In various industrial environments, such as in oil refineries, chemical plants, manufacturing facilities, or other situations or environments where precautions must be taken, a checklist of procedures, measurements, inspections, and other tasks is completed on a regular basis to help ensure safety and optimal operation of equipment. For instance, various regulations (such as ISO 9000, FDA, EPA, OSHA regulations, etc.) may require periodic inspection, calibration, and measurement of devices and equipment, as well as documentation of the inspection, calibrations, measurements, and other tasks. Such tasks, once defined, are often documented in a customized, physical checklist (such as a piece or pad of paper), and the operator must document with a pen or pencil the tasks carried out, the measurements taken, etc. At a later time/date, the checklist data is typically uploaded to a computer database or similar for storage and archival of results.
It can be cumbersome and inefficient to use a piece of paper to outline the tasks and document the tasks. For instance, if an operator needs to inspect a transmitter for condensation, surrounding rust or fraying of wires, etc., it can be difficult to make notes on the checklist while efficiently and safely carrying out the tasks. As another example, an operator may need to go up scaffolding, be lifted on a forklift, etc., where it can be difficult to carry a checklist and pen in addition to any test or calibration equipment. Furthermore, these situations can be further complicated in harsh environments, such in as rain or snow storms.
A device called a documenting process calibrator (DPC), available from Fluke Corporation of Everett, Wash., may be used to calibrate and document calibration steps and calibration results of various equipment and procedures. For instance, DPC's, such as the Fluke 750 series documenting process calibrators, are used to test instruments and equipment in various industrial environments, such as by sourcing, simulating, and measuring pressure, temperature, and electrical signals. The DPC is used to run various calibration procedures on equipment and devices, and it stores the calibration results within the DPC for downloading to a computer at a later date. In this manner, the operator does not need to write down the calibration results or manually transfer the results to an electronic database for storage.
A DPC is typically used in harsh or potentially dangerous industrial environments where it would be difficult to both measure and calibrate equipment and record the results at the same time. The DPC records all test results for which the DPC was used to make the calibration or measurement. However, any additional checklist procedures must be done separately, requiring the operator to carry a physical checklist with him/her, record the results or tasks, and thereafter manually transfer the data onto a computer or similar device. Such a procedure is inefficient and cumbersome for the operator. Thus, there is a need for an improved method for performing checklist procedures in an industrial environment.
A digital checklist system includes an electronic calibration and measurement device and a computer-readable medium having computer-executable instructions stored thereon that, if executed by one or more processors of a computing device, cause the computing device to perform actions for managing a digital checklist The actions include creating a digital checklist having at least one unique prompt, selecting the digital checklist for uploading onto the electronic calibration and measurement device, and downloading data input into the electronic calibration and measurement device in response to the at least one unique prompt. The system further includes a network location for facilitating communication between the electronic calibration and measurement device and the computing device.
This summary is not intended to limit the scope of the claimed subject matter.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
The present disclosure is directed to a system for a digital checklist used to carry out a list of tasks, and a method for implementing the digital checklist for use in an industrial plant or manufacturing environment. Aspects of the present disclosure will be hereinafter described with reference to a digital checklist implemented on a documenting process calibrator. However, it should be appreciated that the device and method described below can be used with any suitable electronic device or product other than a DPC. Moreover, the steps for performing the method, as well as the means for implementing the method, may be modified, rearranged, and/or combined with any other steps without departing form the spirit and scope of the present disclosure.
Referring to
A brief, general description of a networking environment 14 suitable for carrying out aspects of the digital checklist and the method for implementing the digital checklist will now be described. It should be appreciated that the networking environment 14 hereinafter described is provided for illustrative purposes only. Moreover, although specific system configurations are illustrated, it should be understood that examples provided herein are not exhaustive and do not limit the present disclosure to the precise forms disclosed. Persons having ordinary skill in the field of computers will recognize that components described herein may be interchangeable with other components or combinations of components and still achieve the benefits and advantages of the disclosed digital checklist and method for implementing the digital checklist. Furthermore, the computer components hereinafter described may be grouped in a single location or distributed over a wide area.
The networking environment 14 is comprised of a plurality of computers, namely, the host server 20, the site server/workstation 24, and the DPC 12, wherein the DPC 12 is shown associated with a user 28. The host server 20 and the site server/workstation 24 are configured to communicate with each other and with the DPC 12 via a network 30, which may be implemented as a local area network (“LAN”), a wide area network (“WAN”), or the global network commonly known as the Internet. As known to those skilled in the art and others, the computers 20 and 24 and the DPC 12 illustrated in
The functions performed by each of the computers described with reference to
In the context of
The site server/workstation 24 includes suitable programs for accessing the digital checklist programs and files from the host server 20 over the network 30. An operator may access the digital checklist program/file on the site server/workstation 24 to retrieve, modify, and/or build customized digital checklist programs and files for downloading onto the DPC 12. It should be appreciated that the digital checklist programs and files may instead be stored locally on the site server/workstation 24 as well as any modified or customized digital checklist programs, for uploading and use on the DPC 12.
The DPC 12 includes suitable hardware and firmware for uploading the digital checklist programs and files onto the DPC 12. The DPC 12 may be placed into communication with the site server/workstation 24 though a serial or RS 232 port, a USB connection, or other wired means, through a wireless connection, or by other suitable means.
The DPC 12 also includes suitable hardware and firmware for running the digital checklist programs and files on the DPC 12, and thereafter uploading the completed/modified digital checklist file onto the site server/workstation 24 for archive and storage. The completed digital checklist file may either be stored locally on the site server/workstation 24, or instead stored on the host server 20.
Referring to
The network interface 38 depicted in
The input/output interface 42 enables the host server 20 to communicate with various local input and output devices. An input device in communication with the input/output interface 42 may include computing elements that provide input signals to the host server 20, such as a keyboard, mouse, external memory, disc drive, etc. Also, an output device in communication with the input/output interface 42 may include computing elements that accept output signals such as a monitor, a printer, and the like.
The processor 34 is configured to operate in accordance with computer program instructions stored in a memory, such as the memory 46. In some computing systems, program instructions may also be embodied in a hardware format, such as a programmed digital signal processor. In any event, as illustrated in
The Web server program 50 illustrated in
The Web server program 50 also interacts with other computer components illustrated in
In another instance, a request to upload a completed digital checklist file from the DPC 12 (through the site server/workstation 24) may be received from a user. In such an example, data associated with the request is received at the Web server program 50 and forwarded to the database application 54 so that the database 66 may be updated. In that regard, when a request to retrieve completed checklist data or a customized checklist file is received from a user, the data associated with the request is received at the Web server program 50 and forwarded to the database application 54 so that the database 66 may retrieve the data or file. As can be appreciated from the foregoing, the database application 54 provides mechanisms for updating and/or retrieving data stored in the database 66 such that a user may retrieve or upload data associated with a corresponding digital checklist file through a digital checklist Web site. The database application 54 may also be suitable for authenticating the user and/or electronic signature such that archived data may only be retrieved by authorized personnel.
The Web server program 50 may also interact with the database application 54 to retrieve data from a back end database 70 that stores data necessary to provide Web pages for enabling users to create and access digital checklist programs and files, for enabling users to upload data from completed digital checklist files, and for enabling users to retrieve data from previously stored completed digital checklist files. It should be appreciated that the database 66 and back end database 70 may instead be combined into one database, or instead, additional databases may be used.
In addition or as an alternative to the Web server program 50, a shared files module 62 may be included for providing remote access to the digital checklist programs and files created by the digital checklist module. The shared files module 62 could be configured as a Dynamic Link Library (DLL) or any other suitable configuration to provide an interface on the site/server workstation 34 for downloading and retrieving files on the DPC 12.
As noted above, the digital checklist programs and files may alternatively be stored locally on the site server/workstation 24. In that regard, the site server/workstation 24 may communicate directly with the DPC 12 through wired or wireless means without the use of a network. In this alternative embodiment, the site server/workstation 24 may include computer components similar to those of the host server 20 described above with respect to
Referring to
The digital checklist module 58 may access the database 66 to retrieve stored information about the DPC 12 on which the digital checklist will be executed. Such information may include information for the DPC 12 (“DPC data”), such as, for instance, the DPC input/output range for one or more measurements, the test tolerance, tag and serial number, procedure information and details, past calibration and test results, etc. The DPC data may be pulled from the database 66 to assist in populating certain information, questions and tasks in the checklist For instance, referring to
Once the digital checklist has been created, modified, or retrieved, the selected digital checklist is uploaded onto the DPC 12 from the site server/workstation 24, as indicated by block 74. The digital checklist populates the DPC 12 with a plurality of prompts that need to be viewed by or completed by the user.
Once uploaded onto the DPC 12, the digital checklist is selectable as a prompt, as indicated by block 78, and as shown in
Referring to
Referring to
Referring to
Referring to
If the user answers “No,” the user will be directed to a prompt in another section of the checklist If the user answers “Yes,” the user will be directed to additional prompts in that section. For instance, as shown in
The branching capability of the digital checklist streamlines the checklist process for the user. It also increases the flexibility of the digital checklist, as opposed to a written form which must capture all the possible answers and all the possible follow up questions and tasks.
Referring to
Once the user reaches the end of the digital checklist by responding to all the prompts, the user may be required to enter a unique identification code or number to “digitally sign” the checklist, as shown in
Referring back to
While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the present disclosure.
This application claims the benefit of U.S. Provisional Application No. 61/747,903, filed Dec. 31, 2012, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61747903 | Dec 2012 | US |