The invention concerns a digital burette having a manual drive for suctioning and delivering an adjustable dose volume, a downstream gear and a digital display device controlled thereby for setting the dose volume, wherein the control comprises an incremental encoder which is operatively connected to the gear, at least one sensor for detecting the signals produced by the incremental encoder and a processor, connected to the sensor, for calculating the dose volume corresponding to the number of signals, the processor being connected to the digital display device. The invention also concerns a method for displaying the dose volume in said digital burette.
Digital burettes are used for a plurality of volumetrical determinations, such as titration, for exact dosing of defined liquid volumes. Of particular interest is the possibility to pre-set and reproduce the dose volume to be delivered which a digital display device, e.g. a display, indicates.
The operation of such digital burettes is based on a lifting piston guided in a pipetting channel for suctioning the liquid to be dosed, wherein the lifting piston usually communicates with the liquid via an air cushion. The lifting piston is manually driven, e.g. actuated by a turning handle, wherein the rotation is transmitted via a mechanical gear to the lifting piston for suctioning or discharging the desired liquid volume. An incremental encoder is operatively connected to the gear and a sensor detects the signals generated by the incremental encoder to detect the dose volume corresponding to the number of turns of the turning handle. The sensor is connected to a processor which calculates the dose volume from the signals, displays same on a digital display device e.g. a liquid crystal display, light diodes or the like.
The incremental encoder may be a slotted disc with slots provided, one behind the other, in the peripheral direction. An optical sensor, e.g. a light barrier, detects the number of turns of the slotted disc by detecting the number of slots passing the sensor. To recognize the direction of rotation of the slotted disc and therefore the lifting direction of the lifting piston (suction or pressure stroke), a second optical sensor, e.g. a second light barrier or a forked light barrier may be provided with which the direction of rotation of the slotted disc is determined from the order of the signals produced by the two sensors.
DE 38 18 531 A1 discloses a piston burette having an incremental encoder in the form of a slotted disc cooperating with a forked light barrier to determine the rotational direction of the slotted disc and the stroke direction of the piston. EP 0 559 223 A1 discloses a bottle filling device having a similar control.
The incremental encoders may also be sector discs with two groups of sectors of different magnetic field strength, wherein the sectors of the two groups are alternately disposed in the peripheral direction of the sector disc. The sectors may be formed e.g. by permanent magnets which induce alternately different and/or opposite magnetic fields. Alternatively, only every second sector of the sector disc may comprise a magnet with the sectors disposed between the magnets being non-magnetic. A sensor is provided which is sensitive to the magnetic field and functions like a magnetic switch to open or close exclusively in response to the magnetic field induced by the respective magnet for detecting the number of turns of the sector disc. The current consumption of these sensors is advantageously small since they require only a voltage which is sufficient to detect the opening or closing position while the opening and closing process per se is effected purely mechanically due to the force field induced by the magnet of the sector disc. The sensor produces a substantially rectangular voltage or current signal when the sector disc is turned.
Digital burettes consume a relatively large amount of current since the digital display device and the overall control including sensors and, in particular, processor require current. The processor requires the greatest amount of current in dependence on its clock frequency. Replaceable dry batteries or rechargeable accumulators are used as power supplies. The non-productive times during replacement or recharging thereof are disadvantageous. They also fail prematurely under the often-corrosive conditions in the laboratory and can damage the burette, in particular when electrolyte is discharged. Digital burettes with lithium cells are also known which are soldered onto a board together with the electric and/or electronic components. Lithium cells of this type are relatively robust but the regular replacement of the cells requires dismantling or replacement of the entire board and is therefore demanding and expensive. Down times are created since long-term storage of the boards would impair the lithium cells.
It is the underlying object of the invention to overcome these disadvantages.
This object is achieved a digital burette of the above mentioned kind characterized in that at least one solar cell provides power to the control and a sector disc is provided as incremental encoder having two groups of sectors of different magnetic field strength which are alternately disposed in the peripheral direction of the sector disc, and the number of turns of the sector disc is detected using at least one sensor which is sensitive to the magnetic field, preferably a Reed sensor. The solar cell also serves as power supply for the digital display device.
The inventive use of a solar cell as a power supply for the digital burette avoids the need for replacement of batteries, accumulators or the like. The solar cells always provided safe and reliable operation for the digital burette. They are advantageously disposed on a side of the digital burette facing away from the delivery member e.g. on its rear or upper side.
Since the available surface on the casing of the digital burette is small and the arrangement of the solar cells is locally confined, the surface of the solar cells must be minimized. This also requires the energy consumption of the digital burette to be kept low. This is also addressed by the configuration of the digital burette in that the incremental encoder is a sector disc with two groups of sectors of different magnetic field strength which are alternately disposed in the peripheral direction of the sector disc, and at least one magnetic field-dependent sensor, preferably a Reed sensor, for detecting the number of turns of the sector wheel. As previously noted, the current consumption of these sensors is advantageously small since they require only a voltage which is sufficient to detect the opening or closing position while the opening and closing process per se is effected purely mechanically due to the force field induced by the magnet of the sector disc.
In an preferred embodiment, two sensors are disposed at a separation in the peripheral direction of the sector disc which are sensitive to the magnetic field, preferably Reed sensors, for calculating the dose volume in dependence on the number of turns of the sector disc, wherein the angular separation of the sensors differs from an integer multiple of the angle between the sectors of the sector disc. This design permits considerable reduction in the clock frequency of the processor for a given measurement accuracy, e.g. by approximately half, which permits considerable savings in power such that when batteries or accumulators are provided as the energy source, the replacement intervals are considerably increased or—in the preferred case when solar cells are used—the surface of the solar cells required for the necessary amount of current, is considerably reduced and the solar cells can be directly disposed on a surface section of the housing of the digital burette.
As already mentioned, digital burettes are known which utilize different sensor technology, i.e. a slotted disc with two light barriers (DE 38 18 531 A1, EP 0 559 223 A1). The second light barrier, however, serves exclusively for detecting the turning direction of the slotted disc or the lifting direction of the lifting piston and a reduction in the clock frequency of the processor necessarily produces an unacceptable reduction in the measuring accuracy.
In accordance with the invention, both sensors serve to calculate the dose volume in dependence on the number of turns of the sector disc by supplying the signals of the switching-on and off processes of both sensors to the processor for calculating the dose volume. In this fashion, a total of two switching-on and off processes take place when the sector disc is turned by an angle which corresponds to the angle of one sector, i.e. the number of signals per turn of the sector disc is increased resulting in an increase in the measuring accuracy. The overall signal also indicates the position of the sensors with respect to the sectors of the sector disc and when the lifting piston of the digital burette is moved quickly as the sector disc is rotated rapidly, reliable detection of the number of turns of the sector disc is possible when the processor merely registers whether both sensors are in the opened and/or closed position, a situation which occurs only once when the sector disc is rotated past two sectors. The corresponding dose volume can also be determined if the processor only evaluates one of the two signals produced by the sensors when the sector disc is moved quickly, i.e. merely the switching-on and/or off processes of one sensor. When the sector disc is turned slowly or has stopped, the exact position of the sector disc which corresponds to the dose volume, can be determined by the relative position of the sector disc with respect to the two sensors or by means of the two signals produced by the sensors, e.g. the switching-on and off processes of both sensors. In this fashion, the clock frequency of the processor and the current required for operation can be reduced for rapid motion of the lifting piston without sacrificing measuring accuracy. Naturally, the sequence of the signals of the two sensors or the overall signal also indicates the turning direction of the sector disc and therewith the lifting direction of the lifting piston as is known per se for digital burettes having two optical sensors.
Although the sensors of such a control may, in principle, comprise any suitable sensors, Reed sensors-are of primary interest due to their low current consumption and since they require no current for the switching process per se and only low voltages for determining the opening and closing position, wherein e.g. the overall voltage or the overall current of both sensors is transferred to the processor.
A further development of the invention provides that the power supply of at least some electrical and/or electronic components of the control is controlled in dependence on the action of the gear.
The energy supply to the sensors may be switched off when the gear has stopped or be switched on again when the gear is in action e.g. by means of a mechanical pulse. The power consumption of the processor can also be reduced by lowering its clock frequency when the gear has stopped and by increasing it again when the gear is in motion. This may also be effected by means of a mechanical pulse or directly upon receipt of the signal of at least one of the sensors.
The power supply of the digital display device can be switched off with a preset delay when the gear has stopped, wherein the display disappears e.g. after a certain time.
The processor preferably has a minimum operating voltage of at most 2 V. These known processors function safely up to a minimum operating voltage of 2 V and currently have the smallest power consumption, although the electronic industry continues to further miniaturize the processors and further reduce the minimum operating voltage. It is of course advisable to provide the inventive digital burette with these commercially available processors of minimum operating voltage to keep the power consumption as small as possible. As a further development, substitution of the currently available processors with new more energy-saving processors is envisioned.
In a preferred embodiment, the display device has an associated current-less storage for recording at least the last selected dose volume. In this manner, the last selected dose volume is visible even after relatively long stoppage of the digital burette, which is particularly desirable when the digital burette is used for a series of experiments.
The invention also concerns a method for displaying the dose volume of a digital burette having a manual drive for suctioning and discharging an adjustable dose volume, a downstream gear and a digital display device controlled thereby for setting the dose volume, wherein the control comprises an incremental encoder operatively connected to the gear in the form of a sector disc with two groups of sectors of different magnetic field strength disposed alternately in the peripheral direction of the sector disc, at least one sensor, preferably a Reed sensor, for detecting the number of turns of the sector disc and a processor connected to the sensor for calculating the dose volume corresponding to the number of turns of the sector disc, the processor being connected to the digital display device. The inventive method is characterized in that the signals are transmitted to the processor by two sensors disposed in the peripheral direction of the sector disc at a separation which is not an integer multiple of the angle of the sectors of the sector disc and the dose volume is calculated by means of the two signals at least when the gear is moved slowly. The two signals also advantageously detect the direction of rotation of the sector wheel.
The dose volume is advantageously calculated, at least during slow motion of the gear, by means of the number of switching-on and off processes of both sensors, e.g. from the sum of the current or voltage pulses emitted by the sensors to the processor during switching on and off.
In a further development, the processor is programmed with a pre-settable value of the number of turns of the sector disc such that when the number of turns of the sector disc is smaller than the predetermined value, the dose volume is calculated on the basis of the number of switching on and off processes of both sensors. When the number of turns of the sector disc is larger than the predetermined value, the dose volume is calculated exclusively on the basis of the switching-on and off processes of one of the two sensors. If the number of turns of the sector disc is larger than the predetermined value, the dose volume is calculated exclusively on the basis of the switching-on processes or exclusively on the basis of the switching-off processes of one of the two sensors. In this fashion, only one switching process is utilized when the sector disc is rotated through two sectors, wherein a relatively low and current-saving processor clock frequency is sufficient to detect these states. When the sector disc is turned slowly or rests, a small dose volume can also be determined on the basis of the number of switching-on and off processes of both sensors or from the sum of the current or voltage pulses provided to the processor by the two sensors during switching on and off, wherein the maximum error is smaller than the stroke length of the lifting piston of the digital burette associated with a rotation of the sector disc by half a sector.
It may be advantageous to program the processor with two different pre-settable values of the number of turns of the sector disc. In this case, the dose volume is calculated on the basis of the number of the switching-on and off processes of both sensors when the number of turns of the sector disc is smaller than the predetermined low value. When the number of turns of the sector disc is between the two predetermined values, the dose volume is determined on the basis of the number of switching-on and off processes of one of the two sensors. When the number of turns of the sector disc is larger than the predetermined higher value, the dose volume is determined exclusively on the basis of the switching-on or off processes of one of the two sensors. This allows an even finer graduation of the operating states and clocking of the processor.
As indicated above, the current supply of at least some electrical and/or electronic components of the control is controlled in dependence on the action of the gear. In particular, power supply to the sensors can be switched off when the gear is at rest. The clock frequency of the processor is preferably reduced when the gear has stopped.
A further preferred energy reduction consists in that the power supply of the digital display device is switched off with a preset delay when the gear has stopped.
The processor is advantageously loaded with a minimum operating voltage of at most 2V. The voltage applied to the processor during operation can be selected e.g. between approximately 2 and 3.5V.
In a preferred embodiment, at least the dose volume displayed last by the display device is stored without current to provide access to the last selected dose volume even after longer stoppages of the digital burette.
Although batteries or accumulators may in principle be provided as power supply to the electrical and/or electronic components of the digital burette, wherein this operating time is considerably increased by the inventive method, the control and digital display device is advantageously supplied with current from at least one solar cell.
The invention is explained in more detail below with reference to one embodiment and the drawings.
To detect the dose volume which corresponds to the number of turns of the turning handle 12, a control is provided with an incremental encoder 21, which is operatively connected to the gear 15, in the form of a sector disc 1 (
Two Reed sensors S1, S2 are provided in the peripheral region of the sector disc 1 and are disposed one behind the other in the peripheral direction thereof at an angular separation α which is e.g. approximately ⅔ of the angle β between the sectors 2, 3 of the sector disc 1. The sensors S1, S2 are connected to a processor (not shown) which calculates the dose volume from the signals generated by the sensors S1, S2 when the sensor disc 1 is in action, which is then displayed by a digital display device 23 (
In the present embodiment (see
During fast action of the gear 15 (large dose volume), a relatively coarse resolution (registration of the switching-on processes of only one of the two sensors S1, S2) is sufficient, but for slow action of the gear 15 (small dose volume) the resolution should be relatively high to keep dosing errors small. For this reason, when the number of turns of the sector disc 1 is smaller than the predetermined value, the dose volume is calculated using the switching on and off processes of both sensors S1, S2 (see
The power savings resulting from the reduced current consumption of the processor due to reduction in its clock frequency in dependence on the action of the gear 15 is approximately 30% compared to the power consumption of a digital burette having only one sensor.
Number | Date | Country | Kind |
---|---|---|---|
101 06 463 | Feb 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE02/00064 | 1/10/2002 | WO | 00 | 8/5/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/064254 | 8/22/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4754418 | Hara | Jun 1988 | A |
4760939 | Ball | Aug 1988 | A |
4815632 | Ball et al. | Mar 1989 | A |
5108703 | Pfost et al. | Apr 1992 | A |
5938076 | Ganzeboom | Aug 1999 | A |
5961048 | Prieschl et al. | Oct 1999 | A |
6055509 | Powell | Apr 2000 | A |
6209752 | Mitchell | Apr 2001 | B1 |
6339897 | Hayes et al. | Jan 2002 | B1 |
6824738 | Neeper et al. | Nov 2004 | B1 |
20020134176 | Bigus | Sep 2002 | A1 |
20040147042 | Gratzl et al. | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
38 17 705 | Dec 1988 | DE |
195 13 023 | Oct 1996 | DE |
0 559 223 | Sep 1993 | EP |
0 762 083 | Mar 1997 | EP |
2 054 299 | Feb 1981 | GB |
2 174 459 | Nov 1986 | GB |
Number | Date | Country | |
---|---|---|---|
20040057875 A1 | Mar 2004 | US |