Li et al. Sep 2017 B1
9760566 Heck et al. Sep 2017 B2
9767710 Lee et al. Sep 2017 B2
9772994 Karov et al. Sep 2017 B2
9786271 Combs et al. Oct 2017 B1
9792907 Bocklet et al. Oct 2017 B2
9798719 Karov et al. Oct 2017 B2
9812128 Mixter et al. Nov 2017 B2
9813882 Masterman Nov 2017 B1
9818400 Paulik et al. Nov 2017 B2
9823811 Brown et al. Nov 2017 B2
9823828 Zambetti et al. Nov 2017 B2
9824379 Khandelwal et al. Nov 2017 B2
9824691 Montero et al. Nov 2017 B1
9824692 Khoury et al. Nov 2017 B1
9830044 Brown et al. Nov 2017 B2
9830449 Wagner Nov 2017 B1
9842168 Heck et al. Dec 2017 B2
9842584 Hart et al. Dec 2017 B1
9846685 Li Dec 2017 B2
9846836 Gao et al. Dec 2017 B2
9858925 Gruber et al. Jan 2018 B2
9858927 Williams et al. Jan 2018 B2
9886953 Lemay et al. Feb 2018 B2
9887949 Shepherd et al. Feb 2018 B2
9891811 Federighi et al. Feb 2018 B2
9892732 Tian et al. Feb 2018 B1
9911415 Vanblon et al. Mar 2018 B2
9916839 Scalise et al. Mar 2018 B1
9922642 Pitschel et al. Mar 2018 B2
9928835 Tang Mar 2018 B1
9934777 Joseph et al. Apr 2018 B1
9934785 Hulaud Apr 2018 B1
9940616 Morgan et al. Apr 2018 B1
9946862 Yun et al. Apr 2018 B2
9948728 Linn et al. Apr 2018 B2
9953634 Pearce et al. Apr 2018 B1
9959129 Kannan et al. May 2018 B2
9959506 Karppanen May 2018 B1
9959867 Lindahl May 2018 B2
9966065 Gruber et al. May 2018 B2
9966068 Cash et al. May 2018 B2
9967381 Kashimba et al. May 2018 B1
9971495 Shetty et al. May 2018 B2
9972304 Paulik et al. May 2018 B2
9972318 Kelly et al. May 2018 B1
9983785 Wong et al. May 2018 B2
9984686 Mutagi et al. May 2018 B1
9986419 Naik et al. May 2018 B2
9990129 Yang et al. Jun 2018 B2
9990176 Gray Jun 2018 B1
9990921 Vanblon et al. Jun 2018 B2
9990926 Pearce Jun 2018 B1
9996626 Bailey et al. Jun 2018 B1
9998552 Ledet Jun 2018 B1
10001817 Zambetti et al. Jun 2018 B2
10013416 Bhardwaj et al. Jul 2018 B1
10013654 Levy et al. Jul 2018 B1
10013979 Roma et al. Jul 2018 B1
10019436 Huang Jul 2018 B2
10025378 Venable et al. Jul 2018 B2
10026209 Dagley et al. Jul 2018 B1
10026401 Mutagi et al. Jul 2018 B1
10027662 Mutagi et al. Jul 2018 B1
10032451 Mamkina et al. Jul 2018 B1
10032455 Newman et al. Jul 2018 B2
10037758 Jing et al. Jul 2018 B2
10043516 Saddler et al. Aug 2018 B2
10048748 Sridharan et al. Aug 2018 B2
10049161 Kaneko Aug 2018 B2
10049663 Orr et al. Aug 2018 B2
10049668 Huang et al. Aug 2018 B2
10055390 Sharifi et al. Aug 2018 B2
10055681 Brown et al. Aug 2018 B2
10068570 Dai et al. Sep 2018 B2
10074360 Kim Sep 2018 B2
10074371 Wang et al. Sep 2018 B1
10078487 Gruber et al. Sep 2018 B2
10083213 Podgorny et al. Sep 2018 B1
10083688 Piernot et al. Sep 2018 B2
10083690 Giuli et al. Sep 2018 B2
10088972 Brown et al. Oct 2018 B2
10089072 Piersol et al. Oct 2018 B2
10089393 Agarwal et al. Oct 2018 B2
10089983 Gella et al. Oct 2018 B1
10096319 Jin et al. Oct 2018 B1
10101887 Bernstein et al. Oct 2018 B2
10102359 Cheyer Oct 2018 B2
10102851 Kiss et al. Oct 2018 B1
10115055 Weiss et al. Oct 2018 B2
10127901 Zhao et al. Nov 2018 B2
10127908 Deller et al. Nov 2018 B1
10127926 James Nov 2018 B2
10134425 Johnson, Jr. Nov 2018 B1
10135965 Woolsey et al. Nov 2018 B2
10142222 Zhang Nov 2018 B1
10146923 Pitkanen et al. Dec 2018 B2
10147421 Liddell et al. Dec 2018 B2
10147441 Pogue et al. Dec 2018 B1
10149156 Tiku et al. Dec 2018 B1
10158728 Vanblon et al. Dec 2018 B1
10162512 Seo et al. Dec 2018 B2
10162817 Schlesinger et al. Dec 2018 B2
10169329 Futrell et al. Jan 2019 B2
10170123 Orr et al. Jan 2019 B2
10170135 Pearce et al. Jan 2019 B1
10175879 Missig et al. Jan 2019 B2
10176167 Evermann Jan 2019 B2
10176802 Ladhak et al. Jan 2019 B1
10176808 Lovitt et al. Jan 2019 B1
10178301 Welbourne et al. Jan 2019 B1
10185542 Carson et al. Jan 2019 B2
10186254 Williams et al. Jan 2019 B2
10186266 Devaraj et al. Jan 2019 B1
10191627 Cieplinski et al. Jan 2019 B2
10191646 Zambetti et al. Jan 2019 B2
10191718 Rhee et al. Jan 2019 B2
10192546 Piersol et al. Jan 2019 B1
10192552 Raitio et al. Jan 2019 B2
10192557 Lee et al. Jan 2019 B2
10193840 Dar Jan 2019 B1
10198877 Maltsev et al. Feb 2019 B1
10199051 Binder et al. Feb 2019 B2
10200824 Gross et al. Feb 2019 B2
10204627 Nitz et al. Feb 2019 B2
10210860 Ward et al. Feb 2019 B1
10216351 Yang Feb 2019 B2
10216832 Bangalore et al. Feb 2019 B2
10223066 Martel et al. Mar 2019 B2
10224030 Kiss et al. Mar 2019 B1
10225711 Parks et al. Mar 2019 B2
10228904 Raux Mar 2019 B2
10229109 Cherepanov et al. Mar 2019 B1
10229356 Liu et al. Mar 2019 B1
10229680 Gillespie et al. Mar 2019 B1
10236016 Li et al. Mar 2019 B1
10237711 Linn et al. Mar 2019 B2
10241644 Gruber et al. Mar 2019 B2
10242501 Pusch et al. Mar 2019 B1
10248308 Karunamuni et al. Apr 2019 B2
10248771 Ziraknejad et al. Apr 2019 B1
10249300 Booker et al. Apr 2019 B2
10249305 Yu Apr 2019 B2
10255917 Carey et al. Apr 2019 B2
10255922 Sharifi et al. Apr 2019 B1
10261672 Dolbakian et al. Apr 2019 B1
10261830 Gupta et al. Apr 2019 B2
10269345 Sanchez et al. Apr 2019 B2
10271093 Jobanputra et al. Apr 2019 B1
10275513 Cowan et al. Apr 2019 B1
10276170 Gruber et al. Apr 2019 B2
10282737 Clark et al. May 2019 B2
10289205 Sumter et al. May 2019 B1
10291066 Leabman et al. May 2019 B1
10296160 Shah et al. May 2019 B2
10297253 Walker, II et al. May 2019 B2
10303772 Hosn et al. May 2019 B2
10304463 Mixter et al. May 2019 B2
10311482 Baldwin Jun 2019 B2
10311871 Newendorp et al. Jun 2019 B2
10317992 Prokofieva et al. Jun 2019 B2
10325598 Basye et al. Jun 2019 B2
10331312 Napolitano et al. Jun 2019 B2
10332509 Catanzaro et al. Jun 2019 B2
10332513 D'Souza et al. Jun 2019 B1
10332518 Garg et al. Jun 2019 B2
10339224 Fukuoka Jul 2019 B2
10339714 Corso et al. Jul 2019 B2
10339721 Dascola et al. Jul 2019 B1
10339925 Rastrow et al. Jul 2019 B1
10346540 Karov et al. Jul 2019 B2
10346541 Phillips et al. Jul 2019 B1
10346753 Soon-Shiong et al. Jul 2019 B2
10346878 Ostermann et al. Jul 2019 B1
10353975 Oh et al. Jul 2019 B2
10354168 Bluche Jul 2019 B2
10354677 Mohamed et al. Jul 2019 B2
10356243 Sanghavi et al. Jul 2019 B2
10360305 Larcheveque et al. Jul 2019 B2
10360716 Van Der Meulen et al. Jul 2019 B1
10365887 Mulherkar Jul 2019 B1
10366160 Castelli et al. Jul 2019 B2
10366692 Adams et al. Jul 2019 B1
10372814 Gliozzo et al. Aug 2019 B2
10372881 Ingrassia, Jr. et al. Aug 2019 B2
10373381 Nuemberger et al. Aug 2019 B2
10389876 Engelke et al. Aug 2019 B2
10402066 Kawana Sep 2019 B2
10403272 Fanty et al. Sep 2019 B1
10403283 Schramm et al. Sep 2019 B1
10409454 Kagan et al. Sep 2019 B2
10410637 Paulik et al. Sep 2019 B2
10416760 Burns et al. Sep 2019 B2
10417037 Gruber et al. Sep 2019 B2
10417344 Futrell et al. Sep 2019 B2
10417554 Scheffler Sep 2019 B2
10418032 Mohajer et al. Sep 2019 B1
10431210 Huang et al. Oct 2019 B1
10437928 Bhaya et al. Oct 2019 B2
10446142 Lim et al. Oct 2019 B2
10453117 Reavely et al. Oct 2019 B1
10469665 Bell et al. Nov 2019 B1
10474961 Brigham et al. Nov 2019 B2
10475446 Gruber et al. Nov 2019 B2
10482875 Henry Nov 2019 B2
10490195 Krishnamoorthy et al. Nov 2019 B1
10496364 Yao Dec 2019 B2
10496705 Irani et al. Dec 2019 B1
10497250 Hayward et al. Dec 2019 B1
10497365 Gruber et al. Dec 2019 B2
10497366 Sapugay et al. Dec 2019 B2
10499146 Lang et al. Dec 2019 B2
10504518 Irani et al. Dec 2019 B1
10512750 Lewin et al. Dec 2019 B1
10515133 Sharifi Dec 2019 B1
10515623 Grizzel Dec 2019 B1
10521946 Roche et al. Dec 2019 B1
10528386 Yu Jan 2020 B2
10540976 Van Os et al. Jan 2020 B2
10558893 Bluche Feb 2020 B2
10559225 Tao et al. Feb 2020 B1
10559299 Arel et al. Feb 2020 B1
10566007 Fawaz et al. Feb 2020 B2
10568032 Freeman et al. Feb 2020 B2
10572885 Guo et al. Feb 2020 B1
10579401 Dawes Mar 2020 B2
10580409 Walker, II et al. Mar 2020 B2
10582355 Lebeau et al. Mar 2020 B1
10585957 Heck et al. Mar 2020 B2
10586369 Roche et al. Mar 2020 B1
10599449 Chatzipanagiotis et al. Mar 2020 B1
10628483 Rao et al. Apr 2020 B1
10629186 Slifka Apr 2020 B1
10630795 Aoki et al. Apr 2020 B2
10642934 Heck et al. May 2020 B2
10643611 Lindahl May 2020 B2
10649652 Sun May 2020 B2
10652392 Eades May 2020 B1
10652394 Van Os et al. May 2020 B2
10659851 Lister et al. May 2020 B2
10671428 Zeitlin Jun 2020 B2
10679007 Jia et al. Jun 2020 B2
10679608 Mixter et al. Jun 2020 B2
10684099 Zaetterqvist Jun 2020 B2
10684703 Hindi et al. Jun 2020 B2
10685187 Badr et al. Jun 2020 B2
10691473 Karashchuk et al. Jun 2020 B2
10699697 Qian et al. Jun 2020 B2
10706841 Gruber et al. Jul 2020 B2
10706848 Greene et al. Jul 2020 B1
10721190 Zhao et al. Jul 2020 B2
10732708 Roche et al. Aug 2020 B1
10743107 Yoshioka et al. Aug 2020 B1
10747498 Stasior et al. Aug 2020 B2
10748529 Milden Aug 2020 B1
10748546 Kim et al. Aug 2020 B2
10754658 Tamiya Aug 2020 B2
10755032 Douglas et al. Aug 2020 B2
10757499 Vautrin et al. Aug 2020 B1
10757552 Gross et al. Aug 2020 B2
10769385 Evermann Sep 2020 B2
10776933 Faulkner Sep 2020 B2
10778839 Newstadt et al. Sep 2020 B1
10783151 Bushkin et al. Sep 2020 B1
10783166 Hurley et al. Sep 2020 B2
10783883 Mixter et al. Sep 2020 B2
10789945 Acero et al. Sep 2020 B2
10791176 Phipps et al. Sep 2020 B2
10791215 Ly et al. Sep 2020 B2
10795944 Brown et al. Oct 2020 B2
10796100 Bangalore et al. Oct 2020 B2
10803255 Dubyak et al. Oct 2020 B2
10811013 Secker-Walker et al. Oct 2020 B1
10818288 Garcia et al. Oct 2020 B2
10831494 Grocutt et al. Nov 2020 B2
10832031 Kienzle et al. Nov 2020 B2
10832684 Sarikaya Nov 2020 B2
10842968 Kahn et al. Nov 2020 B1
10846618 Ravi et al. Nov 2020 B2
10847142 Newendorp et al. Nov 2020 B2
10860629 Gangadharaiah et al. Dec 2020 B1
10861483 Feinauer et al. Dec 2020 B2
10877637 Antos et al. Dec 2020 B1
10878047 Mutagi et al. Dec 2020 B1
10878809 Gruber et al. Dec 2020 B2
10880668 Robinson et al. Dec 2020 B1
10885277 Ravi et al. Jan 2021 B2
10891968 Chung et al. Jan 2021 B2
10892996 Piersol Jan 2021 B2
10909459 Tsatsin et al. Feb 2021 B2
10931999 Jobanputra et al. Feb 2021 B1
10937263 Tout et al. Mar 2021 B1
10937410 Rule Mar 2021 B1
10942702 Piersol et al. Mar 2021 B2
10942703 Martel et al. Mar 2021 B2
10944859 Weinstein et al. Mar 2021 B2
10957310 Mohajer et al. Mar 2021 B1
10957311 Solomon et al. Mar 2021 B2
10957337 Chen et al. Mar 2021 B2
10970660 Harris et al. Apr 2021 B1
10974139 Feder et al. Apr 2021 B2
10978056 Challa et al. Apr 2021 B1
10978090 Binder et al. Apr 2021 B2
10983971 Carvalho et al. Apr 2021 B2
11009970 Hindi et al. May 2021 B2
11010127 Orr et al. May 2021 B2
11012942 Freeman et al. May 2021 B2
11017766 Chao et al. May 2021 B2
11037565 Kudurshian et al. Jun 2021 B2
11038934 Hansen et al. Jun 2021 B1
11043086 Daoura et al. Jun 2021 B1
11043220 Hansen et al. Jun 2021 B1
11048473 Carson et al. Jun 2021 B2
11061543 Blatz et al. Jul 2021 B1
11062696 Tadpatrikar et al. Jul 2021 B2
11072344 Provost et al. Jul 2021 B2
11076039 Weinstein et al. Jul 2021 B2
11080336 Van Dusen Aug 2021 B2
11086858 Koukoumidis et al. Aug 2021 B1
11094311 Candelore et al. Aug 2021 B2
11112875 Zhou et al. Sep 2021 B1
11113598 Socher et al. Sep 2021 B2
11126331 Lo et al. Sep 2021 B2
11126400 Stasior et al. Sep 2021 B2
11132172 Naik et al. Sep 2021 B1
11133008 Piernot et al. Sep 2021 B2
11151899 Pitschel et al. Oct 2021 B2
11169660 Gupta et al. Nov 2021 B2
11181988 Bellegarda et al. Nov 2021 B1
11183193 Hansen et al. Nov 2021 B1
11183205 Ebenezer et al. Nov 2021 B1
11200027 Aggarwal et al. Dec 2021 B2
11204787 Radebaugh et al. Dec 2021 B2
11205192 Rivera et al. Dec 2021 B1
11210477 Srinivasan et al. Dec 2021 B2
11211048 Kim et al. Dec 2021 B2
11211058 Eakin et al. Dec 2021 B1
11217255 Kim et al. Jan 2022 B2
11223699 Niewczas Jan 2022 B1
11235248 Orrino et al. Feb 2022 B1
11269426 Jorasch et al. Mar 2022 B2
11269678 Gruber et al. Mar 2022 B2
11283631 Yan et al. Mar 2022 B2
11289082 Lacy et al. Mar 2022 B1
11301766 Muramoto et al. Apr 2022 B2
11302310 Gandhe et al. Apr 2022 B1
11348582 Lindahl May 2022 B2
11361863 Gass et al. Jun 2022 B2
11373645 Mathew et al. Jun 2022 B1
11380310 Acero et al. Jul 2022 B2
11380323 Shin et al. Jul 2022 B2
11388291 Van Os et al. Jul 2022 B2
11418461 Elfardy et al. Aug 2022 B1
11423866 Park et al. Aug 2022 B2
11449802 Maalouf et al. Sep 2022 B2
11481552 Krause et al. Oct 2022 B2
11487932 Kramer Nov 2022 B2
11495218 Newendorp et al. Nov 2022 B2
11507183 Manjunath et al. Nov 2022 B2
11508380 Hu et al. Nov 2022 B2
11538469 Acero et al. Dec 2022 B2
11580990 Paulik et al. Feb 2023 B2
11671920 Freeman et al. Jun 2023 B2
11756548 Perkins et al. Sep 2023 B1
20040254998 Horvitz Dec 2004 A1
20060291580 Horvitz Dec 2006 A1
20080134069 Horvitz Jun 2008 A1
20080189110 Freeman et al. Aug 2008 A1
20090287750 Banavar et al. Nov 2009 A1
20100100848 Ananian et al. Apr 2010 A1
20100195865 Luff Aug 2010 A1
20110028083 Soitis Feb 2011 A1
20110295590 Lloyd et al. Dec 2011 A1
20120109753 Kennewick et al. May 2012 A1
20120124138 Smith et al. May 2012 A1
20120232906 Lindahl Sep 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120316871 Koll et al. Dec 2012 A1
20130054945 Free et al. Feb 2013 A1
20130109412 Nguyen et al. May 2013 A1
20130155948 Pinheiro et al. Jun 2013 A1
20130185081 Cheyer et al. Jul 2013 A1
20130267280 Delco et al. Oct 2013 A1
20140001255 Anthoine Jan 2014 A1
20140002338 Raffa et al. Jan 2014 A1
20140006012 Zhou et al. Jan 2014 A1
20140006025 Krishnan et al. Jan 2014 A1
20140006027 Kim et al. Jan 2014 A1
20140006028 Hu Jan 2014 A1
20140006030 Fleizach et al. Jan 2014 A1
20140006153 Thangam et al. Jan 2014 A1
20140006191 Shankar et al. Jan 2014 A1
20140006483 Garmark et al. Jan 2014 A1
20140006496 Dearman et al. Jan 2014 A1
20140006562 Handa et al. Jan 2014 A1
20140006944 Selig et al. Jan 2014 A1
20140006947 Garmark et al. Jan 2014 A1
20140006951 Hunter Jan 2014 A1
20140006955 Greenzeiger et al. Jan 2014 A1
20140008163 Mikonaho et al. Jan 2014 A1
20140012574 Pasupalak et al. Jan 2014 A1
20140012575 Ganong et al. Jan 2014 A1
20140012580 Ganong, III et al. Jan 2014 A1
20140012586 Rubin et al. Jan 2014 A1
20140012587 Park Jan 2014 A1
20140013336 Yang Jan 2014 A1
20140019116 Lundberg et al. Jan 2014 A1
20140019133 Bao et al. Jan 2014 A1
20140019135 Talwar et al. Jan 2014 A1
20140019460 Sambrani et al. Jan 2014 A1
20140019873 Gupta et al. Jan 2014 A1
20140025383 Dai et al. Jan 2014 A1
20140026037 Garb et al. Jan 2014 A1
20140028029 Jochman Jan 2014 A1
20140028477 Michalske Jan 2014 A1
20140028603 Xie et al. Jan 2014 A1
20140028735 Williams et al. Jan 2014 A1
20140032453 Eustice et al. Jan 2014 A1
20140032678 Koukoumidis et al. Jan 2014 A1
20140033071 Gruber et al. Jan 2014 A1
20140035823 Khoe et al. Feb 2014 A1
20140037075 Bouzid et al. Feb 2014 A1
20140039888 Taubman et al. Feb 2014 A1
20140039893 Weiner et al. Feb 2014 A1
20140039894 Shostak Feb 2014 A1
20140040228 Kritt et al. Feb 2014 A1
20140040274 Aravamudan et al. Feb 2014 A1
20140040748 Lemay et al. Feb 2014 A1
20140040754 Donelli Feb 2014 A1
20140040801 Patel et al. Feb 2014 A1
20140040905 Tsunoda et al. Feb 2014 A1
20140040918 Li Feb 2014 A1
20140040961 Green et al. Feb 2014 A1
20140045547 Singamsetty et al. Feb 2014 A1
20140046922 Crook et al. Feb 2014 A1
20140046934 Zhou et al. Feb 2014 A1
20140047001 Phillips et al. Feb 2014 A1
20140051399 Walker Feb 2014 A1
20140052451 Cheong et al. Feb 2014 A1
20140052680 Nitz et al. Feb 2014 A1
20140052791 Chakra et al. Feb 2014 A1
20140053082 Park Feb 2014 A1
20140053101 Buehler et al. Feb 2014 A1
20140053210 Cheong et al. Feb 2014 A1
20140056439 Kim Feb 2014 A1
20140057610 Olincy et al. Feb 2014 A1
20140058732 Labsky et al. Feb 2014 A1
20140059030 Hakkani-Tur et al. Feb 2014 A1
20140059423 Gorga et al. Feb 2014 A1
20140067361 Nikoulina et al. Mar 2014 A1
20140067371 Liensberger Mar 2014 A1
20140067402 Kim Mar 2014 A1
20140067738 Kingsbury Mar 2014 A1
20140067740 Solari Mar 2014 A1
20140068751 Last Mar 2014 A1
20140071241 Yang et al. Mar 2014 A1
20140074454 Brown et al. Mar 2014 A1
20140074466 Sharifi et al. Mar 2014 A1
20140074470 Jansche et al. Mar 2014 A1
20140074472 Lin et al. Mar 2014 A1
20140074482 Ohno Mar 2014 A1
20140074483 Van Os Mar 2014 A1
20140074589 Nielsen et al. Mar 2014 A1
20140074815 Plimton Mar 2014 A1
20140074846 Moss et al. Mar 2014 A1
20140075453 Bellessort et al. Mar 2014 A1
20140078065 Akkok Mar 2014 A1
20140079195 Srivastava et al. Mar 2014 A1
20140080410 Jung et al. Mar 2014 A1
20140080428 Rhoads et al. Mar 2014 A1
20140081619 Solntseva et al. Mar 2014 A1
20140081633 Badaskar Mar 2014 A1
20140081635 Yanagihara Mar 2014 A1
20140081829 Milne Mar 2014 A1
20140081941 Bai et al. Mar 2014 A1
20140082500 Wilensky et al. Mar 2014 A1
20140082501 Bae et al. Mar 2014 A1
20140082545 Zhai et al. Mar 2014 A1
20140082715 Grajek et al. Mar 2014 A1
20140086458 Rogers Mar 2014 A1
20140087711 Geyer et al. Mar 2014 A1
20140088952 Fife et al. Mar 2014 A1
20140088961 Woodward et al. Mar 2014 A1
20140088964 Bellegarda Mar 2014 A1
20140088970 Kang Mar 2014 A1
20140088989 Krishnapuram et al. Mar 2014 A1
20140092007 Kim et al. Apr 2014 A1
20140095171 Lynch et al. Apr 2014 A1
20140095172 Cabaco et al. Apr 2014 A1
20140095173 Lynch et al. Apr 2014 A1
20140095432 Trumbull et al. Apr 2014 A1
20140095601 Abuelsaad et al. Apr 2014 A1
20140095965 Li Apr 2014 A1
20140096077 Jacob et al. Apr 2014 A1
20140096209 Saraf et al. Apr 2014 A1
20140098247 Rao et al. Apr 2014 A1
20140100847 Ishii et al. Apr 2014 A1
20140101127 Simhon et al. Apr 2014 A1
20140104175 Ouyang et al. Apr 2014 A1
20140108017 Mason et al. Apr 2014 A1
20140108357 Procops et al. Apr 2014 A1
20140108391 Volkert Apr 2014 A1
20140108792 Borzycki et al. Apr 2014 A1
20140112556 Kalinli-Akbacak Apr 2014 A1
20140114554 Lagassey Apr 2014 A1
20140115062 Liu et al. Apr 2014 A1
20140115114 Garmark et al. Apr 2014 A1
20140118155 Bowers et al. May 2014 A1
20140118624 Jang et al. May 2014 A1
20140120954 Horvitz et al. May 2014 A1
20140120961 Buck May 2014 A1
20140122057 Chelba et al. May 2014 A1
20140122059 Patel et al. May 2014 A1
20140122085 Piety et al. May 2014 A1
20140122086 Kapur et al. May 2014 A1
20140122136 Jayanthi May 2014 A1
20140122153 Truitt May 2014 A1
20140122589 Fyke et al. May 2014 A1
20140123022 Lee et al. May 2014 A1
20140128021 Walker et al. May 2014 A1
20140129006 Chen et al. May 2014 A1
20140129226 Lee et al. May 2014 A1
20140132935 Kim et al. May 2014 A1
20140134983 Jung et al. May 2014 A1
20140135036 Bonanni et al. May 2014 A1
20140136013 Wolverton et al. May 2014 A1
20140136187 Wolverton et al. May 2014 A1
20140136195 Abdossalami et al. May 2014 A1
20140136212 Kwon et al. May 2014 A1
20140136946 Matas May 2014 A1
20140136987 Rodriguez May 2014 A1
20140142922 Liang et al. May 2014 A1
20140142923 Jones et al. May 2014 A1
20140142934 Kim May 2014 A1
20140142935 Lindahl et al. May 2014 A1
20140142953 Kim et al. May 2014 A1
20140143550 Ganong, III et al. May 2014 A1
20140143721 Suzuki et al. May 2014 A1
20140143784 Mistry et al. May 2014 A1
20140146200 Scott et al. May 2014 A1
20140148209 Weng et al. May 2014 A1
20140149118 Lee et al. May 2014 A1
20140152577 Yuen et al. Jun 2014 A1
20140153709 Byrd et al. Jun 2014 A1
20140155031 Lee et al. Jun 2014 A1
20140156262 Yuen et al. Jun 2014 A1
20140156268 Arizmendi et al. Jun 2014 A1
20140156269 Lee et al. Jun 2014 A1
20140156279 Okamoto et al. Jun 2014 A1
20140156564 Knight et al. Jun 2014 A1
20140157319 Kimura et al. Jun 2014 A1
20140157422 Livshits et al. Jun 2014 A1
20140160157 Poulos et al. Jun 2014 A1
20140163751 Davis et al. Jun 2014 A1
20140163951 Nikoulina et al. Jun 2014 A1
20140163953 Parikh Jun 2014 A1
20140163954 Joshi et al. Jun 2014 A1
20140163962 Castelli et al. Jun 2014 A1
20140163976 Park et al. Jun 2014 A1
20140163977 Hoffmeister et al. Jun 2014 A1
20140163978 Basye et al. Jun 2014 A1
20140163981 Cook et al. Jun 2014 A1
20140163995 Burns et al. Jun 2014 A1
20140164305 Lynch et al. Jun 2014 A1
20140164312 Lynch et al. Jun 2014 A1
20140164476 Thomson Jun 2014 A1
20140164508 Lynch et al. Jun 2014 A1
20140164532 Lynch et al. Jun 2014 A1
20140164533 Lynch et al. Jun 2014 A1
20140164953 Lynch et al. Jun 2014 A1
20140165006 Chaudhri et al. Jun 2014 A1
20140169795 Clough Jun 2014 A1
20140171064 Das Jun 2014 A1
20140172412 Viegas et al. Jun 2014 A1
20140172878 Clark et al. Jun 2014 A1
20140173445 Grassiotto Jun 2014 A1
20140173460 Kim Jun 2014 A1
20140176814 Ahn Jun 2014 A1
20140179295 Luebbers et al. Jun 2014 A1
20140180499 Cooper et al. Jun 2014 A1
20140180689 Kim Jun 2014 A1
20140180697 Torok et al. Jun 2014 A1
20140181123 Blaise et al. Jun 2014 A1
20140181703 Sullivan et al. Jun 2014 A1
20140181715 Axelrod et al. Jun 2014 A1
20140181741 Apacible et al. Jun 2014 A1
20140181865 Koganei Jun 2014 A1
20140188335 Madhok et al. Jul 2014 A1
20140188460 Ouyang et al. Jul 2014 A1
20140188477 Zhang Jul 2014 A1
20140188478 Zhang Jul 2014 A1
20140188485 Kim et al. Jul 2014 A1
20140188835 Zhang et al. Jul 2014 A1
20140195226 Yun et al. Jul 2014 A1
20140195230 Han et al. Jul 2014 A1
20140195233 Bapat et al. Jul 2014 A1
20140195244 Cha et al. Jul 2014 A1
20140195251 Zeinstra et al. Jul 2014 A1
20140195252 Gruber et al. Jul 2014 A1
20140198048 Unruh et al. Jul 2014 A1
20140200891 Larcheveque et al. Jul 2014 A1
20140201655 Mahaffey et al. Jul 2014 A1
20140203939 Harrington et al. Jul 2014 A1
20140205076 Kumar et al. Jul 2014 A1
20140207439 Venkatapathy et al. Jul 2014 A1
20140207446 Klein et al. Jul 2014 A1
20140207447 Jiang et al. Jul 2014 A1
20140207466 Smadi Jul 2014 A1
20140207468 Bartnik Jul 2014 A1
20140207582 Flinn et al. Jul 2014 A1
20140211944 Hayward et al. Jul 2014 A1
20140214429 Pantel Jul 2014 A1
20140214537 Yoo et al. Jul 2014 A1
20140215367 Kim et al. Jul 2014 A1
20140215513 Ramer et al. Jul 2014 A1
20140218372 Missig et al. Aug 2014 A1
20140222422 Sarikaya et al. Aug 2014 A1
20140222435 Li et al. Aug 2014 A1
20140222436 Binder et al. Aug 2014 A1
20140222678 Sheets et al. Aug 2014 A1
20140222967 Harrang et al. Aug 2014 A1
20140223372 Dostie et al. Aug 2014 A1
20140223377 Shaw et al. Aug 2014 A1
20140223481 Fundament Aug 2014 A1
20140226503 Cooper et al. Aug 2014 A1
20140229158 Zweig et al. Aug 2014 A1
20140229184 Shires Aug 2014 A1
20140229847 Park Aug 2014 A1
20140230055 Boehl Aug 2014 A1
20140232570 Skinder et al. Aug 2014 A1
20140232656 Pasquero et al. Aug 2014 A1
20140236595 Gray Aug 2014 A1
20140236986 Guzman Aug 2014 A1
20140237042 Ahmed et al. Aug 2014 A1
20140237366 Poulos et al. Aug 2014 A1
20140244248 Arisoy et al. Aug 2014 A1
20140244249 Mohamed et al. Aug 2014 A1
20140244254 Ju et al. Aug 2014 A1
20140244257 Colibro et al. Aug 2014 A1
20140244258 Song et al. Aug 2014 A1
20140244263 Pontual et al. Aug 2014 A1
20140244266 Brown et al. Aug 2014 A1
20140244268 Abdelsamie et al. Aug 2014 A1
20140244270 Han et al. Aug 2014 A1
20140244271 Lindahl Aug 2014 A1
20140244712 Walters et al. Aug 2014 A1
20140245140 Brown et al. Aug 2014 A1
20140247383 Dave et al. Sep 2014 A1
20140247926 Gainsboro et al. Sep 2014 A1
20140249812 Bou-Ghazale et al. Sep 2014 A1
20140249816 Pickering et al. Sep 2014 A1
20140249817 Hart et al. Sep 2014 A1
20140249820 Hsu et al. Sep 2014 A1
20140249821 Kennewick et al. Sep 2014 A1
20140250046 Winn et al. Sep 2014 A1
20140253455 Mauro et al. Sep 2014 A1
20140257809 Goel et al. Sep 2014 A1
20140257815 Zhao et al. Sep 2014 A1
20140257902 Moore et al. Sep 2014 A1
20140258324 Mauro et al. Sep 2014 A1
20140258357 Singh et al. Sep 2014 A1
20140258857 Dykstra-Erickson et al. Sep 2014 A1
20140258905 Lee et al. Sep 2014 A1
20140267022 Kim Sep 2014 A1
20140267599 Drouin et al. Sep 2014 A1
20140267933 Young Sep 2014 A1
20140272821 Pitschel et al. Sep 2014 A1
20140273974 Varghese et al. Sep 2014 A1
20140273979 Van Os et al. Sep 2014 A1
20140274005 Luna et al. Sep 2014 A1
20140274203 Ganong, III et al. Sep 2014 A1
20140274211 Sejnoha et al. Sep 2014 A1
20140278051 Mcgavran et al. Sep 2014 A1
20140278343 Tran Sep 2014 A1
20140278349 Grieves et al. Sep 2014 A1
20140278379 Coccaro et al. Sep 2014 A1
20140278390 Kingsbury et al. Sep 2014 A1
20140278391 Braho et al. Sep 2014 A1
20140278394 Bastyr et al. Sep 2014 A1
20140278406 Tsumura et al. Sep 2014 A1
20140278413 Pitschel et al. Sep 2014 A1
20140278419 Bishop et al. Sep 2014 A1
20140278426 Jost et al. Sep 2014 A1
20140278429 Ganong, III Sep 2014 A1
20140278435 Ganong, III et al. Sep 2014 A1
20140278436 Khanna et al. Sep 2014 A1
20140278438 Hart et al. Sep 2014 A1
20140278443 Gunn et al. Sep 2014 A1
20140278444 Larson et al. Sep 2014 A1
20140278513 Prakash et al. Sep 2014 A1
20140279622 Lamoureux et al. Sep 2014 A1
20140279739 Elkington et al. Sep 2014 A1
20140279787 Cheng et al. Sep 2014 A1
20140280072 Coleman Sep 2014 A1
20140280107 Heymans et al. Sep 2014 A1
20140280138 Li et al. Sep 2014 A1
20140280292 Skinder Sep 2014 A1
20140280353 Delaney et al. Sep 2014 A1
20140280450 Luna Sep 2014 A1
20140280757 Tran Sep 2014 A1
20140281944 Winer Sep 2014 A1
20140281983 Xian et al. Sep 2014 A1
20140281997 Fleizach et al. Sep 2014 A1
20140282003 Gruber et al. Sep 2014 A1
20140282007 Fleizach Sep 2014 A1
20140282016 Hosier, Jr. Sep 2014 A1
20140282045 Ayanam et al. Sep 2014 A1
20140282178 Borzello et al. Sep 2014 A1
20140282201 Pasquero et al. Sep 2014 A1
20140282203 Pasquero et al. Sep 2014 A1
20140282559 Verduzco et al. Sep 2014 A1
20140282586 Shear et al. Sep 2014 A1
20140282743 Howard et al. Sep 2014 A1
20140288990 Moore et al. Sep 2014 A1
20140289508 Wang Sep 2014 A1
20140297267 Spencer et al. Oct 2014 A1
20140297281 Togawa et al. Oct 2014 A1
20140297284 Gruber et al. Oct 2014 A1
20140297288 Yu et al. Oct 2014 A1
20140297348 Ellis Oct 2014 A1
20140298395 Yang et al. Oct 2014 A1
20140303839 Filev et al. Oct 2014 A1
20140304086 Dasdan et al. Oct 2014 A1
20140304605 Ohmura et al. Oct 2014 A1
20140309990 Gandrabur et al. Oct 2014 A1
20140309996 Zhang Oct 2014 A1
20140310001 Kalns et al. Oct 2014 A1
20140310002 Nitz et al. Oct 2014 A1
20140310348 Keskitalo et al. Oct 2014 A1
20140310365 Sample et al. Oct 2014 A1
20140310595 Acharya et al. Oct 2014 A1
20140313007 Harding Oct 2014 A1
20140315492 Woods Oct 2014 A1
20140316585 Boesveld et al. Oct 2014 A1
20140317030 Shen et al. Oct 2014 A1
20140317502 Brown et al. Oct 2014 A1
20140320398 Papstein Oct 2014 A1
20140324429 Weilhammer et al. Oct 2014 A1
20140324884 Lindahl et al. Oct 2014 A1
20140330560 Venkatesha et al. Nov 2014 A1
20140330569 Kolavennu et al. Nov 2014 A1
20140330951 Sukoff et al. Nov 2014 A1
20140335823 Heredia et al. Nov 2014 A1
20140337037 Chi Nov 2014 A1
20140337048 Brown et al. Nov 2014 A1
20140337266 Wolverton et al. Nov 2014 A1
20140337370 Aravamudan et al. Nov 2014 A1
20140337371 Li Nov 2014 A1
20140337438 Govande et al. Nov 2014 A1
20140337621 Nakhimov Nov 2014 A1
20140337751 Lim et al. Nov 2014 A1
20140337814 Kalns et al. Nov 2014 A1
20140341217 Eisner et al. Nov 2014 A1
20140342762 Hajdu et al. Nov 2014 A1
20140343834 Demerchant et al. Nov 2014 A1
20140343943 Al-Telmissani Nov 2014 A1
20140343946 Torok et al. Nov 2014 A1
20140344205 Luna et al. Nov 2014 A1
20140344627 Schaub et al. Nov 2014 A1
20140344687 Durham et al. Nov 2014 A1
20140347181 Luna et al. Nov 2014 A1
20140350847 Ichinokawa Nov 2014 A1
20140350924 Zurek et al. Nov 2014 A1
20140350933 Bak et al. Nov 2014 A1
20140351741 Medlock et al. Nov 2014 A1
20140351760 Skory et al. Nov 2014 A1
20140358519 Mirkin et al. Dec 2014 A1
20140358521 Mikutel et al. Dec 2014 A1
20140358523 Sheth et al. Dec 2014 A1
20140358549 O'Connor et al. Dec 2014 A1
20140359456 Thiele et al. Dec 2014 A1
20140359637 Yan Dec 2014 A1
20140359709 Nassar et al. Dec 2014 A1
20140361973 Raux et al. Dec 2014 A1
20140363074 Dolfing et al. Dec 2014 A1
20140364149 Marti et al. Dec 2014 A1
20140365209 Evermann Dec 2014 A1
20140365214 Bayley Dec 2014 A1
20140365216 Gruber et al. Dec 2014 A1
20140365218 Chang et al. Dec 2014 A1
20140365226 Sinha Dec 2014 A1
20140365227 Cash et al. Dec 2014 A1
20140365407 Brown et al. Dec 2014 A1
20140365505 Clark et al. Dec 2014 A1
20140365880 Bellegarda Dec 2014 A1
20140365885 Carson et al. Dec 2014 A1
20140365895 Magahem et al. Dec 2014 A1
20140365912 Karunamuni et al. Dec 2014 A1
20140365922 Yang Dec 2014 A1
20140365945 Karunamuni et al. Dec 2014 A1
20140370817 Luna Dec 2014 A1
20140370841 Roberts et al. Dec 2014 A1
20140372112 Xue et al. Dec 2014 A1
20140372356 Bilal et al. Dec 2014 A1
20140372468 Collins et al. Dec 2014 A1
20140372931 Zhai et al. Dec 2014 A1
20140379326 Sarkaya et al. Dec 2014 A1
20140379334 Fry Dec 2014 A1
20140379338 Fry Dec 2014 A1
20140379341 Seo et al. Dec 2014 A1
20140379798 Bunner et al. Dec 2014 A1
20140380214 Huang et al. Dec 2014 A1
20140380285 Gabel et al. Dec 2014 A1
20150003797 Schmidt Jan 2015 A1
20150004958 Wang et al. Jan 2015 A1
20150005009 Tomkins et al. Jan 2015 A1
20150006147 Schmidt Jan 2015 A1
20150006148 Goldszmit et al. Jan 2015 A1
20150006157 Silva et al. Jan 2015 A1
20150006167 Kato et al. Jan 2015 A1
20150006176 Pogue et al. Jan 2015 A1
20150006178 Peng et al. Jan 2015 A1
20150006182 Schmidt Jan 2015 A1
20150006184 Marti et al. Jan 2015 A1
20150006199 Snider et al. Jan 2015 A1
20150006564 Tomkins et al. Jan 2015 A1
20150012271 Peng et al. Jan 2015 A1
20150012862 Ikeda et al. Jan 2015 A1
20150019219 Tzirkel-Hancock et al. Jan 2015 A1
20150019220 Talhami et al. Jan 2015 A1
20150019221 Lee et al. Jan 2015 A1
20150019445 Glass et al. Jan 2015 A1
20150019944 Kalgi Jan 2015 A1
20150019954 Dalal et al. Jan 2015 A1
20150019974 Doi et al. Jan 2015 A1
20150025405 Vairavan et al. Jan 2015 A1
20150025890 Jagatheesan et al. Jan 2015 A1
20150026620 Kwon et al. Jan 2015 A1
20150027178 Scalisi Jan 2015 A1
20150031416 Labowicz et al. Jan 2015 A1
20150032443 Karov et al. Jan 2015 A1
20150032457 Koo et al. Jan 2015 A1
20150033130 Scheessele Jan 2015 A1
20150033219 Breiner et al. Jan 2015 A1
20150033275 Natani et al. Jan 2015 A1
20150034855 Shen Feb 2015 A1
20150038161 Jakobson et al. Feb 2015 A1
20150039292 Suleman et al. Feb 2015 A1
20150039295 Soschen Feb 2015 A1
20150039299 Weinstein et al. Feb 2015 A1
20150039305 Huang Feb 2015 A1
20150039606 Salaka et al. Feb 2015 A1
20150040012 Faaborg et al. Feb 2015 A1
20150042640 Algreatly Feb 2015 A1
20150045003 Vora et al. Feb 2015 A1
20150045007 Cash Feb 2015 A1
20150045068 Soffer et al. Feb 2015 A1
20150046375 Mandel et al. Feb 2015 A1
20150046434 Lim et al. Feb 2015 A1
20150046537 Rakib Feb 2015 A1
20150046828 Desai et al. Feb 2015 A1
20150049884 Ye Feb 2015 A1
20150050633 Christmas et al. Feb 2015 A1
20150050923 Tu et al. Feb 2015 A1
20150051754 Kwon et al. Feb 2015 A1
20150051901 Stonehouse et al. Feb 2015 A1
20150052128 Sharifi Feb 2015 A1
20150053779 Adamek et al. Feb 2015 A1
20150053781 Nelson et al. Feb 2015 A1
20150055879 Yang Feb 2015 A1
20150058013 Pakhomov et al. Feb 2015 A1
20150058018 Georges et al. Feb 2015 A1
20150058720 Smadja et al. Feb 2015 A1
20150058785 Ookawara Feb 2015 A1
20150065149 Russell et al. Mar 2015 A1
20150065200 Namgung et al. Mar 2015 A1
20150066473 Jeong et al. Mar 2015 A1
20150066479 Pasupalak et al. Mar 2015 A1
20150066494 Salvador et al. Mar 2015 A1
20150066496 Deoras et al. Mar 2015 A1
20150066506 Romano et al. Mar 2015 A1
20150066516 Nishikawa et al. Mar 2015 A1
20150066817 Slayton et al. Mar 2015 A1
20150067485 Kim et al. Mar 2015 A1
20150067521 Heo et al. Mar 2015 A1
20150067819 Shribman et al. Mar 2015 A1
20150067822 Randall Mar 2015 A1
20150068069 Tran et al. Mar 2015 A1
20150071121 Patil et al. Mar 2015 A1
20150073788 Sak et al. Mar 2015 A1
20150073804 Senior et al. Mar 2015 A1
20150074524 Nicholson et al. Mar 2015 A1
20150074615 Han et al. Mar 2015 A1
20150081295 Yun et al. Mar 2015 A1
20150082180 Ames et al. Mar 2015 A1
20150082229 Ouyang et al. Mar 2015 A1
20150086174 Abecassis et al. Mar 2015 A1
20150088511 Bharadwaj et al. Mar 2015 A1
20150088514 Typrin Mar 2015 A1
20150088518 Kim et al. Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150088523 Schuster Mar 2015 A1
20150088998 Isensee et al. Mar 2015 A1
20150092520 Robison et al. Apr 2015 A1
20150094834 Vega et al. Apr 2015 A1
20150095026 Bisani et al. Apr 2015 A1
20150095031 Conkie et al. Apr 2015 A1
20150095159 Kennewick et al. Apr 2015 A1
20150095268 Greenzeiger et al. Apr 2015 A1
20150095278 Flinn et al. Apr 2015 A1
20150095310 Beaurepaire Apr 2015 A1
20150100144 Lee et al. Apr 2015 A1
20150100313 Sharma Apr 2015 A1
20150100316 Williams et al. Apr 2015 A1
20150100537 Grieves et al. Apr 2015 A1
20150100983 Pan Apr 2015 A1
20150106061 Yang et al. Apr 2015 A1
20150106085 Lindahl Apr 2015 A1
20150106093 Weeks et al. Apr 2015 A1
20150106096 Toopran et al. Apr 2015 A1
20150106737 Montoy-Wilson et al. Apr 2015 A1
20150112684 Scheffer et al. Apr 2015 A1
20150113407 Hoffert et al. Apr 2015 A1
20150113435 Phillips Apr 2015 A1
20150113454 McLaughlin Apr 2015 A1
20150120296 Stem et al. Apr 2015 A1
20150120641 Soon-Shiong et al. Apr 2015 A1
20150120723 Deshmukh et al. Apr 2015 A1
20150121216 Brown et al. Apr 2015 A1
20150121227 Peng Apr 2015 A1
20150123898 Kim et al. May 2015 A1
20150127336 Lei et al. May 2015 A1
20150127337 Heigold et al. May 2015 A1
20150127348 Follis May 2015 A1
20150127350 Agiomyrgiannakis May 2015 A1
20150128058 Anajwala May 2015 A1
20150130716 Sridharan et al. May 2015 A1
20150133049 Lee et al. May 2015 A1
20150133109 Freeman et al. May 2015 A1
20150134318 Cuthbert et al. May 2015 A1
20150134322 Cuthbert et al. May 2015 A1
20150134323 Cuthbert et al. May 2015 A1
20150134334 Sachidanandam et al. May 2015 A1
20150135085 Shoham et al. May 2015 A1
20150135123 Carr et al. May 2015 A1
20150140934 Abdurrahman et al. May 2015 A1
20150140990 Kim et al. May 2015 A1
20150141150 Zha May 2015 A1
20150142420 Sarikaya et al. May 2015 A1
20150142438 Dai et al. May 2015 A1
20150142440 Parkinson et al. May 2015 A1
20150142447 Kennewick et al. May 2015 A1
20150142851 Gupta et al. May 2015 A1
20150143419 Bhagwat et al. May 2015 A1
20150148013 Baldwin et al. May 2015 A1
20150149146 Abramovitz et al. May 2015 A1
20150149177 Kalns et al. May 2015 A1
20150149182 Kalns et al. May 2015 A1
20150149354 McCoy May 2015 A1
20150149469 Xu et al. May 2015 A1
20150149899 Bernstein et al. May 2015 A1
20150149964 Bernstein et al. May 2015 A1
20150154001 Knox et al. Jun 2015 A1
20150154134 Beaumont et al. Jun 2015 A1
20150154185 Waibel Jun 2015 A1
20150154976 Mutagi Jun 2015 A1
20150160635 Schofield et al. Jun 2015 A1
20150160855 Bi Jun 2015 A1
20150161108 Back Jun 2015 A1
20150161291 Nadav et al. Jun 2015 A1
20150161370 North et al. Jun 2015 A1
20150161521 Shah et al. Jun 2015 A1
20150161989 Hsu et al. Jun 2015 A1
20150161997 Wetsel et al. Jun 2015 A1
20150162000 Di Censo et al. Jun 2015 A1
20150162001 Kar et al. Jun 2015 A1
20150162006 Kummer Jun 2015 A1
20150163558 Wheatley Jun 2015 A1
20150169081 Neels et al. Jun 2015 A1
20150169195 Choi Jun 2015 A1
20150169284 Quast et al. Jun 2015 A1
20150169336 Harper et al. Jun 2015 A1
20150169696 Krishnappa et al. Jun 2015 A1
20150170073 Baker Jun 2015 A1
20150170664 Doherty et al. Jun 2015 A1
20150172262 Ortiz, Jr. et al. Jun 2015 A1
20150172463 Quast et al. Jun 2015 A1
20150177945 Sengupta et al. Jun 2015 A1
20150178388 Winnemoeller et al. Jun 2015 A1
20150178785 Salonen Jun 2015 A1
20150179168 Hakkani-Tur et al. Jun 2015 A1
20150179176 Ryu et al. Jun 2015 A1
20150181285 Zhang et al. Jun 2015 A1
20150185718 Tappan et al. Jul 2015 A1
20150185964 Stout Jul 2015 A1
20150185993 Wheatley et al. Jul 2015 A1
20150185996 Brown et al. Jul 2015 A1
20150186012 Coleman et al. Jul 2015 A1
20150186110 Kannan Jul 2015 A1
20150186154 Brown et al. Jul 2015 A1
20150186155 Brown et al. Jul 2015 A1
20150186156 Brown et al. Jul 2015 A1
20150186351 Hicks et al. Jul 2015 A1
20150186538 Yan et al. Jul 2015 A1
20150186783 Byrne et al. Jul 2015 A1
20150186892 Zhang et al. Jul 2015 A1
20150187355 Parkinson et al. Jul 2015 A1
20150187369 Dadu et al. Jul 2015 A1
20150189362 Lee et al. Jul 2015 A1
20150189425 Pang Jul 2015 A1
20150193379 Mehta Jul 2015 A1
20150193391 Khvostichenko et al. Jul 2015 A1
20150193392 Greenblatt et al. Jul 2015 A1
20150194152 Katuri et al. Jul 2015 A1
20150194165 Faaborg et al. Jul 2015 A1
20150194187 Cleven et al. Jul 2015 A1
20150195379 Zhang et al. Jul 2015 A1
20150195606 McDevitt Jul 2015 A1
20150199077 Zuger et al. Jul 2015 A1
20150199960 Huo et al. Jul 2015 A1
20150199965 Leak et al. Jul 2015 A1
20150199967 Reddy et al. Jul 2015 A1
20150200879 Wu et al. Jul 2015 A1
20150201064 Bells et al. Jul 2015 A1
20150201077 Konig et al. Jul 2015 A1
20150205425 Kuscher et al. Jul 2015 A1
20150205568 Matsuoka Jul 2015 A1
20150205632 Gaster Jul 2015 A1
20150205858 Xie et al. Jul 2015 A1
20150206529 Kwon et al. Jul 2015 A1
20150208226 Kuusilinna et al. Jul 2015 A1
20150212791 Kumar et al. Jul 2015 A1
20150213140 Volkert Jul 2015 A1
20150213796 Waltermann et al. Jul 2015 A1
20150215258 Nowakowski et al. Jul 2015 A1
20150215350 Slayton et al. Jul 2015 A1
20150217870 Mccullough et al. Aug 2015 A1
20150220264 Lewis et al. Aug 2015 A1
20150220507 Mohajer et al. Aug 2015 A1
20150220715 Kim et al. Aug 2015 A1
20150220972 Subramanya et al. Aug 2015 A1
20150221302 Han et al. Aug 2015 A1
20150221304 Stewart Aug 2015 A1
20150221307 Shah et al. Aug 2015 A1
20150222586 Ebersman et al. Aug 2015 A1
20150224848 Eisenhour Aug 2015 A1
20150227505 Morimoto Aug 2015 A1
20150227633 Shapira Aug 2015 A1
20150228274 Leppanen et al. Aug 2015 A1
20150228275 Watanabe et al. Aug 2015 A1
20150228279 Biadsy et al. Aug 2015 A1
20150228281 Raniere Aug 2015 A1
20150228282 Evrard Aug 2015 A1
20150228283 Ehsani et al. Aug 2015 A1
20150228292 Goldstein et al. Aug 2015 A1
20150230095 Smith et al. Aug 2015 A1
20150234556 Shaofeng et al. Aug 2015 A1
20150234636 Barnes, Jr. Aug 2015 A1
20150234800 Patrick et al. Aug 2015 A1
20150235434 Miller et al. Aug 2015 A1
20150235540 Verna et al. Aug 2015 A1
20150237301 Shi et al. Aug 2015 A1
20150242088 Hasumi Aug 2015 A1
20150242091 Lu et al. Aug 2015 A1
20150242385 Bao et al. Aug 2015 A1
20150243278 Kibre et al. Aug 2015 A1
20150243279 Morse et al. Aug 2015 A1
20150243283 Halash et al. Aug 2015 A1
20150244665 Choi et al. Aug 2015 A1
20150245154 Dadu et al. Aug 2015 A1
20150248494 Mital Sep 2015 A1
20150248651 Akutagawa et al. Sep 2015 A1
20150248886 Sarikaya et al. Sep 2015 A1
20150249664 Talhami et al. Sep 2015 A1
20150249715 Helvik et al. Sep 2015 A1
20150253146 Annapureddy et al. Sep 2015 A1
20150253885 Kagan et al. Sep 2015 A1
20150254057 Klein et al. Sep 2015 A1
20150254058 Klein et al. Sep 2015 A1
20150254333 Fife et al. Sep 2015 A1
20150255068 Kim et al. Sep 2015 A1
20150255071 Chiba Sep 2015 A1
20150256873 Klein et al. Sep 2015 A1
20150261298 Li Sep 2015 A1
20150261496 Faaborg et al. Sep 2015 A1
20150261758 Sharp et al. Sep 2015 A1
20150261850 Mittal Sep 2015 A1
20150261944 Hosom et al. Sep 2015 A1
20150262443 Chong Sep 2015 A1
20150262573 Brooks et al. Sep 2015 A1
20150262583 Kanda et al. Sep 2015 A1
20150269139 McAteer et al. Sep 2015 A1
20150269420 Kim et al. Sep 2015 A1
20150269617 Mikurak Sep 2015 A1
20150269677 Milne Sep 2015 A1
20150269943 VanBlon et al. Sep 2015 A1
20150277574 Jain et al. Oct 2015 A1
20150278192 Bretter et al. Oct 2015 A1
20150278199 Hazen et al. Oct 2015 A1
20150278348 Paruchuri et al. Oct 2015 A1
20150278370 Stratvert et al. Oct 2015 A1
20150278737 Huebscher et al. Oct 2015 A1
20150279354 Gruenstein et al. Oct 2015 A1
20150279358 Kingsbury et al. Oct 2015 A1
20150279360 Mengibar et al. Oct 2015 A1
20150279366 Krestnikov et al. Oct 2015 A1
20150281380 Wang et al. Oct 2015 A1
20150281401 Le et al. Oct 2015 A1
20150286627 Chang et al. Oct 2015 A1
20150286710 Chang et al. Oct 2015 A1
20150286716 Snibbe et al. Oct 2015 A1
20150286937 Hildebrand Oct 2015 A1
20150287401 Lee et al. Oct 2015 A1
20150287408 Svendsen et al. Oct 2015 A1
20150287409 Jang Oct 2015 A1
20150287411 Kojima et al. Oct 2015 A1
20150288629 Choi et al. Oct 2015 A1
20150293602 Kay et al. Oct 2015 A1
20150294086 Kare et al. Oct 2015 A1
20150294377 Chow Oct 2015 A1
20150294516 Chiang Oct 2015 A1
20150294670 Roblek et al. Oct 2015 A1
20150295915 Xiu Oct 2015 A1
20150296065 Narita et al. Oct 2015 A1
20150300832 Moore et al. Oct 2015 A1
20150301796 Visser et al. Oct 2015 A1
20150302316 Buryak et al. Oct 2015 A1
20150302855 Kim et al. Oct 2015 A1
20150302856 Kim et al. Oct 2015 A1
20150302857 Yamada Oct 2015 A1
20150302870 Burke et al. Oct 2015 A1
20150308470 Graham et al. Oct 2015 A1
20150309691 Seo et al. Oct 2015 A1
20150309997 Lee et al. Oct 2015 A1
20150310114 Ryger et al. Oct 2015 A1
20150310852 Spizzo et al. Oct 2015 A1
20150310858 Li et al. Oct 2015 A1
20150310862 Dauphin et al. Oct 2015 A1
20150310879 Buchanan et al. Oct 2015 A1
20150310888 Chen Oct 2015 A1
20150312182 Langholz Oct 2015 A1
20150312409 Czarnecki et al. Oct 2015 A1
20150314454 Breazeal et al. Nov 2015 A1
20150317069 Clements et al. Nov 2015 A1
20150317310 Eiche et al. Nov 2015 A1
20150319264 Allen et al. Nov 2015 A1
20150319411 Kasmir et al. Nov 2015 A1
20150324041 Varley et al. Nov 2015 A1
20150324334 Lee et al. Nov 2015 A1
20150324362 Glass et al. Nov 2015 A1
20150325235 Levit et al. Nov 2015 A1
20150331664 Osawa et al. Nov 2015 A1
20150331711 Huang et al. Nov 2015 A1
20150331728 Kim et al. Nov 2015 A1
20150332667 Mason Nov 2015 A1
20150334346 Cheatham, III et al. Nov 2015 A1
20150339049 Kasemset et al. Nov 2015 A1
20150339391 Kang et al. Nov 2015 A1
20150340033 Di Fabbrizio et al. Nov 2015 A1
20150340034 Schalkwyk et al. Nov 2015 A1
20150340040 Mun et al. Nov 2015 A1
20150340042 Sejnoha et al. Nov 2015 A1
20150341717 Song et al. Nov 2015 A1
20150346845 Di Censo et al. Dec 2015 A1
20150347086 Liedholm et al. Dec 2015 A1
20150347381 Bellegarda Dec 2015 A1
20150347382 Dolfing et al. Dec 2015 A1
20150347383 Willmore et al. Dec 2015 A1
20150347385 Flor et al. Dec 2015 A1
20150347393 Futrell et al. Dec 2015 A1
20150347552 Habouzit et al. Dec 2015 A1
20150347733 Tsou et al. Dec 2015 A1
20150347985 Gross et al. Dec 2015 A1
20150348533 Saddler et al. Dec 2015 A1
20150348547 Paulik et al. Dec 2015 A1
20150348548 Piernot et al. Dec 2015 A1
20150348549 Giuli et al. Dec 2015 A1
20150348551 Gruber et al. Dec 2015 A1
20150348554 Orr et al. Dec 2015 A1
20150348555 Sugita Dec 2015 A1
20150348565 Rhoten et al. Dec 2015 A1
20150349934 Pollack et al. Dec 2015 A1
20150350031 Burks et al. Dec 2015 A1
20150350147 Shepherd et al. Dec 2015 A1
20150350342 Thorpe et al. Dec 2015 A1
20150350594 Mate et al. Dec 2015 A1
20150352999 Bando et al. Dec 2015 A1
20150355879 Beckhardt et al. Dec 2015 A1
20150356410 Faith et al. Dec 2015 A1
20150363587 Ahn et al. Dec 2015 A1
20150364128 Zhao et al. Dec 2015 A1
20150364140 Thor Dec 2015 A1
20150365251 Kinoshita et al. Dec 2015 A1
20150365448 Stifelman et al. Dec 2015 A1
20150370455 Van Os et al. Dec 2015 A1
20150370531 Faaborg Dec 2015 A1
20150370780 Wang et al. Dec 2015 A1
20150370787 Akbacak et al. Dec 2015 A1
20150370884 Hurley et al. Dec 2015 A1
20150371215 Zhou et al. Dec 2015 A1
20150371529 Dolecki Dec 2015 A1
20150371639 Foerster et al. Dec 2015 A1
20150371663 Gustafson et al. Dec 2015 A1
20150371664 Bar-Or et al. Dec 2015 A1
20150371665 Naik et al. Dec 2015 A1
20150373183 Woolsey et al. Dec 2015 A1
20150373428 Trollope et al. Dec 2015 A1
20150379118 Wickenkamp et al. Dec 2015 A1
20150379414 Yeh et al. Dec 2015 A1
20150379423 Dirac et al. Dec 2015 A1
20150379993 Subhojit et al. Dec 2015 A1
20150381923 Wickenkamp et al. Dec 2015 A1
20150382047 Van Os et al. Dec 2015 A1
20150382079 Lister et al. Dec 2015 A1
20150382147 Clark et al. Dec 2015 A1
20150382164 Chung et al. Dec 2015 A1
20150382322 Migicovsky et al. Dec 2015 A1
20160004499 Kim et al. Jan 2016 A1
20160004690 Bangalore et al. Jan 2016 A1
20160005320 DeCharms et al. Jan 2016 A1
20160006795 Yunten Jan 2016 A1
20160012038 Edwards et al. Jan 2016 A1
20160014476 Caliendo, Jr. et al. Jan 2016 A1
20160018872 Tu et al. Jan 2016 A1
20160018899 Tu et al. Jan 2016 A1
20160018900 Tu et al. Jan 2016 A1
20160018959 Yamashita et al. Jan 2016 A1
20160019886 Hong Jan 2016 A1
20160019896 Guevara et al. Jan 2016 A1
20160021414 Padi et al. Jan 2016 A1
20160026242 Burns et al. Jan 2016 A1
20160026258 Ou et al. Jan 2016 A1
20160027431 Kurzweil et al. Jan 2016 A1
20160027439 Sharifi Jan 2016 A1
20160028666 Li Jan 2016 A1
20160028802 Balasingh et al. Jan 2016 A1
20160029316 Mohan et al. Jan 2016 A1
20160034042 Joo Feb 2016 A1
20160034253 Bang et al. Feb 2016 A1
20160034447 Shin et al. Feb 2016 A1
20160034811 Paulik et al. Feb 2016 A1
20160036750 Yuan et al. Feb 2016 A1
20160036953 Lee et al. Feb 2016 A1
20160041733 Qian et al. Feb 2016 A1
20160041809 Clayton et al. Feb 2016 A1
20160042735 Vibbert et al. Feb 2016 A1
20160042748 Jain et al. Feb 2016 A1
20160043905 Fiedler Feb 2016 A1
20160048666 Dey et al. Feb 2016 A1
20160050254 Rao et al. Feb 2016 A1
20160055422 Li Feb 2016 A1
20160057203 Gardenfors et al. Feb 2016 A1
20160057475 Liu Feb 2016 A1
20160061623 Pahwa et al. Mar 2016 A1
20160062459 Publicover et al. Mar 2016 A1
20160062605 Agarwal et al. Mar 2016 A1
20160063094 Udupa et al. Mar 2016 A1
20160063095 Nassar et al. Mar 2016 A1
20160063998 Krishnamoorthy et al. Mar 2016 A1
20160065155 Bharj et al. Mar 2016 A1
20160065626 Jain et al. Mar 2016 A1
20160066020 Mountain Mar 2016 A1
20160066360 Vinegrad et al. Mar 2016 A1
20160070581 Soon-Shiong Mar 2016 A1
20160071516 Lee et al. Mar 2016 A1
20160071517 Beaver et al. Mar 2016 A1
20160071520 Hayakawa Mar 2016 A1
20160071521 Haughay Mar 2016 A1
20160072940 Cronin Mar 2016 A1
20160077794 Kim et al. Mar 2016 A1
20160078359 Csurka et al. Mar 2016 A1
20160078860 Paulik et al. Mar 2016 A1
20160080165 Ehsani et al. Mar 2016 A1
20160080475 Singh et al. Mar 2016 A1
20160085295 Shimy et al. Mar 2016 A1
20160085827 Chadha et al. Mar 2016 A1
20160086116 Rao et al. Mar 2016 A1
20160086599 Kurata et al. Mar 2016 A1
20160088335 Zucchetta Mar 2016 A1
20160091871 Marti et al. Mar 2016 A1
20160091967 Prokofieva et al. Mar 2016 A1
20160092046 Hong et al. Mar 2016 A1
20160092074 Raux et al. Mar 2016 A1
20160092434 Bellegarda Mar 2016 A1
20160092447 Pathurudeen et al. Mar 2016 A1
20160092766 Sainath et al. Mar 2016 A1
20160093291 Kim Mar 2016 A1
20160093298 Naik et al. Mar 2016 A1
20160093301 Bellegarda et al. Mar 2016 A1
20160093304 Kim et al. Mar 2016 A1
20160094700 Lee et al. Mar 2016 A1
20160094889 Venkataraman et al. Mar 2016 A1
20160094979 Naik et al. Mar 2016 A1
20160098991 Luo et al. Apr 2016 A1
20160098992 Renard et al. Apr 2016 A1
20160099892 Palakovich et al. Apr 2016 A1
20160099984 Karagiannis et al. Apr 2016 A1
20160104480 Sharifi Apr 2016 A1
20160104486 Penilla et al. Apr 2016 A1
20160105308 Dutt Apr 2016 A1
20160111091 Bakish Apr 2016 A1
20160112746 Zhang et al. Apr 2016 A1
20160112792 Lee et al. Apr 2016 A1
20160116980 George-Svahn et al. Apr 2016 A1
20160117386 Ajmera et al. Apr 2016 A1
20160118048 Heide Apr 2016 A1
20160119338 Cheyer Apr 2016 A1
20160125048 Hamada May 2016 A1
20160125071 Gabbai May 2016 A1
20160132046 Beoughter et al. May 2016 A1
20160132290 Raux May 2016 A1
20160132484 Nauze et al. May 2016 A1
20160132488 Clark et al. May 2016 A1
20160133254 Vogel et al. May 2016 A1
20160139662 Dabhade May 2016 A1
20160140951 Agiomyrgiannakis et al. May 2016 A1
20160140962 Sharifi May 2016 A1
20160147725 Patten et al. May 2016 A1
20160147739 Lim et al. May 2016 A1
20160148610 Kennewick, Jr. et al. May 2016 A1
20160148612 Guo et al. May 2016 A1
20160148613 Kwon et al. May 2016 A1
20160149966 Remash et al. May 2016 A1
20160150020 Farmer et al. May 2016 A1
20160151668 Barnes et al. Jun 2016 A1
20160154624 Son et al. Jun 2016 A1
20160154792 Sarkaya et al. Jun 2016 A1
20160154880 Hoarty Jun 2016 A1
20160155442 Kannan et al. Jun 2016 A1
20160155443 Khan et al. Jun 2016 A1
20160156574 Hum et al. Jun 2016 A1
20160156990 Miccoy et al. Jun 2016 A1
20160162456 Munro et al. Jun 2016 A1
20160163311 Crook et al. Jun 2016 A1
20160163312 Naik et al. Jun 2016 A1
20160165296 Hamon Jun 2016 A1
20160169267 Pool Jun 2016 A1
20160170710 Kim et al. Jun 2016 A1
20160170966 Kolo Jun 2016 A1
20160171980 Liddell et al. Jun 2016 A1
20160173578 Sharma et al. Jun 2016 A1
20160173617 Allinson Jun 2016 A1
20160173929 Klappert Jun 2016 A1
20160173960 Snibbe et al. Jun 2016 A1
20160179462 Bjorkengren Jun 2016 A1
20160179464 Reddy et al. Jun 2016 A1
20160179787 Deleeuw Jun 2016 A1
20160180840 Siddiq et al. Jun 2016 A1
20160180844 Vanblon et al. Jun 2016 A1
20160182410 Janakiraman et al. Jun 2016 A1
20160182709 Kim et al. Jun 2016 A1
20160188181 Smith Jun 2016 A1
20160188738 Gruber et al. Jun 2016 A1
20160189198 Daniel et al. Jun 2016 A1
20160189706 Zopf et al. Jun 2016 A1
20160189715 Nishikawa Jun 2016 A1
20160189717 Kannan et al. Jun 2016 A1
20160195924 Weber et al. Jul 2016 A1
20160196110 Yehoshua et al. Jul 2016 A1
20160198319 Huang et al. Jul 2016 A1
20160202957 Siddall et al. Jul 2016 A1
20160203002 Kannan et al. Jul 2016 A1
20160203193 Kevin et al. Jul 2016 A1
20160210115 Lee Jul 2016 A1
20160210551 Lee et al. Jul 2016 A1
20160210981 Lee Jul 2016 A1
20160212206 Wu et al. Jul 2016 A1
20160212208 Kulkarni et al. Jul 2016 A1
20160212488 Os et al. Jul 2016 A1
20160217784 Gelfenbeyn et al. Jul 2016 A1
20160217794 Imoto et al. Jul 2016 A1
20160224540 Stewart et al. Aug 2016 A1
20160224559 Hicks et al. Aug 2016 A1
20160224774 Pender Aug 2016 A1
20160225372 Cheung et al. Aug 2016 A1
20160226713 Pitschel et al. Aug 2016 A1
20160226956 Hong et al. Aug 2016 A1
20160227107 Beaumont Aug 2016 A1
20160227633 Sun et al. Aug 2016 A1
20160232500 Wang et al. Aug 2016 A1
20160234206 Tunnell et al. Aug 2016 A1
20160239480 Larcheveque et al. Aug 2016 A1
20160239568 Packer et al. Aug 2016 A1
20160239645 Heo et al. Aug 2016 A1
20160239848 Chang et al. Aug 2016 A1
20160240187 Fleizach et al. Aug 2016 A1
20160240189 Lee et al. Aug 2016 A1
20160240192 Raghuvir Aug 2016 A1
20160242148 Reed Aug 2016 A1
20160246776 Zhao et al. Aug 2016 A1
20160247061 Trask et al. Aug 2016 A1
20160249319 Dotan-Cohen et al. Aug 2016 A1
20160252972 Kim et al. Sep 2016 A1
20160253312 Rhodes Sep 2016 A1
20160253528 Gao et al. Sep 2016 A1
20160255549 Lakhdhar et al. Sep 2016 A1
20160259623 Sumner et al. Sep 2016 A1
20160259656 Sumner et al. Sep 2016 A1
20160259779 Labsky et al. Sep 2016 A1
20160260431 Newendorp et al. Sep 2016 A1
20160260433 Sumner et al. Sep 2016 A1
20160260434 Gelfenbeyn et al. Sep 2016 A1
20160260436 Lemay et al. Sep 2016 A1
20160262442 Davila et al. Sep 2016 A1
20160266871 Schmid et al. Sep 2016 A1
20160267904 Bladsy et al. Sep 2016 A1
20160269540 Butcher et al. Sep 2016 A1
20160274938 Strinati et al. Sep 2016 A1
20160275941 Bellegarda et al. Sep 2016 A1
20160275947 Li et al. Sep 2016 A1
20160282824 Smallwood et al. Sep 2016 A1
20160282956 Ouyang et al. Sep 2016 A1
20160283055 Haghighat et al. Sep 2016 A1
20160283185 Mclaren et al. Sep 2016 A1
20160283455 Mardanbegi et al. Sep 2016 A1
20160283463 M R et al. Sep 2016 A1
20160284005 Daniel et al. Sep 2016 A1
20160284199 Dotan-Cohen et al. Sep 2016 A1
20160284340 Li et al. Sep 2016 A1
20160284350 Yun et al. Sep 2016 A1
20160285808 Franklin et al. Sep 2016 A1
20160286045 Shaltiel et al. Sep 2016 A1
20160291831 Baek Oct 2016 A1
20160292603 Prajapati et al. Oct 2016 A1
20160293157 Chen et al. Oct 2016 A1
20160293167 Chen et al. Oct 2016 A1
20160293168 Chen Oct 2016 A1
20160294755 Prabhu Oct 2016 A1
20160294813 Zou Oct 2016 A1
20160299685 Zhai et al. Oct 2016 A1
20160299882 Hegerty et al. Oct 2016 A1
20160299883 Zhu et al. Oct 2016 A1
20160299977 Hreha Oct 2016 A1
20160300571 Foerster et al. Oct 2016 A1
20160301639 Liu et al. Oct 2016 A1
20160306683 Standley et al. Oct 2016 A1
20160307566 Bellegarda Oct 2016 A1
20160308799 Schubert et al. Oct 2016 A1
20160309035 Li Oct 2016 A1
20160313906 Kilchenko et al. Oct 2016 A1
20160313958 Guadarrama et al. Oct 2016 A1
20160314788 Jitkoff et al. Oct 2016 A1
20160314789 Marcheret et al. Oct 2016 A1
20160314792 Alvarez et al. Oct 2016 A1
20160315996 Ha et al. Oct 2016 A1
20160316349 Lee et al. Oct 2016 A1
20160317924 Tanaka et al. Nov 2016 A1
20160320838 Teller et al. Nov 2016 A1
20160321239 Iso-Sipila et al. Nov 2016 A1
20160321243 Walia et al. Nov 2016 A1
20160321261 Spasojevic et al. Nov 2016 A1
20160321358 Kanani et al. Nov 2016 A1
20160322043 Bellegarda Nov 2016 A1
20160322044 Jung et al. Nov 2016 A1
20160322045 Hatfield et al. Nov 2016 A1
20160322048 Amano et al. Nov 2016 A1
20160322050 Wang et al. Nov 2016 A1
20160322055 Sainath et al. Nov 2016 A1
20160328134 Xu Nov 2016 A1
20160328147 Zhang et al. Nov 2016 A1
20160328205 Agrawal et al. Nov 2016 A1
20160328893 Cordova et al. Nov 2016 A1
20160329060 Ito et al. Nov 2016 A1
20160334973 Reckhow et al. Nov 2016 A1
20160335138 Surti et al. Nov 2016 A1
20160335139 Hurley et al. Nov 2016 A1
20160335532 Sanghavi et al. Nov 2016 A1
20160336007 Hanazawa et al. Nov 2016 A1
20160336010 Lindahl Nov 2016 A1
20160336011 Koll et al. Nov 2016 A1
20160336024 Choi et al. Nov 2016 A1
20160337299 Lane et al. Nov 2016 A1
20160337301 Rollins et al. Nov 2016 A1
20160342317 Lim et al. Nov 2016 A1
20160342685 Basu et al. Nov 2016 A1
20160342781 Jeon Nov 2016 A1
20160342803 Goodridge et al. Nov 2016 A1
20160350070 Sung et al. Dec 2016 A1
20160350650 Leeman-Munk et al. Dec 2016 A1
20160350812 Priness et al. Dec 2016 A1
20160351190 Piernot et al. Dec 2016 A1
20160352567 Robbins et al. Dec 2016 A1
20160352924 Senarath et al. Dec 2016 A1
20160357304 Hatori et al. Dec 2016 A1
20160357728 Bellegarda et al. Dec 2016 A1
20160357790 Elkington et al. Dec 2016 A1
20160357861 Carlhian et al. Dec 2016 A1
20160357870 Hentschel et al. Dec 2016 A1
20160358598 Williams et al. Dec 2016 A1
20160358600 Nallasamy et al. Dec 2016 A1
20160358603 Azam et al. Dec 2016 A1
20160358605 Ganong, III et al. Dec 2016 A1
20160358609 Connell et al. Dec 2016 A1
20160358619 Ramprashad et al. Dec 2016 A1
20160359771 Sridhar Dec 2016 A1
20160360039 Sanghavi et al. Dec 2016 A1
20160360336 Gross et al. Dec 2016 A1
20160360382 Gross et al. Dec 2016 A1
20160364378 Futrell et al. Dec 2016 A1
20160364382 Sarikaya Dec 2016 A1
20160365101 Foy et al. Dec 2016 A1
20160371054 Beaumont et al. Dec 2016 A1
20160371250 Rhodes Dec 2016 A1
20160372112 Miller et al. Dec 2016 A1
20160372119 Sak et al. Dec 2016 A1
20160373571 Woolsey et al. Dec 2016 A1
20160378747 Orr et al. Dec 2016 A1
20160379091 Lin et al. Dec 2016 A1
20160379105 Moore, Jr. Dec 2016 A1
20160379626 Deisher et al. Dec 2016 A1
20160379632 Hoffmeister et al. Dec 2016 A1
20160379633 Lehman et al. Dec 2016 A1
20160379639 Weinstein et al. Dec 2016 A1
20160379641 Liu et al. Dec 2016 A1
20170000348 Karsten et al. Jan 2017 A1
20170003931 Dvortsov et al. Jan 2017 A1
20170004209 Johl et al. Jan 2017 A1
20170004409 Chu et al. Jan 2017 A1
20170004824 Yoo et al. Jan 2017 A1
20170005818 Gould Jan 2017 A1
20170006329 Jang et al. Jan 2017 A1
20170011091 Chehreghani Jan 2017 A1
20170011279 Soldevila et al. Jan 2017 A1
20170011303 Annapureddy et al. Jan 2017 A1
20170011742 Jing et al. Jan 2017 A1
20170013124 Havelka et al. Jan 2017 A1
20170013331 Watanabe et al. Jan 2017 A1
20170018271 Khan et al. Jan 2017 A1
20170019987 Dragone et al. Jan 2017 A1
20170023963 Davis et al. Jan 2017 A1
20170024398 Tomkins et al. Jan 2017 A1
20170025124 Mixter et al. Jan 2017 A1
20170026318 Daniel et al. Jan 2017 A1
20170026509 Rand Jan 2017 A1
20170026705 Yeh et al. Jan 2017 A1
20170027522 Van Hasselt et al. Feb 2017 A1
20170031576 Saoji et al. Feb 2017 A1
20170031711 Wu et al. Feb 2017 A1
20170032022 Srinivasan et al. Feb 2017 A1
20170032440 Paton Feb 2017 A1
20170032783 Lord et al. Feb 2017 A1
20170032787 Dayal Feb 2017 A1
20170032791 Elson et al. Feb 2017 A1
20170034087 Borenstein et al. Feb 2017 A1
20170039283 Bennett et al. Feb 2017 A1
20170039475 Cheyer et al. Feb 2017 A1
20170040002 Basson et al. Feb 2017 A1
20170041388 Tal et al. Feb 2017 A1
20170041858 Tong et al. Feb 2017 A1
20170046025 Dascola et al. Feb 2017 A1
20170046330 Si et al. Feb 2017 A1
20170047063 Ohmura et al. Feb 2017 A1
20170052760 Johnson et al. Feb 2017 A1
20170053652 Choi et al. Feb 2017 A1
20170055895 Jardins et al. Mar 2017 A1
20170060853 Lee et al. Mar 2017 A1
20170061423 Bryant et al. Mar 2017 A1
20170068423 Napolitano et al. Mar 2017 A1
20170068513 Stasior et al. Mar 2017 A1
20170068550 Zeitlin Mar 2017 A1
20170068670 Orr et al. Mar 2017 A1
20170069308 Aleksic et al. Mar 2017 A1
20170069321 Toiyama Mar 2017 A1
20170069327 Heigold et al. Mar 2017 A1
20170075653 Dawidowsky et al. Mar 2017 A1
20170075879 Sakamoto et al. Mar 2017 A1
20170076518 Patterson et al. Mar 2017 A1
20170076720 Gopalan et al. Mar 2017 A1
20170076721 Bargetzi et al. Mar 2017 A1
20170078490 Kaminsky et al. Mar 2017 A1
20170083179 Gruber et al. Mar 2017 A1
20170083285 Meyers et al. Mar 2017 A1
20170083504 Huang Mar 2017 A1
20170083506 Liu et al. Mar 2017 A1
20170084277 Sharifi Mar 2017 A1
20170085547 De Aguiar et al. Mar 2017 A1
20170085696 Abkairov Mar 2017 A1
20170090428 Oohara Mar 2017 A1
20170090569 Levesque Mar 2017 A1
20170090864 Jorgovanovic Mar 2017 A1
20170091168 Bellegarda et al. Mar 2017 A1
20170091169 Bellegarda et al. Mar 2017 A1
20170091612 Gruber et al. Mar 2017 A1
20170092259 Jeon Mar 2017 A1
20170092270 Newendorp et al. Mar 2017 A1
20170092278 Evermann et al. Mar 2017 A1
20170093356 Cudak et al. Mar 2017 A1
20170097743 Hameed et al. Apr 2017 A1
20170102837 Toumpelis Apr 2017 A1
20170102915 Kuscher et al. Apr 2017 A1
20170103749 Zhao et al. Apr 2017 A1
20170103752 Senior et al. Apr 2017 A1
20170105190 Logan et al. Apr 2017 A1
20170108236 Guan et al. Apr 2017 A1
20170110117 Chakladar et al. Apr 2017 A1
20170110125 Xu et al. Apr 2017 A1
20170116177 Walia Apr 2017 A1
20170116982 Gelfenbeyn et al. Apr 2017 A1
20170116985 Mathias et al. Apr 2017 A1
20170116987 Kang et al. Apr 2017 A1
20170116989 Yadgar et al. Apr 2017 A1
20170124190 Wang et al. May 2017 A1
20170124311 Li et al. May 2017 A1
20170124531 McCormack May 2017 A1
20170125016 Wang May 2017 A1
20170127124 Wilson et al. May 2017 A9
20170131778 Iyer May 2017 A1
20170132019 Karashchuk et al. May 2017 A1
20170132199 Vescovi et al. May 2017 A1
20170133007 Drewes May 2017 A1
20170133009 Cho et al. May 2017 A1
20170134807 Shaw et al. May 2017 A1
20170140041 Dotan-Cohen et al. May 2017 A1
20170140052 Bufe, III et al. May 2017 A1
20170140644 Hwang et al. May 2017 A1
20170140760 Sachdev May 2017 A1
20170147722 Greenwood May 2017 A1
20170147841 Stagg et al. May 2017 A1
20170148044 Fukuda et al. May 2017 A1
20170148307 Yeom et al. May 2017 A1
20170154033 Lee Jun 2017 A1
20170154055 Dimson et al. Jun 2017 A1
20170154628 Mohajer et al. Jun 2017 A1
20170155940 Jin et al. Jun 2017 A1
20170155965 Ward Jun 2017 A1
20170161018 Lemay et al. Jun 2017 A1
20170161268 Badaskar Jun 2017 A1
20170161293 Ionescu et al. Jun 2017 A1
20170161393 Oh et al. Jun 2017 A1
20170161439 Raduchel et al. Jun 2017 A1
20170161500 Yang Jun 2017 A1
20170162191 Grost et al. Jun 2017 A1
20170162202 Anthony et al. Jun 2017 A1
20170162203 Huang et al. Jun 2017 A1
20170169506 Wishne et al. Jun 2017 A1
20170169818 Vanblon et al. Jun 2017 A1
20170169819 Mese et al. Jun 2017 A1
20170171139 Marra et al. Jun 2017 A1
20170171387 Vendrow Jun 2017 A1
20170177080 Deleeuw Jun 2017 A1
20170177547 Ciereszko et al. Jun 2017 A1
20170178619 Naik et al. Jun 2017 A1
20170178620 Fleizach et al. Jun 2017 A1
20170178626 Gruber et al. Jun 2017 A1
20170178666 Yu Jun 2017 A1
20170180499 Gelfenbeyn et al. Jun 2017 A1
20170185375 Martel et al. Jun 2017 A1
20170185581 Boja et al. Jun 2017 A1
20170186429 Giuli et al. Jun 2017 A1
20170186432 Aleksic et al. Jun 2017 A1
20170186446 Wosk et al. Jun 2017 A1
20170187711 Joo et al. Jun 2017 A1
20170193083 Bhatt et al. Jul 2017 A1
20170195493 Sudarsan et al. Jul 2017 A1
20170195495 Deora et al. Jul 2017 A1
20170195636 Child et al. Jul 2017 A1
20170195856 Snyder et al. Jul 2017 A1
20170199870 Zheng et al. Jul 2017 A1
20170199874 Patel et al. Jul 2017 A1
20170200066 Wang et al. Jul 2017 A1
20170201609 Salmenkaita et al. Jul 2017 A1
20170201613 Engelke et al. Jul 2017 A1
20170201846 Katayama et al. Jul 2017 A1
20170206002 Badger et al. Jul 2017 A1
20170206899 Bryant et al. Jul 2017 A1
20170215052 Koum et al. Jul 2017 A1
20170220212 Yang et al. Aug 2017 A1
20170221486 Kurata et al. Aug 2017 A1
20170222961 Beach et al. Aug 2017 A1
20170223189 Meredith et al. Aug 2017 A1
20170227935 Su et al. Aug 2017 A1
20170228367 Pasupalak et al. Aug 2017 A1
20170228382 Haviv et al. Aug 2017 A1
20170229121 Taki et al. Aug 2017 A1
20170230429 Garmark et al. Aug 2017 A1
20170230497 Kim et al. Aug 2017 A1
20170230709 Van Os et al. Aug 2017 A1
20170235361 Rigazio et al. Aug 2017 A1
20170235618 Lin et al. Aug 2017 A1
20170235721 Almosallam et al. Aug 2017 A1
20170236512 Williams et al. Aug 2017 A1
20170236514 Nelson Aug 2017 A1
20170236517 Yu et al. Aug 2017 A1
20170238039 Sabattini Aug 2017 A1
20170242478 Ma Aug 2017 A1
20170242653 Lang et al. Aug 2017 A1
20170242657 Jarvis et al. Aug 2017 A1
20170242840 Lu et al. Aug 2017 A1
20170242920 Neland Aug 2017 A1
20170243468 Dotan-Cohen et al. Aug 2017 A1
20170243576 Millington et al. Aug 2017 A1
20170243583 Raichelgauz et al. Aug 2017 A1
20170243586 Civelli et al. Aug 2017 A1
20170249291 Patel Aug 2017 A1
20170249309 Sarikaya Aug 2017 A1
20170256256 Wang et al. Sep 2017 A1
20170257723 Morishita et al. Sep 2017 A1
20170257844 Miller et al. Sep 2017 A1
20170262051 Tall et al. Sep 2017 A1
20170262432 Sarikaya et al. Sep 2017 A1
20170263247 Kang et al. Sep 2017 A1
20170263248 Gruber et al. Sep 2017 A1
20170263249 Akbacak et al. Sep 2017 A1
20170263254 Dewan et al. Sep 2017 A1
20170264451 Yu et al. Sep 2017 A1
20170264711 Natarajan et al. Sep 2017 A1
20170270092 He et al. Sep 2017 A1
20170270715 Lindsay et al. Sep 2017 A1
20170270822 Cohen Sep 2017 A1
20170270912 Levit et al. Sep 2017 A1
20170273044 Alsina Sep 2017 A1
20170277691 Agarwal Sep 2017 A1
20170278513 Li et al. Sep 2017 A1
20170278514 Mathias et al. Sep 2017 A1
20170285915 Napolitano et al. Oct 2017 A1
20170286397 Gonzalez Oct 2017 A1
20170286407 Chochowski et al. Oct 2017 A1
20170287218 Nuemberger et al. Oct 2017 A1
20170287472 Ogawa et al. Oct 2017 A1
20170289305 Liensberger et al. Oct 2017 A1
20170295446 Shivappa Oct 2017 A1
20170301348 Chen et al. Oct 2017 A1
20170301353 Mozer et al. Oct 2017 A1
20170308552 Soni et al. Oct 2017 A1
20170308589 Liu et al. Oct 2017 A1
20170308609 Berkhin et al. Oct 2017 A1
20170311005 Lin Oct 2017 A1
20170316775 Le et al. Nov 2017 A1
20170316779 Mohapatra et al. Nov 2017 A1
20170316782 Haughay Nov 2017 A1
20170319123 Voss et al. Nov 2017 A1
20170323637 Naik Nov 2017 A1
20170329466 Krenkler et al. Nov 2017 A1
20170329490 Esinovskaya et al. Nov 2017 A1
20170329572 Shah et al. Nov 2017 A1
20170329630 Jann et al. Nov 2017 A1
20170330567 Van Wissen et al. Nov 2017 A1
20170336920 Chan et al. Nov 2017 A1
20170337035 Choudhary et al. Nov 2017 A1
20170337478 Sarkaya et al. Nov 2017 A1
20170337540 Buckman et al. Nov 2017 A1
20170344931 Shenk et al. Nov 2017 A1
20170345411 Raitio et al. Nov 2017 A1
20170345420 Barnett, Jr. Nov 2017 A1
20170345429 Hardee et al. Nov 2017 A1
20170346949 Sanghavi et al. Nov 2017 A1
20170347180 Petrank Nov 2017 A1
20170347222 Kanter Nov 2017 A1
20170351487 Avilés-Casco et al. Dec 2017 A1
20170352346 Paulik et al. Dec 2017 A1
20170352350 Booker et al. Dec 2017 A1
20170357478 Piersol et al. Dec 2017 A1
20170357529 Venkatraman et al. Dec 2017 A1
20170357632 Pagallo et al. Dec 2017 A1
20170357633 Wang et al. Dec 2017 A1
20170357637 Nell et al. Dec 2017 A1
20170357640 Bellegarda et al. Dec 2017 A1
20170357716 Bellegarda et al. Dec 2017 A1
20170358300 Laurens et al. Dec 2017 A1
20170358301 Raitio et al. Dec 2017 A1
20170358302 Orr et al. Dec 2017 A1
20170358303 Walker, II et al. Dec 2017 A1
20170358304 Castillo et al. Dec 2017 A1
20170358305 Kudurshian et al. Dec 2017 A1
20170358317 James Dec 2017 A1
20170359680 Ledvina et al. Dec 2017 A1
20170359707 Diaconu et al. Dec 2017 A1
20170365251 Park et al. Dec 2017 A1
20170366909 Mickelsen et al. Dec 2017 A1
20170371509 Jung et al. Dec 2017 A1
20170371865 Eck et al. Dec 2017 A1
20170371866 Eck Dec 2017 A1
20170371885 Aggarwal et al. Dec 2017 A1
20170372703 Sung et al. Dec 2017 A1
20170372719 Li et al. Dec 2017 A1
20170374093 Dhar et al. Dec 2017 A1
20170374176 Agrawal et al. Dec 2017 A1
20180004372 Zurek et al. Jan 2018 A1
20180004396 Mng Jan 2018 A1
20180005112 Iso-Sipila et al. Jan 2018 A1
20180007060 Leblang et al. Jan 2018 A1
20180007096 Levin et al. Jan 2018 A1
20180007210 Todasco Jan 2018 A1
20180007538 Naik et al. Jan 2018 A1
20180012596 Piernot et al. Jan 2018 A1
20180018248 Bhargava et al. Jan 2018 A1
20180018331 Kesamreddy Jan 2018 A1
20180018590 Szeto et al. Jan 2018 A1
20180018814 Patrik et al. Jan 2018 A1
20180018959 Jardins et al. Jan 2018 A1
20180018973 Moreno et al. Jan 2018 A1
20180020093 Bentitou et al. Jan 2018 A1
20180024985 Asano Jan 2018 A1
20180025124 Mohr et al. Jan 2018 A1
20180025287 Mathew et al. Jan 2018 A1
20180028918 Tang et al. Feb 2018 A1
20180032884 Murugeshan et al. Feb 2018 A1
20180033431 Newendorp et al. Feb 2018 A1
20180033435 Jacobs, II Feb 2018 A1
20180033436 Zhou Feb 2018 A1
20180034961 Engelke et al. Feb 2018 A1
20180039239 Burchard Feb 2018 A1
20180040020 Kurian et al. Feb 2018 A1
20180041571 Rogers et al. Feb 2018 A1
20180045963 Hoover et al. Feb 2018 A1
20180046340 Mall Feb 2018 A1
20180046851 Kienzle et al. Feb 2018 A1
20180047201 Filev et al. Feb 2018 A1
20180047288 Cordell et al. Feb 2018 A1
20180047391 Baik et al. Feb 2018 A1
20180047393 Tian et al. Feb 2018 A1
20180047406 Park Feb 2018 A1
20180052885 Gaskill et al. Feb 2018 A1
20180052909 Sharifi et al. Feb 2018 A1
20180054505 Hart et al. Feb 2018 A1
20180060032 Boesen Mar 2018 A1
20180060301 Li et al. Mar 2018 A1
20180060312 Won Mar 2018 A1
20180060555 Boesen Mar 2018 A1
20180061400 Carbune et al. Mar 2018 A1
20180061401 Sarikaya et al. Mar 2018 A1
20180061402 Devaraj et al. Mar 2018 A1
20180061403 Devaraj et al. Mar 2018 A1
20180062691 Barnett, Jr. Mar 2018 A1
20180063276 Foged Mar 2018 A1
20180063308 Crystal et al. Mar 2018 A1
20180063324 Van Meter, II Mar 2018 A1
20180063624 Boesen Mar 2018 A1
20180067904 Li Mar 2018 A1
20180067914 Chen et al. Mar 2018 A1
20180067918 Bellegarda et al. Mar 2018 A1
20180067929 Ahn Mar 2018 A1
20180068074 Shen Mar 2018 A1
20180068194 Matsuda Mar 2018 A1
20180068660 Kawahara et al. Mar 2018 A1
20180069743 Bakken et al. Mar 2018 A1
20180069815 Fontana et al. Mar 2018 A1
20180075659 Browy et al. Mar 2018 A1
20180075847 Lee et al. Mar 2018 A1
20180075849 Khoury et al. Mar 2018 A1
20180077095 Deyle et al. Mar 2018 A1
20180077648 Nguyen Mar 2018 A1
20180081739 Gravenites et al. Mar 2018 A1
20180081884 Tan Mar 2018 A1
20180081886 Tomkins et al. Mar 2018 A1
20180082692 Khoury et al. Mar 2018 A1
20180083898 Pham Mar 2018 A1
20180088788 Cheung et al. Mar 2018 A1
20180088902 Mese et al. Mar 2018 A1
20180088969 Vanblon et al. Mar 2018 A1
20180089166 Meyer et al. Mar 2018 A1
20180089588 Ravi et al. Mar 2018 A1
20180090143 Saddler et al. Mar 2018 A1
20180091604 Yamashita et al. Mar 2018 A1
20180091732 Wilson et al. Mar 2018 A1
20180091847 Wu et al. Mar 2018 A1
20180096683 James et al. Apr 2018 A1
20180096690 Mixter et al. Apr 2018 A1
20180097812 Gillett et al. Apr 2018 A1
20180101599 Kenneth et al. Apr 2018 A1
20180101925 Brinig et al. Apr 2018 A1
20180102914 Kawachi et al. Apr 2018 A1
20180103209 Fischler et al. Apr 2018 A1
20180107917 Hewavitharana et al. Apr 2018 A1
20180107945 Gao et al. Apr 2018 A1
20180108346 Paulik et al. Apr 2018 A1
20180108351 Beckhardt et al. Apr 2018 A1
20180108357 Liu Apr 2018 A1
20180109920 Aggarwal et al. Apr 2018 A1
20180113673 Sheynblat Apr 2018 A1
20180114591 Pribanic et al. Apr 2018 A1
20180314362 Kim et al. Apr 2018 A1
20180121430 Kagoshima et al. May 2018 A1
20180121432 Parson et al. May 2018 A1
20180122376 Kojima May 2018 A1
20180122378 Mixter et al. May 2018 A1
20180124458 Knox May 2018 A1
20180126260 Chansoriya et al. May 2018 A1
20180129967 Herreshoff May 2018 A1
20180130470 Lemay et al. May 2018 A1
20180130471 Trufinescu et al. May 2018 A1
20180137097 Lim et al. May 2018 A1
20180137404 Fauceglia et al. May 2018 A1
20180137856 Gilbert May 2018 A1
20180137857 Zhou et al. May 2018 A1
20180137865 Ling May 2018 A1
20180143857 Anbazhagan et al. May 2018 A1
20180143967 Anbazhagan et al. May 2018 A1
20180144465 Hsieh et al. May 2018 A1
20180144615 Kinney et al. May 2018 A1
20180144746 Mishra et al. May 2018 A1
20180144748 Leong May 2018 A1
20180146089 Rauenbuehler et al. May 2018 A1
20180150744 Orr et al. May 2018 A1
20180152557 White et al. May 2018 A1
20180152558 Chan et al. May 2018 A1
20180152803 Seefeldt et al. May 2018 A1
20180157372 Kurabayashi Jun 2018 A1
20180157398 Kaehler et al. Jun 2018 A1
20180157408 Yu et al. Jun 2018 A1
20180157992 Susskind et al. Jun 2018 A1
20180158548 Taheri et al. Jun 2018 A1
20180158552 Liu et al. Jun 2018 A1
20180165278 He et al. Jun 2018 A1
20180165801 Kim et al. Jun 2018 A1
20180165857 Lee et al. Jun 2018 A1
20180166076 Higuchi et al. Jun 2018 A1
20180167884 Dawid et al. Jun 2018 A1
20180173403 Carbune et al. Jun 2018 A1
20180173542 Chan et al. Jun 2018 A1
20180174406 Arashi et al. Jun 2018 A1
20180174576 Soltau et al. Jun 2018 A1
20180174597 Lee et al. Jun 2018 A1
20180181370 Parkinson Jun 2018 A1
20180182376 Gysel et al. Jun 2018 A1
20180188840 Tamura et al. Jul 2018 A1
20180188948 Ouyang et al. Jul 2018 A1
20180189267 Takiel Jul 2018 A1
20180190263 Calef, III Jul 2018 A1
20180190273 Karimli et al. Jul 2018 A1
20180190274 Kirazc et al. Jul 2018 A1
20180190279 Anderson et al. Jul 2018 A1
20180191670 Suyama Jul 2018 A1
20180196683 Radebaugh et al. Jul 2018 A1
20180205983 Lee et al. Jul 2018 A1
20180210874 Fuxman et al. Jul 2018 A1
20180213448 Segal et al. Jul 2018 A1
20180214061 Knoth et al. Aug 2018 A1
20180217810 Agrawal Aug 2018 A1
20180218735 Hunt et al. Aug 2018 A1
20180221783 Gamero Aug 2018 A1
20180225131 Tommy et al. Aug 2018 A1
20180225274 Tommy et al. Aug 2018 A1
20180232110 Cheung et al. Aug 2018 A1
20180232203 Gelfenbeyn et al. Aug 2018 A1
20180232608 Pradeep et al. Aug 2018 A1
20180232688 Pike et al. Aug 2018 A1
20180233132 Herold et al. Aug 2018 A1
20180233140 Koishida et al. Aug 2018 A1
20180233142 Koishida et al. Aug 2018 A1
20180247065 Rhee et al. Aug 2018 A1
20180253209 Jaygarl et al. Sep 2018 A1
20180253652 Palzer et al. Sep 2018 A1
20180260680 Finkelstein et al. Sep 2018 A1
20180267952 Osborne et al. Sep 2018 A1
20180268023 Korpusik et al. Sep 2018 A1
20180268106 Velaga Sep 2018 A1
20180268337 Miller et al. Sep 2018 A1
20180270343 Rout et al. Sep 2018 A1
20180275839 Kocienda et al. Sep 2018 A1
20180276197 Nell et al. Sep 2018 A1
20180277113 Hartung et al. Sep 2018 A1
20180278740 Choi et al. Sep 2018 A1
20180285056 Cutler et al. Oct 2018 A1
20180293086 Laird-Mcconnell et al. Oct 2018 A1
20180293984 Lindahl Oct 2018 A1
20180293988 Huang et al. Oct 2018 A1
20180293989 De et al. Oct 2018 A1
20180299878 Cella et al. Oct 2018 A1
20180300317 Bradbury Oct 2018 A1
20180300400 Paulus Oct 2018 A1
20180300608 Sevrens et al. Oct 2018 A1
20180300952 Evans et al. Oct 2018 A1
20180307216 Ypma et al. Oct 2018 A1
20180307603 Che Oct 2018 A1
20180308470 Park et al. Oct 2018 A1
20180308477 Nagasaka Oct 2018 A1
20180308480 Jang et al. Oct 2018 A1
20180308485 Kudurshian et al. Oct 2018 A1
20180308486 Saddler et al. Oct 2018 A1
20180308491 Oktem et al. Oct 2018 A1
20180314552 Kim et al. Nov 2018 A1
20180314689 Wang et al. Nov 2018 A1
20180314981 Chen Nov 2018 A1
20180315415 Mosley et al. Nov 2018 A1
20180315416 Berthelsen et al. Nov 2018 A1
20180322112 Bellegarda et al. Nov 2018 A1
20180322881 Min et al. Nov 2018 A1
20180324518 Dusan et al. Nov 2018 A1
20180329508 Klein et al. Nov 2018 A1
20180329512 Liao et al. Nov 2018 A1
20180329677 Gruber et al. Nov 2018 A1
20180329957 Frazzingaro et al. Nov 2018 A1
20180329982 Patel et al. Nov 2018 A1
20180329998 Thomson et al. Nov 2018 A1
20180330714 Paulik et al. Nov 2018 A1
20180330721 Thomson et al. Nov 2018 A1
20180330722 Newendorp et al. Nov 2018 A1
20180330723 Acero et al. Nov 2018 A1
20180330729 Golipour et al. Nov 2018 A1
20180330730 Garg et al. Nov 2018 A1
20180330731 Zeitlin et al. Nov 2018 A1
20180330733 Orr et al. Nov 2018 A1
20180330737 Paulik et al. Nov 2018 A1
20180332118 Phipps et al. Nov 2018 A1
20180332389 Ekkizogloy et al. Nov 2018 A1
20180335903 Coffman et al. Nov 2018 A1
20180336006 Chakraborty et al. Nov 2018 A1
20180336049 Mukherjee et al. Nov 2018 A1
20180336184 Bellegarda et al. Nov 2018 A1
20180336197 Skilling et al. Nov 2018 A1
20180336275 Graham et al. Nov 2018 A1
20180336439 Kliger et al. Nov 2018 A1
20180336449 Adan et al. Nov 2018 A1
20180336880 Arik et al. Nov 2018 A1
20180336885 Mukherjee et al. Nov 2018 A1
20180336892 Kim et al. Nov 2018 A1
20180336893 Robinson et al. Nov 2018 A1
20180336894 Graham et al. Nov 2018 A1
20180336904 Piercy et al. Nov 2018 A1
20180336905 Kim et al. Nov 2018 A1
20180336911 Dahl et al. Nov 2018 A1
20180336920 Bastian et al. Nov 2018 A1
20180338191 Van Scheltinga et al. Nov 2018 A1
20180341643 Alders et al. Nov 2018 A1
20180342243 Vanblon et al. Nov 2018 A1
20180343557 Naik et al. Nov 2018 A1
20180349084 Nagasaka et al. Dec 2018 A1
20180349346 Hatori et al. Dec 2018 A1
20180349349 Bellegarda et al. Dec 2018 A1
20180349447 Maccartney et al. Dec 2018 A1
20180349472 Kohlschuetter et al. Dec 2018 A1
20180349728 Wang et al. Dec 2018 A1
20180350345 Naik Dec 2018 A1
20180350353 Gruber et al. Dec 2018 A1
20180357073 Johnson et al. Dec 2018 A1
20180357308 Cheyer Dec 2018 A1
20180358015 Cash et al. Dec 2018 A1
20180358019 Mont-Reynaud Dec 2018 A1
20180365091 Donaldson et al. Dec 2018 A1
20180365653 Cleaver et al. Dec 2018 A1
20180366105 Kim Dec 2018 A1
20180366110 Hashem et al. Dec 2018 A1
20180366116 Nicholson et al. Dec 2018 A1
20180366118 Lovitt et al. Dec 2018 A1
20180373398 Seixeiro et al. Dec 2018 A1
20180373487 Gruber et al. Dec 2018 A1
20180373493 Watson et al. Dec 2018 A1
20180373796 Rathod Dec 2018 A1
20180374484 Huang et al. Dec 2018 A1
20190005024 Somech et al. Jan 2019 A1
20190007228 Vuskovic et al. Jan 2019 A1
20190012141 Piersol et al. Jan 2019 A1
20190012198 Ni et al. Jan 2019 A1
20190012445 Lesso et al. Jan 2019 A1
20190012449 Cheyer Jan 2019 A1
20190012599 El Kaliouby et al. Jan 2019 A1
20190013018 Rekstad Jan 2019 A1
20190013025 Alcorn et al. Jan 2019 A1
20190014450 Gruber et al. Jan 2019 A1
20190019077 Griffin et al. Jan 2019 A1
20190019508 Rochford et al. Jan 2019 A1
20190020482 Gupta et al. Jan 2019 A1
20190027135 Kim et al. Jan 2019 A1
20190027152 Huang et al. Jan 2019 A1
20190034040 Shah et al. Jan 2019 A1
20190034826 Ahmad et al. Jan 2019 A1
20190034849 Romaine Jan 2019 A1
20190035385 Lawson et al. Jan 2019 A1
20190035405 Haughay Jan 2019 A1
20190037258 Justin et al. Jan 2019 A1
20190042059 Baer Feb 2019 A1
20190042560 Kakirwar et al. Feb 2019 A1
20190042627 Osotio et al. Feb 2019 A1
20190043507 Huang et al. Feb 2019 A1
20190044854 Yang et al. Feb 2019 A1
20190045040 Lee et al. Feb 2019 A1
20190050450 Uszkoreit Feb 2019 A1
20190051306 Torama et al. Feb 2019 A1
20190051309 Kim et al. Feb 2019 A1
20190057697 Giuli et al. Feb 2019 A1
20190065027 Hauenstein et al. Feb 2019 A1
20190065144 Sumner et al. Feb 2019 A1
20190065993 Srinivasan et al. Feb 2019 A1
20190066674 Jaygarl et al. Feb 2019 A1
20190068810 Okamoto et al. Feb 2019 A1
20190173996 Butcher et al. Feb 2019 A1
20190073607 Jia et al. Mar 2019 A1
20190073998 Leblang et al. Mar 2019 A1
20190074009 Kim et al. Mar 2019 A1
20190074015 Orr et al. Mar 2019 A1
20190074016 Orr et al. Mar 2019 A1
20190079476 Funes Mar 2019 A1
20190079724 Feuz et al. Mar 2019 A1
20190080685 Johnson, Jr. Mar 2019 A1
20190080698 Miller Mar 2019 A1
20190082044 Olivia et al. Mar 2019 A1
20190087205 Guday Mar 2019 A1
20190087412 Ibrahim et al. Mar 2019 A1
20190087455 He et al. Mar 2019 A1
20190090812 Martin et al. Mar 2019 A1
20190095050 Gruber et al. Mar 2019 A1
20190095069 Proctor et al. Mar 2019 A1
20190095171 Carson et al. Mar 2019 A1
20190095535 Miller et al. Mar 2019 A1
20190096134 Amacker et al. Mar 2019 A1
20190102145 Wilberding et al. Apr 2019 A1
20190102378 Piernot et al. Apr 2019 A1
20190102381 Futrell et al. Apr 2019 A1
20190103103 Ni et al. Apr 2019 A1
20190103112 Walker et al. Apr 2019 A1
20190108834 Nelson et al. Apr 2019 A1
20190114320 Patwardhan et al. Apr 2019 A1
20190116264 Sanghavi et al. Apr 2019 A1
20190122666 Raitio et al. Apr 2019 A1
20190122692 Binder et al. Apr 2019 A1
20190124019 Leon et al. Apr 2019 A1
20190129499 Li May 2019 A1
20190129615 Sundar et al. May 2019 A1
20190129749 White et al. May 2019 A1
20190130901 Kato et al. May 2019 A1
20190132694 Hanes et al. May 2019 A1
20190134501 Feder et al. May 2019 A1
20190138268 Andersen et al. May 2019 A1
20190138661 Paltanavicius et al. May 2019 A1
20190138704 Shrivastava et al. May 2019 A1
20190139058 Clark et al. May 2019 A1
20190139541 Andersen et al. May 2019 A1
20190139563 Chen et al. May 2019 A1
20190141494 Gross et al. May 2019 A1
20190146219 Rodriguez, II May 2019 A1
20190147052 Lu et al. May 2019 A1
20190147369 Gupta et al. May 2019 A1
20190147869 Wang May 2019 A1
20190147880 Booker et al. May 2019 A1
20190147883 Mellenthin et al. May 2019 A1
20190149972 Parks et al. May 2019 A1
20190156830 Devaraj et al. May 2019 A1
20190158994 Gross et al. May 2019 A1
20190163667 Feuz et al. May 2019 A1
20190164546 Piernot et al. May 2019 A1
20190172243 Mishra et al. Jun 2019 A1
20190172458 Mishra et al. Jun 2019 A1
20190172465 Lee et al. Jun 2019 A1
20190172467 Kim et al. Jun 2019 A1
20190179607 Thangarathnam et al. Jun 2019 A1
20190179890 Evermann Jun 2019 A1
20190180749 Carey et al. Jun 2019 A1
20190180750 Renard et al. Jun 2019 A1
20190180770 Kothari et al. Jun 2019 A1
20190182176 Niewczas Jun 2019 A1
20190187787 White et al. Jun 2019 A1
20190188326 Daianu et al. Jun 2019 A1
20190188328 Oyenan et al. Jun 2019 A1
20190189118 Piernot et al. Jun 2019 A1
20190189125 Van Os et al. Jun 2019 A1
20190190898 Cui Jun 2019 A1
20190197053 Graham et al. Jun 2019 A1
20190197119 Zhang et al. Jun 2019 A1
20190199657 Fawcett et al. Jun 2019 A1
20190206397 Zhou Jul 2019 A1
20190213498 Adjaoute Jul 2019 A1
20190213601 Hackman et al. Jul 2019 A1
20190213774 Jiao et al. Jul 2019 A1
20190213999 Grupen et al. Jul 2019 A1
20190214024 Gruber et al. Jul 2019 A1
20190220245 Martel et al. Jul 2019 A1
20190220246 Orr et al. Jul 2019 A1
20190220247 Lemay et al. Jul 2019 A1
20190220704 Schulz-Trieglaff et al. Jul 2019 A1
20190220727 Dohrmann et al. Jul 2019 A1
20190222684 Li et al. Jul 2019 A1
20190224049 Creasy et al. Jul 2019 A1
20190228581 Dascola et al. Jul 2019 A1
20190230215 Zhu et al. Jul 2019 A1
20190230426 Chun Jul 2019 A1
20190235887 Hemaraj et al. Aug 2019 A1
20190236130 Li et al. Aug 2019 A1
20190236459 Cheyer et al. Aug 2019 A1
20190237061 Rusak et al. Aug 2019 A1
20190243902 Saeki et al. Aug 2019 A1
20190244604 Masataki et al. Aug 2019 A1
20190244618 Newendorp et al. Aug 2019 A1
20190244619 Kwon et al. Aug 2019 A1
20190251167 Subbaraya et al. Aug 2019 A1
20190251339 Hawker Aug 2019 A1
20190251960 Maker et al. Aug 2019 A1
20190251972 Li Aug 2019 A1
20190258852 Shimauchi et al. Aug 2019 A1
20190259386 Kudurshian et al. Aug 2019 A1
20190260836 Zahl et al. Aug 2019 A1
20190265886 Moon et al. Aug 2019 A1
20190266246 Wang et al. Aug 2019 A1
20190272318 Suzuki et al. Sep 2019 A1
20190272818 Fernandez et al. Sep 2019 A1
20190272825 O'Malley et al. Sep 2019 A1
20190272831 Kajarekar Sep 2019 A1
20190273963 Jobanputra et al. Sep 2019 A1
20190278841 Pusateri et al. Sep 2019 A1
20190279618 Yadav et al. Sep 2019 A1
20190279622 Liu et al. Sep 2019 A1
20190281387 Woo et al. Sep 2019 A1
20190287012 Asli et al. Sep 2019 A1
20190287522 Lambourne et al. Sep 2019 A1
20190290965 Oren Sep 2019 A1
20190294769 Lesso Sep 2019 A1
20190294962 Vezer et al. Sep 2019 A1
20190295529 Tomita Sep 2019 A1
20190295540 Grima Sep 2019 A1
20190295544 Garcia et al. Sep 2019 A1
20190303442 Peitz et al. Oct 2019 A1
20190303504 Pasumarthy Oct 2019 A1
20190304438 Qian et al. Oct 2019 A1
20190310765 Napolitano et al. Oct 2019 A1
20190311031 Powell et al. Oct 2019 A1
20190311708 Bengio et al. Oct 2019 A1
20190311720 Pasko Oct 2019 A1
20190318219 Arora et al. Oct 2019 A1
20190318722 Bromand Oct 2019 A1
20190318724 Chao et al. Oct 2019 A1
20190318725 Le Roux et al. Oct 2019 A1
20190318732 Huang et al. Oct 2019 A1
20190318735 Chao et al. Oct 2019 A1
20190318739 Garg et al. Oct 2019 A1
20190324780 Zhu et al. Oct 2019 A1
20190324925 Toyoda et al. Oct 2019 A1
20190325081 Liu et al. Oct 2019 A1
20190325866 Bromand et al. Oct 2019 A1
20190333523 Kim et al. Oct 2019 A1
20190335567 Boudreau et al. Oct 2019 A1
20190339784 Lemay et al. Nov 2019 A1
20190340252 Huyghe Nov 2019 A1
20190341027 Vescovi et al. Nov 2019 A1
20190341056 Paulik et al. Nov 2019 A1
20190347063 Liu et al. Nov 2019 A1
20190347525 Liem et al. Nov 2019 A1
20190348022 Park et al. Nov 2019 A1
20190349333 Pickover et al. Nov 2019 A1
20190349622 Kim et al. Nov 2019 A1
20190354252 Badr Nov 2019 A1
20190354256 Karunamuni et al. Nov 2019 A1
20190354548 Orr et al. Nov 2019 A1
20190354675 Gan et al. Nov 2019 A1
20190355346 Bellegarda Nov 2019 A1
20190355384 Sereshki et al. Nov 2019 A1
20190361729 Gruber et al. Nov 2019 A1
20190361978 Ray et al. Nov 2019 A1
20190362252 Miller et al. Nov 2019 A1
20190362557 Lacey et al. Nov 2019 A1
20190369748 Hindi et al. Dec 2019 A1
20190369842 Dolbakian et al. Dec 2019 A1
20190369868 Jin et al. Dec 2019 A1
20190370292 Irani et al. Dec 2019 A1
20190370323 Davidson et al. Dec 2019 A1
20190370443 Lesso Dec 2019 A1
20190371315 Newendorp et al. Dec 2019 A1
20190371316 Weinstein et al. Dec 2019 A1
20190371317 Irani et al. Dec 2019 A1
20190371331 Schramm et al. Dec 2019 A1
20190372902 Piersol Dec 2019 A1
20190373102 Weinstein et al. Dec 2019 A1
20190377425 Ryu et al. Dec 2019 A1
20190377955 Swaminathan et al. Dec 2019 A1
20190378493 Kim et al. Dec 2019 A1
20190385043 Choudhary et al. Dec 2019 A1
20190385418 Mixter et al. Dec 2019 A1
20190387352 Jot et al. Dec 2019 A1
20190391726 Iskandar et al. Dec 2019 A1
20190394547 Lemons et al. Dec 2019 A1
20200005779 Liao et al. Jan 2020 A1
20200012718 Kung et al. Jan 2020 A1
20200019609 Yu et al. Jan 2020 A1
20200020326 Srinivasan et al. Jan 2020 A1
20200027455 Sugiyama et al. Jan 2020 A1
20200034421 Ferrucci et al. Jan 2020 A1
20200035224 Ward et al. Jan 2020 A1
20200042334 Radebaugh et al. Feb 2020 A1
20200043467 Qian et al. Feb 2020 A1
20200043471 Ma et al. Feb 2020 A1
20200043482 Gruber et al. Feb 2020 A1
20200043485 Tonetti et al. Feb 2020 A1
20200043489 Bradley et al. Feb 2020 A1
20200044485 Smith et al. Feb 2020 A1
20200045164 Kwatra et al. Feb 2020 A1
20200051554 Kim et al. Feb 2020 A1
20200051565 Singh Feb 2020 A1
20200051583 Wu et al. Feb 2020 A1
20200053218 Gray Feb 2020 A1
20200058299 Lee et al. Feb 2020 A1
20200065601 Andreassen Feb 2020 A1
20200066236 Giusti et al. Feb 2020 A1
20200073629 Lee et al. Mar 2020 A1
20200074993 Lee et al. Mar 2020 A1
20200075018 Chen Mar 2020 A1
20200075040 Provost et al. Mar 2020 A1
20200076538 Soultan et al. Mar 2020 A1
20200081615 Yi et al. Mar 2020 A1
20200082807 Kim et al. Mar 2020 A1
20200084572 Jadav et al. Mar 2020 A1
20200090393 Shin et al. Mar 2020 A1
20200090653 Luo Mar 2020 A1
20200090658 Shin et al. Mar 2020 A1
20200091958 Curtis et al. Mar 2020 A1
20200092625 Raffle Mar 2020 A1
20200098346 Kemmerer et al. Mar 2020 A1
20200098352 Feinstein et al. Mar 2020 A1
20200098362 Piernot et al. Mar 2020 A1
20200098368 Lemay et al. Mar 2020 A1
20200103963 Kelly et al. Apr 2020 A1
20200104357 Bellegarda et al. Apr 2020 A1
20200104362 Yang et al. Apr 2020 A1
20200104369 Bellegarda Apr 2020 A1
20200104668 Sanghavi et al. Apr 2020 A1
20200105260 Piernot et al. Apr 2020 A1
20200112454 Brown et al. Apr 2020 A1
20200117717 Ramamurti et al. Apr 2020 A1
20200118566 Zhou Apr 2020 A1
20200118568 Kudurshian et al. Apr 2020 A1
20200125820 Kim et al. Apr 2020 A1
20200127988 Bradley et al. Apr 2020 A1
20200134316 Krishnamurthy et al. Apr 2020 A1
20200135180 Mukherjee et al. Apr 2020 A1
20200135209 Delfarah et al. Apr 2020 A1
20200135212 Cho et al. Apr 2020 A1
20200135213 Kim et al. Apr 2020 A1
20200135226 Mittal et al. Apr 2020 A1
20200137230 Spohrer Apr 2020 A1
20200142505 Choi et al. May 2020 A1
20200142554 Lin et al. May 2020 A1
20200143812 Walker, II et al. May 2020 A1
20200143819 Delcroix et al. May 2020 A1
20200152186 Koh et al. May 2020 A1
20200152187 Kline et al. May 2020 A1
20200159579 Shear et al. May 2020 A1
20200159609 Korotaev et al. May 2020 A1
20200159651 Myers May 2020 A1
20200159801 Sekine May 2020 A1
20200160179 Chien et al. May 2020 A1
20200160838 Lee May 2020 A1
20200168120 Rodriguez Bravo May 2020 A1
20200168220 Magielse et al. May 2020 A1
20200169637 Sanghavi et al. May 2020 A1
20200175566 Bender et al. Jun 2020 A1
20200175961 Thomson et al. Jun 2020 A1
20200175975 Kong et al. Jun 2020 A1
20200176004 Kleijn et al. Jun 2020 A1
20200176018 Feinauer et al. Jun 2020 A1
20200184057 Mukund Jun 2020 A1
20200184964 Myers et al. Jun 2020 A1
20200184966 Yavagal Jun 2020 A1
20200193997 Piernot et al. Jun 2020 A1
20200210142 Mu et al. Jul 2020 A1
20200211546 Schairer et al. Jul 2020 A1
20200211566 Kang et al. Jul 2020 A1
20200218074 Hoover et al. Jul 2020 A1
20200218780 Jun et al. Jul 2020 A1
20200218805 Liu et al. Jul 2020 A1
20200219517 Wang et al. Jul 2020 A1
20200220914 Carrigan et al. Jul 2020 A1
20200221155 Hansen et al. Jul 2020 A1
20200226481 Sim et al. Jul 2020 A1
20200226823 Stachniak et al. Jul 2020 A1
20200227034 Summa et al. Jul 2020 A1
20200227044 Lindahl Jul 2020 A1
20200228774 Kar et al. Jul 2020 A1
20200243069 Amores et al. Jul 2020 A1
20200243094 Thomson et al. Jul 2020 A1
20200249985 Zeitlin Aug 2020 A1
20200251111 Temkin et al. Aug 2020 A1
20200252508 Gray Aug 2020 A1
20200258508 Aggarwal et al. Aug 2020 A1
20200258512 Smith et al. Aug 2020 A1
20200258513 Smith et al. Aug 2020 A1
20200267222 Phipps et al. Aug 2020 A1
20200267503 Watkins et al. Aug 2020 A1
20200272485 Karashchuk et al. Aug 2020 A1
20200273448 Min et al. Aug 2020 A1
20200275216 Mckinney et al. Aug 2020 A1
20200279556 Gruber et al. Sep 2020 A1
20200279576 Binder et al. Sep 2020 A1
20200279627 Nida et al. Sep 2020 A1
20200285327 Hindi et al. Sep 2020 A1
20200286472 Newendorp et al. Sep 2020 A1
20200286493 Orr et al. Sep 2020 A1
20200294487 Donohoe et al. Sep 2020 A1
20200294494 Suyama et al. Sep 2020 A1
20200294508 Kwasiborski et al. Sep 2020 A1
20200298394 Han et al. Sep 2020 A1
20200301950 Theo et al. Sep 2020 A1
20200302112 Helmbro et al. Sep 2020 A1
20200302356 Gruber et al. Sep 2020 A1
20200302919 Greborio et al. Sep 2020 A1
20200302925 Shah et al. Sep 2020 A1
20200302930 Chen et al. Sep 2020 A1
20200302932 Schramm et al. Sep 2020 A1
20200304955 Gross et al. Sep 2020 A1
20200304972 Gross et al. Sep 2020 A1
20200305084 Freeman et al. Sep 2020 A1
20200310513 Nicholson et al. Oct 2020 A1
20200312315 Li et al. Oct 2020 A1
20200312317 Kothari et al. Oct 2020 A1
20200314191 Madhavan et al. Oct 2020 A1
20200314565 Sigwanz et al. Oct 2020 A1
20200319850 Stasior et al. Oct 2020 A1
20200320592 Soule et al. Oct 2020 A1
20200320988 Rastogi et al. Oct 2020 A1
20200322571 Awai Oct 2020 A1
20200327895 Gruber et al. Oct 2020 A1
20200333875 Bansal et al. Oct 2020 A1
20200334068 Krishnamurthy et al. Oct 2020 A1
20200334492 Zheng et al. Oct 2020 A1
20200334524 Sprague et al. Oct 2020 A1
20200335121 Mosseri et al. Oct 2020 A1
20200335128 Sheeder et al. Oct 2020 A1
20200342082 Sapozhnykov et al. Oct 2020 A1
20200342182 Premkumar et al. Oct 2020 A1
20200342849 Yu et al. Oct 2020 A1
20200342858 Gupta et al. Oct 2020 A1
20200342862 Gao et al. Oct 2020 A1
20200342863 Aggarwal et al. Oct 2020 A1
20200348813 Sharifi et al. Nov 2020 A1
20200356243 Meyer et al. Nov 2020 A1
20200356585 Tomkins et al. Nov 2020 A1
20200356589 Rekik et al. Nov 2020 A1
20200356610 Coimbra et al. Nov 2020 A1
20200356634 Srinivasan et al. Nov 2020 A1
20200357387 Prabhavalkar et al. Nov 2020 A1
20200357391 Ghoshal et al. Nov 2020 A1
20200357406 York et al. Nov 2020 A1
20200357409 Sun et al. Nov 2020 A1
20200364411 Evermann Nov 2020 A1
20200364858 Kaethner et al. Nov 2020 A1
20200365155 Milden Nov 2020 A1
20200367006 Beckhardt Nov 2020 A1
20200372633 Lee, II et al. Nov 2020 A1
20200372719 Andjelic et al. Nov 2020 A1
20200372904 Vescovi et al. Nov 2020 A1
20200372905 Wang et al. Nov 2020 A1
20200374243 Jina et al. Nov 2020 A1
20200379610 Ford et al. Dec 2020 A1
20200379640 Bellegarda et al. Dec 2020 A1
20200379726 Blatz et al. Dec 2020 A1
20200379727 Blatz et al. Dec 2020 A1
20200379728 Gada et al. Dec 2020 A1
20200380389 Eldeeb et al. Dec 2020 A1
20200380956 Rossi et al. Dec 2020 A1
20200380963 Chappidi et al. Dec 2020 A1
20200380966 Acero et al. Dec 2020 A1
20200380973 Novitchenko et al. Dec 2020 A1
20200380974 Gallagher et al. Dec 2020 A1
20200380980 Shum et al. Dec 2020 A1
20200380984 Venkatraman et al. Dec 2020 A1
20200380985 Gada et al. Dec 2020 A1
20200382568 Krochmal et al. Dec 2020 A1
20200382616 Vaishampayan et al. Dec 2020 A1
20200382635 Vora et al. Dec 2020 A1
20200394436 Rakshit et al. Dec 2020 A1
20200411002 Lee et al. Dec 2020 A1
20210006943 Gross et al. Jan 2021 A1
20210011557 Lemay et al. Jan 2021 A1
20210012113 Petill et al. Jan 2021 A1
20210012775 Kang et al. Jan 2021 A1
20210012776 Peterson et al. Jan 2021 A1
20210026896 Lecaros Easton et al. Jan 2021 A1
20210027785 Kahan et al. Jan 2021 A1
20210035556 Shen et al. Feb 2021 A1
20210035567 Newendorp et al. Feb 2021 A1
20210043190 Wang et al. Feb 2021 A1
20210044870 Li et al. Feb 2021 A1
20210049237 Demme et al. Feb 2021 A1
20210065698 Topcu et al. Mar 2021 A1
20210067631 Van Os et al. Mar 2021 A1
20210072953 Amarilio et al. Mar 2021 A1
20210073254 Ghafourifar et al. Mar 2021 A1
20210073293 Fenton et al. Mar 2021 A1
20210074264 Liang et al. Mar 2021 A1
20210074295 Moreno et al. Mar 2021 A1
20210081749 Claire Mar 2021 A1
20210082400 Vishnoi et al. Mar 2021 A1
20210082420 Kraljic et al. Mar 2021 A1
20210089124 Manjunath et al. Mar 2021 A1
20210089724 Luong et al. Mar 2021 A1
20210090314 Hussen et al. Mar 2021 A1
20210092128 Leblang Mar 2021 A1
20210097776 Faulkner et al. Apr 2021 A1
20210097998 Kim et al. Apr 2021 A1
20210099317 Hilleli et al. Apr 2021 A1
20210104232 Lee et al. Apr 2021 A1
20210104236 Doggett et al. Apr 2021 A1
20210105528 Van Os et al. Apr 2021 A1
20210110106 Vescovi et al. Apr 2021 A1
20210110115 Moritz et al. Apr 2021 A1
20210110254 Duy et al. Apr 2021 A1
20210117214 Presant et al. Apr 2021 A1
20210117479 Liu et al. Apr 2021 A1
20210124417 Ma Apr 2021 A1
20210124597 Ramakrishnan et al. Apr 2021 A1
20210127031 Kanemoto Apr 2021 A1
20210127220 Mathieu et al. Apr 2021 A1
20210134318 Harvey et al. May 2021 A1
20210141839 Tang et al. May 2021 A1
20210142782 Wolf et al. May 2021 A1
20210143987 Xu et al. May 2021 A1
20210144251 Chen May 2021 A1
20210149629 Martel et al. May 2021 A1
20210149996 Bellegarda May 2021 A1
20210150151 Jiaming et al. May 2021 A1
20210151041 Gruber et al. May 2021 A1
20210151053 Takahashi et al. May 2021 A1
20210151070 Binder et al. May 2021 A1
20210152684 Weinstein et al. May 2021 A1
20210165826 Graham et al. Jun 2021 A1
20210173555 Raja et al. Jun 2021 A1
20210174020 Sohn et al. Jun 2021 A1
20210174022 Ishikawa et al. Jun 2021 A1
20210174403 Bellini et al. Jun 2021 A1
20210176521 Matthews Jun 2021 A1
20210182716 Muramoto et al. Jun 2021 A1
20210191603 Napolitano et al. Jun 2021 A1
20210191968 Orr et al. Jun 2021 A1
20210208752 Hwang Jul 2021 A1
20210208841 Wilberding Jul 2021 A1
20210209304 Yang et al. Jul 2021 A1
20210210089 Ma et al. Jul 2021 A1
20210210100 Wang et al. Jul 2021 A1
20210216134 Fukunaga et al. Jul 2021 A1
20210216760 Dominic et al. Jul 2021 A1
20210224032 Ryan et al. Jul 2021 A1
20210224474 Jerome et al. Jul 2021 A1
20210233532 Aram et al. Jul 2021 A1
20210241099 Li et al. Aug 2021 A1
20210247959 Agarwal et al. Aug 2021 A1
20210248804 Abdelaziz et al. Aug 2021 A1
20210249009 Manjunath et al. Aug 2021 A1
20210256031 Krogh et al. Aug 2021 A1
20210256980 George-Svahn et al. Aug 2021 A1
20210258554 Bruls et al. Aug 2021 A1
20210258881 Freeman et al. Aug 2021 A1
20210264913 Schramm et al. Aug 2021 A1
20210264916 Kim et al. Aug 2021 A1
20210271333 Hindi et al. Sep 2021 A1
20210273894 Tian et al. Sep 2021 A1
20210278956 Dolbakian et al. Sep 2021 A1
20210279548 Adan et al. Sep 2021 A1
20210280180 Skobeltsyn et al. Sep 2021 A1
20210281965 Malik et al. Sep 2021 A1
20210287080 Moloney Sep 2021 A1
20210294569 Piersol et al. Sep 2021 A1
20210294571 Carson et al. Sep 2021 A1
20210295602 Scapel et al. Sep 2021 A1
20210303116 Barlow Sep 2021 A1
20210303342 Dunn et al. Sep 2021 A1
20210303798 Duong et al. Sep 2021 A1
20210304075 Duong et al. Sep 2021 A1
20210306812 Gross et al. Sep 2021 A1
20210312138 Kaplan Oct 2021 A1
20210312917 Weksler et al. Oct 2021 A1
20210312930 Sugaya Oct 2021 A1
20210312931 Paulik et al. Oct 2021 A1
20210313019 Pribanic et al. Oct 2021 A1
20210314440 Matias et al. Oct 2021 A1
20210318901 Gruber et al. Oct 2021 A1
20210319178 Zhang Oct 2021 A1
20210327409 Naik Oct 2021 A1
20210327410 Beaufays et al. Oct 2021 A1
20210334528 Bray et al. Oct 2021 A1
20210335342 Yuan et al. Oct 2021 A1
20210342050 Wang Nov 2021 A1
20210342212 Neumann Nov 2021 A1
20210349605 Nonaka et al. Nov 2021 A1
20210349608 Blatz et al. Nov 2021 A1
20210350799 Hansen et al. Nov 2021 A1
20210350803 Hansen et al. Nov 2021 A1
20210350810 Phipps et al. Nov 2021 A1
20210352115 Hansen et al. Nov 2021 A1
20210357172 Sinesio et al. Nov 2021 A1
20210358294 Parashar et al. Nov 2021 A1
20210365161 Ellis et al. Nov 2021 A1
20210365174 Ellis et al. Nov 2021 A1
20210365641 Zhang et al. Nov 2021 A1
20210365863 Friske et al. Nov 2021 A1
20210366473 Maeng Nov 2021 A1
20210366475 Wilkosz et al. Nov 2021 A1
20210366480 Lemay et al. Nov 2021 A1
20210373851 Stasior et al. Dec 2021 A1
20210375275 Yoon et al. Dec 2021 A1
20210375290 Hu et al. Dec 2021 A1
20210377381 Aggarwal et al. Dec 2021 A1
20210390259 Hildick-Smith et al. Dec 2021 A1
20210390955 Piernot et al. Dec 2021 A1
20210393168 Santarelli et al. Dec 2021 A1
20210398187 Narayanan et al. Dec 2021 A1
20210402306 Huang Dec 2021 A1
20210406260 Sharifi et al. Dec 2021 A1
20210407318 Pitschel et al. Dec 2021 A1
20210407502 Vescovi et al. Dec 2021 A1
20220004825 Xie et al. Jan 2022 A1
20220013106 Deng et al. Jan 2022 A1
20220019292 Lemay et al. Jan 2022 A1
20220020367 Orkin et al. Jan 2022 A1
20220021631 Jina et al. Jan 2022 A1
20220021978 Gui et al. Jan 2022 A1
20220028379 Carbune et al. Jan 2022 A1
20220028387 Walker et al. Jan 2022 A1
20220030345 Gong et al. Jan 2022 A1
20220035999 Pawelec Feb 2022 A1
20220036270 Benyo et al. Feb 2022 A1
20220040304 Kim et al. Feb 2022 A1
20220043986 Nell et al. Feb 2022 A1
20220050661 Lange et al. Feb 2022 A1
20220050876 Kang et al. Feb 2022 A1
20220067283 Bellegarda et al. Mar 2022 A1
20220068278 York et al. Mar 2022 A1
20220083188 Lin Mar 2022 A1
20220083986 Duffy et al. Mar 2022 A1
20220084511 Nickson et al. Mar 2022 A1
20220092262 Ni et al. Mar 2022 A1
20220093088 Sridhar et al. Mar 2022 A1
20220093093 Krishnan et al. Mar 2022 A1
20220093095 Dighe et al. Mar 2022 A1
20220093098 Samal et al. Mar 2022 A1
20220093101 Krishnan et al. Mar 2022 A1
20220093109 Orr et al. Mar 2022 A1
20220093110 Kim et al. Mar 2022 A1
20220094765 Niewczas Mar 2022 A1
20220100772 Raghura et al. Mar 2022 A1
20220100789 Kumar et al. Mar 2022 A1
20220103491 Yang et al. Mar 2022 A1
20220107780 Gruber et al. Apr 2022 A1
20220108081 Dymetman et al. Apr 2022 A1
20220114327 Faaborg et al. Apr 2022 A1
20220115016 Whalin Apr 2022 A1
20220115020 Bradley et al. Apr 2022 A1
20220122615 Chen et al. Apr 2022 A1
20220130126 Delgado et al. Apr 2022 A1
20220139396 Gada et al. May 2022 A1
20220148587 Drummie et al. May 2022 A1
20220155857 Lee et al. May 2022 A1
20220156041 Newendorp et al. May 2022 A1
20220157310 Newendorp et al. May 2022 A1
20220157315 Raux et al. May 2022 A1
20220157317 Burakov et al. May 2022 A1
20220180866 Sharifi et al. Jun 2022 A1
20220180868 Sharifi et al. Jun 2022 A1
20220197491 Meyer et al. Jun 2022 A1
20220198025 Gupta et al. Jun 2022 A1
20220206298 Goodman Jun 2022 A1
20220214775 Shah et al. Jul 2022 A1
20220215159 Qian et al. Jul 2022 A1
20220222437 Lauber Jul 2022 A1
20220223154 Zhou et al. Jul 2022 A1
20220224789 Abdollahian et al. Jul 2022 A1
20220229985 Bellegarda et al. Jul 2022 A1
20220230653 Binder et al. Jul 2022 A1
20220253969 Kamenetskaya et al. Aug 2022 A1
20220254338 Gruber et al. Aug 2022 A1
20220254339 Acero et al. Aug 2022 A1
20220254341 Naganna et al. Aug 2022 A1
20220254347 Lindahl Aug 2022 A1
20220261468 Lin et al. Aug 2022 A1
20220262354 Greborio et al. Aug 2022 A1
20220264262 Gruber et al. Aug 2022 A1
20220284901 Novitchenko et al. Sep 2022 A1
20220291816 Fan et al. Sep 2022 A1
20220292128 Sharifi et al. Sep 2022 A1
20220293124 Weinberg et al. Sep 2022 A1
20220293125 Maddika et al. Sep 2022 A1
20220295170 Ito et al. Sep 2022 A1
20220300094 Hindi et al. Sep 2022 A1
20220301549 Lee et al. Sep 2022 A1
20220301566 Van Os et al. Sep 2022 A1
20220308718 Klein et al. Sep 2022 A1
20220318248 Liang et al. Oct 2022 A1
20220329691 Chinthakunta et al. Oct 2022 A1
20220343066 Kwong et al. Oct 2022 A1
20220366889 Yerroju et al. Nov 2022 A1
20220374109 Kramer et al. Nov 2022 A1
20220374110 Ramaswamy et al. Nov 2022 A1
20220374597 Bellegarda et al. Nov 2022 A1
20220374727 Hansen et al. Nov 2022 A1
20220375466 Hergenrader et al. Nov 2022 A1
20220375553 Lasko et al. Nov 2022 A1
20220382843 Gong et al. Dec 2022 A1
20220382994 Cox et al. Dec 2022 A1
20220383044 Bellegarda Dec 2022 A1
20220383864 Gruber et al. Dec 2022 A1
20220383872 Li et al. Dec 2022 A1
20220391585 Bellegarda et al. Dec 2022 A1
20220391603 Pham et al. Dec 2022 A1
20220392446 Webber et al. Dec 2022 A1
20220405117 Gruber et al. Dec 2022 A1
20220406301 Barros et al. Dec 2022 A1
20220406309 Piernot et al. Dec 2022 A1
20220408173 Gong et al. Dec 2022 A1
20230013615 Sanghavi et al. Jan 2023 A1
20230017115 Sanghavi et al. Jan 2023 A1
20230018457 Zeitlin Jan 2023 A1
20230026764 Karashchuk et al. Jan 2023 A1
20230029028 Aitken et al. Jan 2023 A1
20230035643 Binder et al. Feb 2023 A1
20230035941 Herman et al. Feb 2023 A1
20230036059 Blatz et al. Feb 2023 A1
20230036798 Newendorp et al. Feb 2023 A1
20230040703 Lemay et al. Feb 2023 A1
20230042224 Patel et al. Feb 2023 A1
20230048256 Gui et al. Feb 2023 A1
20230051062 Hu et al. Feb 2023 A1
20230057442 Stasior et al. Feb 2023 A1
20230058929 Lasko et al. Feb 2023 A1
20230066552 Van Os et al. Mar 2023 A1
20230072481 Acero et al. Mar 2023 A1
20230076716 Dogrusoz et al. Mar 2023 A1
20230081605 O'Mara et al. Mar 2023 A1
20230087244 Akmal et al. Mar 2023 A1
20230094522 Stauber et al. Mar 2023 A1
20230098174 Simes et al. Mar 2023 A1
20230111509 Kim et al. Apr 2023 A1
20230112859 Vilhauer et al. Apr 2023 A1
20230134970 Rasipuram et al. May 2023 A1
20230179704 Chinthakunta et al. Jun 2023 A1
20230185397 Anzures et al. Jun 2023 A1
20230186921 Paulik et al. Jun 2023 A1
20230197063 Greborio et al. Jun 2023 A1
20230215435 Manjunath et al. Jul 2023 A1
20230216963 Van Os et al. Jul 2023 A1
20230236676 Hindi et al. Jul 2023 A1
20230236717 Meyer et al. Jul 2023 A1
20230245657 Liang et al. Aug 2023 A1
20230251881 Radebaugh et al. Aug 2023 A1
20230253005 Binder et al. Aug 2023 A1
20230254448 Binder et al. Aug 2023 A1
20230259550 Graham et al. Aug 2023 A1
20230262605 Freeman et al. Aug 2023 A1
20230267422 Herman et al. Aug 2023 A1
20230290352 York et al. Sep 2023 A1
20230292027 Gong et al. Sep 2023 A1
20230298595 Orr et al. Sep 2023 A1
20230306968 Liang et al. Sep 2023 A1
20230325157 Hurley et al. Oct 2023 A1
20230335132 Garcia et al. Oct 2023 A1
20230344537 Ingebretsen et al. Oct 2023 A1
20230352007 Castellani et al. Nov 2023 A1
20230352014 Tennant et al. Nov 2023 A1
20230352016 Kudurshian et al. Nov 2023 A1
20230352022 Milden Nov 2023 A1
20230359334 Chapman et al. Nov 2023 A1
20230359475 Karashchuk et al. Nov 2023 A1
20230367458 Burgess et al. Nov 2023 A1
20230367777 Burgess et al. Nov 2023 A1
20230367795 Burgess et al. Nov 2023 A1
20230368783 Marchi et al. Nov 2023 A1
20230368787 Sumner et al. Nov 2023 A1
20230368788 Ma et al. Nov 2023 A1
20230368791 Walker et al. Nov 2023 A1
20230368812 Marchi et al. Nov 2023 A1
20230376690 Bellegarda et al. Nov 2023 A1
20230386460 Fish et al. Nov 2023 A1
20230386462 Piernot et al. Nov 2023 A1
20230386464 Manjunath et al. Nov 2023 A1
20230386469 Horton et al. Nov 2023 A1
20230386478 Liu et al. Nov 2023 A1
20230388409 Weinstein et al. Nov 2023 A1
20230393712 Fujita et al. Dec 2023 A1
20230393811 Piersol et al. Dec 2023 A1
20230393872 Ellis et al. Dec 2023 A1
20230394248 Bellegarda Dec 2023 A1
20230395067 Perkins et al. Dec 2023 A1
20230401795 Streja et al. Dec 2023 A1
20230401798 Bigham et al. Dec 2023 A1
20230409174 Liang et al. Dec 2023 A1
20230409179 Liang et al. Dec 2023 A1
20230409283 Grube et al. Dec 2023 A1
20230410540 Dehghan et al. Dec 2023 A1
20230410798 Greborio et al. Dec 2023 A1
20230410805 Drummie et al. Dec 2023 A1
20230419967 Homberger et al. Dec 2023 A1
20240029734 Lemay et al. Jan 2024 A1
20240275879 Abdollahian et al. Aug 2024 A1
Foreign Referenced Citations (577)
Number Date Country
2014100581 Sep 2014 AU
2015203483 Jul 2015 AU
2015101171 Oct 2015 AU
2017203668 Jan 2018 AU
2018100187 Mar 2018 AU
2017222436 Oct 2018 AU
709795 Dec 2015 CH
104575501 Apr 2011 CN
103533143 Jan 2014 CN
103533154 Jan 2014 CN
103543902 Jan 2014 CN
103546453 Jan 2014 CN
103562863 Feb 2014 CN
103582896 Feb 2014 CN
103593054 Feb 2014 CN
103595869 Feb 2014 CN
103608859 Feb 2014 CN
103620605 Mar 2014 CN
103645876 Mar 2014 CN
103677261 Mar 2014 CN
103686723 Mar 2014 CN
103714816 Apr 2014 CN
103716454 Apr 2014 CN
103727948 Apr 2014 CN
103730120 Apr 2014 CN
103744761 Apr 2014 CN
103748531 Apr 2014 CN
103760984 Apr 2014 CN
103761104 Apr 2014 CN
103765385 Apr 2014 CN
104575493 Apr 2014 CN
103778527 May 2014 CN
103780758 May 2014 CN
103792985 May 2014 CN
103794212 May 2014 CN
103795850 May 2014 CN
103809548 May 2014 CN
103841268 Jun 2014 CN
103885663 Jun 2014 CN
103902373 Jul 2014 CN
103930945 Jul 2014 CN
103942932 Jul 2014 CN
103943107 Jul 2014 CN
103956169 Jul 2014 CN
103959751 Jul 2014 CN
203721183 Jul 2014 CN
103971680 Aug 2014 CN
104007832 Aug 2014 CN
102693729 Sep 2014 CN
104036774 Sep 2014 CN
104038621 Sep 2014 CN
104050153 Sep 2014 CN
104090652 Oct 2014 CN
104092829 Oct 2014 CN
104113471 Oct 2014 CN
104125322 Oct 2014 CN
104144377 Nov 2014 CN
104145304 Nov 2014 CN
104169837 Nov 2014 CN
104180815 Dec 2014 CN
104185868 Dec 2014 CN
104219785 Dec 2014 CN
104240701 Dec 2014 CN
104243699 Dec 2014 CN
104281259 Jan 2015 CN
104281390 Jan 2015 CN
104284257 Jan 2015 CN
104284486 Jan 2015 CN
104335205 Feb 2015 CN
104335207 Feb 2015 CN
104335234 Feb 2015 CN
104350454 Feb 2015 CN
104360990 Feb 2015 CN
104374399 Feb 2015 CN
104376250 Feb 2015 CN
104378723 Feb 2015 CN
104423625 Mar 2015 CN
104423780 Mar 2015 CN
104427104 Mar 2015 CN
104463552 Mar 2015 CN
104464733 Mar 2015 CN
104487929 Apr 2015 CN
104516522 Apr 2015 CN
104520849 Apr 2015 CN
104573472 Apr 2015 CN
104575504 Apr 2015 CN
104584010 Apr 2015 CN
104584096 Apr 2015 CN
104584601 Apr 2015 CN
104604274 May 2015 CN
104679472 Jun 2015 CN
104685898 Jun 2015 CN
104699746 Jun 2015 CN
104731441 Jun 2015 CN
104769584 Jul 2015 CN
104769670 Jul 2015 CN
104798012 Jul 2015 CN
104821167 Aug 2015 CN
104821934 Aug 2015 CN
104836909 Aug 2015 CN
104854583 Aug 2015 CN
104867492 Aug 2015 CN
104869342 Aug 2015 CN
104951077 Sep 2015 CN
104967748 Oct 2015 CN
104969289 Oct 2015 CN
104978963 Oct 2015 CN
105025051 Nov 2015 CN
105027197 Nov 2015 CN
105093526 Nov 2015 CN
105100356 Nov 2015 CN
105144136 Dec 2015 CN
105164678 Dec 2015 CN
105164719 Dec 2015 CN
105190607 Dec 2015 CN
105247511 Jan 2016 CN
105247551 Jan 2016 CN
105264524 Jan 2016 CN
105264903 Jan 2016 CN
105265005 Jan 2016 CN
105278681 Jan 2016 CN
105320251 Feb 2016 CN
105320726 Feb 2016 CN
105338425 Feb 2016 CN
105379234 Mar 2016 CN
105427122 Mar 2016 CN
105430186 Mar 2016 CN
105468137 Apr 2016 CN
105471705 Apr 2016 CN
105472587 Apr 2016 CN
105516441 Apr 2016 CN
105554217 May 2016 CN
105556592 May 2016 CN
105677765 Jun 2016 CN
105791920 Jul 2016 CN
105808200 Jul 2016 CN
105830048 Aug 2016 CN
105869641 Aug 2016 CN
105872222 Aug 2016 CN
105917311 Aug 2016 CN
106030699 Oct 2016 CN
106062734 Oct 2016 CN
106062790 Oct 2016 CN
106164909 Nov 2016 CN
106294558 Jan 2017 CN
106415412 Feb 2017 CN
106462383 Feb 2017 CN
106462617 Feb 2017 CN
106463114 Feb 2017 CN
106465074 Feb 2017 CN
106471570 Mar 2017 CN
106534469 Mar 2017 CN
106558310 Apr 2017 CN
106575195 Apr 2017 CN
106575501 Apr 2017 CN
106663224 May 2017 CN
106773742 May 2017 CN
106776581 May 2017 CN
107004412 Aug 2017 CN
107450800 Dec 2017 CN
107480161 Dec 2017 CN
107491285 Dec 2017 CN
107491468 Dec 2017 CN
107491469 Dec 2017 CN
107506037 Dec 2017 CN
107545262 Jan 2018 CN
107608998 Jan 2018 CN
107615378 Jan 2018 CN
107623616 Jan 2018 CN
107786730 Mar 2018 CN
107852436 Mar 2018 CN
107871500 Apr 2018 CN
107919123 Apr 2018 CN
107924313 Apr 2018 CN
107978313 May 2018 CN
108268187 Jul 2018 CN
108647681 Oct 2018 CN
109447234 Mar 2019 CN
109657629 Apr 2019 CN
110135411 Aug 2019 CN
110263144 Sep 2019 CN
105164719 Nov 2019 CN
110531860 Dec 2019 CN
110598671 Dec 2019 CN
110647274 Jan 2020 CN
110825469 Feb 2020 CN
110945840 Mar 2020 CN
111124224 May 2020 CN
107123417 Jun 2020 CN
111316203 Jun 2020 CN
111722716 Sep 2020 CN
111934959 Nov 2020 CN
112204507 Jan 2021 CN
202016008226 May 2017 DE
179570 Feb 2019 DK
180129 Jun 2020 DK
2680257 Jan 2014 EP
2683147 Jan 2014 EP
2683175 Jan 2014 EP
2672231 Apr 2014 EP
2717259 Apr 2014 EP
2725577 Apr 2014 EP
2733598 May 2014 EP
2733896 May 2014 EP
2741175 Jun 2014 EP
2743846 Jun 2014 EP
2760015 Jul 2014 EP
2779160 Sep 2014 EP
2781883 Sep 2014 EP
2787683 Oct 2014 EP
2801890 Nov 2014 EP
2801972 Nov 2014 EP
2801974 Nov 2014 EP
2824564 Jan 2015 EP
2849177 Mar 2015 EP
2879402 Jun 2015 EP
2881939 Jun 2015 EP
2891049 Jul 2015 EP
2915021 Sep 2015 EP
2930715 Oct 2015 EP
2938022 Oct 2015 EP
2940556 Nov 2015 EP
2947859 Nov 2015 EP
2950307 Dec 2015 EP
2957986 Dec 2015 EP
2973380 Jan 2016 EP
2985984 Feb 2016 EP
2988513 Feb 2016 EP
2891049 Mar 2016 EP
2996359 Mar 2016 EP
3032532 Jun 2016 EP
3035329 Jun 2016 EP
3036594 Jun 2016 EP
3038333 Jun 2016 EP
3076267 Oct 2016 EP
3107101 Dec 2016 EP
3115905 Jan 2017 EP
3125097 Feb 2017 EP
3132442 Feb 2017 EP
2672231 May 2017 EP
3161612 May 2017 EP
3200185 Aug 2017 EP
3201770 Aug 2017 EP
3224708 Oct 2017 EP
3227771 Oct 2017 EP
3246916 Nov 2017 EP
3270658 Jan 2018 EP
3300074 Mar 2018 EP
3336805 Jun 2018 EP
2973380 Aug 2018 EP
2983065 Aug 2018 EP
3382530 Oct 2018 EP
3389045 Oct 2018 EP
3392876 Oct 2018 EP
3401773 Nov 2018 EP
2973002 Jun 2019 EP
3506151 Jul 2019 EP
3550483 Oct 2019 EP
3567584 Nov 2019 EP
3588912 Jan 2020 EP
3323058 Feb 2020 EP
3321928 Apr 2020 EP
3674922 Jul 2020 EP
3913475 Nov 2021 EP
3971688 Mar 2022 EP
4131256 Feb 2023 EP
201917007360 May 2019 IN
2014-2586 Jan 2014 JP
2014-10688 Jan 2014 JP
2014-502445 Jan 2014 JP
2014-26629 Feb 2014 JP
2014-45449 Mar 2014 JP
2014-507903 Mar 2014 JP
2014-60600 Apr 2014 JP
2014-72586 Apr 2014 JP
2014-77969 May 2014 JP
2014-89711 May 2014 JP
2014-109889 Jun 2014 JP
2014-124332 Jul 2014 JP
2014-126600 Jul 2014 JP
2014-127754 Jul 2014 JP
2014-140121 Jul 2014 JP
2014-518409 Jul 2014 JP
2014-142566 Aug 2014 JP
2014-145842 Aug 2014 JP
2014-146940 Aug 2014 JP
2014-150323 Aug 2014 JP
2014-157323 Aug 2014 JP
2014-519648 Aug 2014 JP
2014-182042 Sep 2014 JP
2014-524627 Sep 2014 JP
2014-191272 Oct 2014 JP
2014-219614 Nov 2014 JP
2014-222514 Nov 2014 JP
2015-1931 Jan 2015 JP
2015-4928 Jan 2015 JP
2015-8001 Jan 2015 JP
2015-10979 Jan 2015 JP
2015-12301 Jan 2015 JP
2015-18365 Jan 2015 JP
2015-501022 Jan 2015 JP
2015-501034 Jan 2015 JP
2015-504619 Feb 2015 JP
2015-41845 Mar 2015 JP
2015-52500 Mar 2015 JP
2015-60423 Mar 2015 JP
2015-81971 Apr 2015 JP
2015-83938 Apr 2015 JP
2015-94848 May 2015 JP
2015-514254 May 2015 JP
2015-519675 Jul 2015 JP
2015-520409 Jul 2015 JP
2015-524974 Aug 2015 JP
2015-526776 Sep 2015 JP
2015-527683 Sep 2015 JP
2015-528140 Sep 2015 JP
2015-528918 Oct 2015 JP
2015-531909 Nov 2015 JP
2016-504651 Feb 2016 JP
2016-35614 Mar 2016 JP
2016-508007 Mar 2016 JP
2016-71247 May 2016 JP
2016-119615 Jun 2016 JP
2016-151928 Aug 2016 JP
2016-524193 Aug 2016 JP
2016-156845 Sep 2016 JP
2016-536648 Nov 2016 JP
2017-11608 Jan 2017 JP
2017-19331 Jan 2017 JP
2017-516153 Jun 2017 JP
2017-123187 Jul 2017 JP
2017-211608 Nov 2017 JP
2017-537361 Dec 2017 JP
2018-14086 Jan 2018 JP
6291147 Feb 2018 JP
2018-60550 Apr 2018 JP
2018-64297 Apr 2018 JP
2018-511095 Apr 2018 JP
2018-101242 Jun 2018 JP
2018-113035 Jul 2018 JP
2018-525653 Sep 2018 JP
2018-525950 Sep 2018 JP
2018-536889 Dec 2018 JP
2019-204517 Nov 2019 JP
10-2014-0007282 Jan 2014 KR
10-2014-0024271 Feb 2014 KR
10-2014-0025996 Mar 2014 KR
10-2014-0031283 Mar 2014 KR
10-2014-0033574 Mar 2014 KR
10-2014-0042994 Apr 2014 KR
10-2014-0048779 Apr 2014 KR
10-2014-0055204 May 2014 KR
10-2014-0059697 May 2014 KR
10-2014-0068752 Jun 2014 KR
10-2014-0071208 Jun 2014 KR
10-2014-0088449 Jul 2014 KR
10-2014-0093949 Jul 2014 KR
10-2014-0106715 Sep 2014 KR
10-2014-0107253 Sep 2014 KR
10-2014-0147557 Dec 2014 KR
10-2015-0006454 Jan 2015 KR
10-2015- 0013631 Feb 2015 KR
10-2015-0025059 Mar 2015 KR
10-1506510 Mar 2015 KR
10-2015-0038375 Apr 2015 KR
10-2015-0039380 Apr 2015 KR
10-2015-0041974 Apr 2015 KR
10-2015-0043512 Apr 2015 KR
10-1510013 Apr 2015 KR
10-2015-0062811 Jun 2015 KR
10-2015-0095624 Aug 2015 KR
10-1555742 Sep 2015 KR
10-2015-0113127 Oct 2015 KR
10-2015-0131262 Nov 2015 KR
10-2015-0138109 Dec 2015 KR
10-2016-0004351 Jan 2016 KR
10-2016-0010523 Jan 2016 KR
10-2016-0040279 Apr 2016 KR
10-2016-0055839 May 2016 KR
10-2016-0065503 Jun 2016 KR
10-2016-0101079 Aug 2016 KR
10-2016-0101198 Aug 2016 KR
10-2016-0105847 Sep 2016 KR
10-2016-0121585 Oct 2016 KR
10-2016-0127165 Nov 2016 KR
10-2016-0140694 Dec 2016 KR
10-2016-0147854 Dec 2016 KR
10-2017-0004482 Jan 2017 KR
10-2017-0006592 Jan 2017 KR
10-2017-0036805 Apr 2017 KR
10-2017-0096774 Aug 2017 KR
10-2017-0104006 Sep 2017 KR
10-2017-0107058 Sep 2017 KR
10-1776673 Sep 2017 KR
10-2018-0032632 Mar 2018 KR
10-2018-0034637 Apr 2018 KR
10-2018-0122837 Nov 2018 KR
10-2018-0133525 Dec 2018 KR
10-2018-0135877 Dec 2018 KR
10-1959328 Mar 2019 KR
10-2020-0007926 Jan 2020 KR
10-2020-0105519 Sep 2020 KR
2012141604 Apr 2014 RU
201407184 Feb 2014 TW
201610982 Mar 2016 TW
201629750 Aug 2016 TW
2011088053 Jul 2011 WO
2012092562 Jul 2012 WO
2012145227 Oct 2012 WO
2012167168 Dec 2012 WO
2012173902 Dec 2012 WO
2014003138 Jan 2014 WO
2014004544 Jan 2014 WO
2014008461 Jan 2014 WO
2014018580 Jan 2014 WO
2014021967 Feb 2014 WO
2014022148 Feb 2014 WO
2014028735 Feb 2014 WO
2014028797 Feb 2014 WO
2014031505 Feb 2014 WO
2014032461 Mar 2014 WO
2014040022 Mar 2014 WO
2014046475 Mar 2014 WO
2014047047 Mar 2014 WO
2014048855 Apr 2014 WO
2014066352 May 2014 WO
2014070872 May 2014 WO
2014073825 May 2014 WO
2014078965 May 2014 WO
2014093339 Jun 2014 WO
2014093911 Jun 2014 WO
2014096506 Jun 2014 WO
2014124332 Aug 2014 WO
2014137074 Sep 2014 WO
2014138604 Sep 2014 WO
2014143959 Sep 2014 WO
2014144395 Sep 2014 WO
2014144579 Sep 2014 WO
2014144949 Sep 2014 WO
2014149473 Sep 2014 WO
2014151153 Sep 2014 WO
2014124332 Oct 2014 WO
2014159578 Oct 2014 WO
2014159581 Oct 2014 WO
2014162570 Oct 2014 WO
2014169269 Oct 2014 WO
2014173189 Oct 2014 WO
2013173504 Dec 2014 WO
2014197336 Dec 2014 WO
2014197339 Dec 2014 WO
2014197635 Dec 2014 WO
2014197730 Dec 2014 WO
2014200728 Dec 2014 WO
2014200731 Dec 2014 WO
2014203495 Dec 2014 WO
2014204659 Dec 2014 WO
2014209264 Dec 2014 WO
2014210392 Dec 2014 WO
2015018440 Feb 2015 WO
2015020942 Feb 2015 WO
2015029379 Mar 2015 WO
2015030796 Mar 2015 WO
2015036817 Mar 2015 WO
2015041882 Mar 2015 WO
2015041892 Mar 2015 WO
2015047932 Apr 2015 WO
2015053485 Apr 2015 WO
2015054141 Apr 2015 WO
2015080530 Jun 2015 WO
2015084659 Jun 2015 WO
2015092943 Jun 2015 WO
2015094169 Jun 2015 WO
2015094369 Jun 2015 WO
2015098306 Jul 2015 WO
2015099939 Jul 2015 WO
2015112625 Jul 2015 WO
2015116151 Aug 2015 WO
2015121449 Aug 2015 WO
2015127404 Aug 2015 WO
2015151133 Oct 2015 WO
2015153310 Oct 2015 WO
2015157013 Oct 2015 WO
2015183368 Dec 2015 WO
2015183401 Dec 2015 WO
2015183547 Dec 2015 WO
2015183699 Dec 2015 WO
2015184186 Dec 2015 WO
2015184387 Dec 2015 WO
2015200207 Dec 2015 WO
2016004074 Jan 2016 WO
2016027933 Feb 2016 WO
2016028946 Feb 2016 WO
2016033257 Mar 2016 WO
2016039992 Mar 2016 WO
2016040721 Mar 2016 WO
2016045192 Mar 2016 WO
2016048789 Mar 2016 WO
2016049439 Mar 2016 WO
2016051519 Apr 2016 WO
2016052164 Apr 2016 WO
2016054230 Apr 2016 WO
2016057268 Apr 2016 WO
2016075081 May 2016 WO
2016085775 Jun 2016 WO
2016085776 Jun 2016 WO
2016089029 Jun 2016 WO
2016100139 Jun 2016 WO
2016111881 Jul 2016 WO
2016118344 Jul 2016 WO
2016144840 Sep 2016 WO
2016144982 Sep 2016 WO
2016144983 Sep 2016 WO
2016175354 Nov 2016 WO
2016187149 Nov 2016 WO
2016190950 Dec 2016 WO
2016191737 Dec 2016 WO
2016209444 Dec 2016 WO
2016209924 Dec 2016 WO
2017044160 Mar 2017 WO
2017044257 Mar 2017 WO
2017044260 Mar 2017 WO
2017044629 Mar 2017 WO
2017053311 Mar 2017 WO
2017058293 Apr 2017 WO
2017059388 Apr 2017 WO
2017071420 May 2017 WO
2017078792 May 2017 WO
2017142116 Aug 2017 WO
2017160487 Sep 2017 WO
2017200777 Nov 2017 WO
2017203484 Nov 2017 WO
2017210035 Dec 2017 WO
2017213678 Dec 2017 WO
2017213682 Dec 2017 WO
2017213684 Dec 2017 WO
2017218194 Dec 2017 WO
2018009397 Jan 2018 WO
2018014788 Jan 2018 WO
2018044633 Mar 2018 WO
2018057269 Mar 2018 WO
2018067528 Apr 2018 WO
2018075170 Apr 2018 WO
2018081833 May 2018 WO
2018090060 May 2018 WO
2018176053 Sep 2018 WO
2018208506 Nov 2018 WO
2018209152 Nov 2018 WO
2018213401 Nov 2018 WO
2018213415 Nov 2018 WO
2018213481 Nov 2018 WO
2018217014 Nov 2018 WO
2018231307 Dec 2018 WO
2019067930 Apr 2019 WO
2019078576 Apr 2019 WO
2019079017 Apr 2019 WO
2019143397 Jul 2019 WO
2019147429 Aug 2019 WO
2019190646 Oct 2019 WO
2019212569 Nov 2019 WO
2019231541 Dec 2019 WO
2019236217 Dec 2019 WO
2020010530 Jan 2020 WO
2020022572 Jan 2020 WO
2020040775 Feb 2020 WO
2020068040 Apr 2020 WO
2020096706 May 2020 WO
2020109074 Jun 2020 WO
2020208302 Oct 2020 WO
2020214006 Oct 2020 WO
2020222871 Nov 2020 WO
2021054565 Mar 2021 WO
2021061349 Apr 2021 WO
2021062148 Apr 2021 WO
2021076164 Apr 2021 WO
2021188439 Sep 2021 WO
2021252230 Dec 2021 WO
2022047214 Mar 2022 WO
Non-Patent Literature Citations (265)
Entry
Abdelaziz et al., “Speaker-Independent Speech-Driven Visual Speech Synthesis using Domain-Adapted Acoustic Models”. May 15, 2019, 9 pages.
“Accessibility on iOS”, Apple Inc., Online available at: https://developer.apple.com/accessibility/ios/, Retrieved on Jul. 26, 2021, 2 pages.
Apple, “Apple previews innovative accessibility features combining the power of hardware, software, and machine learning”, Available online at: https://www.apple.com/newsroom/2022/05/apple-previews-innovative-accessibility-features/, May 17, 2022, 10 pages.
Baby Connect, “Demo Daily Connect”, Online Available at : https://www.youtube.com/watch?v=iqHbq5ru28s, Mar. 6, 2014, 1 page.
Badshah et al., “Deep Features-based Speech Emotion Recognition For Smart Affective Services”, Multimedia Tools and Applications, Oct. 31, 2017, pp. 5571-5589.
Bao et al., “Detecting Target Objects by Natural Language Instructions Using an RGB-D Camera”, Sensors (Basel, Switzerland) 2016, 16(12), 2117, Dec. 13, 2016, 23 pages.
“Better Mood Tracker—Lucid Dreaming App”, Online Available at: https://web.archive.org/web/20190308102914/http://luciddreamingapp.com/better-moad-tracker/, Mar. 8, 2019, 11 pages.
Burgbacher et al., “Synthetic Word Gesture Generation for Stroke-Based Virtual Keyboards”, IEEE Transactions on Human-Machine Systems, vol. 47, No. 2, Apr. 2017, 14 pages.
Buttner et al.. “The Design Space of Augmented and Virtual Reality Applications for Assistive Environments in Manufacturing: A Visual Approach”. In Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments (PETRA '17), Island of Rhodes, Greece, Online available at: https://dl.acm.org/doi/pdf/10.1145/3056540.3076193, Jun. 21-23, 2017, pp. 433-440.
“Cake”, Online Available at: <https://web.archive.org/web/20170808091948/https://emojipedia.org/search/?q=cake>, Aug. 8, 2017, 5 pages.
Castellini, Rick, “How to enable and use dictation with an iPhone or iPad”, Online Available at: <https://www.youtube.com/watch?v=8w133yN6rTU>, Sep. 7, 2017, 3 pages.
Choi et al., “Evaluation of Frequency Warping Based Features and Spectro-Temporal Features for Speaker Recognition”, Speech Sounds and Phonetic Science, Online Available at: http://koreascience.or.kr/article/JAKO201510534323834.page, vol. 7, No. 1, Mar. 31, 2015, pp. 3-10. (Official Copy Only). {See communication under 37 CFR § 1.95(a) (3)}.
“Context-Sensitive User Interface”, Online available at: https://web.archive.org/web/20190407003349/https://en.wikipedia.org/wiki/Context-sensitive_user_interface, Apr. 7, 2019, 3 pages.
Creswell et al., “Generative Adversarial Networks”, IEEE Signal Processing Magazine, Jan. 2018, pp. 53-65.
Fitzpatrick, Aidan, “Introducing Camo 1.5: AR modes”, Available Online at: “https:reincubate.com/blog/camo-ar-modes-release/”, Oct. 28, 2021, 8 pages.
Francis, Christopher, “PTAB Broadest Reasonable Interpretation: “in response to” Means “subsequent to””, The B2 IP Report retrieved from: http://web.archive.org.web/20220704055910/https://www.b2ireport.com/claims-interpreted/ptab-broadest-resonable-interpretation-in-response-to-means-subsequent-to/, Jan. 27, 2017, 4 pages.
Ganin et al., “Unsupervised Domain Adaptation by Backpropagation”, in Proceedings of the 32nd International Conference on Machine Learning, vol. 37, Jul. 2015, 10 pages.
Geyer et al., “Differentially Private Federated Learning: A Client Level Perspective”, arXiv:1712.07557v2, Mar. 2018, 7 pages.
Google Codelabs, “Extend Dynamic Shortcuts to Google Assistant with App Actions (Beta)” Available on: https://web.archive.org/web/20220524223852/https://codelabs.developers.google.com/codelabs/appactions-dynamic-shortcuts, May 24, 2022, 25 pages.
Gu et al. “Alohomora: Motion-Based Hotword Detection in Head-Mounted Displays”, IEEE Internet of Things Journal, vol. 7, No. 1, Jan. 2020, pp. 611-620.
Guo et al., “StateLens: A Reverse Engineering Solution for Making Existing Dynamic Touchscreens Accessible”, In Proceedings of the 32nd Annual Symposium on User Interface Software and Technology (UIST '19), New Orleans, LA, USA, Online available at: https://dl.acm.org/doi/pdf/10.1145/3332165.3347873, Oct. 20-23, 2019, pp. 371-385.
Guo et al., “VizLens: A Robust and Interactive Screen Reader for Interfaces in the Real World”, In Proceeding of the 29th Annual Symposium on User Interface Software and Technology (UIST 3 16), Tokyo, Japan, Online available at: https://dl.acm.org/doi/pdf/10.1145/2984518, Oct. 16-19, 2016, pp. 6511-664.
Hanqing et al., “Deep Learning of Instruction Intention Understanding Using Stacked Denoising Autocoder”. Journal of Shanghai Jiaotong University, vol. 50, No. 7, Jul. 28, 2016, 6 pages (Official Copy only). {See communication under 37 CFR § 1.98(a) (3)}.
Hawkeye, “Hawkeye—A better user testing platform”, Online Available at: https://www.youtube.com/watch?v=el0TW0g_76o, Oct. 16, 2019, 3 pages.
Hawkeye, “Learn where people look in your products”, Online Available at: https://www.usehawkeye.com, 2019, 6 pages.
Heller et al., “AudioScope: Smartphones as Directional Microphones in Mobile Audio Augmented Reality Systems”, In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15), Crossings, Seoul, Korea, Online available at: https://dl.acm.org/doi/pdf/10.1145/2702123.2702159, Apr. 18-23, 2015, pp. 949-952.
Hello Daylio, “Daylio: Diary and Mood Tracker”, Online Available at : https://www.youtube.com/watch?v=5gQUG3gMWik, Aug. 23, 2015, 1 page.
Hook et al., “Automatic speech based emotion recognition using paralinguistics features”, Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 67, No. 3, 2019, pp. 479-488.
“How to adjust the order of control center buttons on iPhone iOS12 version after buying a mobile phone”, Available online at: https://jingyan.baidu.com/article/5bbb5albbe5a9713eba1791b.html?, Jun. 14, 2019, 4 pages (Official Copy only). {See communication under 37 CFR § 1.98(a) (3)}.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/027300, mailed on Nov. 11, 2021, 22 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/027300, mailed on Aug. 4, 2020, 28 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2020/027300, mailed on Jun. 30, 2020, 16 pages.
Kruger et al., “Virtual World Accessibility with the Perspective Viewer”, Proceedings of ICEAPVI, Athens, Greece, Feb. 12-14, 2015, 6 pages.
Kumar, Shiu, “Ubiquitous Smart Home System Using Android Application”, International Journal of Computer Networks & Communications (IJCNC), vol. 6, No. 1, Jan. 2014, pp. 33-43.
Li et al., “Deep neural network for short-text sentiment classification”, International Conference on Database Systems for Advanced Applications, Springer, Cham, 2016, 8 pages.
Mehri et al., “Multi-Granularity Representations of Dialog”, Language Technologies Institute, Carnegie Mellon University, arXiv:1908.09890v1, Aug. 26, 2019, 10 pages.
“Method to Provide Remote Voice Navigation Capability on the Device”, IP.com, Jul. 21, 2016, 4 pages.
Michalevsky et al., “Gyrophone: Recognizing Speech from Gyroscope Signals”. Proceedings of the 23rd USENIX Security Symposium, Aug. 20-22, 2014, pp. 1053-1067.
“Microsoft Soundscape—A map delivered in 3D sound”, Microsoft Research, Online available at: https://www.microsoft.com/en/us/research/product/soundscape/, Retrieved on Jul. 26, 2021, 5 pages.
Muller et al., “A Taxonomy for Information Linking in Augmented Reality”, AVR 2016, Part I, LNCS 9768, 2016, pp. 368-387.
Myers, Brad A., “Shortcutter for Palm”, Available at: <http://www.cs.cmu.edu/˜pebbles/v5/shortcutter/palm/index.html>, retrieved on Jun. 18, 2014, 10 pages.
Myrick et al., “How to Insert Emojis Using Your Voice with Goodle Assistant”, Online available at: <https://web.archive.org/web/20211107160722/https://www.androidcentral.com/how-insert-emojis-using-your-voice-google-assistant>, Nov. 7, 2021, 11 pages.
Notice of Allowance received for U.S. Appl. No. 17/607,830, mailed on Dec. 21, 2023, 9 pages.
“Nuance Dragon Naturally Speaking”, Version 13 End-User Workbood, Nuance Communications Inc., Sep. 2014, 125 pages.
Ping et al., “Deep Voice 3: Scaling Text to Speech with Convolutional Sequence Learning”, Available online at: https://arxiv.org/abs/1710.07654, Feb. 22, 2018, 16 pages.
Price et al., “Speaker Adaptation of Deep Neural Networks Using a Hierachy of Output Layers”, SLT 2014. Online Available at: IEEE Explore, 2014, pp. 153-158.
Products for Pals—ALS Tech, “Skyle for iPad Pro eye gaze control real world review”, Online Available at: <https://www.youtube.com/watch?v=_3TxZtDJpFo>, Aug. 13, 2020, 4 pages.
Raux, Antoine, “High-Density Dialog Management the Topic Stack”, Adventures in High Density, Online availablee at: https://medium.com/advntures-in-high-density/high-density-dialong-management-23efcf91db1e, Aug. 1, 2018, 10 pages.
Robbins, F. M., “Automatically place an Android Phone on Vibrate at Work”, Available online at: https://mikefrobbins.com/2016/07/21/automatically-place-an-android-phone-on-vibrate-at-work/, Jul. 21, 2016, pp. 1-11.
Rodrigues et al., “Exploring Mixed REality in Specialized Surgical Environments”, In Proceeding of the 2017 CHI Conference Extended Abstarcts on Human Factors in Computing Systems (CHI EA '17), Denver, CO, USA, Online available at: https://dl.acm.org/doi/pdf/10.1145/3027063.3053273, May 6-11, 2017, pp. 2591-2598.
Ross et al., “Epidemiology as a Framework for Large-Scale Mobile Application Accessibility Assessment”, In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (Assets '17), Baltimore, MD, USA, Online available at: https://dl.acm.org/doi/pdf/10.1145/3132525.3132547, Oct. 29-Nov. 1, 2017, pp. 2-11.
Schenk et al., “GazeEverywhere: Enabling Gaze-only User Interaction on an Unmodified Desktop PC in Everyday Scenarios”, In Proceeding of the 2017 CHI Conference on Human Factors in Computing Systems (CHI'17), ACM, New York, NY, 30343044. Online Available at: https://doi.org/10.1145/3025453.3025455, May 6-11, 2017, 11 pages.
Speicher et al., “What is Mixed Reality?”, In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19), ACM, Article 537, Glasgow, Scotland, UK, Online available at: https://dl.acm.org/doi/pdf/10.1145/3290605.3300767. May 4-9, 2019, 15 pages.
Tech Target Contributor, “AI Accelerator”, Available online at: https://searchenterpriseai.techtarget.com/definition/AI-accelerator, Apr. 2018, 3 pages.
Tech With Brett, “Everything the Google Nest Hub Can Do”, Available online at: https://www.youtube.com/watch?v=x3vdytgru2E, Nov. 12, 2018, 13 pages.
Tech With Brett, “Google Home Multiple Users Setup”, Available online at: https://www.youtube.com/watch?v=BQOAbRUeFRo&t=257s, Jun. 29, 2017, 4 pages.
Tkachenko, Sergey, “Chrome will automatically create Tab Groups”, Available online at: https://winaero.com/chrome-will-automatically-create-tab-groups/, Sep. 18, 2020, 5 pages.
Tkachenko, Sergey, “Enable Tab Groups Auto Create in Google Chrome”, Available online at: https://winaero.com/enable-tab-groups-auto-create-in-google-chrome/, Nov. 30, 2020, 5 pages.
Vazquez et al., “An Assisted Photography Framework to Help Visually Impaired Users Properly Aim a Camera”, ACM Transactions on Computer—Human Interation, vol. 21, No. 5, Article 25, Online available at https://dl.acm.org/doi/pdf/10.1145/2651380, Nov. 2014, 29 pages.
Velian Speaks Tech, “10 Google Assistant Tips!”, Available online at: http://www.youtube.com/watch?v=3RNWA3NK9fs, Feb. 24, 2020, 3 pages.
Wang et al., “Tacotron: Towards End to End Speech Synthesis”, Available online at: https://arxiv.org/abs/1703.10135, Apr. 6, 2017, 10 pages.
Wang et al., “Training Deep Neural Networks with 8-bit Floating Point Numbers”, 32nd Conference on Neural Information Processing Systems (Nerul PS 2018), 2018, 10 pages.
Win et al., “Myanmar Text to Speech System based on Tacotron-2″”, International Conference on Information and Communication Technolgy Convergence (ICTC), Oct. 21-23, 2020, pp. 578-583.
“Working with the Dragon Bar”, Nuance Communications Inc., Jun. 27, 2016, 2 pages.
Yeh et al., “Dialog Modeling in AudioBook Synthesis”, Retrieved on Sep. 27, 2023, 6 pages.
Zhang et al., “Interaction Proxies for Runtime Repair and Enhancement of Mobile Application Accessibility”, In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17). ACM, Denver, CO, USA, Online available at: https://dl.acm.org.doi/pdf/10.1145/3025453.3025846, May 6-11, 2017, pp. 6024-6037.
Zhao et al., “Big Data Analysis and Application”, Aviation Industry Press, Dec. 2015, pp. 236-241 (Official Copy Only). {See communication under 37 CFR § 1.98(a) (3){.
Zhao et al., “CueSee: Exploring Visual Cues for People with Low Vision to Facilitate a Visual Search Task”, In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM, UbiComp '16, Heidelberg, Germany, Online available at: https://dl.acm.org/doi/pdf/10.1145/2971730, Sep. 12-16, 2016, pp. 73-84.
Zhao et al., “Enabling People with Visual Impairments to Navigate Virtual Reality with a Haptic and Auditory Cane Simulation”, In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, Article 116, Montréal, QC, Canada, Online available at: https://dl.acm.org.doi/pdf/10.1145/3173574.3173690, Apr. 21-26, 2018, 14 pages.
Zhao et al., “SeeingVR: A Set of Tools to Make Virtual Reality More Accessible to People with Low Vision”, In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM, Article 111, Glasgow, Scotland, UK, Online available at: http://dl.acm.org/doi/pdf/10.1145/3290605.3300341, May 4-9, 2019, 14 pages.
Zhao et al., “Transferring Age and Gender Attributes for Dimensional Emotion Prediction from Big Speech Data Using Hierarchical Deep Learning”, 2018 4th IEEE International Conference on Big Data Security on Cloud, 2018, pp. 20-24.
Zhang et al., “A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System”, Online Available at: https://www.mdpi.com/1424-8220/16/12/2026, Nov. 30, 2016, 11 pages.
Zhang et al., “IEHouse: A Non-Intrusive Household Appliance State Recognition System”, IEEE Smart World, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, 2017, 8 pages.
Zang et al., “Voicemoji: Emoji Entry Using Voice for Isually Impaired People”, CHI '21, May 8-13, 2021, 18 pages.
Corrected Notice of Allowance received for U.S. Appl. No. 17/607,830, mailed on Mar. 15, 2024, 7 pages.
“Alexa, Turn Up the Heat!, Smartthings Samsung [online]”, Online available at: <https://web.archive.org/web/20160329142041/https://blog.smartthings.com/news/smartthingsupdates/alexa-turn-up-the-heat/>, Mar. 3, 2016, 3 pages.
Alsharif et al., “Long Short-Term Memory Neural Network for Keyboard Gesture Decoding”. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, Sep. 2015, 5 pages.
Anania, Peter, “Amazon Echo with Home Automation (Smarthings)”, Online available at: <https://www.youtube.com/watch?v=LMW6aXmsWNE>, Dec. 20, 2015, 1 page.
Apple Differential Privacy Team, “Learning with Privacy at Scale”, Apple Machine Learning Blog, vol. 1, No. 8, Online available at: <https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html>, Dec. 2017, 9 pages.
Apple, “VoiceOver for OS X”, Online available at: <http://www.apple.com/accessibility/voiceover/>, May 19, 2014, pp. 1-3.
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/990,868, mailed on Jan. 29, 2021, 2 pages.
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/990,876, mailed on Feb. 3, 2021, 2 pages.
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/990,894, mailed on Feb. 1, 2021, 5 pages.
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/990,894, mailed on May 3, 2021, 2 pages.
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/306,489 mailed on May 11, 2023, 2 pages.
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/308,452, mailed on Jan. 31, 2023, 2 pages.
“Ask Alex—Things That Are Smart Wiki”, Online available at: <http://thingsthataresmart.wiki/index/php?title=Ask_Alexa&oldid=4283>, Jun. 8, 2016, pp. 1-31.
Automate Your Life, “How to Setup Google Home Routines—A Google Him Routines Walkthrough”, Online Available at: <https://www.youtube.com/watch?v−pXokZHP9kZHPkZg, Aug. 12, 2018, 1 page.
Bell, Jason, “Machine Learning Hands-On for Developers and Technical Professionals”, Wiley, 2014, 82 pages.
Bellegarda, Jeromer, “Chapter 1: Spoken Laguage Understanding”, Online Available at: <https://www.youturbe.com/watch/?v=TXDaJFm5UH4>, Mar. 4, 2015, 3 pages.
beointegration.com, “BeLink Gateway—Programming Example”, Online Available at: <https://www.youtube.com/watch?v=TXDAJFm5m5UH4>, Mar. 4, 2015, 3 pages.
Bodapati et al., “Neural Word Decomposition Models for Abusive Language Detection”, Proceedings of the Third Workshop on Abusive Language Online, Aug. 1, 2019, pp. 135-145.
Burgess, Brian, “Amazon Echo Tip: Enable the Wake Up Sound”, Online available at: <https://ww.groovypost.com/howto/amazon-echo-tip-enable-wake-up-sound/>, Jun. 30, 2015, 4 pages.
Cambria et al., “Jumping NLP curves: A Review of Natural Language Processing Research”, IEEE Computational Intelligence magazine, 2014, vol. 9, May 2014, pp. 48-57.
Chang et al., “Monaural Multi-Talker Speech Recognition with Attention Mechanism and Gated Convolutional Networks”, Interspeech 2018, Sep. 2-6, 2018, pp. 1586-1590.
Chen et al., “A Convolutional Neural Network with Dynamic Correlation Pooling”, 13th International Conference on Computational Intelligence and Security, IEEE, 2017, pp. 496-499.
Chen et al., “Progressive Joint Modeling in Unsupervised Single-Channel Overlapped Speech Recognition”, IEEE/ACM Transactions On Audio, Speech, And Language Processing, vol. 26, No. 1, Jan. 2018, pp. 184-196.
Chen, Angela, “Amazon's Alexa now handles patient health information”, Available online at: <https://www.theverge.com/2019/4/4/18295260/amazon-hipaa-alexa-echo-patient-health-information-privacy-voice-assistant>, Apr. 4, 2019, 2 pages.
Chenghao, Yuan, “MacroDroid”, Online available at: https://www.ifanr.com/weizhizao/612531, Jan. 25, 2016, 7 pages.
Colt, Sam, “Here's One Way Apple's Smartwatch Could Be Better Than Anything Else”, Business Insider, Aug. 21, 2014, pp. 1-4.
Conneau et al., “Supervised Learning of Universal Sentence Representations from Natural Language Interface Data”, Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, Sep. 7-11, 2017, pp. 670-680.
Corrected Notice of Allowance received for U.S. Appl. No. 16/990,868, mailed on Feb. 25, 2021, 2 pages.
Corrected Notice of Allowance received for U.S. Appl. No. 17/308,45, mailed on May 17, 2023, 2 pages.
Corrected Notice of Allowance received for U.S. Appl. No. 17/308,452, mailed on May 24, 2023, 2 pages.
Czech, Lucas, “A System for Recognizing Natural Spellling of English Words”, Diploma Thesis, Karlsruhe Institute of Technology, May 7, 2014, 107 pages.
Dai et al., “Transformer-XL: Attentive Language Models Beyong a Fixed-Lenght Context”, Online available at: arXir:1901.02860v3, Jun. 2, 2019, 20 pages.
Decision to Grant received for Danish Patent Application No. PA202070546, mailed on Jun. 10, 2021, 2 pages.
Deedeevuu, “Amazon Echo Alarm Feature”, Online available at: <https://www.youtube.com/watch?v=fdjU8eRLk7c>, Feb. 16, 2015, 1 page.
Delcroix et al., “Context Adaptive Deep Neural Networks For Fast Acoustic Model Adaptation”, ICASSP, 2015, pp. 4535-4539.
Delcroix et al., “Context Adaptive Neural Network for Rapid Adaptation of Deep CNN Based Acoustic Models”, Interspeech 2016, Sep. 8-12, 2016, pp. 1573-1577.
Derrick, Amanda, “How to Set Up Google Home for Multiple Users”, Lifewire, Online available at: <https://www.lifewire.com/set-up-google-home-multiple-users-4685691>, Jun. 8, 2020, 9 pages.
Dighe et al., “Lattice-Based Improvements for Voice Triggering Using Graph Neural Networks”, in 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Jan. 25, 2020, 5 pages.
Dihelson, “How Can I Use Voice or Phrases as Triggers to Macrodroid?”, Macrodroid Forums, Online Available at: <https://www.tapatalk.com/groups/macrodroid/how-can-i-use-voice-or-phrases-as-triggers-to-macr-t4845.html>, May 9, 2018, 5 pages.
Dwork et al., “The Algorithmic Foundations of Differential Privacy”, Foundations and Trends in Theoretical Computer Science: vol. 9: No. 3-4, 211-407, 2014, 281 pages.
Eder et al., “At the Lower End of Language—Exploring the Vulgar and Obscene Side of German”, Proceedings of the Third Workshop on Abusive Language Online, Florence, Italy, Aug. 1, 2019, pp. 119-128.
Extended European Search Report received for European Patent Application No. 21171760.8, mailed on Oct. 8, 2021, 18 pages.
Filipowicz, Luke, “How to use the Quick Type keyboard in iOS 8”, Online available at: <https://www.imore.com/comment/568232>, Oct. 11, 2014, pp. 1-17.
Final Office Action received for U.S. Appl. No. 16/990,894, mailed on Mar. 25, 2021, 21 pages.
Final Office Action received for U.S. Patent Application No. 17/306.489, mailed on Apr. 10. 2023, 12 pages.
Final Office Action received for U.S. Patent Application No. 17/308.452, mailed on Feb. 28, 2023, 19 pages.
Gadget Hacks, “Tasker Too Complicated? Give MacroDroid a Try [How-To]”, Online available at: <https://www.youtube.com/watch?v=8YL9cWCykKc>. May 27, 2016, 1 page.
“Galaxy S7: How to Adjust Screen Timeout & Lock Screen Timeout”, Online available at: <https://www.youtube.com/watch?v=n6e1WKUS2ww>, Jun. 9, 2016, 1 page.
Gatys et al., “Image Style Transfer Using Convolutional Neural Networks”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 2414-2423.
Ghauth et al., “Text Censoring System for Filtering Malicious Content Using Approximate String Matching and Bayesian Filtering”, Proc. 4th INNS Symposia Series on Computational Intelligence in Information Systems, Bandar Seri Begawan, Brunei, 2015, pp. 149-158.
Goodfellow et al., “Generative Adversarial Networks”, Proceedings of the Neural Information Processing Systems, Dec. 2014, 9 pages.
Google Developers, “Voice search in your app”, Online available at: <https://www.youtube.com/watch?v=PS1FbB5qWEI>, Nov. 12, 2014, 1 page.
Gu et al., “BadNets: Evaluating Backdooring Attacks on Deep Neural Networks”, IEEE Access, vol. 7, Mar. 21, 2019, pp. 47230-47244.
Guim, Mark, “How to Set a Person-Based Reminder with Cortana”, Online available at: <http://www.wpcentral.com/how-to-person-based-reminder-cortana>, Apr. 26, 2014, 15 pages.
Guo et al., “Time-Delayed Bottleneck Highway Networks Using a DFT Feature for Keyword Spotting”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, 5 pages.
Gupta et al., “I-vector-based Speaker Adaptation Of Deep Neural Networks For French Broadcast Audio Transcription”, ICASSP, 2014, 2014, pp. 6334-6338.
Haung et al., “A Study for Improving Device-Directed Speech Detection Toward Frictionless Human-Machine Interaction”, 2019, 5 pages.
“Headset Button Controller v7.3 APK Full APP Download for Android, Blackberry, iPhone”, Online available at: <http://fullappdownload.com/headset-button-controller-v7-3-apk/>, Jan. 27, 2014, 11 pages.
Henderson et al., “Efficient Natural Language Response Suggestion for Smart Reply”, Available Online at: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/1846e8a466c079eae7e90727e27caf5f98f10e9c,pdf, 2017, 15 pages.
Hershey et al., “Deep Clustering: Discriminative Embeddings For Segmentation And Separation”, Proc. ICASSP, Mar. 2016, 6 pages.
“Hey Goodle: How to Create a Shopping List with Your Google Assistant”, Online available at: <https://www.youtube.com/watch?v=w9NCsElaz1Y>, May 25, 2018, 1 page.
Hinton et al., “Distilling the Knowledge in A Neural Network”, arXiv PreprintarXiv:1503.02531, Mar. 2, 2015, 9 pages.
“How To Enable Google Assistant on Galaxy S7 and Other Android Phones (No Root)”, Online available at: <https://www.youtube.com/watch?v=HeKIQbWyksE>, Mar. 20, 2017, 1 page.
“How to Use Ok Google Assistant Even Phone is Locked”, Online available at: <https://www.youtube.com/watch?v=9B_gP4j_SP8>, Mar. 12, 2018, 1 page.
id3.org, “id3v2.3.0-Frames”, Online available at: <http://id3.org/id3v2.4.0-frames?action=print>, retrieved on Jan. 22, 2015, pp. 1-41.
Idasallinen. “What's The ‘Like’ Meter Based on?”, Online Available at: <https://community.spotify.com/t5/Content-Questions/What-s-the-meter-based-on-td-p/1209974>, Sep. 22, 2015, 6 pages.
Ikeda, Masaru, “beGlobal Seoul 2015 Startup Battle: Talkey”, YouTube Publisher Online Available at: <https://www.youtube.com/watch?v=4Wkp7sAAIdg>, May 14, 2015, 1 page.
Inews and Tech, “How to Use The Quick Type Keyboard in IOS 8”, available at: <http://www.inewsandtech.com/how-to-use-the-quick-type-keyboard-in-ios-8/>, Sep. 17, 2014, 6 pages.
Intention to Grant received for Danish Patent Application No. PA202070546, mailed on Feb. 10, 2021, 2 pages.
International Preliminary Report on Patentability reveived for PCT Patent Application No. PCT/US2021/029650, mailed on Now. 24, 2022, 43 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2021/029650, mailed on Dec. 8, 2021, 49 pages.
“Interactive Voice”, Online available at: <http://www.helloivee.com/company/>, retrieved on Feb. 10, 2014, 2 pages.
Invitation to Pay Additional fees received for PCT Patent Application No. PCT/US2021/029650, mailed on Sep. 6, 2021, 18 pages.
“IPhone 6 Smart Guide Full Version for SoftBank”, Gijutsu-Hyohron Co. Ltd., vol. 1, Dec. 1, 2014, 4 pages.
Isik et al., “Single-Channel Multi-Speaker Separation using Deep Clustering”, Interspeech 2016, Sep. 8-12, 2016, pp. 545-549.
Jeon et al., “Voice Trigger Detection from LVCSR Hypothesis Lattices Using Bidirectional Lattice Recurrent Neural Networks”, International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Feb. 29, 2020, 5 pages.
Jonsson et al., “Proximity-based Reminders Using Bluetooth”, 2014 IEEE International Conference on Pervasive Computing and Communications Demonstrations, 2014, pp. 151-153.
Kannan et al., “Smart Reply: Automated Response Suggestion for Email”, Available Online at: https://arxiv.org/pdf/1606.04870.pdf, Jun. 15, 2016, 10 pages.
Karn, Ujjwal, “An Intuitive Explanation of Convolutional Neural Networks”, The Data Science Blog, Aug. 11, 2016, 23 pages.
Kastrenakes, Jacob, “Siri's creators with unveil their new AI bot on Monday”, The Verge, Online available at: <https://web.archive.org/web/20160505090418/https://www.theverge.com/2016/5/4/11593564/viv-labs-unveiling-monday-new-ai-from-siri-creators>, May 4, 2016, 3 page.
Kickstarted, “Ivee Sleep: Wi-Fi Voice-Activated Assistant”, Online available at: <https://www.kickstarter-com-/projects/ivee/ivee/sleek-wi-fi-voice-activated-assistant>, retrieved on Feb. 10, 2015, pp. 1-13
Kings et al., “Robust Speech Recognition Via Anchor Word Representation”, Interspeech 2017, Aug. 20-24, 2017, pp. 2471-2475.
Kumatani et al., “Direct Modeling of Raw Audio with DNNS For Wake Word Detection”, in 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 2017, 6 pages.
Lin, Luyuan, “An Assistive Handwashing System with Emotional Intelligence”, Using Emotional Iteligence in Cognitive Intelligent Assistant Systems, 2014, 101 pages.
“Link Your Voice to Your Devices with Voice Match, Google Assistant Help”, Online available at: <https://support.google.com/assistant/answer/9071681?co=GENIE.Platform%3DAndroid&hl=en>, Retrived on Jul. 1, 2020, 2 page.
Liou et al., “Autoencoder for Words”, Neurocomputing, vol. 139, Sep. 2014, pp. 84-96.
Liu et al., “Accurate Endpointing with Expected Pause Duration”, Sep. 6-10, 2015, pp. 2912-2916.
Loukides et al., “What Is the Internet of Things?”, O'Reilly Media Inc., Online Available at: <https://www.oreilly.com/library/view/what-is-the/9781491975633/>, 2015, 31 pages.
Luo et al., “Speaker-Independent Speech Separation With Deep Attractor Network”, IEEE/ACM Transactions On Audio, Speech, And Language Processing, vol. 26, No. 4, Apr. 2018, pp. 787-796.
Maas et al., “Combining Acoustic Embeddings And Decoding Features for End-Of-Utterance Detection in Real-Time Far-Field Speech Recognition Systems”, in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, 5 pages.
Mallidi et al., “Device-Directed Utterance Detection”, Proc. Interspeech, Aug. 7, 2018, 4 pages.
Marketing Land, “Amazon Echo: Play music”, Online Available at: <https://www.youtube.com/watch?v=A7V5NPbsXi4>, Apr. 27, 2015, 3 pages.
“Meet Ivee, Your Wi-Fi Voice Activated Assistant”, Availale Online at: <http://www.helloivee.com/>, retrieved on Feb. 10, 2014, 8 pages.
Mhatre et al., “Donna Interactive Chat-bot acting as a Personal Assistant”, International Journal of Computer Applications (0975-8887), vol. 140, No. 10, Apr. 2016, 6 pages.
Miller, Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, Online available at: <http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/>, Mar. 19, 2014, 4 pages.
Mnih et al., “Human-Level Control Through Deep Reinforcement Learning”, Nature, vol. 518, Feb. 26, 2015, pp. 529-533.
Modern Techies, “Braina-Artificial Personal Assistant for PC(like Cortant,Siri)!!!”, Online available at: <https://www.youtube.com/watch?v=_Coo2P8ilqQ>, Feb. 24, 2017, 3 pages.
Muller et al., “Control Theoretic Models of Pointing”, ACM Transactions on Computer-Human Interaction, Aug. 2017, 36 pages.
Non-Final Office Action received for U.S. Appl. No. 16/990,868, mailed on Nov. 19, 2020, 19 pages.
Non-Final Office Action received for U.S. Appl. No. 16/990,876, mailed on Nov. 18, 2020, 12 pages.
Non-Final Office Action received for U.S. Appl. No. 16/990,894, mailed on Dec. 4, 2020, 14 pages.
Non-Final Office Action received for U.S. Appl. No. 17/306,489, mailed on Dec. 20, 2022, 17 pages.
Non-Final Office Action received for U.S. Appl. No. 17/308,452, mailed on Dec. 22, 2022, 29 pages.
Norouzian et al., “Exploring Attention Mechanism for Acoustic based Classification of Speech Utterances into System-Directed and Non-System-Directed”, International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Feb. 1, 2019, 5 pages.
Notice of Allowance received for Korean Patent Application No. 10-2022-7042877, mailed on Jan. 18, 2023, 9 pages.
Notice of Allowance received for Korean Patent Application No. 10-2022-7042984, mailed on Jan. 18, 2023, 9 pages.
Notice of Allowance received for Korean Patent Application No. 10-2023-7012981, mailed on Jun. 29, 2023, 7 pages.
Notice of Allowance received for U.S. Appl. No. 16/990,868, mailed on Feb. 9, 2021, 9 pages.
Notice of Allowance received for U.S. Appl. No. 16/990,876, mailed on Feb. 18, 2021, 8 pages.
Notice of Allowance received for U.S. Appl. No. 16/990,894, mailed on Jul. 21, 2021, 12 pages.
Notice of Allowance received for U.S. Appl. No. 17/306,489, mailed on Jan. 9, 2024, 8 pages.
Notice of Allowance received for U.S. Appl. No. 17/306,489, mailed on Jun. 12, 2023, 8 pages.
Notice of Allowance received for U.S. Appl. No. 17/306,489, mailed on Sep. 26, 2023, 8 pages.
Notice of Allowance received for U.S. Appl. No. 17/308,452, mailed on Apr. 5, 2023, 10 pages.
Notice of Allowance received for U.S. Appl. No. 17/308,452, mailed on Aug. 1, 2023, 10 pages.
Office Action received for Chinese Patent Application No. 202011004874.6, mailed on Oct. 28, 2023, 13 pages.
Office Action received for Danish Patent Application No. PA202070546, mailed on Nov. 30, 2020, 8 pages.
Office Action received for European Patent Application No. 21171760.8, mailed on Apr. 12, 2023, 12 pages.
Office Action received for Indian Patent Application No. 202114020735, mailed on May 25, 2022, 5 pages.
Office Action received for Korean Patent Application No. 10-2023-7012981, mailed on Apr. 24, 2023, 7 pages.
Pak, Gamerz, “Braina: Artificially Intelligent Assisstant Software for Windows PC in (urdu / hindhi)”, Online available at: <https://www.youtube.com/watch?v=JH_rMjw8lqc>, Jul. 24, 2018, 3 pages.
Pavlopoulos et al., “ConvAl at SemEval-2019 Task 6: Offensice Language Identification and Categorization with Perspective and BERT”, Proceeding of the 13th International Workshop on Semantic Evaluation (SemEval-2019), Jun. 6-7, 2019, pp. 571-576.
PC Mag, “How to Voice Train Your Google Home Smart Speaker”, Online available at: <http://in.pcmag.com/google-home/126520/how-to-voice-train-your-google-home-smart-speaker>, Oct. 25, 2018, 12 pages.
Pennington et al., “GloVe: Global Vectors for Word Representation”, Proceedings of the Conference on Empirical Methods Natural Language Processing (EMNLP), Doha, Qatar, Oct. 25-29, 2014, pp. 1532-1543.
Perlow, Jason, “Alexa Loop Mode with Playlist for Sleep Noise”, Online Available at: <http://www.youtube.com/watch?v=nSkSuXziJSg>, Apr. 11, 2016, 3 pages.
Philips, Chris, “Thumbprint Radio: A Uniquely Personal Station Inspired By All of Your Thumbs Up”, Pandora News. Online Available at: <https://blog.pandora.com/author/chris-phillips/>, Dec. 14, 2015, 7 pages.
“Pose, Cambridge Dictionary Definition of Pose”, Available online at: <https://dictionary.cambridge.org/dictionary/english/pose>, 4 pages.
Qian et al., “Single-channel Multi-talker Speech Recognition With Permutation Invariant Training”, Speech Communication, Issue 104, 2018, pp. 1-11.
“Quick Type Keyboard on iOS 8 Makes Typing Easier”, Online available at: <https://www.youtube.com/watch?v=0CldLR4fhVU>, Jun. 3, 2014, 3 pages.
Ravi, Sujith, “Google AI Blog: On-device Machine Intelligence”, Available Online at: https://ai.googleblog.com/2017/02/on-device-machine-intelligence.html, Feb. 9, 2017, 4 pages.
Ritchie, Rene, “Quick Type keyboard in iOS 8: Explained”, Online Available at: <https://www.imore.com/quicktype-keyboards-ios-8-explained>, Jun. 21, 2014, pp. 1-19.
Routines, “SmartThings Support”, Online available at: <https://web.archive.org/web/20151207165701/https://support.smartthings.com/hc/en-us/articles/205380034-Routines>, 2015, 3 pages.
Rowland et al., “Designing Connected Products: UX for the Consumer Internet of Things”, O'Reilly, May 2015, 452 pages.
Samsung Support, “Create a Quick Command in Bixby to Launch Custom Settings by at Your Command”, Online Available at: <https://www.facebook.com/samsungsupport/videos/10154746303151213>, Nov. 13, 2017, 1 page.
Santos et al., “Fighting Offensive Language on Social Media with Unsupervised Text Style Transfer”, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (vol. 2: Short Papers), May 20, 2018, 6 pages.
Seehafer, Brent, “Activate Google Assistant on Galaxy S7 with Screen off”, Online available at: <https://productforums.google.com/forum/#!topic/websearch/Ip3qIGBHLVI>, Mar. 8, 2017, 4 pages.
Selfridge et al., “Interact: Tightly-coupling Multimodal Dialog with an Interactive Virtual Assistant”, International Conference on Multimodal Interaction, ACM, Nov. 9, 2015, pp. 381-382.
Senior et al., “Improving DNN Speaker Independence With I-Vector Inputs”, ICASSP, 2014, pp. 225-229.
Seroter et al., “SOA Patterns with BizTalk Server 2013 and Microsoft Azure”, Packt Publishing, Jun. 2015, 454 pages.
Settle et al., “End-to-End Multi-Speaker Speech Recognition”, Proc. ICASSP, Apr. 2018, 6 pages.
Shen et al., “Style Transfer from Non-Parallel Text by Cross-Alignment”, 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017, 12 pages.
Sigtia et al., “Efficient Voice Trigger Detection for Low Resource Hardware”, in Proc. Interspeech 2018, Sep. 2-6, 2018, pp. 2092-2096.
Sigtia et al., “Multi-Task Learning for Voice Trigger Detection”, in IEEE International Conferencee on Acoustics, Speech and Signal Processing (ICASSP), 2020, Apr. 20, 2020, 5 pages.
Simonite, Tom, “Confronting Siri: Microsoft Launches Digital Assistant Cortana”, 2014, 2 pages.
Siou, Serge. “How To Control Apple TV 3rd Generation Using Remote app”, Online available at: <https://www.youtube.com/watch?v=PhyKftZ0S9M>, May 12, 2014, 3 pages.
“SmartThings + Amazon Echo”, Smartthings Samsung [online], Online available at: <https://web.archive.org/web/20160509231428/https://blog.smartthings.com/featured/alexa-turn-on-my-smartthings/>, Aug. 21, 2015, 3 pages.
Smith, Jake, “Amazon Alexa Calling: How to Set it up and Usee it on Your Echo”, iGeneration, May 30, 2017, 5 pages.
Sperber et al., “Self-Attentional Models for Lattice Inputs”, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, Association for Computational Linguistics, Jun. 4, 2019, 13 pages.
Sundermeyer et al., “From Feedforward to Recurrent LSTM Neural Networks for Language Modeling.”, IEEE Transactions to Audio, Speech, and Language Processing, vol. 23, No. 3, Mar. 2015, pp. 517-529.
Supplemental Notice of Allowance received for U.S. Appl. No. 16/990,894, mailed on Oct. 26, 2021, 2 pages.
Sutskever et al., “Sequence to Sequence Learning with Neural Networks”, Proceeding of the 27th International Conference on Neural Information Processing Systems, 2014, 9 pages.
Tamar et al., “Value Iteration Networks”, Advances in Neural Information Processing Systems, vol. 29, 2016, 16 pages.
Tan et al., “Knowledge Transfer In Permutation Invariant Training For Single-channel Multi-talker Speech Recognition”, ICASSP 2018, 2018, pp.5714-5718.
“Use Macrodroid skillfully to automatically clock in with Ding Talk”, Online available at: https://blog.csdn.net/qq_26614295/article/details/84304541, Nov. 20, 2018, 11 pages.
Vaswani et al., “Attention Is All You Need”, 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017, pp. 1-11.
Villemure et al., “The Dragon Drive Innovation Showcase: Advancing the State-of-the-art in Automotive Assistants”, 2018, 7 pages.
Walker, Amy, “NHS Gives Amazon Free Use of Health Data Under Alexa Advice Deal”, Available online at: <https://www.theguardian.com/society/2019/dec/08/nhs-gives-amazon-free-use-of-health-data-under-alexa-advice-deal>, 3 pages.
Wang et al., “End-to-end Anchored Speech Recognition”, Proc. ICASSP2019, May 12-17, 2019, 5 pages.
Weng et al., “Deep Neural Networks for Single-Channel Multi-Talker Speech Recognition”, IEEE/ACM Transactions On Audio, Speech, And Language Processing, vol. 23, No. 10, Oct. 2015, pp. 1670-1678.
“What's on Spotify?”, Music for everyone, Online Available at: <https://web.archive.org/web/20160428115328/https://www.spotify.com/us/>, Apr. 28, 2016, 6 pages.
Wikipedia, “Home Automation”, Online Available at:<https://en.wikipedia.org/w/index.php?title=Home_automation&oldid=686569068>, 9 pages.
Wikipedia, “Siri”, Online Available at: <https://en.wikipedia.org/w/index.php?title=Siri&oldid=689697795>, Nov. 8, 2015, 13 pages.
Wikipedia, “Virtual Assistant”, Wikipedia, Online Available at: <htts://en.wikipedia.org/w/index.php?title=Virtual_assistant&oldid=679330666>, Sep. 3, 2015, 4 pages.
Wu et al., “Monophone-Based Background Modelling for Two-Stage On-device Wake Word Detection”, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr. 2018, 5 pages.
X.AI, “How it Works”, Online available at: <https://web.archive.org/web/20160531201426/https://x.ai/how-it-works/>, May 31, 2016, 6 pages.
Xu et al., “Policy Optimization of Dialogue Management in Spoken Dialogue System For Out-of-Domain Utterances”. 2016 International Conference On Asian Language Processing (IALP), IEEE, Nov. 21, 2016, pp. 10-13.
Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, Proceedings of the 32nd International Conference on Maching Learning, Lille, France, 2015, 10 pages.
Yang, Astor, “Control Android TV via Mobile Phone APP RKRemoteControl”, Online Available at: <https://www.youtube.com/watch?v=zpmUeOX_xro>, Mar. 31, 2015, 4 pages.
Yates, Michael C., “How Can I Exit Google Assistant After I'm Finished with it”, Online available at: <https://productforums.google.com/forum/#!msg/phone-by-google-faECnR2RJwA/gKNtOkQgAQAJ>, Jan. 11, 2016, 2 pages.
Yeh, Jui-Feng, “Speech Act Identification Using Semantic Dependency Graphs With Probabilistic Context-free Grammars”, ACM Transactions on Asian and Low-Resource Language Information Processing, vol. 15, No. 1, Dec. 2015, pp. 5.1-5.28.
Yousef, Zulfikar A., “Briana (A.I) Artificial Intelligence Virtual Personal Assistant”, Online available at: <https://www.youtube.com/watch?v=2h6xpB8bPSA>, Feb. 7, 2017, 3 pages.
Yu et al., “Permutation Invariant Training Of Deep Models For Speaker-Independent Multi-talk Speech Separation”, Proc. ICASSP, 2017, 5 pages.
Yu et al., “Recognizing Multi-talker Speech with Permutation Invariant Training”, Interspeech 2017, Aug. 20-24, 2017, pp. 2456-2460.
Zhang et al., “Very Deep Convolutional Networks for End-To-End Speech Reognition”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, 5 pages.
Zheng et al., “Intent Detection and Semantic Parsing for Navigation Dialogue Language Processing”, 2017 IEEE 20th International Conference on Itelligent Transportation Systems (ITSC), 2017, 6 pages.
Zhong et al., “JustSpeak: Enabling Universal Voice Control on Android”, W4A'14, Proceedings of the 11th Web for All Conference, No. 36, Apr. 7-9, 2014, 8 pages.
Zhou et al., “Learning Dense Correspondence via 3D-guided Cycle Consistency”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 10 pages.
Zmolikova et al., “Speaker-Aware Neural Network Based Beamformer For Speaker Extraction In Speech Mixtures”, Interspeech 2017, Aug. 20-24, 2017, pp. 2655-2659.
Result of Consultation received for European Patent Application No. 21171760.8, mailed on Aug. 27, 2024, 3 pages.
Decision to Grant received for European Patent Application No. 21171760.8, mailed on Feb. 27, 2025, 4 pages.
IP.com, “Summaries with Thumbnails”, InnovationQ, Feb. 23, 2025, 127 pages.
Notice of Allowance received for U.S. Appl. No. 18/648,064, mailed on Mar. 5, 2025, 9 pages.
Proquest, “Search Strategy from Dialog”, Dialog, Scientific and Technical Information Centre, Feb. 22, 2025, 4 pages.
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/648,064, mailed on Dec. 26, 2024, 3 pages.
Intention to Grant received for European Patent Application No. 21171760.8, mailed on Oct. 21, 2024, 9 pages.
Non-Final Office Action received for U.S. Appl. No. 18/648,064, mailed on Dec. 4, 2024, 10 pages.
Notice of Allowance received for Chinese Patent Application No. 202011003474.3, mailed on Jan. 2, 2025, 2 pages (1 page of English Translation and 1 page of Official Copy).
Notice of Allowance received for Chinese Patent Application No. 202011004874.6, mailed on Apr. 10, 2024, 4 pages (1 page of English Translation and 3 pages of Official Copy).
Office Action received for Chinese Patent Application No. 202011003474.3, mailed on May 10, 2024, 11 pages (6 pages of English Translation and 5 pages of Official Copy).
Office Action received for European Patent Application No. 21171760.8, mailed on Jun. 28, 2024, 7 pages.
Office Action received for Indian Patent Application No. 202215064666, mailed on Oct. 16, 2024, 7 pages.
Related Publications (1)
Number Date Country
20240146776 A1 May 2024 US
Provisional Applications (1)
Number Date Country
63022942 May 2020 US
Continuations (2)
Number Date Country
Parent 17306489 May 2021 US
Child 18407281 US
Parent 16990876 Aug 2020 US
Child 17306489 US