The present disclosure is directed to communication system designed to provide digital data transmission & reception between a loudspeaker and remote transceiver, while operating in the presence of potentially large audio band signals.
Loudspeakers are generally passive complex loads connected to an audio amplifier by standardized two-wire load speaker wiring designed to carry high-voltage, high-current analog signals in the audio frequency band. Some loudspeakers can be powered, that is have an external power source and powered components, such as a subwoofer with an internal amplifier, but these too are generally connected to the audio source by a two-wire connector which delivers the audio signal to be reproduced. As wired loudspeakers are seen as passive system components with fixed load characteristics, there has not been any need to communicate or pass data and control signals between the amplifier and the loudspeaker.
Some technologies are emerging that would make it desirable to have a communication path between a loudspeaker and the amplifier. An example of such a technology is described in U.S. patent application Ser. No. 12/908,773 by Butler, which is hereby incorporated by reference. The system described in the Butler application provides for a mechanism at the loudspeaker to attenuate the audio signal in over-voltage, over-current or other over-limit conditions. The mechanism also allows for the attenuation of the audio signal for artistic or logistics reasons, such as varying the strength of the audio signal to each speaker in a bank of speakers, even if there is no threat to the loudspeaker.
In the system described in Butler, loudspeakers equipped with digital attenuators have the intelligence to digitally attenuate the AC input signal, monitor voltage, electrical current, temperature, frequency, cone movement, and/or other limiting values. Such intelligent loudspeakers can benefit greatly from the present invention wherein the monitored values and attenuation characteristics can be communicated to a remote device or devices residing elsewhere in the loudspeaker wiring path. For example, the intelligent loudspeaker equipped with digital attenuation and limit monitoring can pass the monitored values and/or attenuator settings to remote devices, which in turn can change the parameters of the digital attenuator from afar. This can be beneficial in systems where a user desires to attenuate a specific speaker which resides in a chain of connected loudspeakers or the user simply wishes to monitor the performance and characteristics of a specific loudspeaker from afar.
Other applications wherein a transparent digital communication system for use within passive, un-powered loudspeakers can be beneficial include, but are not limited to: audio systems that utilize Digital Signal Processors (DSP) for loudspeaker processing and equalization, and audio systems that require advanced status monitoring and/or diagnostic support. Audio systems that utilize DSP for loudspeaker processing and equalization can benefit from the present invention by receiving an electronic identification from the un-powered loudspeakers. Once the DSP has received the loudspeakers identification (make, model, serial number, etc.), the DSP can automatically recall the appropriate signal processing algorithms required for that specific loudspeaker. For example, many modem professional audio amplifiers contain on-board DSP processors that provide the user with a host of signal processing tools such as filtration, delay, gain, phase shifting, etc.; however, the user must configure the DSP parameters for the loudspeaker connected thereto. By incorporating the invention disclosed herein, the properly equipped loudspeaker can identify itself to the amplifier and DSP processor, thereby allowing immediate recall of the correct DSP parameters. This provides a “plug- and play” capability not seen before with un-powered loudspeakers.
Another general application for the present invention is within audio systems requiring status monitoring and/or diagnostic support. In such systems, the audio designer desires to monitor as many audio components as possible, thereby providing a more comprehensive understanding of the operating conditions of each component within the overall system. In the past, un-powered loudspeakers have not provided any mechanisms for status monitoring. By applying the present invention, un-powered loudspeakers can now broadcast loudspeaker status and other performance characteristics to remote devices residing on the loudspeaker wiring. These remote devices can display the information via a computer interface and/or a local user interface. Though not limited to, the present invention can be used to pass diagnostic information such as driver temperature, voltage, current, cable phase, and/or impedance. This information can be invaluable to system operators, contractors, and installers while operating, installing, and/or commissioning an audio system.
The concepts described herein encompasses a communication and identification system designed to provide digital data transmission, reception, remote powering, and identification between passive, un-powered loudspeakers and remote transceivers, while operating in the presence of potentially large analog audio band signals. The communication and identification system provides transmission and reception of digital data and power to an un-powered loudspeaker at frequencies higher than the analog audio band, 20-20 kHz, while propagating over the standard amplifier-to-loudspeaker interconnect wiring (typically a two-conductor, unshielded, stranded, high voltage/current, wire). This allows “transparent” digital communication to occur without adversely affecting the analog audio band output of the amplifier and does not create any audible artifacts at the loudspeaker. In this manner, the un-powered loudspeaker can, among other uses, (1) contain digital electronics that is remotely powered even during conditions where no audio input signal is present; (2) communicate with other devices residing on the loudspeaker wiring (amplifiers, other loudspeakers, monitoring devices, network bridging devices, etc.); and (3) broadcast an identification message to remote devices residing on the loudspeaker wiring.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The concepts set forth herein describe a communication and identification system that allows communication between audio and sound processing equipment and loudspeakers typically connected over standard audio wiring. Preferred embodiments of the communication and identification system described herein is broadly comprised of two distinct elements, master nodes and slave nodes. The slave nodes typically reside within un-powered loudspeakers, while master nodes would typically be installed in remote devices such as audio amplifiers, system monitoring devices, or network bridging devices. One or more of the master nodes can supply a high-frequency powering signal to the slave nodes, wherein the slave nodes recover the high frequency power transmission for powering various slave electronics. In addition to the high frequency power recovery, slave nodes can derive power from any audio signals present at the loudspeaker input if so desired. Multiple slave nodes can reside on a single pair of loudspeaker wires, recover power, transmit and receive digital data, and mitigate bus contention.
Embodiments of the slave nodes described herein broadly contain a power recovery stage, a high frequency data transceiver stage, a decoder/encoder stage, and an interface control stage. Embodiments of the master nodes described herein broadly contain a high frequency power transmitter stage, a high frequency data transceiver stage, a decoder/encoder stage, and an interface control stage. It should be apparent to one skilled in the art of digital communication systems that the decoder/encoder and high frequency transceiver stages can be implemented using a variety of different techniques and devices. While several alternative implementations for the high frequency transceiver stages are disclosed herein, one skilled in the art will recognize that there are many other implementations that are well within the scope of the concepts described herein.
Generation of the high frequency modulation signals used in the invention can be done using a variety of existing digital communication techniques including, but not limited to, Frequency Shift Keying (FSK), Phase Shift Keying (PSK), Pulse Amplitude Modulation (PAM), On-Off Keying (OOK), Minimum Shift Keying (MSK), etc. Many of these modulation techniques can be found on integrated circuit solutions, which can be used within the invention. In addition to modulation techniques, channel throughput can be increased by using Frequency Division Multiplexing (FDM) to increase the number of available frequency bands for data transmission. Furthermore, channel coding can be implemented with or without the use of error correction or detection, and encoding may be implemented with standard techniques such as Manchester Encoding.
Referring now to
Frequency allocation of master node 22 and slave node 24 transmitted signals can vary depending upon the application; however, the invention is operable to provide transparent communication in the presence of large audio-band signals by selecting transmission frequencies well above the audio band, which is typically defined as 20 Hz to 20 kHz. Therefore, the preferred embodiments of the present invention typically transmit all power and data signals, PWR_MOD, UP_MOD, and DN_MOD, in the region above 100 kHz and less than 20 MHz. For operation with switching audio amplifiers, it is generally desirable to select transmission frequencies above 1 MHz. Also, it is possible to select a common frequency for both the master node 22 uplink signal UP_MOD, and slave node 24 downlink signal DN_MOD; however, the communication system will only provide half-duplex communication. Therefore, it is preferred to use differing frequencies for uplink and downlink, full duplex communication.
High frequency data transceiver 44 of master node 22 operates to (1) demodulate the high frequency downlink data signal DN_MOD received from the slave node 24 and pass the demodulated signal DN_DAT to data decoder/encoder 42 for processing; (2) modulate the incoming uplink data stream UP_DAT received from the decoder/encoder stage 42 to derive therefrom a high frequency modulated uplink signal UP_MOD for passage to the audio output wiring AOUT. Modulation techniques employed within the high frequency transceiver can vary and implementation options can range from complete integrated solutions, to discrete implementations. Frequency allocation of uplink, downlink, and power modulated signals, UP_MOD, DN_MOD, and PWR_MOD are typically selected well above the audio band as shown in
The data decoder/encoder stage 42 within master node 22 operates to (1) encode and generate the outbound uplink data UP_DAT, (2) decode the incoming downlink data DN_DAT, and (3) communicate with the interface control stage 40 through the bi-direction data digital data bus MSR_DAT. Data encoding within stage 42 broadly receives master data MSR_DAT from the interface and control stage 40, applies any desired channel coding, error correction, data packetization, and framing to derive the outbound uplink data signal UP_DAT for passage to high frequency transceiver stage 44. Similarly, data decoding within stage 42 broadly receives the downlink data stream DN_DAT from high frequency transceiver stage 44 and applies error detection and/or correction, removes framing and/or channel codes, and un-packs the data packets for passage to the interface and control stage 40 via the bi-directional data bus MSR_DAT. Decoder/encoder stage 42 is typically implemented within a microcontroller, programmable logic device, communication integrated circuit, and/or application specific integrated circuit.
Interface and control stage 40 of master node 22 operates to (1) interface with external devices and/or sensors such as amplifier 36, DSP processor 34, and/or user interface display 32; (2) provide communication control for properly interrogating slave nodes 24 and 28, as well as controlling solicited and unsolicited replies from slave nodes 24 and 28; and (3) receive and transmit data to the decode/encode stage 42 via communication bus MSR_DAT. Interface stage 40 can receive inputs and drive outputs to and from a broad range of devices including the aforementioned devices, display 32, DSP 34, and amplifier 36, but one skilled in the art can interface a plurality of other devices to the interface and control stage 40 as required.
Connecting interface and control stage 40 to DSP processor 34, and providing the loudspeaker make, model, and serial number information, as received from slave node 24, can allow DSP 34 to automatically recall loudspeaker preset processing coefficients. This in-turn provides the previously discussed plug-and-play capability, wherein a user simply connects loudspeaker 26, with embedded slave node 24, to amplifier 36 with subsequent attached master node 22, and DSP 34 automatically recalls the proper loudspeaker processing requirements via command from interface and control stage 40. In a similar fashion, connecting interface and control stage 40 to a user interface display device 32 allows the loudspeaker information, status, and diagnostic information to be seen by a user located in different proximity relative to loudspeaker 26 and slave node 24.
Embodiments of communications system 20, also include one or more slave nodes 24 and 28 which are operable to receive the high frequency signals transmitted by the master node 22, reply accordingly, and interface with loudspeaker electronics 26. While certain loudspeaker electronics are illustrated in
High frequency data transceiver 54 operates to (1) receive an outbound downlink data stream DN_DAT from the decode/encode stage 52, and create therefrom a high frequency modulated signal DN_MOD for passage on the loudspeaker wiring; (2) receive the loudspeaker input signal and demodulate therefrom the uplink data stream UP_DAT for passage to the decode/encode stage 52. As discussed earlier, modulation techniques employed within the high frequency transceiver can vary and implementation options can range from complete integrated solutions, to discrete implementations. Frequency allocation of uplink, downlink, and power modulated signals, UP_MOD, DN_MOD, and PWR_MOD are typically selected well above the audio band as shown if
The data decoder/encoder stage 52 within slave node 24 operates to (1) encode and generate the outbound downlink data DN_DAT, (2) decode the incoming uplink data UP_DAT, and (3) communicate with the interface control stage 50 through the bi-direction data digital data bus SLV_DAT. Data encoding within stage 52 broadly receives communication data SLV_DAT from the interface and control stage 50, applies any desired channel coding, error correction, data packetization, and framing to derive the outbound downlink data signal DN_DAT for passage to the high frequency transceiver stage 54. Similarly, data decoding within stage 52 broadly receives the uplink data stream UP_DAT from high frequency transceiver stage 54 and applies error detection and/or correction, removes framing and/or channel codes, and un-packs the data packets for passage to the interface and control stage 50 via the bi-directional data bus SLV_DAT.
The interface and control stage 50 of slave node 24 operates to (1) interface with external devices and/or sensors within loudspeaker 26 such as digital attenuators, temperature sensors, movement sensors, angle sensors or digital levels, as well as electrical metering devices such as voltage and current meters; (2) provide storage of a unique identifier code (unique address), loudspeaker make, model, and serial number information; (3) provide communication control for properly replying to incoming master node interrogations, as well as controlling unsolicited replies to the master; and (4) receive and transmit data to the decode/encode stage 52 via communication bus SLV_DAT. Interface stage 50 can receive inputs from a broad range of devices including an intelligent digital protection and attenuation circuit as defined in U.S. patent application Ser. No. 12/908,773 by Butler. Similarly, interface and control stage 50 can output signals to a broad range of devices including the aforementioned digital protection and attenuation circuit. In this configuration, interface and control stage 50 can be directly connected to the system control stage operating within the digital protection and attenuation circuit. Interfacing the digital protection and attenuation circuit with the high frequency communication system disclosed within the present invention provides an unprecedented level of control and monitoring in un-powered loudspeakers, wherein a remote device, typically a master node, can change the digital protection and/or attenuation properties, as well as receive all pertinent information from the protection and attenuation circuit.
Interface and control stage 50 operates to provide storage of a unique identifier code and all loudspeaker identification information, such as make, model, and serial number. Unique identifier code UID can be used by the master node to specifically address a single slave node for communication. Ability to specifically address a single slave provides a mechanism to mitigate bus contention, or cases when multiple slaves simultaneously reply. Loudspeaker make, model, and serial number are useful to the master for providing automatic DSP recalls as discussed earlier, or for troubleshooting and diagnostics. The unique identifier UID may be the same as the loudspeaker serial number if so desired.
Referring now to
Referring again to circuit 120 of
Embodiments of high frequency data transceiver 54 within slave node 24 operate to modulate the outbound downlink data stream DN_DAT received from the decoder/encoder stage 52 and derive therefrom a high frequency modulated downlink signal DN_MOD using a simplified pulse amplitude modulated oscillator. Wherein said pulse amplitude modulated oscillator is comprised of oscillator 51, gated output driver 53, and band pass filter 55. In this configuration, high frequency transceiver 54 receives the DN_DAT signal from decoder/encoder stage 52 and gates the output of driver 53 directly. Band pass filter 55 is used to limit the spectral content of the resulting pulse amplitude modulated signal and also serves to AC couple the signal to the loudspeaker input wiring AOUT.
High frequency transceiver stage 54 within slave node 24 operates to demodulate the uplink signal UP_MOD using band pass filter 57 and envelope detector 59. Band pass filter 57 provides rejection of the adjacent high frequency signals DN_MOD and PWR_MOD, and passes the filtered UP_MOD signal to envelope detector 59 for detection of the data stream UP_DAT. Similar to the master node, envelope detector 59 can be implemented with standard devices designed to detect the envelope of a pulse amplitude modulated, high frequency signal. Care must be taken to ensure envelope detector 59 has adequate speed to achieve the desire detection and net propagation time.
Referring now to
Similar to master node 22 band pass filters 45, 47, and 49, slave node 24 can contain band pass filters 55, 57, and 59 for spectral filtration and isolation of the desired high frequency modulated signal UP_MOD, DN_MOD, or PWR_MOD. In certain embodiments, band pass filter 57 can be tuned to allow slave node decoder/encoder stage 52 to receive its own downlink modulated signal DN_MOD, wherein the slave interface and control stage 50 can listen to its own downlink transmission, as well as other loudspeakers residing on the line. This is beneficial for monitoring high frequency transceiver 54 as well as establishing communication between multiple slaves residing on the loudspeaker wiring, such as slave node 28.
Referring now to
While the concepts described herein broadly relate to the physical layer of a digital communication and identification system for passive loudspeakers and is not limited to any one data signaling or protocol scheme, the invention also encompasses a simple protocol and signaling layer for practical applications. Various embodiments of the invention have been developed with two predominant protocols (1) a clocked signaling scheme requiring at least 2 uplink signals (1 clock, 1 data), and (2) a pulse width, pulse position signaling scheme requiring only one uplink or downlink data signal. Though the aforementioned embodiments can operate with a variety of protocols and signaling techniques, certain preferred embodiments of the present invention can operate using the pulse width, pulse position signaling as shown in the time domain plot of
Referring to
In certain embodiments, the present invention can benefit by incorporating a time division multiplexing scheme as illustrated in the time domain plot of
Referring to
Because all-call interrogations will result in all slaves responding to the master, randomizing the reply delay time, the time in which the individual slaves reply, minimizes the potential for bus conflicts. However, random reply delay will not eliminate bus contention as can be seen by the overlapping collision of slave 1 reply 24 and slave 2 reply 26. Therefore, in addition to randomized reply delay, the master checks for error-free receptions received from slaves in response to the all-call interrogation, and transmits an acknowledgment command to each slave that successfully reported in, wherein that slave will disable replies to subsequent all-call interrogations. This can be seen in the successful reply transmission of slave 3 reply 28, and the subsequent acknowledgement uplink interrogation 29 uniquely identifying slave 3 using the UID. This technique, referred to within the present invention as all-call suppression, ensures that future all-call interrogations will not be responded to by slaves that have been identified by the master. All call suppression requires the master node to have the ability to uniquely identify and address a specific slave, as discussed in regards to
It should be obvious to one skilled in the art of digital communication design, that the present invention can be implemented utilizing a variety of digital techniques and devices. One such technique that can be implemented within the present invention is Orthogonal Frequency Division Multiplexing (OFDM), wherein a plurality of transmit carrier frequencies are created using an inverse Fast Fourier transform (FFT) algorithm and the high frequency receiver utilizes a forward FFT for demodulation. Such an implementation would provide significant channel data throughput, but the cost would be higher than a simple implementation with minimized uplink and downlink carrier frequencies.
The overall result of the concepts described herein is a digital communication system allowing data transmission and reception between multiple loudspeakers and multiple remote transceivers. The communications system described herein allows the loudspeaker to report system information, status, voltage & current levels, temperatures, impedance, cable phase, tilt angle, and many other parameters to the master node. These system and operational parameters can then be utilized by the master to automatically recall signal processing settings, update monitors, warn users of problems, and/or help diagnose wiring or loudspeaker faults. Additionally, the digital communication system described herein can be utilized alongside a digital attenuation and protection circuit to control protection parameters or adjust the desired attenuation of an individual speaker within a series or parallel group of loudspeakers. In this way, the present invention allows an operator to turn up or down and individual slave node that is outfitted with a digital attenuation device.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application claims the benefit of U.S. Provisional Patent Application No. 61/254,069, filed Oct. 22, 2009, titled “Digital Communication System for Loudspeakers” the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4922536 | Hoque | May 1990 | A |
5729611 | Bonneville | Mar 1998 | A |
6385322 | Mietling | May 2002 | B1 |
7031476 | Chrisop et al. | Apr 2006 | B1 |
8582263 | Butler | Nov 2013 | B2 |
20030125954 | Bradley et al. | Jul 2003 | A1 |
20060221970 | Walter | Oct 2006 | A1 |
20070121981 | Koh et al. | May 2007 | A1 |
20070242780 | May et al. | Oct 2007 | A1 |
20080069392 | Hofrichter | Mar 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20110096940 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
61254069 | Oct 2009 | US |