Digital average input current control in power converter

Information

  • Patent Grant
  • 10116217
  • Patent Number
    10,116,217
  • Date Filed
    Monday, April 24, 2017
    7 years ago
  • Date Issued
    Tuesday, October 30, 2018
    6 years ago
Abstract
A digital average-input current-mode control loop for a DC/DC power converter. The power converter may be, for example, a buck converter, boost converter, or cascaded buck-boost converter. The purpose of the proposed control loop is to set the average converter input current to the requested current. Controlling the average input current can be relevant for various applications such as power factor correction (PFC), photovoltaic converters, and more. The method is based on predicting the inductor current based on measuring the input voltage, the output voltage, and the inductor current. A fast cycle-by-cycle control loop may be implemented. The conversion method is described for three different modes. For each mode a different control loop is used to control the average input current, and the control loop for each of the different modes is described. Finally, the algorithm for switching between the modes is disclosed.
Description
BACKGROUND

The subject invention relates to control loops for switching converters. The following articles and patents, which may or may not be prior art, and which are incorporated here by reference, may be relevant to the subject invention.

  • Jingquan Chen, Aleksandar Prodic, Robert W. Erickson and Dragan Maksimovic, “Predictive Digital Current Programmed Control”. IEEE Transaction on Power Electronics, Vol. 18, No. 1, January 2003
  • U.S. Pat. No. 7,148,669, “Predictive Digital Current Controllers for Switching Power Converters” by Dragan Maksimovic, Jingquan Chen, Aleksandar Prodic, and Robert W. Erickson.
  • K Wallace, G Mantov, “DSP Controlled Buck/Boost Power Factor Correction for Telephony Rectifiers”. INTELEC 2001, 14-18 Oct. 2001.
  • U.S. Pat. No. 6,166,527, “Control Circuit and Method for Maintaining High Efficiency in a Buck-Boost Switching Regulator” by David M. Dwelley, and Trevor W. Barcelo.


Additionally, the following basic text is incorporated here by reference, in order to provide the reader with relevant art and definitions:

  • Robert W. Erickson, Dragan Maksimovic, “Fundamentals of Power Electronics” (Second Edition), ISBN 0792372700.


SUMMARY

Aspects of the invention provide a method and system for digitally controlling the average input current in a non-inverting buck-boost converter. The method provides a fast cycle-by-cycle control loop to set the average input current when the converter is working in three different modes: buck, buck-boost and boost. Unlike analog control where it is difficult to change the parameters of the control loop in an adaptive manner, a digital control system can adjust the control loop parameters according to various parameters measured such as input voltage, output voltage and inductor current. In general, this enables to achieve a fast and stable control loop that controls the input current in various working points of the converter.


Aspects of the invention also provide for a method and system for digitally controlling the input current in a non-inverting (cascaded) buck-boost converter operating in a buck-boost mode, i.e., alternating between buck and boost in each cycle. Such an operation mode is particularly beneficial when the required converter output current is similar to the converter's input current. Since there are limits to the maximal and minimal allowed PWM values of the buck or boost operational modes, there are areas in which control is impossible without use of the alternating buck-boost mode.


Aspects of the invention further provide for a method and system for controlling the operational mode switching of a cascaded buck-boost converter. According to aspects of the invention, whenever the converter has been operated in one mode, i.e., buck or boost, for at least a predetermined period, and is needed to change into the other operational mode, i.e., to boost or buck, the transition is performed by forcing the converter to first execute several cycles on alternating buck and boost modes and only then switching to the other mode. Thus, for example, if the converter has been operating in a buck mode and is now to be switched to a boost mode, it is first switched to operate in an alternating buck-boost mode, in which the converter alternates by each cycle between buck and boost modes for several cycles, and only then switches to boost mode. This feature avoids the current jumps or discontinuities that are generally observed when a converter switches between buck and boost modes of operation.


Aspects of the invention further provide for a method and system for controlling the operation of a cascaded buck-boost converter, operable in one of three modes: buck, boost, and alternating buck-boost. The system includes three preprogrammed PWM control modules, each for controlling the input current according to one of the converter's operational modes. During operation of the converter, the operational mode is determined and the corresponding PWM control module is selected to control the input current.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrate an example of a digital controlled non-inverting buck-boost converter according to aspects of the invention.



FIG. 2 illustrates the waveforms of trailing triangle PWM modulation.



FIG. 3 illustrates the waveforms of leading triangle PWM modulation.



FIG. 4 shows the inductor current waveform during two switching cycles using trailing edge triangle PWM modulation.



FIG. 5 illustrates a block diagram of predictive buck input current control, according to embodiment of the invention.



FIG. 6 illustrates the inductor current waveforms for a buck-boost switching cycle.



FIG. 7 illustrates the inductor current waveforms for a buck-boost switching cycle according to embodiment of the invention.



FIG. 8 shows a block diagram of control loops for buck-boost input current control, according to embodiment of the invention.



FIG. 9 shows a state diagram and the possible options to switch between the three different states.





DETAILED DESCRIPTION

A digital controlled non-inverting (cascaded) buck-boost converter, as described in FIG. 1, is a topology for a converter that is capable of both increasing the input voltage and decreasing it. The proposed topology is beneficial over prior art converters for at least the following reasons: 1) high conversion efficiency can be achieved; 2) component stress is relatively low as apposed to other buck-boost topologies; and 3) low component count—only one inductor, two capacitors and four switches. When buck-boost converters are discussed in this specification, we typically refer to cascaded buck-boost topology, sometimes named “non-inverting buck-boost” converter, rather then the lower efficiency (inverting) buck-boost converter.


While in general control loops of converters the inductor current is controlled, according to an embodiment of the invention, a control loop is provided in order to set the average input current to the requested current (Iref). Controlling the average input current can be relevant for various applications such as: power factor correction (PFC), photovoltaic inverters, and more. In this example, the control is based on predicting the inductor current for the next switching cycle based on measuring the input voltage (VIn), the output voltage (VOut) and the inductor current (IL) in the current switching cycle. By using a predictive method a fast, cycle-by-cycle, control loop can be implemented.


Converter Modes


The cascaded buck-boost topology can achieve the desired input average current at various output currents. Depending on the output current, the converter can work in 3 different modes:

    • 1. Iref>Iout: Boost Converter—Switch A is constantly conducting and switch B is not conducting.
    • 2. Iref<Iout: Buck Converter—Switch D is constantly conducting and switch C is not conducting.
    • 3. Iref≈Iout: Buck-Boost Converter—All four switches are being used to control the input current.


Each of the three modes may have a different control schemes. The control loop will decide which control scheme is used at each switching cycle.


Predictive Average Input Current Control Using Triangle PWM Modulation


The control scheme of this example is based on predicting the inductor current for the next switching cycle based on measuring the inductor current and the input and output voltage. Based on the inductor current the control loop sets the average input current. Because of the fact that the predictive control loop is a non-linear control loop and it is executed on every PWM cycle, a high control bandwidth can be achieved.


The following sections will explain the concept of triangle PWM modulation and the three control schemes mentioned above.


Triangle PWM Modulation


There are two types of triangle PWM modulation—leading and trialing triangle modulation. FIG. 2 illustrates the waveforms of trailing triangle PWM modulation.


Each cycle, having length Ts and a duty cycle of d, starts with an on-time of length








d
2



T
s


,





an off-time of (1−d)Ts and another on-time of the same length. Leading triangle modulation is similar but the on-time and off-times are switched, as shown in FIG. 3. Both methods are suitable for input average current control because of the fact that the average inductor current is always at the beginning of each PWM cycle. This enables the digital control loop to sample the average inductor current at fixed intervals, at the beginning of each cycle.


Controlling Average Input Current Using the Inductor Current


The method of this example uses the inductor current to set the average input current when the converting is operating in continuous conduction mode (CCM). The converter can work in one of three different modes—Buck, Boost, Buck-Boost. For each mode there is a different equation for converting the average inductor current to the average input current in each switching cycle. Derived from the power train properties of the converter, the equations are:

Boost: ĨInL  1.
Buck: ĨInL*d, where d is the duty cycle.  2.
Buck-Boost: ĨIn≈ĨL*dbuck, where dbuck is the buck duty cycle  3.


For all of the equations above ĨIn, ĨL denote the average input current and average inductor current, respectively.


Control Loops


The converter works in 3 different modes. For each mode a different control loop is used to control the average input current. This section will describe each control loop for the different modes. Later on, the algorithm for switching between the modes will be described.


Predictive Boost Input Current Control


The goal of the control loop is to insure that the average input current follows the reference Iref. As described above, when the converter operates in a boost mode the steady state average input current is the same as the average inductor current. In this mode the boost control will try to set the average inductor current to Iref. The required boost duty cycle for the next switching cycle is predicted based on the sampled inductor current, the input voltage and the output voltage. FIG. 4 shows the inductor current waveform during two switching cycles using trailing edge triangle PWM modulation. The sampled inductor current at switching cycle n, i(n), can be calculated using the previous sample, i(n−1), and the input and output voltage. The calculation is based on the inductor current slopes during the on-time and off-time.


Since the input and output voltage change slowly we assume that they are constant during a switching cycle. For a boost converter the on-time slope (m1) and off-time slope (m2) are given by the following equations:










m
1

=


V

i





n


L





(
1
)







m
2

=



V

i





n


-

V
out


L





(
2
)







Based on these equations we can predict i(n) using the following equation:











i
pred



(
n
)


=


i


(
n
)


=


i


(

n
-
1

)


+



V

i





n




d


[
n
]




T
s


L

+



(


V

i





n


-

V
out


)




d




[
n
]




T
s


L







(
3
)







Where d′[n]=1−d[n], Ts is the switching cycle time and L is the inductor inductance. Equation (3) can also be written as:











i
pred



(
n
)


=


i


(
n
)


=


i


(

n
-
1

)


+



V
out



d


[
n
]




T
s


L

+



(


V

i





n


-

V
out


)



T
s


L







(
4
)







We now have the prediction equation for one switching cycle. Because of the fact that every digital implementation of the control loop will have an execution delay, we will extend the prediction to one more switching cycle. So the prediction will set the duty cycle of the n+1 switching cycle based on the samples of the n−1 switching cycle. Extending equation (4) to two switching cycles we get:










i


(

n
+
1

)


=



i
pred



(
n
)


+



V
out



d


[

n
+
1

]




T
s


L

+



(


V

i





n


-

V
out


)



T
s


L






(
5
)







The prediction for the duty cycle d[n+1] can now be obtained based on the values sampled in the previous switching period. By substituting i(n+1) with the desired current Iref, in equation (5), and by solving the equation for d[n+1] we get:










d


[

n
+
1

]


=



(


I
ref

-


i
pred



(
n
)



)



L


T
s

*

V
out




+
1
-


V

i





n



V
out







(
6
)







Because of the fact that the inductor inductance can vary and to be able to achieve a slower control loop, we modify equation (6) with a variable gain that can be pre-adjusted, and we get:










d


[

n
+
1

]


=



(


I
ref

-


i
pred



(
n
)



)




L
*
K



T
s

*

V
out




+
1
-


V

i





n



V
out







(
7
)







Equation (7) is the control law when the converter is in boost mode.


If we denote Ti as the beginning time of each switching cycle (i), the above method samples the input voltage, output voltage, and inductor current at time T0, utilizes the time until T1 to predict the inductor current at T1 using the input voltage, output voltage and the knowledge of the inductor inductance, and calculate the needed duty-cycle in order to reach the desired input current (Iref) at T2, and set that duty cycle to be performed in the switching cycle between T1 and T2.


Predictive Buck Input Current Control


The principles of the predictive buck average input current control loop are similar to those of the boost current control loop. For the buck converter, the on-time and off-time inductor slopes are given by the following equations:










m
1

=



V

i





n


-

V
out


L





(
8
)







m
2

=

-


V
out

L






(
9
)







For switching cycle number n the average input current, based on the inductor current, is:











i
~



(
n
)


=


(


i


(

n
-
1

)


+


m





1


d


[
n
]



Ts

L

+


m





2



d




[
n
]



Ts

L


)

*

d


[
n
]







(
10
)







Based on equations (8) and (9) we can predict the inductor current for one switching cycle, and get the following equation:










i


(
n
)


=


i


(

n
-
1

)


+



(


V

i





n


-

V
out


)



d


[
n
]




T
s


L

-



V
out




d




[
n
]




T
s


L






(
11
)







Combining equations (10) and (11) we get:











i
~



(

n
+
1

)


=


(


i


(

n
-
1

)


+



V
in



d


[
n
]



Ts

L

-

2




V
out


Ts

L


+



V
in



d


[

n
+
1

]




T
s


L


)



d


[

n
+
1

]







(
12
)







The prediction for the duty cycle d[n+1] can now be obtained based on the values sampled in the previous switching period. Denoting the sampled current as is[n], and substituting the control objective ĩ(n+1)=Iref in (11), we have:











0
=




d
2



[

n
+
1

]


*



V
in



T
s


L


+


d


[

n
+
1

]


[


i


(

n
-
1

)


+



V
in



d


[
n
]




T
s


L

-

2




V
out



T
s


L



)



]

-

I
ref





(
13
)







Equation (13) is the control law when the converter is in buck mode. Because of the fact that this equation is a quadratic equation, one of the methods of solving it in an efficient manner is to use Newton Raphson method to approximate the solution.


If we denote Ti as the beginning time of each switching cycle (i), the above method samples the input voltage, output voltage, and inductor current at time T0, utilizes the time until T1 to predict the inductor current at T1 using the input voltage, output voltage and the knowledge of the inductor inductance, and calculate the needed duty-cycle in order to reach the desired input current (Iref) at T2, that is dependent on the inductor current and the duty cycle at T2, and set that duty cycle to be performed in the switching cycle between T1 and T2.


Predictive Buck Input Current Control—Alternative Embodiment


Another method for controlling the converter's input current in a buck converting is by controlling the inductor current and using the converter's input and output voltage to set the correct inductor reference value in an adaptive manner. FIG. 5 shows the block diagram of the control loops for this method. Equation 14 holds true in steady state in a buck converter:











I
~

in

=



V
out


V
in





I
~

L






(
14
)







By using equation (14) we can set the required inductor current (IL_Ref) according to Vin and Vout in the following way:










I

L

_

Ref


=


I
ref

*


V
in


V
out







(
15
)







Equation (15) is the feed-forward block that runs every switching cycle. After calculating the cycle-by-cycle inductor current reference, an inductor current loop is used to set the required inductor current.


Predictive Buck Inductor Current Control


By using equation (11), extending it for two switching cycles and replacing i(n) with ipred(n) we get the following equation:










i


(

n
+
1

)


=



i
pred



(
n
)


+



V
in



d


[

n
+
1

]




T
s


L

-



V
out



T
s


L






(
16
)







By solving equation (16) for d[n+1] we get:










d


[

n
+
1

]


=



(


I

L

_

ref


-


I
pred



[
n
]



)



L


T
s

*

V
in




+


V
out


V
in







(
17
)







Because of the fact that the inductor inductance can vary and to be able to achieve a slower control loop, we modify equation (17) with a variable gain that can be pre-adjusted, and we get:










d


[

n
+
1

]


=



(


I

L

_

ref


-


I
pred



[
n
]



)




L
*
K



T
s

*

V
in




+


V
out


V
in







(
18
)







Equation (18) is the control law for the buck inductor current loop.


If we denote Ti as the beginning time of each switching cycle (i), the above method samples the input voltage, output voltage, and inductor current at time T0, utilizes the time until T1 to estimate the needed inductor current (IL_Ref) according to the input voltage, output voltage and desired input current (Iref). In addition, predicting the inductor current at T1 using the input voltage, output voltage and the knowledge of the inductor inductance, and calculate the needed duty-cycle in order to reach the needed inductor current (IL_Ref) at T2, and set that duty cycle to be performed in the switching cycle between T1 and T2.


Predictive Cascaded Buck-Boost Input Current Control


When the converter is in buck-boost mode all four switches are being used to set the correct converter's average input current. This can be shown in FIG. 6 for trailing triangle PWM modulation. Switches B and D are complementary to switches A and C respectively. In each switching cycle both the buck and boost switches are being used to control the converter's average input current. In general, the boost switches will operate at a low duty cycle while the buck switches will operate at a high duty cycle.



FIG. 6 illustrates a method enabling the converter to set the converter's average input current correctly when the output current is relatively close to the reference current. In order to simplify the control loop the buck duty cycle will be fixed to a value, dbuck, and the control loop will set the boost duty cycle every switching cycle.



FIG. 7 illustrates the inductor current waveforms for a buck-boost switching cycle. The on-time and off-time inductor current slopes for the buck cycle and boost cycle are identical to the equations in (8), (9) and (1), (2). In addition, the average input current can be calculated from the average inductor current with the following equation:

ĨInL*dbuck  (19)


Based on all these equations the predictive control law can be built for calculating the required boost duty cycle:











i
~



(
n
)


=


(


i


(

n
-
1

)


+



(


V

i

n


-

V
out


)



d
buck



T
s


L

-



V
out



d
buck




T
s


L

+



V
in



d


[
n
]




T
s


L

+



(


V
in

-

V
out


)




d




[
n
]




T
s


L


)



d
buck






(
20
)







Denoting the sampled current as is[n] substituting the control objective ĩ(n)=iref in the equation above, and solving for d[n], we get the following:










d


[
n
]


=

2
+


(



i
ref


d
buck


-


i
s



[
n
]



)



L


V
out



T
s




-



V
in


V
out




d
buck







(
21
)







Equation (21) is the control law for setting the boost duty cycle when the converter is in buck-boost mode.


If we denote Ti as the beginning time of each switching cycle (i), the above method samples the input voltage, output voltage, and inductor current at time T0, utilizes the time until T1 to predict the inductor current at T1, based on the fact that the converter is in alternating buck-boost mode, using the input voltage, output voltage and the knowledge of the inductor inductance, and calculate the needed duty-cycle in order to reach the desired input current (Iref) at T2, and set that duty cycle to be performed in the switching cycle between T1 and T2.


Predictive Buck-Boost Input Current Control—Alternative Embodiment


Another method for controlling the converter's input current in a cascaded buck-boost converting is by controlling the inductor current and using the input and output voltage to set the correct inductor reference value in an adaptive manner. FIG. 8 shows the block diagram of the control loops for this method.


Predictive Buck-Boost Inductor Current Control


An efficient method of controlling the inductor current in a cascaded buck-boost converter is setting a linear relation between the boost and buck duty cycle in the following manner:

dbuck=1−c+dboost  (22)


Where:

    • 0≤c≤1


Using equations (1), (2), (8) and (9) we can estimate the inductor at the end of switching cycle n:











i


(
n
)


=


i


(

n
-
1

)


+



(


V

i

n


-

V
out


)




d
buck



[
n
]




T
s


L

-



V
out




d
buck




[
n
]




T
s


L

+



V
in




d
boost



[
n
]




T
s


L

+



(


V
in

-

V
out


)




d
boost




[
n
]




T
s


L










i


(
n
)


=


i


(

n
-
1

)


+



V
in




d
buck



[
n
]




T
s


L

+



V
out




d
boost



[
n
]



Ts

L

+



(


V
in

-

2


V
out



)


Ts

L







(
23
)







Combining equations (22) and (23) and we get:











i
pred



(
n
)


=


i


(
n
)


=


i


(

n
-
1

)


+



V
in




d
boost



[
n
]




T
s


L

+



V
out




d
boost



[
n
]



Ts

L

+



(



V
in



(

2
-
c

)


-

2


V
out



)


Ts

L







(
24
)







By extending equation (24) to another switching cycle we get:










i


(

n
+
1

)


=



i
pred



(
n
)


+



V
in




d
boost



[

n
+
1

]




T
s


L

+



V
out




d
boost



[

n
+
1

]



Ts

L

+



(



V
in



(

2
-
c

)


-

2


V
out



)


Ts

L






(
25
)







Solving equation (25) for dboost[n+1] and replacing i(n+1) with the control objective, IL_Ref, we get:











d
boost



[

n
+
1

]


=



(


i

L

_

Ref


-

i


(

n
-
1

)



)

*


L
*
K



(


V
out

+

V
in


)

*
Ts



-


(



V
in



(

2
-
c

)


-

2


V
out



)



V
out

+

V
in








(
26
)







Equation (26) is the control law for the inductor current control in a cascaded buck-boost converter.


Feed Forward


In order to control the converter's input current, a cycle by cycle feed-forward is used in order to change the inductor current reference according to the required converter input current and input and output voltage. In a cascaded buck-boost converter we know that in steady state:











V
out


V
in


=


D
buck


1
-

D
boost







(

27

a

)









i
~

in



i
l

~


=

D
buck





(

27

b

)







Using equations (27) and (22) we can get:










i
L_Ref

=


i
ref





V
in

+

V
out




(

2
-
c

)



V
out








(
28
)







Using equation (28) we can set the required inductor current according to the desired input current and input and output voltages.


If we denote Ti as the beginning time of each switching cycle (i), the above method samples the input voltage, output voltage, and inductor current at time T0, utilizes the time until T1 to estimate the needed inductor current (IL_Ref) according to the input voltage, output voltage and desired input current (Iref). In addition, predicting the inductor current at T1 using the input voltage, output voltage and the knowledge of the inductor inductance, and calculate the needed duty-cycle in order to reach the needed inductor current (IL_ref) at T2, and set that duty cycle to be performed in the switching cycle between T1 and T2.


Switching Between Converter Modes


The converter needs to switch between three different modes depending on the reference current and the output current. FIG. 9 shows a state diagram and the possible options to switch between the three different states. The following sections will describe the logic from switching between the different states.


Switching from Buck Mode


When in buck mode, the duty cycle will be monitored every switching cycle. If the duty cycle is higher than the threshold set, 0<Tbucl<1, for more than Xbuck consecutive switching cycles the converter will switch to buck-boost mode.


Switching from Buck-Boost Mode


When in buck-boost mode, the duty cycle of the boost converter will be monitored every boost switching cycle (every second switching cycle). Two thresholds will be set—Thhigh and Thlow. If the duty cycle is higher than Thhigh for more than Xhigh consecutive switching cycles the converter will switch to boost mode. If the duty cycle is lower than Thlow for more than Xlow consecutive switching cycles the converter will switch to buck mode.


Switching From Boost Mode


When in boot mode, the duty cycle will be monitored every switching cycle. If the duty cycle is lower than the threshold set, 0<Thboost<1, for more than Xboost consecutive switching cycles the converter will switch to buck-boost mode.

Claims
  • 1. A method comprising: predicting an inductor current based on at least one of a sampled inductor current, a sampled input voltage, or a sampled output voltage;controlling a duty cycle based on the predicted inductor current to cause an input current of a converter to approach a particular input current; andswitching the converter from a buck-boost mode to a boost mode in response to determining that the duty cycle has been above a threshold for more than a plurality of consecutive switching cycles.
  • 2. The method of claim 1, further comprising: switching the converter from the boost mode to the buck-boost mode in response to determining that the duty cycle has fallen below a boost threshold for a predetermined number of consecutive switching cycles.
  • 3. The method of claim 1, wherein controlling the duty cycle comprises performing a triangle pulse width modulation.
  • 4. The method of claim 1, wherein the converter comprises a cascaded buck-boost converter.
  • 5. The method of claim 1, further comprising: monitoring the duty cycle every switching cycle.
  • 6. A method comprising: predicting an inductor current based on at least one of a sampled inductor current, a sampled input voltage, or a sampled output voltage;controlling a duty cycle based on the predicted inductor current to cause an input current of a converter to approach a particular input current; andtransferring the converter from a buck-boost mode to a buck mode in response to determining that the duty cycle has been below a threshold for more than a plurality of consecutive switching cycles.
  • 7. The method of claim 6, further comprising: switching the converter from the buck mode to the buck-boost mode in response to determining that the duty cycle has exceeded a buck threshold for a predetermined number of consecutive switching cycles.
  • 8. The method of claim 6, wherein controlling the duty cycle comprises performing a triangle pulse width modulation.
  • 9. The method of claim 6, wherein the converter comprises a cascaded buck-boost converter.
  • 10. The method of claim 6, further comprising: monitoring the duty cycle every switching cycle.
  • 11. A method comprising: predicting an inductor current for a cycle based on a sampled inductor current for a previous cycle;controlling a duty cycle based on the predicted inductor current to set an input current of a converter; andswitching the converter from a buck-boost mode to an alternative mode based on the duty cycle.
  • 12. The method of claim 11, wherein setting the input current of the converter comprises causing the input current of the converter to approach a particular input current.
  • 13. The method of claim 11, further comprising switching the converter from the alternative mode to the buck-boost mode based on the duty cycle.
  • 14. The method of claim 11, wherein the alternative mode comprises one of a boost mode or a buck mode.
  • 15. The method of claim 11, wherein switching the converter from the buck-boost mode to the alternative mode comprises: switching the converter to a boost mode when the duty cycle exceeds a first threshold for a first predetermined number of cycles; andswitching the converter to a buck mode when the duty cycle is below a second threshold for a second predetermined number of cycles.
  • 16. The method of claim 11, wherein controlling the duty cycle comprises performing a triangle pulse width modulation.
  • 17. The method of claim 16, wherein the triangle pulse width modulation comprises trailing triangle modulation.
  • 18. The method of claim 11, wherein the converter comprises a cascaded buck-boost converter.
  • 19. The method of claim 11, wherein predicting the inductor current is also based on a sampled input voltage and a sampled output voltage.
  • 20. The method of claim 11, further comprising: controlling the converter with a first control module when the converter is operating in the buck-boost mode; andcontrolling the converter with a second control module when the converter is operating in the alternative mode.
RELATED APPLICATIONS

This Application is a continuation of and claims priority from U.S. patent application Ser. No. 14/324,820, filed on Jul. 7, 2014, which is a continuation of and claims priority from U.S. patent application Ser. No. 13/661,503 (now U.S. Pat. No. 8,773,092), filed on Oct. 26, 2012, which is a continuation of and claims priority to U.S. patent application Ser. No. 12/187,335 (now U.S. Pat. No. 8,319,483), filed on Aug. 6, 2008, which claims priority from U.S. Provisional Application No. 60/954,261 filed on Aug. 6, 2007 and U.S. Provisional Application No. 60/954,354 filed on Aug. 7, 2007. The disclosures of each of the foregoing applications are hereby incorporated by reference herein in their entirety.

US Referenced Citations (1196)
Number Name Date Kind
2367925 Brown Jan 1945 A
2586804 Fluke Feb 1952 A
2758219 Miller Aug 1956 A
2852721 Harders et al. Sep 1958 A
2958171 Deckers Nov 1960 A
3369210 Manickella Feb 1968 A
3392326 Lamberton Jul 1968 A
3496029 King et al. Feb 1970 A
3566143 Paine et al. Feb 1971 A
3696286 Ule Oct 1972 A
3740652 Burgener Jun 1973 A
3958136 Schroeder May 1976 A
4060757 McMurray Nov 1977 A
4101816 Shepter Jul 1978 A
4104687 Zulaski Aug 1978 A
4129788 Chavannes Dec 1978 A
4129823 van der Pool et al. Dec 1978 A
4146785 Neale Mar 1979 A
4161771 Bates Jul 1979 A
4171861 Hohorst Oct 1979 A
4183079 Wachi Jan 1980 A
4257087 Cuk Mar 1981 A
4296461 Mallory et al. Oct 1981 A
4321581 Tappeiner et al. Mar 1982 A
4324225 Trihey Apr 1982 A
4327318 Kwon et al. Apr 1982 A
4346341 Blackburn et al. Aug 1982 A
4363040 Inose Dec 1982 A
4367557 Stern et al. Jan 1983 A
4375662 Baker Mar 1983 A
4384321 Rippel May 1983 A
4404472 Steigerwald Sep 1983 A
4412142 Ragonese et al. Oct 1983 A
4452867 Conforti Jun 1984 A
4453207 Paul Jun 1984 A
4460232 Sotolongo Jul 1984 A
4470213 Thompson Sep 1984 A
4479175 Gille et al. Oct 1984 A
4481654 Daniels et al. Nov 1984 A
4488136 Hansen et al. Dec 1984 A
4526553 Guerrero Jul 1985 A
4533986 Jones Aug 1985 A
4545997 Wong et al. Oct 1985 A
4549254 Kissel Oct 1985 A
4554502 Rohatyn Nov 1985 A
4554515 Burson et al. Nov 1985 A
4580090 Bailey et al. Apr 1986 A
4591965 Dickerson May 1986 A
4598330 Woodworth Jul 1986 A
4602322 Merrick Jul 1986 A
4604567 Chetty Aug 1986 A
4611090 Catella et al. Sep 1986 A
4623753 Feldman et al. Nov 1986 A
4626983 Harada et al. Dec 1986 A
4631565 Tihanyi Dec 1986 A
4637677 Barkus Jan 1987 A
4639844 Gallios et al. Jan 1987 A
4641042 Miyazawa Feb 1987 A
4641079 Kato et al. Feb 1987 A
4644458 Harafuji et al. Feb 1987 A
4649334 Nakajima Mar 1987 A
4652770 Kumano Mar 1987 A
4683529 Bucher, II Jul 1987 A
4685040 Steigerwald et al. Aug 1987 A
4686617 Colton Aug 1987 A
4706181 Mercer Nov 1987 A
4719553 Hinckley Jan 1988 A
4720667 Lee et al. Jan 1988 A
4720668 Lee et al. Jan 1988 A
4736151 Dishner Apr 1988 A
4746879 Ma et al. May 1988 A
4772994 Harada et al. Sep 1988 A
4783728 Hoffman Nov 1988 A
4797803 Carroll Jan 1989 A
4819121 Saito et al. Apr 1989 A
RE33057 Clegg et al. Sep 1989 E
4864213 Kido Sep 1989 A
4868379 West Sep 1989 A
4873480 Lafferty Oct 1989 A
4888063 Powell Dec 1989 A
4888702 Gerken et al. Dec 1989 A
4899246 Tripodi Feb 1990 A
4899269 Rouzies Feb 1990 A
4903851 Slough Feb 1990 A
4906859 Kobayashi et al. Mar 1990 A
4910518 Kim et al. Mar 1990 A
4951117 Kasai Aug 1990 A
4978870 Chen et al. Dec 1990 A
4987360 Thompson Jan 1991 A
5001415 Watkinson Mar 1991 A
5027051 Lafferty Jun 1991 A
5027059 de Montgoltier et al. Jun 1991 A
5045988 Gritter et al. Sep 1991 A
5081558 Mahler Jan 1992 A
5097196 Schoneman Mar 1992 A
5138422 Fujii et al. Aug 1992 A
5143556 Matlin Sep 1992 A
5144222 Herbert Sep 1992 A
5155670 Brian Oct 1992 A
5191519 Kawakami Mar 1993 A
5196781 Jamieson et al. Mar 1993 A
5210519 Moore May 1993 A
5235266 Schaffrin Aug 1993 A
5237194 Takahashi Aug 1993 A
5268832 Kandatsu Dec 1993 A
5280133 Nath Jan 1994 A
5280232 Kohl et al. Jan 1994 A
5287261 Ehsani Feb 1994 A
5289361 Vinciarelli Feb 1994 A
5289998 Bingley et al. Mar 1994 A
5327071 Frederick et al. Jul 1994 A
5329222 Gyugyi et al. Jul 1994 A
5345375 Mohan Sep 1994 A
5379209 Goff Jan 1995 A
5381327 Yan Jan 1995 A
5391235 Inoue Feb 1995 A
5402060 Erisman Mar 1995 A
5404059 Loffler Apr 1995 A
5412558 Sakurai et al. May 1995 A
5413313 Mutterlein et al. May 1995 A
5428286 Kha Jun 1995 A
5446645 Shirahama et al. Aug 1995 A
5460546 Kunishi et al. Oct 1995 A
5472614 Rossi Dec 1995 A
5493154 Smith et al. Feb 1996 A
5497289 Sugishima et al. Mar 1996 A
5504415 Podrazhansky et al. Apr 1996 A
5504418 Ashley Apr 1996 A
5504449 Prentice Apr 1996 A
5513075 Capper et al. Apr 1996 A
5517378 Asplund et al. May 1996 A
5530335 Decker et al. Jun 1996 A
5539238 Malhi Jul 1996 A
5548504 Takehara Aug 1996 A
5563780 Goad Oct 1996 A
5565855 Knibbe Oct 1996 A
5566022 Segev Oct 1996 A
5576941 Nguyen et al. Nov 1996 A
5580395 Yoshioka et al. Dec 1996 A
5585749 Pace et al. Dec 1996 A
5604430 Decker et al. Feb 1997 A
5616913 Litterst Apr 1997 A
5631534 Lewis May 1997 A
5636107 Lu et al. Jun 1997 A
5644212 Takahashi Jul 1997 A
5644219 Kurokawa Jul 1997 A
5646501 Fishman et al. Jul 1997 A
5648731 Decker et al. Jul 1997 A
5654740 Schulha Aug 1997 A
5659465 Flack et al. Aug 1997 A
5677833 Bingley Oct 1997 A
5684385 Guyonneau et al. Nov 1997 A
5686766 Tamechika Nov 1997 A
5696439 Presti et al. Dec 1997 A
5703390 Itoh Dec 1997 A
5708576 Jones et al. Jan 1998 A
5719758 Nakata et al. Feb 1998 A
5722057 Wu Feb 1998 A
5726505 Yamada et al. Mar 1998 A
5726615 Bloom Mar 1998 A
5731603 Nakagawa et al. Mar 1998 A
5734259 Sisson et al. Mar 1998 A
5734565 Mueller et al. Mar 1998 A
5747967 Muljadi et al. May 1998 A
5751120 Leitler et al. May 1998 A
5773963 Blanc et al. Jun 1998 A
5777515 Kimura Jul 1998 A
5777858 Rodulfo Jul 1998 A
5780092 Agbo et al. Jul 1998 A
5793184 O'Connor Aug 1998 A
5798631 Spec et al. Aug 1998 A
5801519 Midya et al. Sep 1998 A
5804894 Leeson et al. Sep 1998 A
5812045 Ishikawa et al. Sep 1998 A
5814970 Schmidt Sep 1998 A
5821734 Faulk Oct 1998 A
5822186 Bull et al. Oct 1998 A
5838148 Kurokami et al. Nov 1998 A
5847549 Dodson, III Dec 1998 A
5859772 Hilpert Jan 1999 A
5869956 Nagao et al. Feb 1999 A
5873738 Shimada et al. Feb 1999 A
5886882 Rodulfo Mar 1999 A
5886890 Ishida et al. Mar 1999 A
5892354 Nagao et al. Apr 1999 A
5898585 Sirichote et al. Apr 1999 A
5903138 Hwang et al. May 1999 A
5905645 Cross May 1999 A
5917722 Singh Jun 1999 A
5919314 Kim Jul 1999 A
5923100 Lukens et al. Jul 1999 A
5923158 Kurokami et al. Jul 1999 A
5929614 Copple Jul 1999 A
5930128 Dent Jul 1999 A
5930131 Feng Jul 1999 A
5932994 Jo et al. Aug 1999 A
5933327 Leighton et al. Aug 1999 A
5945806 Faulk Aug 1999 A
5946206 Shimizu et al. Aug 1999 A
5949668 Schweighofer Sep 1999 A
5955885 Kurokami et al. Sep 1999 A
5959438 Jovanovic et al. Sep 1999 A
5961739 Osborne Oct 1999 A
5963010 Hayashi et al. Oct 1999 A
5963078 Wallace Oct 1999 A
5982253 Perrin et al. Nov 1999 A
5986909 Hammond et al. Nov 1999 A
5990659 Frannhagen Nov 1999 A
6002290 Avery et al. Dec 1999 A
6002603 Carver Dec 1999 A
6008971 Duba et al. Dec 1999 A
6021052 Unger et al. Feb 2000 A
6031736 Takehara et al. Feb 2000 A
6037720 Wong et al. Mar 2000 A
6038148 Farrington et al. Mar 2000 A
6046470 Williams et al. Apr 2000 A
6046919 Madenokouji et al. Apr 2000 A
6050779 Nagao et al. Apr 2000 A
6058035 Madenokouji et al. May 2000 A
6064086 Nakagawa et al. May 2000 A
6078511 Fasullo et al. Jun 2000 A
6081104 Kern Jun 2000 A
6082122 Madenokouji et al. Jul 2000 A
6087738 Hammond Jul 2000 A
6091329 Newman Jul 2000 A
6093885 Takehara et al. Jul 2000 A
6094129 Baiatu Jul 2000 A
6101073 Takehara Aug 2000 A
6105317 Tomiuchi et al. Aug 2000 A
6111188 Kurokami et al. Aug 2000 A
6111391 Cullen Aug 2000 A
6111767 Handleman Aug 2000 A
6130458 Takagi et al. Oct 2000 A
6150739 Baumgartl et al. Nov 2000 A
6151234 Oldenkamp Nov 2000 A
6163086 Choo Dec 2000 A
6166455 Li Dec 2000 A
6166527 Dwelley et al. Dec 2000 A
6169678 Kondo et al. Jan 2001 B1
6175219 Imamura et al. Jan 2001 B1
6175512 Hagihara et al. Jan 2001 B1
6191456 Stoisiek et al. Feb 2001 B1
6219623 Wills Apr 2001 B1
6225793 Dickmann May 2001 B1
6255360 Domschke et al. Jul 2001 B1
6255804 Herniter et al. Jul 2001 B1
6256234 Keeth et al. Jul 2001 B1
6259234 Perol Jul 2001 B1
6262558 Weinberg Jul 2001 B1
6268559 Yamawaki Jul 2001 B1
6274804 Psyk et al. Aug 2001 B1
6275016 Ivanov Aug 2001 B1
6281485 Siri Aug 2001 B1
6285572 Onizuka et al. Sep 2001 B1
6292379 Edevold et al. Sep 2001 B1
6297621 Hui et al. Oct 2001 B1
6301128 Jang et al. Oct 2001 B1
6304065 Wittenbreder Oct 2001 B1
6307749 Daanen et al. Oct 2001 B1
6311137 Kurokami et al. Oct 2001 B1
6316716 Hilgrath Nov 2001 B1
6320769 Kurokami et al. Nov 2001 B2
6329808 Enguent Dec 2001 B1
6331670 Takehara et al. Dec 2001 B2
6339538 Handleman Jan 2002 B1
6344612 Kuwahara et al. Feb 2002 B1
6346451 Simpson et al. Feb 2002 B1
6348781 Midya et al. Feb 2002 B1
6350944 Sherif et al. Feb 2002 B1
6351130 Preiser et al. Feb 2002 B1
6369461 Jungreis et al. Apr 2002 B1
6369462 Sin Apr 2002 B1
6380719 Underwood et al. Apr 2002 B2
6396170 Laufenberg et al. May 2002 B1
6396239 Benn et al. May 2002 B1
6400579 Cuk Jun 2002 B2
6425248 Tonomura et al. Jul 2002 B1
6429546 Ropp et al. Aug 2002 B1
6429621 Arai Aug 2002 B1
6433522 Sin Aug 2002 B1
6433978 Neiger et al. Aug 2002 B1
6441597 Lethellier Aug 2002 B1
6445599 Nguyen Sep 2002 B1
6448489 Kimura et al. Sep 2002 B2
6452814 Wittenbreder Sep 2002 B1
6465910 Young et al. Oct 2002 B2
6465931 Knowles et al. Oct 2002 B2
6469919 Bennett Oct 2002 B1
6472254 Cantarini et al. Oct 2002 B2
6483203 McCormack Nov 2002 B1
6493246 Suzui et al. Dec 2002 B2
6501362 Hoffman et al. Dec 2002 B1
6507176 Wittenbreder, Jr. Jan 2003 B2
6509712 Landis Jan 2003 B1
6512444 Morris, Jr. et al. Jan 2003 B1
6515215 Mimura Feb 2003 B1
6519165 Koike Feb 2003 B2
6528977 Arakawa Mar 2003 B2
6531848 Chitsazan et al. Mar 2003 B1
6545211 Mimura Apr 2003 B1
6548205 Leung et al. Apr 2003 B2
6560131 Vonbrethorst May 2003 B1
6587051 Takehara et al. Jul 2003 B2
6590793 Nagao et al. Jul 2003 B1
6590794 Carter Jul 2003 B1
6593520 Kondo et al. Jul 2003 B2
6593521 Kobayashi Jul 2003 B2
6600100 Ho et al. Jul 2003 B2
6603672 Deng et al. Aug 2003 B1
6608468 Nagase Aug 2003 B2
6611130 Chang Aug 2003 B2
6611441 Kurokami et al. Aug 2003 B2
6628011 Droppo et al. Sep 2003 B2
6633824 Dollar, II Oct 2003 B2
6636431 Seki et al. Oct 2003 B2
6650031 Goldack Nov 2003 B1
6650560 MacDonald et al. Nov 2003 B2
6653549 Matsushita et al. Nov 2003 B2
6655987 Higashikozono et al. Dec 2003 B2
6657419 Renyolds Dec 2003 B2
6664762 Kutkut Dec 2003 B2
6672018 Shingleton Jan 2004 B2
6678174 Suzui et al. Jan 2004 B2
6690590 Stamenic et al. Feb 2004 B2
6693327 Priefert et al. Feb 2004 B2
6693781 Kroker Feb 2004 B1
6709291 Wallace et al. Mar 2004 B1
6724593 Smith Apr 2004 B1
6731136 Knee May 2004 B2
6738692 Schienbein et al. May 2004 B2
6744643 Luo et al. Jun 2004 B2
6750391 Bower et al. Jun 2004 B2
6765315 Hammerstrom et al. Jul 2004 B2
6768047 Chang et al. Jul 2004 B2
6768180 Salama et al. Jul 2004 B2
6788033 Vinciarelli Sep 2004 B2
6788146 Forejt et al. Sep 2004 B2
6795318 Haas et al. Sep 2004 B2
6800964 Beck Oct 2004 B2
6801442 Suzui et al. Oct 2004 B2
6807069 Nieminen et al. Oct 2004 B2
6809942 Madenokouji et al. Oct 2004 B2
6810339 Wills Oct 2004 B2
6812396 Makita et al. Nov 2004 B2
6828503 Yoshikawa et al. Dec 2004 B2
6828901 Birchfield et al. Dec 2004 B2
6837739 Gorringe et al. Jan 2005 B2
6838611 Kondo et al. Jan 2005 B2
6838856 Raichle Jan 2005 B2
6842354 Tallam et al. Jan 2005 B1
6844739 Kasai et al. Jan 2005 B2
6850074 Adams et al. Feb 2005 B2
6856102 Lin et al. Feb 2005 B1
6882131 Takada et al. Apr 2005 B1
6888728 Takagi et al. May 2005 B2
6894911 Telefus et al. May 2005 B2
6897370 Kondo et al. May 2005 B2
6914418 Sung Jul 2005 B2
6919714 Delepaut Jul 2005 B2
6927955 Suzui et al. Aug 2005 B2
6933627 Wilhelm Aug 2005 B2
6933714 Fasshauer et al. Aug 2005 B2
6936995 Kapsokavathis et al. Aug 2005 B2
6940735 Deng et al. Sep 2005 B2
6949843 Dubovsky Sep 2005 B2
6950323 Achleitner et al. Sep 2005 B2
6963147 Kurokami et al. Nov 2005 B2
6966184 Toyomura et al. Nov 2005 B2
6970365 Turchi Nov 2005 B2
6980783 Liu et al. Dec 2005 B2
6984967 Notman Jan 2006 B2
6984970 Capel Jan 2006 B2
6987444 Bub et al. Jan 2006 B2
6996741 Pittelkow et al. Feb 2006 B1
7030597 Bruno et al. Apr 2006 B2
7031176 Kotsopoulos et al. Apr 2006 B2
7038430 Itabashi et al. May 2006 B2
7042195 Tsunetsugu et al. May 2006 B2
7045991 Nakamura et al. May 2006 B2
7046531 Zocchi et al. May 2006 B2
7053506 Alonso et al. May 2006 B2
7061211 Satoh et al. Jun 2006 B2
7061214 Mayega et al. Jun 2006 B2
7064967 Ichinose et al. Jun 2006 B2
7068017 Willner et al. Jun 2006 B2
7072194 Nayar et al. Jul 2006 B2
7078883 Chapman et al. Jul 2006 B2
7079406 Kurokami et al. Jul 2006 B2
7087332 Harris Aug 2006 B2
7088595 Nino Aug 2006 B2
7090509 Gilliland et al. Aug 2006 B1
7091707 Cutler Aug 2006 B2
7097516 Werner et al. Aug 2006 B2
7099169 West et al. Aug 2006 B2
7126053 Kurokami et al. Oct 2006 B2
7126294 Minami et al. Oct 2006 B2
7138786 Ishigaki et al. Nov 2006 B2
7142997 Widner Nov 2006 B1
7148669 Maksimovic Dec 2006 B2
7150938 Munshi et al. Dec 2006 B2
7158359 Bertele et al. Jan 2007 B2
7158395 Deng et al. Jan 2007 B2
7161082 Matsushita et al. Jan 2007 B2
7174973 Lysaght Feb 2007 B1
7183667 Colby et al. Feb 2007 B2
7193872 Siri Mar 2007 B2
7202653 Pai Apr 2007 B2
7208674 Aylaian Apr 2007 B2
7218541 Price et al. May 2007 B2
7248946 Bashaw et al. Jul 2007 B2
7256566 Bhavaraju et al. Aug 2007 B2
7259474 Blanc Aug 2007 B2
7262979 Wai et al. Aug 2007 B2
7276886 Kinder et al. Oct 2007 B2
7277304 Stancu et al. Oct 2007 B2
7281141 Elkayam et al. Oct 2007 B2
7282814 Jacobs Oct 2007 B2
7291036 Daily et al. Nov 2007 B1
RE39976 Schiff et al. Jan 2008 E
7315052 Alter Jan 2008 B2
7319313 Dickerson et al. Jan 2008 B2
7324361 Sin Jan 2008 B2
7336004 Lai Feb 2008 B2
7336056 Dening Feb 2008 B1
7339287 Jepsen et al. Mar 2008 B2
7348802 Kasanyal et al. Mar 2008 B2
7352154 Cook Apr 2008 B2
7361952 Miura et al. Apr 2008 B2
7371963 Suenaga et al. May 2008 B2
7372712 Stancu et al. May 2008 B2
7385380 Ishigaki et al. Jun 2008 B2
7385833 Keung Jun 2008 B2
7388348 Mattichak Jun 2008 B2
7394237 Chou et al. Jul 2008 B2
7405117 Zuniga et al. Jul 2008 B2
7414870 Rottger et al. Aug 2008 B2
7420354 Cutler Sep 2008 B2
7420815 Love Sep 2008 B2
7432691 Cutler Oct 2008 B2
7435134 Lenox Oct 2008 B2
7435897 Russell Oct 2008 B2
7443052 Wendt et al. Oct 2008 B2
7443152 Utsunomiya Oct 2008 B2
7450401 Iida Nov 2008 B2
7456510 Ito et al. Nov 2008 B2
7456523 Kobayashi Nov 2008 B2
7463500 West Dec 2008 B2
7466566 Fukumoto Dec 2008 B2
7471014 Lum et al. Dec 2008 B2
7471524 Batarseh et al. Dec 2008 B1
7479774 Wai et al. Jan 2009 B2
7482238 Sung Jan 2009 B2
7485987 Mori et al. Feb 2009 B2
7495419 Ju Feb 2009 B1
7504811 Watanabe et al. Mar 2009 B2
7518346 Prexl et al. Apr 2009 B2
7538451 Nomoto May 2009 B2
7560915 Ito et al. Jul 2009 B2
7589437 Henne et al. Sep 2009 B2
7595616 Prexl et al. Sep 2009 B2
7596008 Iwata et al. Sep 2009 B2
7599200 Tomonaga Oct 2009 B2
7600349 Liebendorfer Oct 2009 B2
7602080 Hadar et al. Oct 2009 B1
7602626 Iwata et al. Oct 2009 B2
7605498 Ledenev et al. Oct 2009 B2
7612283 Toyomura et al. Nov 2009 B2
7615981 Wong et al. Nov 2009 B2
7626834 Chisenga et al. Dec 2009 B2
7646116 Batarseh et al. Jan 2010 B2
7649434 Xu et al. Jan 2010 B2
7701083 Savage Apr 2010 B2
7709727 Roehrig et al. May 2010 B2
7719140 Ledenev et al. May 2010 B2
7723865 Kitanaka May 2010 B2
7733069 Toyomura et al. Jun 2010 B2
7748175 Liebendorfer Jul 2010 B2
7759575 Jones et al. Jul 2010 B2
7763807 Richter Jul 2010 B2
7772716 Shaver, II et al. Aug 2010 B2
7780472 Lenox Aug 2010 B2
7782031 Qiu et al. Aug 2010 B2
7783389 Yamada et al. Aug 2010 B2
7787273 Lu et al. Aug 2010 B2
7804282 Bertele Sep 2010 B2
7807919 Powell et al. Oct 2010 B2
7808125 Sachdeva et al. Oct 2010 B1
7812592 Prior et al. Oct 2010 B2
7812701 Lee et al. Oct 2010 B2
7821225 Chou et al. Oct 2010 B2
7824189 Lauermann et al. Nov 2010 B1
7839022 Wolfs Nov 2010 B2
7843085 Ledenev et al. Nov 2010 B2
7864497 Quardt et al. Jan 2011 B2
7868599 Rahman et al. Jan 2011 B2
7880334 Evans et al. Feb 2011 B2
7883808 Norimatsu et al. Feb 2011 B2
7884278 Powell et al. Feb 2011 B2
7893346 Nachamkin et al. Feb 2011 B2
7898112 Powell et al. Mar 2011 B2
7900361 Adest et al. Mar 2011 B2
7906007 Gibson et al. Mar 2011 B2
7906870 Ohm Mar 2011 B2
7919952 Fahrenbruch Apr 2011 B1
7919953 Porter et al. Apr 2011 B2
7925552 Tarbell et al. Apr 2011 B2
7944191 Xu May 2011 B2
7945413 Krein May 2011 B2
7948221 Watanabe et al. May 2011 B2
7952897 Nocentini et al. May 2011 B2
7960650 Richter et al. Jun 2011 B2
7960950 Glovinsky Jun 2011 B2
7969133 Lhang et al. Jun 2011 B2
8003885 Richter et al. Aug 2011 B2
8004113 Sander et al. Aug 2011 B2
8004116 Ledenev et al. Aug 2011 B2
8004117 Adest et al. Aug 2011 B2
8004866 Bucella et al. Aug 2011 B2
8013472 Adest et al. Sep 2011 B2
8018748 Leonard Sep 2011 B2
8035249 Shaver, II et al. Oct 2011 B2
8039730 Hadar et al. Oct 2011 B2
8049363 McLean et al. Nov 2011 B2
8058747 Avrutsky et al. Nov 2011 B2
8058752 Erickson, Jr. et al. Nov 2011 B2
8067855 Mumtaz et al. Nov 2011 B2
8077437 Mumtaz et al. Dec 2011 B2
8080986 Lai Dec 2011 B2
8089780 Mochikawa et al. Jan 2012 B2
8089785 Rodriguez Jan 2012 B2
8090548 Abdennadher et al. Jan 2012 B2
8093756 Porter et al. Jan 2012 B2
8093757 Wolfs Jan 2012 B2
8097818 Gerull et al. Jan 2012 B2
8098055 Avrutsky et al. Jan 2012 B2
8102074 Hadar et al. Jan 2012 B2
8102144 Capp et al. Jan 2012 B2
8111052 Glovinsky Feb 2012 B2
8116103 Zacharias et al. Feb 2012 B2
8138631 Allen et al. Mar 2012 B2
8138914 Wong et al. Mar 2012 B2
8139335 Quardt et al. Mar 2012 B2
8139382 Ihang et al. Mar 2012 B2
8148849 Zanarini et al. Apr 2012 B2
8158877 Klein et al. Apr 2012 B2
8169252 Fahrenbruch et al. May 2012 B2
8179147 Dargatz et al. May 2012 B2
8184460 O'Brien et al. May 2012 B2
8188610 Scholte-Wassink May 2012 B2
8204709 Presher, Jr. et al. Jun 2012 B2
8212408 Fishman Jul 2012 B2
8212409 Bettenwort et al. Jul 2012 B2
8248804 Han et al. Aug 2012 B2
8271599 Eizips et al. Sep 2012 B2
8274172 Hadar et al. Sep 2012 B2
8279644 Zhang et al. Oct 2012 B2
8289183 Foss Oct 2012 B1
8289742 Adest et al. Oct 2012 B2
8294451 Hasenfus Oct 2012 B2
8304932 Ledenev et al. Nov 2012 B2
8310101 Amaratunga et al. Nov 2012 B2
8310102 Raju Nov 2012 B2
8314375 Arditi et al. Nov 2012 B2
8324921 Adest et al. Dec 2012 B2
8325059 Rozenboim Dec 2012 B2
8344548 Stern Jan 2013 B2
8369113 Rodriguez Feb 2013 B2
8378656 de Rooij et al. Feb 2013 B2
8379418 Falk Feb 2013 B2
8391031 Garrity Mar 2013 B2
8391032 Garrity et al. Mar 2013 B2
8395366 Uno Mar 2013 B2
8405248 Mumtaz et al. Mar 2013 B2
8405349 Kikinis et al. Mar 2013 B2
8405367 Chisenga et al. Mar 2013 B2
8410359 Richter Apr 2013 B2
8410889 Garrity et al. Apr 2013 B2
8410950 Takehara et al. Apr 2013 B2
8415552 Hadar et al. Apr 2013 B2
8415937 Hester Apr 2013 B2
8427009 Shaver, II et al. Apr 2013 B2
8436592 Saitoh May 2013 B2
8461809 Rodriguez Jun 2013 B2
8466789 Muhlberger et al. Jun 2013 B2
8472220 Garrity et al. Jun 2013 B2
8473250 Adest et al. Jun 2013 B2
8509032 Rakib Aug 2013 B2
8526205 Garrity Sep 2013 B2
8531055 Adest et al. Sep 2013 B2
8542512 Garrity Sep 2013 B2
8570017 Perichon et al. Oct 2013 B2
8581441 Rotzoll et al. Nov 2013 B2
8587151 Adest et al. Nov 2013 B2
8618692 Adest et al. Dec 2013 B2
8624443 Mumtaz Jan 2014 B2
8653689 Rozenboim Feb 2014 B2
8669675 Capp et al. Mar 2014 B2
8670255 Gong et al. Mar 2014 B2
8674548 Mumtaz Mar 2014 B2
8674668 Chisenga et al. Mar 2014 B2
8686333 Arditi et al. Apr 2014 B2
8710351 Robbins Apr 2014 B2
8751053 Hadar et al. Jun 2014 B2
8773236 Makhota et al. Jul 2014 B2
8791598 Jain Jul 2014 B2
8809699 Funk Aug 2014 B2
8811047 Rodriguez Aug 2014 B2
8816535 Adest et al. Aug 2014 B2
8823212 Garrity et al. Sep 2014 B2
8823218 Hadar et al. Sep 2014 B2
8823342 Williams Sep 2014 B2
8835748 Frolov et al. Sep 2014 B2
8841916 Avrutsky Sep 2014 B2
8853886 Avrutsky et al. Oct 2014 B2
8854193 Makhota et al. Oct 2014 B2
8859884 Dunton et al. Oct 2014 B2
8860241 Hadar et al. Oct 2014 B2
8860246 Hadar et al. Oct 2014 B2
8878563 Robbins Nov 2014 B2
8917156 Garrity et al. Dec 2014 B2
8922061 Arditi Dec 2014 B2
8933321 Hadar et al. Jan 2015 B2
8934269 Garrity Jan 2015 B2
8963375 DeGraaff Feb 2015 B2
8963378 Fornage et al. Feb 2015 B1
8972765 Krolak et al. Mar 2015 B1
9130401 Adest et al. Sep 2015 B2
9257848 Coccia et al. Feb 2016 B2
9291696 Adest et al. Mar 2016 B2
9407161 Adest et al. Aug 2016 B2
9660527 Glovinski May 2017 B2
9843193 Getsla Dec 2017 B2
9923516 Har-Shai et al. Mar 2018 B2
20010000957 Birchfield et al. May 2001 A1
20010023703 Kondo et al. Sep 2001 A1
20010032664 Takehara et al. Oct 2001 A1
20010034982 Nagao et al. Nov 2001 A1
20010035180 Kimura et al. Nov 2001 A1
20010048605 Kurokami et al. Dec 2001 A1
20010050102 Matsumi et al. Dec 2001 A1
20010054881 Watanabe Dec 2001 A1
20020002040 Kline et al. Jan 2002 A1
20020014262 Matsushita et al. Feb 2002 A1
20020017900 Takeda et al. Feb 2002 A1
20020034083 Ayyanar et al. Mar 2002 A1
20020038667 Kondo et al. Apr 2002 A1
20020041505 Suzui et al. Apr 2002 A1
20020044473 Toyomura et al. Apr 2002 A1
20020047309 Droppo et al. Apr 2002 A1
20020047693 Chang Apr 2002 A1
20020056089 Houston May 2002 A1
20020063552 Arakawa May 2002 A1
20020063625 Takehara et al. May 2002 A1
20020078991 Nagao et al. Jun 2002 A1
20020080027 Conley Jun 2002 A1
20020085397 Suzui et al. Jul 2002 A1
20020113689 Gehlot et al. Aug 2002 A1
20020118559 Kurokami et al. Aug 2002 A1
20020134567 Rasmussen et al. Sep 2002 A1
20020148497 Sasaoka et al. Oct 2002 A1
20020149950 Takebayashi Oct 2002 A1
20020162585 Sugawara et al. Nov 2002 A1
20020165458 Carter et al. Nov 2002 A1
20020177401 Judd et al. Nov 2002 A1
20020179140 Toyomura Dec 2002 A1
20020180408 McDaniel et al. Dec 2002 A1
20020190696 Darshan Dec 2002 A1
20030002303 Riggio et al. Jan 2003 A1
20030025594 Akiyama et al. Feb 2003 A1
20030038615 Elbanhawy Feb 2003 A1
20030047207 Aylaian Mar 2003 A1
20030058593 Bertele et al. Mar 2003 A1
20030058662 Baudelot et al. Mar 2003 A1
20030066076 Minahan Apr 2003 A1
20030066555 Hui et al. Apr 2003 A1
20030075211 Makita et al. Apr 2003 A1
20030080741 LeRow et al. May 2003 A1
20030085621 Potega May 2003 A1
20030090233 Browe May 2003 A1
20030090246 Shenai et al. May 2003 A1
20030094931 Renyolds May 2003 A1
20030107352 Downer et al. Jun 2003 A1
20030111103 Bower et al. Jun 2003 A1
20030116154 Butler et al. Jun 2003 A1
20030121514 Davenport et al. Jul 2003 A1
20030140960 Baum et al. Jul 2003 A1
20030156439 Ohmichi et al. Aug 2003 A1
20030164695 Fasshauer et al. Sep 2003 A1
20030185026 Matsuda et al. Oct 2003 A1
20030193821 Krieger et al. Oct 2003 A1
20030201674 Droppo et al. Oct 2003 A1
20030214274 Lethellier Nov 2003 A1
20030223257 Floe Dec 2003 A1
20040004402 Kippley Jan 2004 A1
20040041548 Perry Mar 2004 A1
20040056642 Nebrigic et al. Mar 2004 A1
20040056768 Matsushita et al. Mar 2004 A1
20040061527 Knee Apr 2004 A1
20040076028 Achleitner et al. Apr 2004 A1
20040117676 Kobayashi et al. Jun 2004 A1
20040118446 Toyomura Jun 2004 A1
20040123894 Erban Jul 2004 A1
20040124816 DeLepaut Jul 2004 A1
20040125618 De Rooij et al. Jul 2004 A1
20040140719 Vulih et al. Jul 2004 A1
20040141345 Cheng et al. Jul 2004 A1
20040144043 Stevenson et al. Jul 2004 A1
20040150410 Schoepf et al. Aug 2004 A1
20040164718 McDaniel et al. Aug 2004 A1
20040165408 West et al. Aug 2004 A1
20040167676 Mizumaki Aug 2004 A1
20040169499 Huang et al. Sep 2004 A1
20040170038 Ichinose et al. Sep 2004 A1
20040189090 Yanagida et al. Sep 2004 A1
20040189432 Yan et al. Sep 2004 A1
20040201279 Templeton Oct 2004 A1
20040201933 Blanc Oct 2004 A1
20040207366 Sung Oct 2004 A1
20040211458 Gui et al. Oct 2004 A1
20040213169 Allard et al. Oct 2004 A1
20040223351 Kurokami et al. Nov 2004 A1
20040230343 Zalesski Nov 2004 A1
20040233685 Matsuo et al. Nov 2004 A1
20040246226 Moon Dec 2004 A1
20040258141 Tustison et al. Dec 2004 A1
20040263183 Naidu et al. Dec 2004 A1
20040264225 Bhavaraju et al. Dec 2004 A1
20050002214 Deng et al. Jan 2005 A1
20050005785 Poss et al. Jan 2005 A1
20050006958 Dubovsky Jan 2005 A1
20050017697 Capel Jan 2005 A1
20050017701 Hsu Jan 2005 A1
20050030772 Phadke Feb 2005 A1
20050040800 Sutardja Feb 2005 A1
20050041442 Balakrishnan Feb 2005 A1
20050057214 Matan Mar 2005 A1
20050057215 Matan Mar 2005 A1
20050068012 Cutler Mar 2005 A1
20050068820 Radosevich et al. Mar 2005 A1
20050099138 Wilhelm May 2005 A1
20050103376 Matsushita et al. May 2005 A1
20050105224 Nishi May 2005 A1
20050105306 Deng et al. May 2005 A1
20050109386 Marshall May 2005 A1
20050110454 Tsai et al. May 2005 A1
20050121067 Toyomura et al. Jun 2005 A1
20050135031 Colby et al. Jun 2005 A1
20050139258 Liu et al. Jun 2005 A1
20050140335 Lee et al. Jun 2005 A1
20050162018 Realmuto et al. Jul 2005 A1
20050163063 Kuchler et al. Jul 2005 A1
20050172995 Rohrig et al. Aug 2005 A1
20050179420 Satoh et al. Aug 2005 A1
20050194937 Jacobs Sep 2005 A1
20050201397 Petite Sep 2005 A1
20050213272 Kobayashi Sep 2005 A1
20050218876 Nino Oct 2005 A1
20050225090 Wobben Oct 2005 A1
20050226017 Kotsopoulos et al. Oct 2005 A1
20050242795 Al-Kuran et al. Nov 2005 A1
20050257827 Gaudiana et al. Nov 2005 A1
20050269988 Thrap Dec 2005 A1
20050275386 Jepsen et al. Dec 2005 A1
20050275527 Kates Dec 2005 A1
20050275979 Xu Dec 2005 A1
20050281064 Olsen et al. Dec 2005 A1
20050287402 Maly et al. Dec 2005 A1
20060001406 Matan Jan 2006 A1
20060017327 Siri et al. Jan 2006 A1
20060034106 Johnson Feb 2006 A1
20060038692 Schnetker Feb 2006 A1
20060043792 Hjort et al. Mar 2006 A1
20060043942 Cohen Mar 2006 A1
20060053447 Krzyzanowski et al. Mar 2006 A1
20060066349 Murakami Mar 2006 A1
20060068239 Norimatsu et al. Mar 2006 A1
20060077046 Endo Apr 2006 A1
20060103360 Cutler May 2006 A9
20060108979 Daniel et al. May 2006 A1
20060109009 Banke et al. May 2006 A1
20060113843 Beveridge Jun 2006 A1
20060113979 Ishigaki et al. Jun 2006 A1
20060116968 Arisawa Jun 2006 A1
20060118162 Saelzer et al. Jun 2006 A1
20060132102 Harvey Jun 2006 A1
20060149396 Templeton Jul 2006 A1
20060152085 Flett et al. Jul 2006 A1
20060162772 Presher et al. Jul 2006 A1
20060163946 Henne et al. Jul 2006 A1
20060164065 Hoouk et al. Jul 2006 A1
20060171182 Sin et al. Aug 2006 A1
20060174939 Matan Aug 2006 A1
20060176029 McGinty et al. Aug 2006 A1
20060176031 Forman et al. Aug 2006 A1
20060176036 Flatness et al. Aug 2006 A1
20060176716 Balakrishnan et al. Aug 2006 A1
20060185727 Matan Aug 2006 A1
20060192540 Balakrishnan et al. Aug 2006 A1
20060208660 Shinmura et al. Sep 2006 A1
20060222916 Norimatsu et al. Oct 2006 A1
20060225781 Locher Oct 2006 A1
20060227577 Horiuchi et al. Oct 2006 A1
20060227578 Datta et al. Oct 2006 A1
20060231132 Neussner Oct 2006 A1
20060232220 Melis Oct 2006 A1
20060235717 Sharma et al. Oct 2006 A1
20060237058 McClintock et al. Oct 2006 A1
20060261751 Okabe et al. Nov 2006 A1
20060266408 Home et al. Nov 2006 A1
20060267515 Burke et al. Nov 2006 A1
20060290317 McNulty et al. Dec 2006 A1
20070001653 Xu Jan 2007 A1
20070013349 Bassett Jan 2007 A1
20070019613 Frezzolini Jan 2007 A1
20070024257 Boldo Feb 2007 A1
20070027644 Bettenwort et al. Feb 2007 A1
20070029636 Kanemaru et al. Feb 2007 A1
20070030068 Motonobu et al. Feb 2007 A1
20070035975 Dickerson et al. Feb 2007 A1
20070040540 Cutler Feb 2007 A1
20070044837 Simburger et al. Mar 2007 A1
20070075689 Kinder et al. Apr 2007 A1
20070075711 Blanc et al. Apr 2007 A1
20070081364 Andreycak Apr 2007 A1
20070085523 Scoones et al. Apr 2007 A1
20070089778 Home et al. Apr 2007 A1
20070103108 Capp et al. May 2007 A1
20070107767 Hayden et al. May 2007 A1
20070115635 Low et al. May 2007 A1
20070119718 Gibson et al. May 2007 A1
20070121648 Hahn May 2007 A1
20070133241 Mumtaz et al. Jun 2007 A1
20070133421 Young Jun 2007 A1
20070147075 Bang Jun 2007 A1
20070158185 Andelman et al. Jul 2007 A1
20070159866 Siri Jul 2007 A1
20070164612 Wendt et al. Jul 2007 A1
20070164750 Chen et al. Jul 2007 A1
20070165347 Wendt et al. Jul 2007 A1
20070205778 Fabbro et al. Sep 2007 A1
20070209656 Lee Sep 2007 A1
20070211888 Corcoran et al. Sep 2007 A1
20070227574 Cart Oct 2007 A1
20070235071 Work et al. Oct 2007 A1
20070236187 Wai et al. Oct 2007 A1
20070241720 Sakamoto et al. Oct 2007 A1
20070246546 Yoshida Oct 2007 A1
20070247135 Koga Oct 2007 A1
20070247877 Kwon et al. Oct 2007 A1
20070271006 Golden et al. Nov 2007 A1
20070273339 Haines Nov 2007 A1
20070273342 Kataoka et al. Nov 2007 A1
20070273351 Matan Nov 2007 A1
20070284451 Uramoto Dec 2007 A1
20070290636 Beck et al. Dec 2007 A1
20070290656 Keung Dec 2007 A1
20080021707 Bou-Ghazale et al. Jan 2008 A1
20080023061 Clemens et al. Jan 2008 A1
20080024098 Hojo Jan 2008 A1
20080036440 Garmer Feb 2008 A1
20080055941 Victor et al. Mar 2008 A1
20080080177 Chang Apr 2008 A1
20080088184 Tung et al. Apr 2008 A1
20080089277 Alexander et al. Apr 2008 A1
20080097655 Hadar et al. Apr 2008 A1
20080106250 Prior et al. May 2008 A1
20080111529 Shah et al. May 2008 A1
20080115823 Kinsey May 2008 A1
20080121272 Besser et al. May 2008 A1
20080122449 Besser et al. May 2008 A1
20080122518 Besser et al. May 2008 A1
20080136367 Adest et al. Jun 2008 A1
20080142071 Dorn et al. Jun 2008 A1
20080143188 Adest et al. Jun 2008 A1
20080143462 Belisle et al. Jun 2008 A1
20080144294 Adest et al. Jun 2008 A1
20080147335 Adest et al. Jun 2008 A1
20080149167 Liu Jun 2008 A1
20080150366 Adest et al. Jun 2008 A1
20080150484 Kimball et al. Jun 2008 A1
20080164766 Adest et al. Jul 2008 A1
20080179949 Besser et al. Jul 2008 A1
20080186004 Williams Aug 2008 A1
20080191560 Besser et al. Aug 2008 A1
20080191675 Besser et al. Aug 2008 A1
20080192519 Iwata et al. Aug 2008 A1
20080198523 Schmidt et al. Aug 2008 A1
20080205096 Lai et al. Aug 2008 A1
20080218152 Bo Sep 2008 A1
20080224652 Zhu et al. Sep 2008 A1
20080236647 Gibson et al. Oct 2008 A1
20080236648 Klein et al. Oct 2008 A1
20080238195 Shaver et al. Oct 2008 A1
20080238372 Cintra et al. Oct 2008 A1
20080246460 Smith Oct 2008 A1
20080246463 Sinton et al. Oct 2008 A1
20080252273 Woo et al. Oct 2008 A1
20080264470 Masuda et al. Oct 2008 A1
20080266913 Brotto et al. Oct 2008 A1
20080266919 Mallwitz Oct 2008 A1
20080291707 Fang Nov 2008 A1
20080294472 Yamada Nov 2008 A1
20080297963 Lee et al. Dec 2008 A1
20080298608 Wilcox Dec 2008 A1
20080303503 Wolfs Dec 2008 A1
20080304296 NadimpalliRaju et al. Dec 2008 A1
20080304298 Toba et al. Dec 2008 A1
20090012917 Thompson et al. Jan 2009 A1
20090014050 Haaf Jan 2009 A1
20090014057 Croft et al. Jan 2009 A1
20090014058 Croft et al. Jan 2009 A1
20090015071 Iwata et al. Jan 2009 A1
20090020151 Fornage Jan 2009 A1
20090021877 Fornage et al. Jan 2009 A1
20090039852 Fishelov et al. Feb 2009 A1
20090064252 Howarter et al. Mar 2009 A1
20090066357 Fornage Mar 2009 A1
20090066399 Chen et al. Mar 2009 A1
20090069950 Kurokami et al. Mar 2009 A1
20090073726 Babcock Mar 2009 A1
20090078300 Ang et al. Mar 2009 A1
20090080226 Fornage Mar 2009 A1
20090084570 Gherardini et al. Apr 2009 A1
20090097172 Bremicker et al. Apr 2009 A1
20090101191 Beck et al. Apr 2009 A1
20090102440 Coles Apr 2009 A1
20090114263 Powell et al. May 2009 A1
20090120485 Kikinis May 2009 A1
20090121549 Leonard May 2009 A1
20090133736 Powell et al. May 2009 A1
20090140715 Adest et al. Jun 2009 A1
20090141522 Adest et al. Jun 2009 A1
20090145480 Adest et al. Jun 2009 A1
20090146667 Adest et al. Jun 2009 A1
20090146671 Gazit Jun 2009 A1
20090147554 Adest et al. Jun 2009 A1
20090150005 Hadar et al. Jun 2009 A1
20090160258 Allen et al. Jun 2009 A1
20090179500 Ragonese et al. Jul 2009 A1
20090179662 Moulton et al. Jul 2009 A1
20090182532 Stoeber et al. Jul 2009 A1
20090184746 Fahrenbruch Jul 2009 A1
20090189456 Skutt Jul 2009 A1
20090190275 Gilmore et al. Jul 2009 A1
20090195081 Quardt et al. Aug 2009 A1
20090206666 Sella et al. Aug 2009 A1
20090207543 Boniface et al. Aug 2009 A1
20090217965 Dougal et al. Sep 2009 A1
20090224817 Nakamura et al. Sep 2009 A1
20090234692 Powell et al. Sep 2009 A1
20090237042 Glovinski Sep 2009 A1
20090237043 Glovinsky Sep 2009 A1
20090242011 Proisy et al. Oct 2009 A1
20090243547 Andelfinger Oct 2009 A1
20090273241 Gazit et al. Nov 2009 A1
20090278496 Nakao et al. Nov 2009 A1
20090282755 Abbott et al. Nov 2009 A1
20090283129 Foss Nov 2009 A1
20090283130 Gilmore et al. Nov 2009 A1
20090284232 Zhang et al. Nov 2009 A1
20090284998 Ihang et al. Nov 2009 A1
20090295225 Asplund et al. Dec 2009 A1
20090322494 Lee Dec 2009 A1
20090325003 Aberle et al. Dec 2009 A1
20100001587 Casey et al. Jan 2010 A1
20100002349 La Scala et al. Jan 2010 A1
20100013452 Tang et al. Jan 2010 A1
20100020576 Falk Jan 2010 A1
20100026097 Avrutsky et al. Feb 2010 A1
20100026736 Plut Feb 2010 A1
20100038907 Hunt et al. Feb 2010 A1
20100052735 Burkland et al. Mar 2010 A1
20100057267 Liu et al. Mar 2010 A1
20100060000 Scholte-Wassink Mar 2010 A1
20100071742 de Rooij et al. Mar 2010 A1
20100085670 Palaniswami et al. Apr 2010 A1
20100115093 Rice May 2010 A1
20100124027 Handelsman et al. May 2010 A1
20100124087 Falk May 2010 A1
20100126550 Foss May 2010 A1
20100127570 Hadar et al. May 2010 A1
20100127571 Hadar et al. May 2010 A1
20100132757 He et al. Jun 2010 A1
20100132758 Gilmore Jun 2010 A1
20100132761 Echizenya et al. Jun 2010 A1
20100133911 Williams et al. Jun 2010 A1
20100139734 Hadar et al. Jun 2010 A1
20100139743 Hadar et al. Jun 2010 A1
20100141041 Bose et al. Jun 2010 A1
20100147362 King et al. Jun 2010 A1
20100154858 Jain Jun 2010 A1
20100176773 Capel Jul 2010 A1
20100181957 Goeltner Jul 2010 A1
20100191383 Gaul Jul 2010 A1
20100195361 Stem Aug 2010 A1
20100206378 Erickson, Jr. et al. Aug 2010 A1
20100207764 Muhlberger et al. Aug 2010 A1
20100207770 Thiemann Aug 2010 A1
20100208501 Matan et al. Aug 2010 A1
20100214808 Rodriguez Aug 2010 A1
20100217551 Goff et al. Aug 2010 A1
20100229915 Ledenev et al. Sep 2010 A1
20100241375 Kumar et al. Sep 2010 A1
20100244575 Coccia et al. Sep 2010 A1
20100246223 Xuan Sep 2010 A1
20100264736 Mumtaz et al. Oct 2010 A1
20100269430 Haddock Oct 2010 A1
20100277001 Wagoner Nov 2010 A1
20100282290 Schwarze et al. Nov 2010 A1
20100286836 Shaver, II et al. Nov 2010 A1
20100288327 Lisi et al. Nov 2010 A1
20100289337 Stauth et al. Nov 2010 A1
20100294528 Sella et al. Nov 2010 A1
20100294903 Shmukler et al. Nov 2010 A1
20100295680 Dumps Nov 2010 A1
20100297860 Shmukler et al. Nov 2010 A1
20100301991 Sella et al. Dec 2010 A1
20100308662 Schatz et al. Dec 2010 A1
20100309692 Chisenga et al. Dec 2010 A1
20100321148 Gevorkian Dec 2010 A1
20100326809 Lang et al. Dec 2010 A1
20100327657 Kuran Dec 2010 A1
20100327659 Lisi et al. Dec 2010 A1
20100332047 Arditi et al. Dec 2010 A1
20110006743 Fabbro Jan 2011 A1
20110012430 Cheng et al. Jan 2011 A1
20110025130 Hadar et al. Feb 2011 A1
20110031816 Buthker et al. Feb 2011 A1
20110031946 Egan et al. Feb 2011 A1
20110037600 Takehara et al. Feb 2011 A1
20110043172 Dearn Feb 2011 A1
20110045802 Bland et al. Feb 2011 A1
20110049990 Amaratunga et al. Mar 2011 A1
20110050002 De Luca Mar 2011 A1
20110050190 Avrutsky Mar 2011 A1
20110056533 Kuan Mar 2011 A1
20110061705 Croft et al. Mar 2011 A1
20110061713 Powell et al. Mar 2011 A1
20110062784 Wolfs Mar 2011 A1
20110068633 Quardt et al. Mar 2011 A1
20110079263 Avrutsky Apr 2011 A1
20110080147 Schoenlinner et al. Apr 2011 A1
20110083733 Marroquin et al. Apr 2011 A1
20110084553 Adest et al. Apr 2011 A1
20110108087 Croft et al. May 2011 A1
20110114154 Lichy et al. May 2011 A1
20110115295 Moon et al. May 2011 A1
20110121652 Sella et al. May 2011 A1
20110125431 Adest et al. May 2011 A1
20110132424 Rakib Jun 2011 A1
20110133552 Binder et al. Jun 2011 A1
20110139213 Lee Jun 2011 A1
20110140536 Adest et al. Jun 2011 A1
20110161722 Makhota et al. Jun 2011 A1
20110172842 Makhota et al. Jul 2011 A1
20110173276 Eizips et al. Jul 2011 A1
20110181251 Porter et al. Jul 2011 A1
20110181340 Gazit Jul 2011 A1
20110198935 Hinman et al. Aug 2011 A1
20110210610 Mitsuoka et al. Sep 2011 A1
20110210611 Ledenev et al. Sep 2011 A1
20110210612 Leutwein Sep 2011 A1
20110218687 Hadar et al. Sep 2011 A1
20110227411 Arditi Sep 2011 A1
20110232714 Bhavaraju et al. Sep 2011 A1
20110240100 Lu et al. Oct 2011 A1
20110245989 Makhota et al. Oct 2011 A1
20110246338 Eich Oct 2011 A1
20110254372 Haines et al. Oct 2011 A1
20110260866 Avrutsky et al. Oct 2011 A1
20110267859 Chapman Nov 2011 A1
20110271611 Maracci et al. Nov 2011 A1
20110273015 Adest et al. Nov 2011 A1
20110273016 Adest et al. Nov 2011 A1
20110273017 Borup et al. Nov 2011 A1
20110273302 Fornage et al. Nov 2011 A1
20110278955 Signorelli et al. Nov 2011 A1
20110285205 Ledenev et al. Nov 2011 A1
20110290317 Naumovitz et al. Dec 2011 A1
20110291486 Adest et al. Dec 2011 A1
20110298288 Cho et al. Dec 2011 A1
20110301772 Zuercher et al. Dec 2011 A1
20110304204 Avrutsky et al. Dec 2011 A1
20110304213 Avrutsky et al. Dec 2011 A1
20110304215 Avrutsky et al. Dec 2011 A1
20110316346 Porter et al. Dec 2011 A1
20120007613 Gazit Jan 2012 A1
20120019966 DeBoer Jan 2012 A1
20120026763 Humphrey et al. Feb 2012 A1
20120026769 Schroeder et al. Feb 2012 A1
20120032515 Ledenev et al. Feb 2012 A1
20120033392 Golubovic et al. Feb 2012 A1
20120033463 Rodriguez Feb 2012 A1
20120039099 Rodriguez Feb 2012 A1
20120043818 Stratakos et al. Feb 2012 A1
20120044014 Stratakos et al. Feb 2012 A1
20120048325 Matsuo et al. Mar 2012 A1
20120049627 Matsuo et al. Mar 2012 A1
20120049801 Chang Mar 2012 A1
20120056483 Capp et al. Mar 2012 A1
20120063177 Garrity Mar 2012 A1
20120080943 Phadke Apr 2012 A1
20120081009 Shteynberg et al. Apr 2012 A1
20120081933 Garrity Apr 2012 A1
20120081934 Garrity et al. Apr 2012 A1
20120081937 Phadke Apr 2012 A1
20120087159 Chapman et al. Apr 2012 A1
20120091810 Aiello et al. Apr 2012 A1
20120091817 Seymour et al. Apr 2012 A1
20120098344 Bergveld et al. Apr 2012 A1
20120104863 Yuan May 2012 A1
20120113554 Paoletti et al. May 2012 A1
20120119584 Hadar et al. May 2012 A1
20120133372 Tsai et al. May 2012 A1
20120138123 Newdoll et al. Jun 2012 A1
20120139343 Adest et al. Jun 2012 A1
20120146420 Wolfs Jun 2012 A1
20120146583 Gaul et al. Jun 2012 A1
20120161526 Huang et al. Jun 2012 A1
20120161528 Mumtaz et al. Jun 2012 A1
20120169124 Nakashima et al. Jul 2012 A1
20120174961 Larson et al. Jul 2012 A1
20120175961 Har-Shai et al. Jul 2012 A1
20120175963 Adest et al. Jul 2012 A1
20120187769 Spannhake et al. Jul 2012 A1
20120194003 Schmidt et al. Aug 2012 A1
20120199172 Avrutsky Aug 2012 A1
20120212066 Adest et al. Aug 2012 A1
20120215367 Eizips et al. Aug 2012 A1
20120217973 Avrutsky Aug 2012 A1
20120240490 Gangemi Sep 2012 A1
20120253533 Eizips et al. Oct 2012 A1
20120253541 Arditi et al. Oct 2012 A1
20120255591 Arditi et al. Oct 2012 A1
20120271576 Kamel et al. Oct 2012 A1
20120274145 Taddeo Nov 2012 A1
20120274264 Mun et al. Nov 2012 A1
20120280571 Hargis Nov 2012 A1
20130002335 DeGraaff Jan 2013 A1
20130026839 Grana Jan 2013 A1
20130026840 Arditi et al. Jan 2013 A1
20130026842 Arditi et al. Jan 2013 A1
20130026843 Arditi et al. Jan 2013 A1
20130038124 Newdoll et al. Feb 2013 A1
20130049710 Kraft et al. Feb 2013 A1
20130063119 Lubomirsky Mar 2013 A1
20130082724 Noda et al. Apr 2013 A1
20130094262 Avrutsky Apr 2013 A1
20130134790 Amaratunga et al. May 2013 A1
20130181533 Capp et al. Jul 2013 A1
20130192657 Hadar et al. Aug 2013 A1
20130193765 Yoscovich Aug 2013 A1
20130222144 Hadar et al. Aug 2013 A1
20130229834 Garrity et al. Sep 2013 A1
20130229842 Garrity Sep 2013 A1
20130234518 Mumtaz et al. Sep 2013 A1
20130235637 Rodriguez Sep 2013 A1
20130279210 Chisenga et al. Oct 2013 A1
20130294126 Garrity et al. Nov 2013 A1
20130307556 Ledenev et al. Nov 2013 A1
20130313909 Storbeck et al. Nov 2013 A1
20130320778 Hopf et al. Dec 2013 A1
20130321013 Pisklak et al. Dec 2013 A1
20130332093 Adest et al. Dec 2013 A1
20130335861 Laschinski et al. Dec 2013 A1
20140077756 Kataoka et al. Mar 2014 A1
20140097808 Clark et al. Apr 2014 A1
20140119076 Chang May 2014 A1
20140167715 Wu et al. Jun 2014 A1
20140191583 Chisenga et al. Jul 2014 A1
20140233136 Heerdt Aug 2014 A1
20140246915 Mumtaz Sep 2014 A1
20140246927 Mumtaz Sep 2014 A1
20140252859 Chisenga et al. Sep 2014 A1
20140265551 Willis Sep 2014 A1
20140265579 Mumtaz Sep 2014 A1
20140265629 Gazit et al. Sep 2014 A1
20140265638 Orr et al. Sep 2014 A1
20140306543 Garrity et al. Oct 2014 A1
20140327313 Arditi et al. Nov 2014 A1
20150022006 Garrity et al. Jan 2015 A1
20150028683 Hadar et al. Jan 2015 A1
20150028692 Makhota et al. Jan 2015 A1
20150188415 Abido et al. Jul 2015 A1
20150263609 Weida Sep 2015 A1
20150364918 Singh et al. Dec 2015 A1
20150381111 Nicolescu et al. Dec 2015 A1
20160006392 Hoft Jan 2016 A1
20160036235 Getsla Feb 2016 A1
20160172900 Welch, Jr. Jun 2016 A1
20160211841 Harrison Jul 2016 A1
20160241039 Cheng et al. Aug 2016 A1
20160276820 Olivas et al. Sep 2016 A1
20170184343 Freer et al. Jun 2017 A1
20170278375 Galin et al. Sep 2017 A1
20170331325 Ristau Nov 2017 A1
Foreign Referenced Citations (581)
Number Date Country
2073800 Sep 2000 AU
2005262278 Jan 2006 AU
101951190 Jan 2011 AU
2012225199 Oct 2013 AU
1183574 Mar 1985 CA
2063243 Dec 1991 CA
2301657 Mar 1999 CA
2394761 Jun 2001 CA
2658087 Jun 2001 CA
2443450 Mar 2005 CA
2572452 Jan 2006 CA
2613038 Jan 2007 CA
2704605 May 2009 CA
2071396 Feb 1991 CN
2305016 Jan 1999 CN
1236213 Nov 1999 CN
1244745 Feb 2000 CN
1262552 Aug 2000 CN
1064487 Apr 2001 CN
1309451 Aug 2001 CN
1362655 Aug 2002 CN
2514538 Oct 2002 CN
1122905 Oct 2003 CN
1474492 Feb 2004 CN
1523726 Aug 2004 CN
1185782 Jan 2005 CN
2672938 Jan 2005 CN
1588773 Mar 2005 CN
2706955 Jun 2005 CN
1245795 Mar 2006 CN
1787717 Jun 2006 CN
1838191 Sep 2006 CN
1841254 Oct 2006 CN
1841823 Oct 2006 CN
1892239 Jan 2007 CN
1902809 Jan 2007 CN
1929276 Mar 2007 CN
1930925 Mar 2007 CN
1933315 Mar 2007 CN
2891438 Apr 2007 CN
101030752 Sep 2007 CN
101050770 Oct 2007 CN
101107712 Jan 2008 CN
100371843 Feb 2008 CN
101128974 Feb 2008 CN
101136129 Mar 2008 CN
101180781 May 2008 CN
101257221 Sep 2008 CN
100426175 Oct 2008 CN
201167381 Dec 2008 CN
201203438 Mar 2009 CN
101488271 Jul 2009 CN
101521459 Sep 2009 CN
101523230 Sep 2009 CN
101672252 Mar 2010 CN
101697462 Apr 2010 CN
101779291 Jul 2010 CN
101847939 Sep 2010 CN
201601477 Oct 2010 CN
201623478 Nov 2010 CN
101902051 Dec 2010 CN
101904015 Dec 2010 CN
201663167 Dec 2010 CN
101939660 Jan 2011 CN
101951011 Jan 2011 CN
101953051 Jan 2011 CN
101953060 Jan 2011 CN
101976855 Feb 2011 CN
101976952 Feb 2011 CN
101980409 Feb 2011 CN
102089883 Jun 2011 CN
102148584 Aug 2011 CN
201926948 Aug 2011 CN
201956938 Aug 2011 CN
202034903 Nov 2011 CN
102273039 Dec 2011 CN
202103601 Jan 2012 CN
201210007491.3 Jan 2012 CN
102362550 Feb 2012 CN
202178274 Mar 2012 CN
102474112 May 2012 CN
201210334311.2 Sep 2012 CN
201310004123.8 Jan 2013 CN
201310035223.7 Jan 2013 CN
201310066888.4 Mar 2013 CN
202871823 Apr 2013 CN
203367304 Dec 2013 CN
2014100950254 Mar 2014 CN
2014100981549 Mar 2014 CN
2013800294507 Dec 2014 CN
2015101756928 Apr 2015 CN
201510423458.2 Jul 2015 CN
2015105785864 Sep 2015 CN
2016104040295 Jun 2016 CN
2016109468355 Oct 2016 CN
201611078040.3 Nov 2016 CN
2017102191346 Apr 2017 CN
2017103626792 May 2017 CN
2017104145944 Jun 2017 CN
1161639 Jan 1964 DE
3236071 Jan 1984 DE
3525630 Jan 1987 DE
3729000 Mar 1989 DE
4019710 Jan 1992 DE
4032569 Apr 1992 DE
4041672 Jun 1992 DE
4232356 Mar 1994 DE
4325436 Feb 1995 DE
4328511 Mar 1995 DE
19515786 Nov 1995 DE
19502762 Aug 1996 DE
19609189 Sep 1997 DE
19618882 Nov 1997 DE
19701897 Jul 1998 DE
19718046 Nov 1998 DE
19732218 Mar 1999 DE
19737286 Mar 1999 DE
19838230 Feb 2000 DE
19846818 Apr 2000 DE
19904561 Aug 2000 DE
19928809 Jan 2001 DE
019937410 Feb 2001 DE
19961705 Jul 2001 DE
10064039 Dec 2001 DE
10060108 Jun 2002 DE
10103431 Aug 2002 DE
10136147 Feb 2003 DE
10219956 Apr 2003 DE
10222621 Nov 2003 DE
202004001246 Apr 2004 DE
10345302 Apr 2005 DE
102004043478 Apr 2005 DE
102004053942 May 2006 DE
102004037446 Jun 2006 DE
69734495 Jul 2006 DE
69735169 Aug 2006 DE
102005012213 Aug 2006 DE
102005018173 Oct 2006 DE
20 2005 020161 Nov 2006 DE
102005036153 Dec 2006 DE
102005030907 Jan 2007 DE
102005032864 Jan 2007 DE
102006023563 Nov 2007 DE
102006026073 Dec 2007 DE
202007002077 Apr 2008 DE
102006060815 Jun 2008 DE
102007051134 Mar 2009 DE
202008012345 Mar 2009 DE
102007037130 Apr 2009 DE
102007050031 Apr 2009 DE
202009007318 Aug 2009 DE
102008057874 May 2010 DE
102009051186 May 2010 DE
102009022569 Dec 2010 DE
102010023549 Dec 2011 DE
102013101314 Aug 2014 DE
102013106255 Dec 2014 DE
102013106808 Dec 2014 DE
0027405 Apr 1981 EP
169673 Jan 1986 EP
0178757 Apr 1986 EP
0206253 Dec 1986 EP
0231211 Aug 1987 EP
0293219 Nov 1988 EP
0340006 Nov 1989 EP
0418612 Mar 1991 EP
419093 Mar 1991 EP
420295 Apr 1991 EP
0521467 Jan 1993 EP
0576271 Dec 1993 EP
0577334 Jan 1994 EP
604777 Jul 1994 EP
0628901 Dec 1994 EP
0642199 Mar 1995 EP
0670915 Sep 1995 EP
677749 Oct 1995 EP
756178 Jan 1997 EP
0756372 Jan 1997 EP
0780750 Jun 1997 EP
0809293 Nov 1997 EP
827254 Mar 1998 EP
0895146 Feb 1999 EP
0906660 Apr 1999 EP
0947905 Oct 1999 EP
1012886 Jun 2000 EP
1024575 Aug 2000 EP
1034465 Sep 2000 EP
1035640 Sep 2000 EP
1039361 Sep 2000 EP
1039620 Sep 2000 EP
1039621 Sep 2000 EP
1047179 Oct 2000 EP
1130770 Sep 2001 EP
1143594 Oct 2001 EP
1187291 Mar 2002 EP
1235339 Aug 2002 EP
1239573 Sep 2002 EP
1239576 Sep 2002 EP
1254505 Nov 2002 EP
1271742 Jan 2003 EP
1330009 Jul 2003 EP
1339153 Aug 2003 EP
1369983 Dec 2003 EP
1376706 Jan 2004 EP
1388774 Feb 2004 EP
1400988 Mar 2004 EP
1407534 Apr 2004 EP
1418482 May 2004 EP
1429393 Jun 2004 EP
1442473 Aug 2004 EP
1447561 Aug 2004 EP
1457857 Sep 2004 EP
1463188 Sep 2004 EP
1475882 Nov 2004 EP
1503490 Feb 2005 EP
1521345 Apr 2005 EP
1526633 Apr 2005 EP
1531542 May 2005 EP
1531545 May 2005 EP
1532727 May 2005 EP
1552563 Jul 2005 EP
1562281 Aug 2005 EP
1580862 Sep 2005 EP
1603212 Dec 2005 EP
1610571 Dec 2005 EP
1623495 Feb 2006 EP
1642355 Apr 2006 EP
0964457 May 2006 EP
1657557 May 2006 EP
1657797 May 2006 EP
1691246 Aug 2006 EP
1706937 Oct 2006 EP
1708070 Oct 2006 EP
1716272 Nov 2006 EP
1728413 Dec 2006 EP
1734373 Dec 2006 EP
1750193 Feb 2007 EP
1766490 Mar 2007 EP
1782146 May 2007 EP
1785800 May 2007 EP
1842121 Oct 2007 EP
1887675 Feb 2008 EP
1901419 Mar 2008 EP
1902349 Mar 2008 EP
1911101 Apr 2008 EP
1914857 Apr 2008 EP
2048679 Apr 2009 EP
2061088 May 2009 EP
2092625 Aug 2009 EP
2092631 Aug 2009 EP
2130286 Dec 2009 EP
2135296 Dec 2009 EP
2135348 Dec 2009 EP
2144133 Jan 2010 EP
2206159 Jul 2010 EP
08856716.9 Jul 2010 EP
08857835.6 Jul 2010 EP
2232690 Sep 2010 EP
2234237 Sep 2010 EP
09725443.7 Oct 2010 EP
2249457 Nov 2010 EP
2256819 Dec 2010 EP
2315328 Apr 2011 EP
2355268 Aug 2011 EP
2374190 Oct 2011 EP
2386122 Nov 2011 EP
2393178 Dec 2011 EP
2395648 Dec 2011 EP
12150819.6 Jan 2012 EP
12176089.6 Jul 2012 EP
12176618.2 Jul 2012 EP
12177067.1 Jul 2012 EP
2495766 Sep 2012 EP
12183811.4 Sep 2012 EP
12188944.8 Oct 2012 EP
2533299 Dec 2012 EP
10740722.3 Dec 2012 EP
2549635 Jan 2013 EP
13150911.9 Jan 2013 EP
13152966.1 Jan 2013 EP
13152967.9 Jan 2013 EP
2561596 Feb 2013 EP
13157876.7 Mar 2013 EP
2615644 Jul 2013 EP
2621045 Jul 2013 EP
12707899.6 Aug 2013 EP
2666222 Nov 2013 EP
14151651.8 Jan 2014 EP
14159457.2 Mar 2014 EP
14159696.5 Mar 2014 EP
2722979 Apr 2014 EP
2779251 Sep 2014 EP
13800859.4 Dec 2014 EP
15183689.7 Sep 2015 EP
17171489.2 May 2016 EP
16183846.1 Aug 2016 EP
17165027.8 Apr 2017 EP
2249147 Mar 2006 ES
2249149 Mar 2006 ES
2796216 Jan 2001 FR
2819653 Jul 2002 FR
2894401 Jun 2007 FR
1211885 Nov 1970 GB
1261838 Jan 1972 GB
1571681 Jul 1980 GB
1597508 Sep 1981 GB
2128017 Apr 1984 GB
2327208 Jan 1999 GB
2339465 Jan 2000 GB
2376801 Dec 2002 GB
2399463 Sep 2004 GB
2399465 Sep 2004 GB
2415841 Jan 2006 GB
2419968 May 2006 GB
2421847 Jul 2006 GB
1109618.7 Dec 2008 GB
2476508 Jun 2011 GB
2480015 Nov 2011 GB
2480015 Nov 2011 GB
2482653 Feb 2012 GB
2483317 Mar 2012 GB
2485527 May 2012 GB
2486408 Jun 2012 GB
2487368 Jul 2012 GB
2497275 Jun 2013 GB
2498365 Jul 2013 GB
2498790 Jul 2013 GB
2498791 Jul 2013 GB
2499991 Sep 2013 GB
61065320 Apr 1986 JP
H01311874 Dec 1989 JP
H04219982 Aug 1992 JP
H04364378 Dec 1992 JP
8009557 Jan 1996 JP
H0897460 Apr 1996 JP
H08116628 May 1996 JP
H08185235 Jul 1996 JP
H08227324 Sep 1996 JP
H08316517 Nov 1996 JP
H08317664 Nov 1996 JP
H094692 Jan 1997 JP
H09148611 Jun 1997 JP
H09275644 Oct 1997 JP
2676789 Nov 1997 JP
H1017445 Jan 1998 JP
H1075580 Mar 1998 JP
H10201086A Jul 1998 JP
H10308523 Nov 1998 JP
11041832 Feb 1999 JP
H1146457 Feb 1999 JP
11103538 Apr 1999 JP
2892183 May 1999 JP
11206038 Jul 1999 JP
H11266545 Sep 1999 JP
11289891 Oct 1999 JP
11318042 Nov 1999 JP
2000020150 Jan 2000 JP
3015512 Mar 2000 JP
2000160789 Jun 2000 JP
2000166097 Jun 2000 JP
2000174307 Jun 2000 JP
2000232791 Aug 2000 JP
2000232793 Aug 2000 JP
2000316282 Nov 2000 JP
2000324852 Nov 2000 JP
2000339044 Dec 2000 JP
2000341974 Dec 2000 JP
2000347753 Dec 2000 JP
2000358330 Dec 2000 JP
2001060120 Mar 2001 JP
2001075662 Mar 2001 JP
2001178145 Jun 2001 JP
2001189476 Jul 2001 JP
2001224142 Aug 2001 JP
2001250964 Sep 2001 JP
2002073184 Mar 2002 JP
2002238246 Aug 2002 JP
2002270876 Sep 2002 JP
2002300735 Oct 2002 JP
2002339591 Nov 2002 JP
2002354677 Dec 2002 JP
2003102134A Apr 2003 JP
2003124492 Apr 2003 JP
2003134661 May 2003 JP
2003134667 May 2003 JP
2003282916 Oct 2003 JP
2003289674 Oct 2003 JP
2004055603 Feb 2004 JP
2004111754 Apr 2004 JP
2004194500 Jul 2004 JP
2004260944 Sep 2004 JP
2004312994 Nov 2004 JP
2004334704 Nov 2004 JP
3656531 Jun 2005 JP
2005192314 Jul 2005 JP
2005251039 Sep 2005 JP
2006041440 Feb 2006 JP
2006262619 Sep 2006 JP
2006278755 Oct 2006 JP
2007058845 Mar 2007 JP
2007104872 Apr 2007 JP
4174227H Oct 2008 JP
2010-537134 May 2010 JP
2010-146047 Jul 2010 JP
2010245532 Oct 2010 JP
2011-249790 Dec 2011 JP
2012511299 May 2012 JP
2012178535 Sep 2012 JP
20010044490 Jun 2001 KR
20040086088 Oct 2004 KR
100468127 Jan 2005 KR
200402282 Nov 2005 KR
20060060825 Jun 2006 KR
100725755 May 2007 KR
100912892 Aug 2009 KR
101073143 Oct 2011 KR
1011483 Sep 2000 NL
2004100344 Nov 2004 NO
2005112551 Dec 2005 NO
2006079503 Aug 2006 NO
2006089778 Aug 2006 NO
2007010326 Jan 2007 NO
2007020419 Feb 2007 NO
2009072075 Jun 2009 NO
2009073867 Jun 2009 NO
2010065043 Jun 2010 NO
2010134057 Nov 2010 NO
497326 Aug 2002 TW
200913291 Mar 2009 TW
8202134 Jun 1982 WO
1982002134 Jun 1982 WO
1984003402 Aug 1984 WO
1988004801 Jun 1988 WO
1992007418 Apr 1992 WO
1993013587 Jul 1993 WO
9525374 Sep 1995 WO
9534121 Dec 1995 WO
1996007130 Mar 1996 WO
1996013093 May 1996 WO
1998023021 May 1998 WO
1999028801 Jun 1999 WO
0000839 Jan 2000 WO
0021178 Apr 2000 WO
0075947 Dec 2000 WO
0077522 Dec 2000 WO
0113502 Feb 2001 WO
01047095 Jun 2001 WO
0231517 Apr 2002 WO
02056126 Jul 2002 WO
2002073785 Sep 2002 WO
0278164 Oct 2002 WO
02078164 Oct 2002 WO
02093655 Nov 2002 WO
03012569 Feb 2003 WO
2003012569 Feb 2003 WO
03026114 Mar 2003 WO
2003050938 Jun 2003 WO
2003071655 Aug 2003 WO
03084041 Oct 2003 WO
2003098703 Nov 2003 WO
2004001942 Dec 2003 WO
2004006342 Jan 2004 WO
2004008619 Jan 2004 WO
2004023278 Mar 2004 WO
2004053993 Jun 2004 WO
2004090993 Oct 2004 WO
2004098261 Nov 2004 WO
2004100348 Nov 2004 WO
2004107543 Dec 2004 WO
2005015584 Feb 2005 WO
2005027300 Mar 2005 WO
2005053189 Jun 2005 WO
2005069096 Jul 2005 WO
2005076444 Aug 2005 WO
2005076445 Aug 2005 WO
2005089030 Sep 2005 WO
2005119278 Dec 2005 WO
2005119609 Dec 2005 WO
2005124498 Dec 2005 WO
2006002380 Jan 2006 WO
2006005125 Jan 2006 WO
2006007198 Jan 2006 WO
2006011071 Feb 2006 WO
2006011359 Feb 2006 WO
2006013600 Feb 2006 WO
2006048688 May 2006 WO
2006048689 May 2006 WO
2006074561 Jul 2006 WO
2006071436 Jul 2006 WO
2006078685 Jul 2006 WO
2006110613 Oct 2006 WO
2006125664 Nov 2006 WO
2006130520 Dec 2006 WO
2007006564 Jan 2007 WO
2007007360 Jan 2007 WO
2007048421 May 2007 WO
2007072517 Jun 2007 WO
2007073951 Jul 2007 WO
2007080429 Jul 2007 WO
2007084196 Jul 2007 WO
2007090476 Aug 2007 WO
2007113358 Oct 2007 WO
2007124518 Nov 2007 WO
2008008528 Jan 2008 WO
2008026207 Mar 2008 WO
2008046370 Apr 2008 WO
2008077473 Jul 2008 WO
2008097591 Aug 2008 WO
2008119034 Oct 2008 WO
2008121266 Oct 2008 WO
2008125915 Oct 2008 WO
2008132551 Nov 2008 WO
2008132553 Nov 2008 WO
2008142480 Nov 2008 WO
2009006879 Jan 2009 WO
2009007782 Jan 2009 WO
2009011780 Jan 2009 WO
2009020917 Feb 2009 WO
2009026602 Mar 2009 WO
2009046533 Apr 2009 WO
2009051221 Apr 2009 WO
2009051222 Apr 2009 WO
2009051853 Apr 2009 WO
2009051870 Apr 2009 WO
2009059877 May 2009 WO
2009056957 May 2009 WO
2009059028 May 2009 WO
2009064683 May 2009 WO
2009072077 Jun 2009 WO
2009073995 Jun 2009 WO
2009075985 Jul 2009 WO
2009114341 Sep 2009 WO
2009118682 Oct 2009 WO
2009118683 Oct 2009 WO
2009073868 Nov 2009 WO
2009118683 Nov 2009 WO
2009136358 Nov 2009 WO
2009118682 Dec 2009 WO
2009155392 Dec 2009 WO
2010002960 Jan 2010 WO
2010003941 Jan 2010 WO
2009140536 Feb 2010 WO
2009140543 Feb 2010 WO
2009140551 Feb 2010 WO
2010014116 Feb 2010 WO
2010020385 Feb 2010 WO
2010037393 Apr 2010 WO
2010071855 Jun 2010 WO
2010062662 Jun 2010 WO
2010065388 Jun 2010 WO
2010072717 Jul 2010 WO
2010078303 Jul 2010 WO
2010080672 Jul 2010 WO
2010091025 Aug 2010 WO
2010094012 Aug 2010 WO
2010118503 Oct 2010 WO
2010132369 Nov 2010 WO
20100134057 Nov 2010 WO
2011005339 Jan 2011 WO
2011011711 Jan 2011 WO
2011014275 Feb 2011 WO
2011017721 Feb 2011 WO
2011019936 Feb 2011 WO
2011023732 Mar 2011 WO
2011028456 Mar 2011 WO
2011028457 Mar 2011 WO
2011044641 Apr 2011 WO
2011059067 May 2011 WO
2011074025 Jun 2011 WO
2011076707 Jun 2011 WO
2011085259 Jul 2011 WO
2011089607 Jul 2011 WO
2011119587 Sep 2011 WO
2011133843 Oct 2011 WO
2011133928 Oct 2011 WO
2011151672 Dec 2011 WO
2013015921 Jan 2013 WO
1998023021 Jul 2013 WO
2013130563 Sep 2013 WO
PCTUS1731571 May 2017 WO
2017125375 Jul 2017 WO
Non-Patent Literature Citations (333)
Entry
Chinese Office Action—CN Appl. 201310035221.8—dated Aug. 11, 2016.
Zhou, Wilson and Theo Phillips—“Industry's First 4-Switch Buck-Boost Controller Achieves Highest Efficiency Using a Single Inducutor—Design Note 369”—Linear Technology Corporation—www.linear.com—2005.
“Micropower Synchronous Buck-Boost DC/DC Converter”—Linear Technology Corporation—www.linear.com/LTC3440—2001.
Caricchi, F. et al—20 kW Water-Cooled Prototype of a Buck-Boost Bidirectional DC-DC Converter Topology for Electrical Vehicle Motor Drives—University of Rome—IEEE 1995—pp. 887-892.
Roy, Arunanshu et al—“Battery Charger using Bicycle”—EE318 Electronic Design Lab Project Report, EE Dept, IIT Bombay, Apr. 2006.
Viswanathan, K. et al—Dual-Mode Control of Cascade Buck-Boost PFC Converter—35th Annual IEEE Power Electronics Specialists Conference—Aachen, Germany, 2004.
Chang, Pei et al.—“Hardware Design Experiences in ZebraNet”—Department of Electrical Engineering, Princeton University—SenSys '04, Nov. 3-5, 2004.
“High Efficiency, Synchronous, 4-Switch Buck-Boost Controller”—Linear Technology Corporation—www.linear.com/LTC3780—2005.
Chomsuwan, Komkrit et al. “Photovoltaic Grid-Connected Inverter Using Two-Switch Buck-Boost Converter”—Department of Electrical Engineering, King Mongkut's Institute of Technology Ladkrabang, Thailand, National Science and Technology Development Agency, Thailand—IEEE—2002.
Midya, Pallab et al. —“Buck or Boost Tracking Power Converter”—IEEE Power Electronics Letters, vol. 2, No. 4—Dec. 2004.
Chinese Office Action—CN Appl. 201510111948.9—dated Sep. 14, 2016.
Chinese Office Action—CN Appl. 201310066888.4—dated Nov. 2, 2016.
“Power-Switching Converters—The Principle, Simulation and Design of the Switching Power (the Second Edition)”, Ang, Oliva, et al., translated by Xu Dehong, et al., China Machine Press, Aug. 2010, earlier publication 2005.
European Notice of Opposition—EP Patent 2092625—dated Nov. 29, 2016.
Vishay Siliconix “Si 7884DP—n-Channel 40-V (D-S) MOSFET” (2003).
Chinese Office Action—CN 201510423458.2—dated Jan. 3, 2017 (english translation provided).
Chinese Office Action—CN 201410098154.9—dated Mar. 3, 2017 (enligsh translation provided).
European Search Report—EP Appl. 13150911.9—dated Apr. 7, 2017.
Howard et al, “Relaxation on a Mesh: a Formalism for Generalized Localization.” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001). Wailea, Hawaii, Oct. 2001.
Chinese Office Action and Search Report—CN 201510578586.4—dated Apr. 19, 2017.
QT Technical Application Papers, “ABB Circuit-Breakers for Direct current Applications”, ABB SACE S.p. A., An ABB Group Company, L.V. Breakers, Via Baioni, 35, 24123 Bergamo-Italy, Tel.: +39 035.395.111—Telefax: +39 035.395.306-433, Sep. 2007.
Woyte, et al., “Mains Monitoring and Protection in a European Context”, 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, Oct. 22-26, 2001, ACHIM, WOYTE, et al., pp. 1-4.
“Implementation and testing of Anti-Islanding Algorithms for IEEE 929-2000 Compliance of Single Phase Photovoltaic Inverters”, Raymond M. Hudson, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, May 19-24, 2002.
Fairchild Semiconductor, Application Note 9016, IGBT Basics 1, by K.S. OH Feb. 1, 2001.
“Disconnect Switches in Photovoltaic Applications”, ABB, Inc., Low Voltage Control Products & Systems, 1206 Hatton, Road, Wichita Falls, TX 86302, Phone 888-385-1221, 940-397-7000, Fai: 940-397-7085, 1SXU30119730201, Nov. 2009.
Walker, “A DC Circuit Breaker for an Electric Vehicle Battery Pack”, Australasian Universities Power Engineering Conference and IEAust Electric Energy Conference, Sep. 26-29, 1999.
Combined Search and Examination Report for GB1018872.0 dated Apr. 15, 2011, 2 pages.
International Search Report and Opinion of International Patent Application PCT/2009/051221, dated Oct. 19, 2009.
International Search Report and Opinion of International Patent Application PCT/2009/051222, dated Oct. 7, 2009.
Communication in EP07874025.5 dated Aug. 17, 2011.
IPRP for PCT/IB2008/055095 dated Jun. 8, 2010, with Written Opinion.
ISR for PCT/IB2008/055095 dated Apr. 30, 2009.
ISR for PCT/IL07/01064 dated Mar. 25, 2008.
IPRP for PCT/IB2007/004584 dated Jun. 10, 2009, with Written Opinion.
IPRP for PCT/IB2007/004591 dated Jul. 13, 2010, with Written Opinion.
IPRP for PCT/IB2007/004643 dated Jun. 10, 2009, with Written Opinion.
Written Opinion for PCT/IB2008/055092 submitted with IPRP dated Jun. 8, 2010.
IPRP for PCT/US2008/085754 dated Jun. 8, 2010, with Written Opinion dated Jan. 21, 2009.
IPRP for PCT/US2008/085755 dated Jun. 8, 2010, with Written Opinion dated Jan. 20, 2009.
IPRP for PCT/IB2009/051221 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/1B2009/051222 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051831 dated Nov. 9, 2010, with Written Opinion.
IPRP for PCT/US2008/085736 dated Jun. 7, 2011, with Written Opinion.
IPRP for PCT/1B2010/052287 dated Nov. 22, 2011, with Written Opinion.
ISR for PCT/IB2010/052413 dated Sep. 7, 2010.
UK Intellectual Property Office, Application No. GB1109618.7, Patents Act 1977, Examination Report 18(3), dated Sep. 16, 2011.
UK Intellectual Property Office, Patents Act 1977: Patents Rules Notification of Grant: Patent Serial No. 3B2480015, Nov. 29, 2011.
Walker, et al. “PV String Per-Module Maximum Power Point Enabling Converters”, School of Information Technology and Electrical Engineering The University of Queensland, Sep. 28, 2003.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, 33rd Annual IEEE Power Electronics Specialists Conference. PESC 2002. Conference Proceedings. Cairns, Queensland, Australia, Jun. 23-27, 2002; [Annual Power Electronics Specialists Conference], New York, NY: IEEE US, vol. 1, Jun. 23, 2002, pp. 24-29, XP010596060 ISBN: 978-0-7803-7262-7, figure 1.
Baggio, “Quasi-ZVS Activity Auxiliary Commutation Circuit for Two Switches Forward Converter”, 32nd Annual IEEE Power Electronics Specialists Conference. PESC 2001. Conference Proceedings. Vancouver, Canada, Jun. 17-21, 2001; [Annual Power Electronics Specialists Conference] New York, NY: IEEE, US.
Ilic, “Interleaved Zero-Current-Transition Buck Converter”, IEEE Transactions on Industry Applications, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 6, Nov. 1, 2007, pp. 1619-1627, XP011197477 ISSN: 0093-9994, pp. 1619-1922.
Lee: “Novel Zero-Voltage-Transition and Zero-Current-Transition Pulse-Width-Modulation Converters”, Power Electronics Specialists Conference, 1997, PESC '97, Record, 28th Annual IEEE St. Louis, MO, USA, Jun. 22-27, 1997, New York, NY, USA IEEE, US, vol. 1, Jun. 22, 1997, pp. 233-239, XP010241553, ISBN: 978-0-7803-3840-1, pp. 233-236.
Sakamoto, “Switched Snubber for High-Frequency Switching Converters”, Electronics & Communications in Japan, Part 1—Communications, Wiley, Hoboken, NJ, US, vol. 76, No. 2, Feb. 1, 1993, pp. 30-38, XP000403018 ISSN: 8756-6621, pp. 30-35.
Duarte, “A Family of ZVX-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis and Experimentation”, Telecommunications Energy Conference, 1995, INTELEC '95, 17th International The Hague, Netherlands, Oct. 29-Nov. 1, 1995, New York, NY, US, IEEE, US, Oct. 29, 1995, pp. 502-509, XP010161283 ISBN: 378-0-7803-2750-4 p. 503-504.
IPRP for PCT/IL2007/001064 dated Mar. 17, 2009, with Written Opinion dated Mar. 25, 2008.
IPRP for PCT/IB2007/004586 dated Jun. 10, 2009, with Written Opinion.
Gao, et al., “Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions”, IEEE Transactions on Industrial Electronics, vol. 56, No. 5, May 2009, pp. 1548-1556.
IPRP PCT/IB2007/004610—date of issue Jun. 10, 2009.
Extended European Search Report—EP12176089.6—dated Nov. 8, 2012.
Gwon-Jong Yu et al: “Maximum power point tracking with temperature compensation of photovoltaic for air conditioning system with fuzzy controller”, 19960513; 19960513-19960517, May 13, 1996 (May 13, 1995), pp. 1429-1432, XP010208423.
Extended European Search Report—EP12177067.1—dated Dec. 7, 2012.
GB Combined Search and Examination Report—GB1200423.0—dated Apr. 30, 2012.
GB Combined Search and Examination Report—GB1201499.9—dated May 28, 2012.
GB Combined Search and Examination Report—GB1201506.1—dated May 22, 2012.
“Study of Energy Storage Capacitor Reduction for Single Phase PWM Rectifier”, Ruxi Wang et al., Virginia Polytechnic Institute and State University, Feb. 2009.
“Multilevel Inverters: A Survey of Topologies, Controls, and Applications”, José Rodriguez et al., IEEE Transactions on Industrial Electronics, vol. 49, No. 4, Aug. 2002.
Extended European Search Report—EP 08878650.4—dated Mar. 28, 2013.
Satcon Solstice—Satcon Solstice 100 kW System Solution Sheet—2010.
John Xue, “PV Module Series String Balancing Converters”, University of Queensland—School of Information Technology & Electrical Engineering, Nov. 6, 2002.
Robert W. Erickson, “Future of Power Electronics for Photovoltaics”, IEEE Applied Power Electronics Conference, Feb. 2009.
GB Combined Search and Examination Report—GB1203763.6—dated Jun. 25, 2012.
Mohammad Reza Amini et al., “Quasi Resonant DC Link Inverter with a Simple Auxiliary Circuit”, Journal of Power Electronics, vol. 11, No. 1, Jan. 2011.
Khairy Fathy et al., “A Novel Quasi-Resonant Snubber-Assisted ZCS-PWM DC-DC Converter with High Frequency Link”, Journal of Power Electronics, vol. 7, No. 2, Apr. 2007.
Cheng K.W.E., “New Generation of Switched Capacitor Converters”, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Horn, Hong Kong, Power Electronics Conference, 1998, PESC 98.
Per Karlsson, “Quasi Resonant DC Link Converters—Analysis and Design for a Battery Charger Application”, Universitetstryckeriet, Lund University, 1999, ISBN 91-88934-14-4.
Hsiao Sung-Hsin et al., “ZCS Switched-Capacitor Bidirectional Converters with Secondary Output Power Amplifier for Biomedical Applications”, Power Electronics Conference (IPEC) Jun. 21, 2010.
Yuang-Shung Lee et al.,“A Novel QR ZCS Switched-Capacitor Bidirectional Converter”, IEEE, 2007.
Antti Tolvanen et al., “Seminar on Solar Simulation Standards and Measurement Principles”, May 9th, 2006 Hawaii.
J.A. Eikelboom and M.J. Jansen, “Characterisation of PV Modules of New Generations—Results of tests and simulations”, Jun. 2000.
Yeong-Chau Kuo et al., “Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System”, IEEE Transactions on Industrial Electronics, vol. 48, No. 3, Jun. 2001.
C. Liu et al., “Advanced Algorithm for MPPT Control of Photovoltaic Systems”, Canadian Solar Buildings Conference, Montreal, Aug. 20-24, 2004.
Chihchiang Hua and Chihming Shen, “Study of Maximum Power Tracking Techniques and Control of DC/DC Converters for Photovoltaic Power System”, IEEE 1998.
Tore Skjellnes et al., “Load sharing for parallel inverters without communication”, Nordic Workshop in Power and Industrial Electronics, Aug. 12-14, 2002.
Giorgio Spiazzi at el., “A New Family of Zero-Current-Switching Variable Frequency dc-dc Converters”, IEEE 2000.
Nayar, C.V., M. Ashari and W.W.L Keerthiphala, “A Grid Interactive Photovoltaic Uninterruptible Power Supply System Using Battery Storage and a Back up Diesel Generator”, IEEE Transactions on Energy Conversion, vol. 15, No. 3, Sep. 2000, pp. 348?353.
Ph. Strauss et al., “AC coupled PV Hybrid systems and Micro Grids-state of the art and future trends”, 3rd World—Conference on Photovoltaic Energy Conversion, Osaka, Japan May 11-18, 2003.
Nayar, C.V., abstract, Power Engineering Society Summer Meeting, 2000. IEEE, 2000, pp. 1280-1282 vol. 2.
D. C. Martins et al., “Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter”, Asian J. Energy Environ., vol. 5, Issue 2, (2004), pp. 115-137.
Rafael C. Beltrame et al., “Decentralized Multi String PV System With Integrated ZVT Cell”, Congresso Brasileiro de Automática / 12 a 16-setembro-2010, Bonito-MS.
Sergio Busquets-Monge et al., “Multilevel Diode-clamped Converter for Photovoltaic Generators With Independent Voltage Control of Each Solar Array”, IEEE Transactions on Industrial Electronics, vol. 55, No. 7, Jul. 2008.
Soeren Baekhoej Kjaer et al., “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules”, IEEE Transactions on Industry Applications, vol. 41, No. 5, Sep./Oct. 2005.
Office Action—JP 2011-539491—dated Mar. 26, 2013.
Supplementary European Search Report—EP08857456—dated Dec. 6, 2013.
Extended European Search Report—EP14151651.8—dated Feb. 25, 2014.
Iyomori H et al: “Three-phase bridge power block module type auxiliary resonant AC link snubber-assisted soft switching inverter for distributed AC power supply”, INTELEC 2003. 25th. International Telecommunications Energy Conference. Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 650-656, XP031895550, ISBN: 978-4-88552-196-6.
Yuqing Tang: “High Power Inverter EMI characterization and Improvement Using Auxiliary Resonant Snubber Inverter”, Dec. 17, 1998 (Dec. 17, 1998), XP055055241, Blacksburg, Virginia Retrieved from the Internet: URL:http:jscholar.lib.vt.edu/theses/available/etd-012299-165108/unrestricted/THESIS. PDF, [retrieved on Mar. 5, 2013].
Yoshida M et al: “Actual efficiency and electromagnetic noises evaluations of a single inductor resonant AC link snubber-assisted three-phase soft-switching inverter”, INTELEC 2003. 25th. International Telecommunications Energy Conference Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 721-726, XP031895560, ISBN: 978-4-88552-196-6.
Third party observation—EP07874025.5—dated Aug. 6, 2011.
Extended European Search Report—EP 13152967.9—dated Aug. 28, 2014.
Extended European Search Report—EP 14159696—dated Jun. 20, 2014.
Gow Ja A et al: “A Modular DC-DC Converter and Maximum Power Tracking Controller for Medium to Large Scale Photovoltaic Generating Plant”8<SUP>th </SUP> European Conference on Power Electronics and Applications. Lausaane, CH, Sep. 7-9, 1999, EPE. European Conference on Power Electronics and Applications, Brussls: EPE Association, BE, vol. Conf. 8, Sep. 7, 1999, pp. 1-8, XP000883026.
Chihchiang Hua et al: “Comparative Study of Peak Power Tracking Techniques for Solar Storage System” Applied Dower Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998, Thirteenth Annual Anaheim, CA USA Feb. 15-19, 1998, New York, NY, USA, IEEE, US, Feb. 15, 1998, pp. 679-685, XP010263666.
Matsuo H et al: “Novel Solar Cell Power Supply System Using the Multiple-input DC-DC Converter” 20<SUP>th</SUP> International telecommunications Energy Conference. Intelec '98 San Francisco, CA, Oct. 4-8, 1998, Intelec International Telecommunications Energy Conference, New York, NY: IEEE, US, Oct. 4, 1998, pp. 797-802, XP000896384.
Chihchiang Hua et al: “DSP-based controller application in battery storage of photovoltaic system” Industrial Electronics, Control, and Instrumentation, 1996, Proceedings of the 1996 IEEE IECON 22<SUP>nd</SUP> International Conference on Taipei, Taiwan Aug. 5-10, 1996, New York, NY, USA, IEEE, US, Aug. 5, 1996, pp. 1705-1710, XP010203239.
Hua C et al: “Implementation of a DSP-Controlled Photovoltaic System with Peak Power Tracking”IEEE Transactions on industrial Electronics, IEEE, Inc. New York, US, vol. 45, No. 1, Feb. 1, 1998, pp. 99-107, XP000735209.
I. Weiss et al.: “A new PV system technology—the development of a magnetic power transmission from the PV module to the power bus” 16th European Photovoltaic Solar Energy Conference, vol. III, May 1-5, 2000, pp. 2096-2099, XP002193468 Glasgow,UK cited in the application.
Basso, Tim, “IEEE Standard for Interconnecting Distributed Resources With the Electric Power System,” IEEE PES Meeting, Jun. 9, 2004.
Boostbuck.com, “The Four Boostbuck Topologies,” located at http://www.boostbuck.com/TheFourTopologies.html, 2003.
Gautam, Nalin K. et al., “An Efficient Algorithm to Simulate the Electrical Performance of Solar Photovoltaic Arrays,” Energy, vol. 27, No. 4, pp. 347-361, 2002.
Nordmann, T. et al., “Performance of PV Systems Under Real Conditions,” European Workshop on Life Cycle Analysis and Recycling of Solar Modules, The “Waste” Challenge, Brussels, Belgium, Mar. 18-19, 2004.
Wiles, John, “Photovoltaic Power Systems and the National Electrical Code: Suggested Practices,” Sandia National Laboratories, document No. SAND2001-0674, Mar. 2001.
Hewes, J. “Relays,” located at http://web.archive.org/web/20030816010159/www.kpsec.freeuk.com/components/relay.htm, Aug. 16, 2003.
Definition of “remove” from Webster's Third New International Dictionary, Unabridged, 1993.
Definition of “removable” from Webster's Third New International Dictionary, Unabridged, 1993.
Advanced Energy Group, “The Basics of Solar Power Systems,” located at http://web.archive.org/web/20010331044156/http://www.solar4power.com/solar-power-basics.html, Mar. 31, 2001.
International Patent Application No. PCT/AU2005/001017, International Search Report and Written Opinion, dated Aug. 18, 2005.
Baek, Ju-Won et al., “High Boost Converter using Voltage Multiplier,” 2005 IEEE Conference, IECON 05, pp. 567-572, Nov. 2005.
Wikimedia Foundation, Inc., “Electric Power Transmission,” located at http://web.archive.org/web/20041210095723/en.wikipedia.org/wiki/Electric-power-transmission, Nov. 17, 2004.
Jacobsen, K.S., “Synchronized Discrete Multi-Tone (SDMT) Modulation for Cable Modems: Making the Most of the Scarce Reverse Channel Bandwidth,” Conference Proceedings of Wescon/97, pp. 374-380, Nov. 4, 1997.
Loyola, L. et al., “A Multi-Channel Infrastructure based on DCF Access Mechanism for Wireless LAN Mesh Networks Compliant with IEEE 802.11,” 2005 Asia-Pacific Conference on Communications, pp. 497-501, Oct. 5, 2005.
Ciobotaru, et al., Control of single-stage single-phase PV inverter, Aug. 7, 2006.
International Search Report and Written Opinion for PCT/IB2007/004591 dated Jul. 5, 2010.
European Communication for EP07873361.5 dated Jul. 12, 2010.
European Communication for EP07874022.2 dated Oct. 18, 2010.
European Communication for EP07875148.4 dated Oct. 18, 2010.
Chen, et al., “A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications”, IEEE Applied Power Electronics Conference, Feb. 2001, Colorado Power Electronics Center Publications.
Chen, et al., “Buck-Boost PWM Converters Having Two Independently Controlled Switches”, IEEE Power Electronics Specialists Conference, Jun. 2001, Colorado Power Electronics Center Publications.
Esram, et al., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, IEEE Transactions on Energy Conversion, vol. 22, No. 2, Jun. 2007, pp. 439-449.
Walker, et al., “Photovoltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass Grid Connection Topologies-Design and Optimisation”, 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, Jeju, Korea.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,307, submitted in an IDS for U.S. Appl. No. 11/950,271, filed Mar. 9, 2010.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,271, submitted in an IDS for U.S. Appl. No. 11/950,271, filed Mar. 9, 2010.
International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009.
International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009.
International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009.
International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009.
International Search Report for PCT/US2008/085736 dated Jan. 28, 2009.
International Search Report for PCT/US2008/085754 dated Feb. 9, 2009.
International Search Report for PCT/US2008/085755 dated Feb. 3, 2009.
Kajihara, et al., “Model of Photovoltaic Cell Circuits Under Partial Shading”, 2005 IEEE, pp. 866-870.
Knaupp, et al., “Operation of a 10 KW PV Fagade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC.
Alonso, et al., “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solar Array”, 2003 IEEE 34th, Annual Power Electronics Specialists conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2.
Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2.
Chen, et al., “Predictive Digital Current Programmed Control”, IEEE Transactions on Power Electronics, vol. 18, Issue 1, Jan. 2003.
Wallace, et al., “DSP Controlled Buck/Boost Power Factor Correction for Telephony Rectifiers”, Telecommunications Energy Conference 2001, INTELEC 2001, Twenty-Third International, Oct. 18, 2001, pp. 132-138.
Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291.
Alonso, “Experimental Results of Intelligent PV Module for Grid-Connected PV Systems”, 21st European Photovoltaic Solar Energy Conference, Sep. 4-8, 2006, Dresden, Germany, pp. 2297-2300.
Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773.
Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99—Lausanne.
Nikraz, “Digital Control of a Voltage Source Inverter in a Photovoltaic Applications”, 2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 3266-3271.
Orduz, “Evaluation Test Results of a New Distributed MPPT Converter”, 22nd European Photovoltaic Solar Energy Conference, Sep. 3-7, 2007, Milan, Italy.
Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638.
Quaschning, “Cost Effectiveness of Shadow Tolerant Photovoltaic Systems”, Berlin University of Technology, Institute of Electrical Energy Technology, Renewable Energy Section. EuroSun '96, pp. 819-824.
Roman, “Intelligent PV Module for Grid-Connected PV Systems”, IEEE Transactions on Industrial Electronics, vol. 52, No. 4, Aug. 2006, pp. 1066-1073.
Roman, “Power Line Communications in Modular PV Systems”, 20th European Photovoltaic Solar Energy Conference, Jun. 5-10, 2005, Barcelona, Spain, pp. 2249-2252.
Uriarte, “Energy Integrated Management System for PV Applications”, 20th European Photovoltaic Solar Energy conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2292-2295.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, IEEE Transactions on Power Electronics, vol. 19, No. 4, Jul. 2004, pp. 1130-1139.
Matsui, et al. “A New Maximum Photovoltaic Power Tracking Control Scheme Based on Power Equilibrium at DC Link”, IEEE, 1999, pp. 804-809.
Hou, et al., Application of Adaptive Algorithm of Solar Cell Battery Charger, Apr. 2004.
Stamenic, et al., “Maximum Power Point Tracking for Building Integrated Photovoltaic Ventilation Systems”, 2000.
International Preliminary Report on Patentability for PCT/IB2008/055092 dated Jun. 8, 2010.
International Search Report for PCT/IB2008/055092 dated Sep. 8, 2009.
International Search Report and Opinion of International Patent Application WO2009136358 (PCT/IB2009/051831), dated Sep. 16, 2009.
Informal Comments to the International Search Report dated Dec. 3, 2009.
PCT/IB2010/052287 International Search Report and Written Opinion dated Sep. 2, 2010.
UK Intellectual Property office, Combined Search and Examination Report for GB1100450.4 under Sections 17 and 18, dated Jul. 14, 2011.
Jain, et al., “A Single-Stage Grid Connected Inverter Topology for Solar PV Systems with Maximum Power Point Tracking”, IEEE Transactions on Power Electronics, vol. 22, No. 5, Sep. 2007, pp. 1928-1940.
Lynch, et al., “Flexible DER Utility Interface System: Final Report”, Sep. 2004-May 2006, Northern Power Systems, Inc., Waitstield, Vermont B. Kroposki, et al., National Renewable Energy Laboratory Golden, Colorado Technical Report NREL/TP-560-39876, Aug. 2006.
Schimpf, et al., “Grid Connected Converters for Photovoltaic, State of the Art, Ideas for improvement of Transformerless Inverters”, NORPIE/2008, Nordic Workshop on Power and Industrial Electronics, Jun. 9-11, 2008.
Sandia Report SAND96-2797 I Uc-1290 Unlimited Release, Printed ecember 1996, “Photovoltaic Power Systems and the National Electrical Code: Suggested Practices”, by John Wiles, Southwest Technology Development Institute New Mexico State University Las Cruces, Nm.
United Kingdom Intellectual Property Office, Combined Search and Examination Report Under Sections 17 and 18(3), GB1020862.7, dated Jun. 16, 2011.
Jul. 13, 2017—Chinese Office Action—CN201210007491.3.
Sep. 15, 2012—Huimin Zhou et. al—“PV balancers: Concept, architectures, and realization”—Energy Conversion Congress and Exposition (ECCE), 2012 IEEE, IEEE pp. 3749-3755.
Jul. 31, 2014—Huimin Zhou et al.—“PV Balancers: Concept, Architectures, and Realization”—IEEE Transactions on Power Electronics, vol. 30, No. 7, pp. 3479-3487.
Jul. 17, 2017—International Search Report—PCT/US20171031571.
U.S. Appl. No. 13/308,517, Distributed Power Harvesting Systems Using DC Power Sources, filed Nov. 30, 2011.
U.S. Appl. No. 13/015,219, Testing of a Photovoltaic Panel, filed Jan. 27, 2011.
U.S. Appl. No. 13/238,041, Current Sensing on a Mosfet, filed Sep. 21, 2011.
U.S. Appl. No. 13/487,311, Integrated Photovoltaic Panel Circuitry, filed Jun. 4, 2012.
U.S. Appl. No. 13/430,388, Safety Mechanisms, Wake Up and Shutdown Methods in Distributed Power Installations, filed Mar. 26, 2012.
U.S. Appl. No. 13/440,378, Safety Mechanisms, Wake Up and Shutdown Methods in Distributed Power Installations, filed Apr. 5, 2012.
U.S. Appl. No. 13/738,533, Photovoltaic Module, filed Jan. 10, 2013.
U.S. Appl. No. 13/754,059, Maximizing Power in a Photovoltaic Distributed Power System, filed Jan. 30, 2013.
U.S. Appl. No. 14/033,781, Direct Current Link Circuit, filed Sep. 23, 2013.
U.S. Appl. No. 14/183,214, Distributed Power Harvesting Systems Using DC Power Sources, filed Feb. 18, 2014.
U.S. Appl. No. 14/303,067, Serially Connected Inverters, dated Jun. 12, 2014.
U.S. Appl. No. 14/323,531, System and Method for Protection During Inverter Shutdown in Distributed Power Installations, filed Jul. 3, 2014.
U.S. Appl. No. 14/582,363, Theft Detection and Prevention in a Power Generation System, filed Dec. 24, 2014.
U.S. Appl. No. 14/631,227, Photovoltaic Panel Circuitry, filed Feb. 25, 2015.
U.S. Appl. No. 14/693,264, Battery Power Delivery Module, filed Apr. 22, 2015.
U.S. Appl. No. 14/743,018, Pairing of Components in a Direct Current Distributed Power Generation System, filed Jun. 18, 2015.
U.S. Appl. No. 14/809,511, Distributed Power Harvesting Systems Using DC Power Sources, filed Jul. 27, 2015.
U.S. Appl. No. 15/149,353, Maximized Power in a Photovoltaic Distributed Power System, filed May 9, 2016.
U.S. Appl. No. 15/045,740, Photovoltaic System Power Tracking Method, filed Feb. 17, 2016.
U.S. Appl. No. 15/132,419, Direct Current Power Combiner, filed Apr. 19, 2016.
U.S. Appl. No. 15/139,745, Distributed Power System Using Direct Current Power Sources, filed Apr. 27, 2016.
U.S. Appl. No. 15/184,040, Parallel Connected Inverters, filed Jun. 16, 2016.
U.S. Appl. No. 15/369,881, Safety Mechanisms, Wake Up and Shutdown Methods in Distributed Power Installations, filed Dec. 5, 2016.
U.S. Appl. No. 15/250,068, Safety Switch for Photovoltaic Systems, filed Aug. 29, 2016.
U.S. Appl. No. 15/407,881, Arc Detection and Prevention in a Power Generation System, filed Jan. 17, 2017.
U.S. Appl. No. 15/357,442, Testing of a Photovoltaic Panel, filed Nov. 21, 2016.
U.S. Appl. No. 15/365,084, Distributed Power Harvesting Systems Using DC Power Sources, filed Nov. 30, 2016.
U.S. Appl. No. 15/383,518, Method and Apparatus for Storing and Depleting Energy, filed Dec. 19, 2016.
U.S. Appl. No. 15/653,049, Distributed Power System Using Direct Current Power Sources, filed Jul. 18, 2017.
U.S. Appl. No. 15/480,574, Monitoring of Distributed Power Harvesting Systems Using DC Power Sources, filed Apr. 6, 2017.
U.S. Appl. No. 15/464,850, Direct Current Link Circuit, filed Mar. 21, 2017.
U.S. Appl. No. 15/478,526, Optimizer Garland, filed Apr. 4, 2017.
U.S. Appl. No. 15/479,530, Arc Detection and Prevention in a Power Generation System, filed Apr. 5, 2017.
U.S. Appl. No. 15/627,037, System and Method for Protection During Inverter Shutdown in Distributed Power Installations, filed Jun. 19, 2017.
U.S. Appl. No. 15/488,858, Zero Voltage Switching, filed Apr. 17, 2017.
U.S. Appl. No. 15/593,761, Photovoltaic Power Device and Wiring, filed May 12, 2017.
U.S. Appl. No. 15/593,942, Method for Distributed Power Harvesting Using DC Power Sources, filed May 12, 2017.
U.S. Appl. No. 15/641,553, Distributed Power Harvesting Systems Using DC Power Sources, filed Jul. 5, 2017.
Aug. 4, 2017—European Search Report—EP 17165027.
Storfer, Lior, “Enhancing Cable Modem TCP Performance,” Texas Instruments Inc. white paper, Jul. 2003.
Philips Semiconductors, Data Sheet PSMN005-55B; PSMN005-55P N-channel logic trenchMOS transistor, Oct. 1999, Product specification, pp. 1-11.
International Preliminary Report on Patentability Issued in corresponding international application No. PCT/US04/16668, filed May 27, 2004.
International Application No. PCT/US13/27965, International Preliminary Examination Report, dated Sep. 2, 2014.
International Patent Application PCT/US13/027965, International Search Report and Written Opinion, dated Jun. 2, 2013.
International Application No. PCT/US12/44045, International Preliminary Examination Report, dated Jan. 28, 2014.
International Patent Application No. PCT/US2012/044045, International Search Report and Written Opinion, dated Jan. 2, 2013.
International Patent Application No. PCT/US2009/047734, International Search Report and Written Opinion, dated May 4, 2010.
Linares, Leonor et al., “Improved Energy Capture in Series String Photovoltaics via Smart Distributed Power Electronics,” 24th Annual IEEE Applied Power Electronics Conference and Exposition, pp. 904-910, Feb. 15, 2009.
International Patent Application No. PCT/US2010/029929, International Search Report and Written Opinion, dated Oct. 27, 2010.
Lowe, Electronics Basis: What is a Latch Circuit, http://www.dummies.com/how-to/content/electronics-basics-what-is-a-latch-circuit.html, from Electronics All-in-One for Dummies, Feb. 2012, downloaded Jul. 13, 2014.
International Patent Application No. PCT/US2011/020591, International Search Report and Written Opinion, dated Aug. 8, 2011.
International Patent Application No. PCT/US2011/033544, International Search Report and Written Opinion, dated Nov. 24, 2011.
J. Keller and B. Kroposki, titled, “Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources”, in a Technical Report NREL/TP-550-46698, published Jan. 2010, pp. 1 through 48.
International Patent Application No. PCT/US2008/081827, International Search Report and Written Opinion, dated Jun. 24, 2009.
International Patent Application No. PCT/US2010/046274 International Search Report and Written Opinion, dated Apr. 22, 2011.
International Patent Application No. PCT/US2011/033658, International Search Report and Written Opinion, dated Jan. 13, 2012.
International Patent Application No. PCT/US2011/029392, International Search Report and Written Opinion, dated Oct. 24, 2011.
European Patent Application No. 09829487.9, Extended Search Report, dated Apr. 21, 2011.
International Patent Application No. PCT/US2009/062536, International Search Report and Written Opinion, dated Jun. 17, 2010.
International Patent Application No. PCT/US2010/022915, International Search Report and Written Opinion, dated Aug. 23, 2010.
International Patent Application No. PCT/US2010/046272, International Search Report and Written Opinion, dated Mar. 31, 2011.
Exell et al., “The Design and Development of a Solar Powered Refrigerator”, [retrieved on Feb. 13, 2013], Retrieved from the Internet <URL: http://www.appropedia.org/The_Design_and_Development_of a_Solar Powered_Refrigerator>, pp. 1-64.
“Development of Water-Lithium Bromide Low-Temperature Absorption Refridgerating Machine”, 2002 Energy & Environment on Database on Noteworthy contributions for Science and Technology (Japan), Research Data (No. 1748) [online], [retrieved on Aug. 29, 2012]. Retrieved from the Internet: <URL: http://dbnstl.nii.ac.jp/english/detail/1748>, pp. 1-4.
Dictionary.com, “air conditioning” [online], [retrieved on Aug. 28, 2012]. Retrieved from the Internet: <URL: http://dictionary.reference.com/browse/air+conditioning?s=t>, pp. 1-3.
International Patent Application No. PCT/US2010/029936, International Search Report and Written Opinion, dated Nov. 12, 2010.
International Patent Application No. PCT/U508/75127, International Search Report and Written Opinion, dated Apr. 28, 2009.
International Patent Application No. PCT/US09/35890, International Search Report and Written Opinion, dated Oct. 1, 2009.
European Patent Application No. 08845104.2, Extended Search Report, dated Jul. 31, 2014.
European Patent Application No. 11772811.3, Extended Search Report, dated Dec. 15, 2014.
International Patent Application No. PCT/US2008/082935, International Search Report and Written Opinion, dated Jun. 25, 2009.
Bhatnagar et al., Silicon Carbide High Voltage (400 V) Shottky Barrier Diodes, IEEE Electron Device Letters, vol. 13(10) p. 501-503 Oct. 10, 1992.
Rodriguez, C., and G. A. J. Amaratunga. “Dynamic stability of grid-connected photovoltaic systems.” Power Engineering Society General Meeting, 2004. IEEE, pp. 2194-2200.
Kikuchi, Naoto, et al. “Single phase amplitude modulation inverter for utility interaction photovoltaic system.” Industrial Electronics Society, 1999. IECON'99 Proceedings. The 25th Annual Conference of the IEEE. vol. 1. IEEE, 1999.
Nonaka, Sakutaro, et al. “Interconnection system with single phase IGBT PWM CSI between photovoltaic arrays and the utility line.” Industry Applications Society Annual Meeting, 1990., Conference Record of the 1990 IEEE.
Calais, Martina, et al. “Inverters for single-phase grid connected photovoltaic systems-an overview.” Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual. vol. 4. IEEE, 2002.
Marra, Enes Goncalves, and José Antenor Pomilio. “Self-excited induction generator controlled by a VS-PWM bidirectional converter for rural applications.” Industry Applications, IEEE Transactions on 35.4 (1999): 877-883.
Xiaofeng Sun, Weiyang Wu, Xin Li, Qinglin Zhao: A Research on Photovoltaic Energy Controlling System with Maximum Power Point Tracking:; Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No. 02TH8579) IEEE-Piscataway, NJ, USA, ISBN 0-7803-7156-9, vol. 2, p. 822-826, XP010590259: the whole document.
International Search Report for corresponding PCT/GB2005/050198 dated Jun. 28, 2006 by C. Wirner of the EPO.
Brunello, Gustavo, et al., “Shunt Capacitor Bank Fundamentals and Protection,” 2003 Conference for Protective Relay Engineers, Apr. 8-10, 2003, pp. 1-17, Texas A&M University, College Station, TX, USA.
Cordonnier, Charles-Edouard, et al., “Application Considerations for Sensefet Power Devices,” PCI Proceedings, May 11, 1987, pp. 47-65.
Kotsopoulos, Andrew, et al., “Predictive DC Voltage Control of Single-Phase PV Inverters with Small DC Link Capacitance,” IEEE International Symposium, Month Unknown, 2003, pp. 793-797.
Meinhardt, Mike, et al., “Multi-String-Converter with Reduced Specific Costs and Enhanced Functionality,” Solar Energy, May 21, 2001, pp. 217-227, vol. 69, Elsevier Science Ltd.
Kimball, et al: “Analysis and Design of Switched Capacitor Converters”; Grainger Center for Electric Machinery and Electromechanics, University of Illinois at Urbana-Champaign, 1406 W. Green St, Urbana, IL 61801 USA, © 2005 IEEE; pp. 1473-1477.
Martins, et al: “Interconnection of a Photovoltaic Panels Array to a Single-Phase Utility Line From a Static Conversion System”; Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual; Jun. 18, 2000-Jun. 23, 2000; ISSN: 0275-9306; pp. 1207-1211, vol. 3.
International Search Report for corresponding PCT/GB2005/050197, dated Dec. 20, 2005 by K-R Zettler of the EPO.
Kjaer, Soeren Baekhoej, et al., “Design Optimization of a Single Phase Inverter for Photovoltaic Applications,” IEEE 34th Annual Power Electronics Specialist Conference, Jun. 15-19, 2003, pp. 1183-1190, vol. 3, IEEE.
Shimizu, Toshihisa, et al., “A Flyback-type Single Phase Utility Interactive Inverter with Low-frequency Ripple Current Reduction on the DC Input for an AC Photovoltaic Module System,” IEEE 33rd Annual Power Electronics Specialist conference, Month Unknown, 2002, pp. 1483-1488, vol. 3, IEEE.
Written Opinion of PCT/GB2005/050197, dated Feb. 14, 2006 (mailing date), Enecsys Limited.
Yatsuki, Satoshi, et al., “A Novel AC Photovoltaic Module System based on the Impedance-Admittance Conversion Theory,” IEEE 32nd Annual Power Electronics Specialists Conference, Month Unknown, 2001, pp. 2191-2196, vol. 4, IEEE.
International Search Report for corresponding PCT/GB2004/001965, dated Aug. 16, 2004 by A. Roider.
Naik et al., A Novel Grid Interface for Photovoltaic, Wind-Electric, and Fuel-Cell Systems With a Controllable Power Factor or Operation, IEEE, 1995, pp. 995-998.
Petkanchin, Processes following changes of phase angle between current and voltage in electric circuits, Aug. 1999, Power Engineering Review, IEEE vol. 19, Issue 8, pp. 59-60.
Mumtaz, Asim, et al., “Grid Connected PV Inverter Using a Commercially Available Power IC,” PV in Europe Conference, Oct. 2002, 3 pages, Rome, Italy.
Koutroulis, Eftichios, et al., “Development of a Microcontroller-Based, Photovoltaic Maximum Power Point Tracking Control System,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 46-54, vol. 16, No. 1, IEEE.
European Search Report—EP App. 14159457.2—dated Jun. 12, 2015.
European Search Report and Written Opinion—EP Appl. 12150819.6—dated Jul. 6, 2015.
Alonso, O. et al. “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators With Independent Maximum Power Point Tracking of Each Solar Array.” IEEE 34th Annual Power Electronics Specialists Conference. vol. 2, Jun. 15, 2003.
Alonso, et al., “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solor Array”, 2003 IEEE 34th, Annual Power Electronics Specialists Conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2.
Chinese Office Action—CN Appl. 201280006369.2—dated Aug. 4, 2015.
Chinese Office Action—CN Appl. 201210253614.1—dated Aug. 18, 2015.
Extended European Search Report, EP Application 04753488.8, dated Apr. 29, 2015.
International Search Report from PCT/US04/16668, form PCT/ISA/220, filed May 27, 2004.
Office Action U.S. Appl. No. 13/785,857, dated Jun. 6, 2013.
Partial Extended European Search Report, EP Application 04753488.8, dated Feb. 2, 2015.
The International Search Report (Form PCT /ISA/220) Issued in corresponding international application No. PCT/US04/16668, filed May 27, 2004.
International Search Report—PCT/US2004/016668, form PCT/ISA/220—filed May 27, 2004—dated Jan. 19, 2005.
Written Opinion of the International Searching Authority—PCT/US2004/016668, form PCT/ISA/220—filing date May 27, 2004—dated Jan. 19, 2005.
Extended European Search Report—EP Appl. 04753488.8—dated Apr. 29, 2015.
Supplementary Partial European Search Report—EP Appl. 04753488.8—dated Feb. 2, 2015.
US Office Action—U.S. Appl. No. 13/785,857—dated Jun. 6, 2013.
European Office Action—EP Appl. 09725443.7—dated Aug. 18, 2015.
Definition of Isomorphism by Merriam-Webster, <http://www.merriaum-webster.com/dictionary/isomorphism, dated Oct. 20, 2015.
Definition of Isomorphic by Merriam-Webster, <http://www.merriam-webster.com/dictionary/isomorphic, dated Oct. 20, 2015.
Chinese Office Action—CN Appl. 201110349734.7—dated Oct. 13, 2015.
Chinese Office Action—CN Appl. 201210007491.3—dated Nov. 23, 2015.
European Office Action—EP Appl. 12176089.6—dated Dec. 16, 2015.
Chinese Office Action—CN Appl. 201310035223.7—dated Dec. 29, 2015.
Chinese Office Action—CN Application 201210334311.2—dated Jan. 20, 2016.
European Search Report—EP Appl. 13800859.4—dated Feb. 15, 2016.
Chinese Office Action—CN App. 201310035221.8—dated Mar. 1, 2016.
PCT/2008/058473 International Preliminary Report, 6 pages, dated Nov. 2, 2009.
International Search Report and Written Opinion, WO 2010080672, dated Aug. 19, 2010.
PCT/US2010/045352 International Search Report and Written Opinion; 12 pages; dated Oct. 26, 2010.
International Search Report and Written Opinion dated Feb. 6, 2009,. In counteprart PCT/US2008/008451, 13 pages.
European Search Report: dated Jan. 10, 2013 in corresponding EP application No. 09838022.3, 7 pages.
D. Ton and W. Bower; Summary Report of the DOE High-Tech Inverter Workshop; Jan. 2005.
First Action Interview Pre-Interview Communication from U.S. Appl. No. 13/174,495, dated Jun. 18, 2014, 7 pgs.
Johnson et al., “Arc-fault detector algorithm evaluation method utilizing prerecorded arcing signatures”, Photovoltaic Specialists Conference (PVSC), Jun. 2012.
Philippe Welter, et al. “Electricity at 32 kHz,” Photon International, The Photovoltaic Magazine, Http://www.photon-magazine.com/archiv/articles.aspx?criteria=4&HeftNr=0807&Title=Elec . . . printed May 27, 2011).
PCT/US2009/069582 Int. Search Report—dated Aug. 19, 2010.
Chinese Office Action—CN Appl. 201210007491.3—dated Apr. 25, 2016.
CN Office Action—CN Appl. 201310004123.8—dated May 5, 2016.
Law et al “Design and Analysis of Switched-Capacitor-Based Step-Up Resonant Converters,” IEEE Transactions on Circuits and Systems, vol. 52, No. 5, published May 2005.
CN Office Action—CN Appl. 201310066888.4—dated May 30, 2016.
European Search Report—EP Appl. 13152966.1—dated Jul. 21, 2016.
European Search Report—EP Appl. 12183811.4—dated Aug. 4, 2016.
European Notice of Opposition—EP Patent 2374190—dated Jul. 19, 2016.
“Es werde Dunkelheit. Freischaltung von Solarmodulen im Brandfall”—“Let there be Darkness: Quality control of Solar Modules in Case of Fire”; PHOTON, May 2005, 75-77, ISSN 1430-5348, English translation provided.
Chinese Office Action—CN Appl. 201380029450.7—dated Jul. 28, 2016.
Nov. 2, 2017—EP Search Report App No. 13157876.7.
Nov. 7, 2017—EP Search Report—App No. 17171489.2.
Sep. 28, 2017—European Office Action—EP 08857835.6.
Dec. 14, 2017—EP Search Report App No. 17188362.2.
Dec. 15, 2017—EP Search Report App No. 17188365.5.
Aug. 9, 2010, Hong, Wei, et al., “Charge Equalization of Battery POwer Modules in Series” The 2010 International Power Electronics Conference, IEEE, p. 1568-1572.
2000; Bascope, G.V.T. Barbi, I; “Generation of Family of Non-isolated DC-DC PWM Converters Using New Three-state Switching Cells”; 2000 IEEE 31st Annual Power Electronics Specialists Conference in Galway, Ireland; vol. 2.
Linear Technology Specification Sheet, LTC3780—“High Efficiency Synchronous, 4-Switch Buck-Boost Controller” 2005.
Feb. 22-26, 2004—Andersen, Gert et al.,—“Utilizing the free running Current Programmed Control as a Power Factor correction Technique for the two switch Buck-Boost converter”—Applied Power Electronic Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE.
Feb. 22-26, 2004—Gaboriault, Mark et al.,—“A High Efficiency, Non-Inverting, Buck-Boost DC-DC Converter”—Applied Power Electronics Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE.
Feb. 15-19, 1998—Hua, et al.,—“Comparative Study of Peak Power Tracking Techniques for Solar Storage System”—Applied POwer Electronics Conference and Exposition, 1998. APEC'98. Conferenced Proceedings 1998., Thirteenth Annual IEEE.
Jun. 17-21, 2001—Tse et al., “A Novel Maximum Power Point Tracking Technique for PV Panels”—Power Electronics Specialists Conferences, 2001. PESC. 2001 IEEE 32nd Annual.
Oct. 8-12, 2000 Hashimoto, et al., “A Novel High Peforamance Utility Interactive Photovoltaic Inverter System”—Industry Applications Conference, 2000. Conference Record of the 2000 IEEE.
Jun. 27, 1997, Reimann et al., “A Novel Control Principle of Bi-Directional DC-DC Power Conversion”—Powre Electronics Specialists Conference 1997 PESC '97 Record.
Aug. 13-16, 1990,—Rajan, Anita “A Maximum Power Point Tracker Optimized for Solar Powered Cars”—Future Transportation Technology Conference and Expostion.
Korean Patent Application No. 102005-7008700, filed May 13, 2015. Applicant: Exar Corporation.
Jan. 23, 2018—EP Search Report, EP App No. 17187230.2.
Apr. 16, 2018—EP Examination Report 12707899.6.
Jun. 6, 2018—EP Search Report EP App No. 18151594.1.
Jun. 29, 2018—EP Search Report—EP App No. 18175980.4.
Related Publications (1)
Number Date Country
20170324330 A1 Nov 2017 US
Provisional Applications (2)
Number Date Country
60954354 Aug 2007 US
60954261 Aug 2007 US
Continuations (3)
Number Date Country
Parent 14324820 Jul 2014 US
Child 15495301 US
Parent 13661503 Oct 2012 US
Child 14324820 US
Parent 12187335 Aug 2008 US
Child 13661503 US