The present document relates to wireless communication, and more particularly, to digital communications using orthogonal time frequency space (ORFS) domain modulated signals.
Due to an explosive growth in the number of wireless user devices and the amount of wireless data that these devices can generate or consume, current wireless communication networks are fast running out of bandwidth to accommodate such a high growth in data traffic and provide high quality of service to users.
Various efforts are underway in the telecommunication industry to come up with next generation of wireless technologies that can keep up with the demand on performance of wireless devices and networks.
This document discloses digital communication transmission and reception techniques using dispersed orthogonal time frequency space (OTFS) modulation schemes.
In one example aspect, a wireless communication method is disclosed. Using the method, at a transmitter, source data bits are modulated into a number Nd of constellation symbols. An invertible transform is applied to the constellation symbols, thereby resulting in mapping the transformed symbols into Nd elements in the time-frequency grid. A signal resulting from the invertible transform is transmitted over a communication channel.
In another example aspect, a wireless communication reception method is disclosed. The method includes receiving a signal comprising a logical grouping of Nd symbols arranged in a time-frequency grid, generating equalized symbols by equalizing the signal by estimating a channel over which the signal is received, transforming the equalized symbols using an invertible transform into Nd estimated received symbol constellations, and recovering source data bits from the Nd estimated received symbol constellations.
In yet another example aspect, a wireless communication apparatus is disclosed. The apparatus includes a memory and a processor wherein the processor is configured to read instructions from the memory and implement one of the above-described methods.
In yet another example aspect, the above described methods can be embodied as processor-executable code stored in a processor-readable memory.
These, and other, features are described in this document.
Drawings described herein are used to provide a further understanding and constitute a part of this application. Example embodiments and illustrations thereof are used to explain the technology rather than limiting its scope.
To make the purposes, technical solutions and advantages of this disclosure more apparent, various embodiments are described in detail below with reference to the drawings. Section headings are used in the present document for ease of explanation only and do not limit scope of the disclosed embodiments only to those sections. Accordingly, embodiments and features in various sections of the present document may be combined with each other.
Orthogonal Time Frequency Space (OTFS) is a modulation technique, where constellation symbols are placed on a regular grid in the delay-Doppler dimension, converted using a Symplectic Fourier transform to symbols in the time-frequency domain and then transmitted over a wireless channel. Standard OFDM modulators may be used to transmit these time-frequency symbols. The OTFS reciprocal domains (delay-Doppler and time-frequency) have a physical meaning and can be analytically formulated with reasonable complexity. However, the regularity of these reciprocal grids has restrictions such as placement of additional reference signals in time-frequency grid for channel estimation, or postponing parts of the signal to be transmitted to a later separate transmission. For example, reference signal for OTFS can only be placed outside of the reciprocal grid, regularly inside the reciprocal grid or overlaid on top of the reciprocal grid. Each one of these methods, has drawbacks that make these solutions inefficient, more complex or with degraded performance.
Some embodiments that use the Dispersed OTFS technology discussed herein overcome these limitations by replacing the physical delay-Doppler domain with a virtual domain named “Spread domain”. This domain is may not be physically reciprocal to the time-frequency domain. Constellation symbols in this domain are converted to different symbols using an invertible transform and placed on non-regular resources in the time-frequency grid.
At 202, source data bits are modulated into a number Nd of constellation symbols. For example, in some embodiments, the modulating the source data bits includes modulating the source data bits using a multi-layer coding technique in which different constellation bits of a symbol are encoded separately. In some embodiments, the number Nd of constellation symbols are constructed from interleaved coded bits. Additional embodiments are described with respect to
At 204, an invertible transform is applied to the constellation symbols, resulting in mapping the transformed symbols into Nd elements in a time-frequency grid. As described with respect to
As described in the present document, the transform and mapping may result in spreading a given constellation symbol across multiple locations along the time-frequency grid. For example, the multiple locations may be non-contiguous along the time-frequency grid.
At 206, a signal resulting from the invertible transform is transmitted over a communication channel. For transmission, the signal may be generated by inserting a reference signal along the time-frequency grid at locations unoccupied by the transformed symbols. In some embodiments, the signal may be generated by inserting additional data along the time-frequency grid at locations unoccupied by the transformed symbols. As further described in this document, the invertible transform may be a symplectic Fourier transform or a multi-dimensional Fourier transform, or a permutation transform.
Several additional embodiments of the method 200 are described in the present document.
The method 300 includes, at 302, receiving a signal comprising a logical grouping of Nd symbols arranged in a time-frequency grid.
The method 300 includes, at 304, generating equalized symbols by equalizing the signal by estimating a channel over which the signal is received.
The method 300 includes, at 306, transforming the equalized symbols using an invertible transform into Nd estimated received symbol constellations.
The method 300 includes, at 308, recovering source data bits from the Nd estimated received symbol constellations. Various other features of the method 300 are described with respect to the transmission side method 200 and further described with reference to
Orthogonal Time Frequency and Space (OTFS), further described in the present document, is a technique for generating waveforms which can extract the diversity of a wireless channel and achieve its capacity.
In some embodiments, encoded bits are mapped to constellation symbols (such as QAM symbols), which are assigned to a rectangular grid corresponding to a delay-Doppler domain (see
The transfer function of the wireless channel is typically unknown and in the presence of moving reflectors (Doppler) is also changing in time. The receiver estimates the channel and then equalize the received signal before decoding it. A common method uses known Reference Signals (RS), which are added to the information-bearing transmitted signal. The receiver uses these RS to estimate the channel and then equalize the information-bearing signal with this channel estimation. These methods are both related to single and multiple antenna systems (SISO/MIMO).
The design of the RS is generally known to one of skill in the art. Some embodiments may use signals (also referred to as pilots) that are designed in the delay-Doppler domain or in the Time-Frequency domain. The RS may or may not be orthogonal to the information-bearing signal.
This section describes, among other things, embodiments for multiplexing orthogonal RS with OTFS data. In some embodiments, specific locations on the Time-Frequency grid are assigned to RS (typically in a density that will allow a sufficient quality of channel estimation). The other locations of that grid are assigned to data symbols, which originate from transformed delay-Doppler grid(s) that are mapped to these locations. The size of the delay-Doppler grid(s) matches the size of the data symbols.
Table 2 shows Symbols mapping example in the Time-Frequency domain.
Table 3 shows Time-Frequency multiplexing example of data and RS.
Different multiplexing schemes between RS and data may require more than one grid in the delay-Doppler domain, as illustrated in the example of
Table 4A shows a first example of the 3×4 s-matrix.
Table 4B shows an example of the 4×4 z-matrix.
Table 5A shows a 4×3 example of the s-matrix.
Table 5B shows a 4×4 example of the z-matrix.
Table 6 shows an example of time-frequency multiplexing of data and RS for multiple grids.
In some embodiments, the mapping to Time-Frequency resource does not have to be continuous in either dimension. As an example, to support user multiplexing along frequency, the selected resources for data symbols may not be continuous.
In the example of
Without losing diversity, it is also possible to arrange the data symbols as a single dimension vector that does not correspond directly to the delay-Doppler domain. A Fourier transform (FFT) may be applied to these symbols before they are mapped to data resources in the Time-Frequency domain. Similarly, to the example of
A receiver for Dispersed OTFS may include a channel estimation module, an Equalizer, domain transformations and a decoder.
Example implementations of such a receiver, are shown in
In particular,
Some implementations may include an iterative receiver, further described herein, as shown in
In particular,
In some embodiments, the 2-D Symplectic Fourier transform may be replaced by a 1-D Fourier transform, as shown in
Some features as described with respect to
An example embodiment may extract Nd different elements from a Time-Frequency grid and equalize them, using a channel estimation that may be derived from reference signals in that Time-Frequency grid. Arrange the equalized symbols in an M-dimensional grid of size n1×n2× . . . ×nM, where M is an integer (M≥1) and the dimensions ni (i=1, 2, . . . , M) are any positive integers that satisfy Nd=Πi=1Mni. Embodiments may then transform this grid with the inverse of the transmitter's transform, −1, to obtain Nd received constellation symbols. This may be followed by a conversion of the received constellation symbols to bit metrics and use them for decoding and estimating of the source data bits.
Some embodiments may perform splitting into several grids, as described in this document.
An iterative receiver, performs several iterations of the following steps: Extract Nd different elements from a Time-Frequency grid and equalize them, using a channel estimation that may be derived from reference signals in that Time-Frequency grid, and a priori information on these Nd elements. Arrange the equalized symbols in an M-dimentional grid of size n1×n2× . . . × nM, where M is an integer (M≥1) and the dimensions ni (i=1, 2, . . . , M) are any positive integers that satisfy Nd=Πi=1Mni. Transform this grid with the inverse of the transmitter's transform, −1, to obtain Nd received constellation symbols. Compute from the received constellation symbols, extrinsic bit metrics and use them for decoding and estimating the source data bits. Generate estimations on coded bits and use them to compute for each one of the Nd constellation symbols a mean and a variance. Arrange each one of these metrics in an M-dimentional grid of size n1×n2× . . . × nM and transform them with the transform . Use these transformed metrics as a priori information for the equalizer.
Some embodiments may perform splitting into several grids.
This section provides some examples of the mathematical framework on which OTFS technology is based. OTFS is a modulation technique that modulates each information (e.g., QAM) symbol onto one of a set of two dimensional (2D) orthogonal basis functions that span the bandwidth and time duration of the transmission burst or packet. The modulation basis function set is specifically derived to best represent the dynamics of the time varying multipath channel.
OTFS transforms the time-varying multipath channel into a time invariant delay-Doppler two-dimensional convolution channel. In this way, it eliminates the difficulties in tracking time-varying fading, for example in high speed vehicle communications.
OTFS increases the coherence time of the channel by orders of magnitude. It simplifies signaling over the channel using well studied AWGN codes over the average channel SNR. More importantly, it enables linear scaling of throughput with the number of antennas in moving vehicle applications due to the inherently accurate and efficient estimation of channel state information (CSI). In addition, since the delay-doppler channel representation is very compact, OTFS enables massive MIMO and beamforming with CSI at the transmitter for four, eight, and more antennas in moving vehicle applications. The CSI information needed in OTFS is a fraction of what is needed to track a time varying channel.
Orthogonal Time Frequency Space (OTFS) modulation is comprised of a cascade of two transformations. The first transformation maps the two-dimensional plane where the information symbols reside (and which we call the delay-Doppler plane) to the time frequency plane. The second one transforms the time frequency domain to the waveform time domain where actual transmitted signal is constructed. This transform can be thought of as a generalization of multicarrier modulation schemes.
The multipath fading channel is commonly modeled in the baseband as a convolution channel with a time varying impulse response
r(t)=∫(τ,t)s(t-τ)dτ (1)
where s(t) and r(t) represent the complex baseband channel input and output respectively and where (τ, t) is the complex baseband time varying channel response.
This representation, while general, does not give us insight into the behavior and variations of the time varying impulse response. A more useful and insightful model, which is also commonly used for Doppler multipath doubly fading channels is
r(t)=∫h(τ,ν)ej2πν(t-τ)s(t-τ)dvdτ (2)
In this representation, the received signal is a superposition of reflected copies of the transmitted signal, where each copy is delayed by the path delay τ, frequency shifted by the Doppler shift ν and weighted by the time-invariant delay-Doppler impulse response h(τ, ν) for that τ and ν. In addition to the intuitive nature of this representation, Eq. (2) maintains the generality of Eq. (1). In other words it can represent complex Doppler trajectories, like accelerating vehicles, reflectors etc. This can be seen if we express the time varying impulse response as a Fourier expansion with respect to the time variable t
(τ,t)=∫h(τ,ν)ej2πνtdt (3)
Substituting (3) in (1) we obtain Eq. (2) after some manipulation.
An important feature revealed by these two figures is how compact the (τ, ν) representation is compared to the (τ, t) representation. This has important implications for channel estimation, equalization and tracking as will be discussed later.
Notice that while h(τ, ν) is, in fact, time-invariant, the operation on s(t) is still time varying, as can be seen by the effect of the explicit complex exponential function of time in Eq. (2). The technical efforts in this paper are focused on developing a modulation scheme based on appropriate choice of orthogonal basis functions that render the effects of this channel truly time-invariant in the domain defined by those basis functions. Let us motivate those efforts with a high level outline of the structure of the proposed scheme here.
Let us consider a set of orthonormal basis functions ϕτ,ν(t) indexed by τ, ν which are orthogonal to translation and modulation, i.e.,
ϕτ,ν(t−τ0)=ϕτ+τ
ej2πν
and let us consider the transmitted signal as a superposition of these basis functions
s(t)=∫∫x(τ,ν)ϕτ,ν(t)dτdν (5)
where the weights x(τ, ν) represent the information bearing signal to be transmitted. After the transmitted signal of (5) goes through the time varying channel of Eq. (2) we obtain a superposition of delayed and modulated versions of the basis functions, which due to (4) results in
where * denotes two dimensional convolution. Eq. (6) can be thought of as a generalization of the derivation of the convolution relationship for linear time invariant systems, using one dimensional exponentials as basis functions. Notice that the term in brackets can be recovered at the receiver by matched filtering against each basis function ϕτ,ν(t). In this way a two dimensional channel relationship is established in the (τ, ν) domain y(τ, ν)=h(τ, ν) *x(τ, ν), where y(τ, ν) is the receiver two dimensional matched filter output. Notice also, that in this domain the channel is described by a time invariant two-dimensional convolution.
A final different interpretation of the wireless channel will also be useful in what follows. Let us consider s(t) and r(t) as elements of the Hilbert space of square integrable functions . Then Eq. (2) can be interpreted as a linear operator on acting on the input s(t), parametrized by the impulse response h(τ, ν), and producing the output r(t)
r=Πh(s):s(t)∈r(t)∈ (7)
Notice that although the operator is linear, it is not time-invariant. In the no Doppler case, i.e., if h(ν, τ)=h(0, τ)δ(ν), then Eq. (2) reduces to a time invariant convolution. Also notice that while for time invariant systems the impulse response is parameterized by one dimension, in the time varying case we have a two dimensional impulse response. While in the time invariant case the convolution operator produces a superposition of delays of the input s(t), (hence the parameterization is along the one dimensional delay axis) in the time varying case we have a superposition of delay-and-modulate operations as seen in Eq. (2) (hence the parameterization is along the two dimensional delay and Doppler axes). This is a major difference which makes the time varying representation non-commutative (in contrast to the convolution operation which is commutative), and complicates the treatment of time varying systems.
The important point of Eq. (7) is that the operator Πh(·) can be compactly parametrized in a two dimensional space h(τ, ν), providing an efficient, time invariant description of the channel. Typical channel delay spreads and Doppler spreads are a very small fraction of the symbol duration and subcarrier spacing of multicarrier systems.
In the mathematics literature, the representation of time varying systems of (2) and (7) is called the Heisenberg representation. It can actually be shown that every linear operator (7) can be parameterized by some impulse response as in (2).
Our purpose in this section is to construct an appropriate transmit waveform which carries information provided by symbols on a grid in the time-frequency plane. Our intent in developing this modulation scheme is to transform the channel operation to an equivalent operation on the time-frequency domain with two important properties:
The channel is orthogonalized on the time-frequency grid.
The channel time variation is simplified on the time-frequency grid and can be addressed with an additional transform.
Fortunately, these goals can be accomplished with a scheme that is very close to well-known multicarrier modulation techniques, as explained next. We will start with a general framework for multicarrier modulation and then give examples of OFDM and multicarrier filter bank implementations.
Let us consider the following components of a time frequency modulation:
A lattice or grid on the time frequency plane, that is a sampling of the time axis with sampling period T and the frequency axis with sampling period Δƒ.
Λ={(nT,mΔƒ),n,m∈} (8)
A packet burst with total duration NT secs and total bandwidth Mă Hz
A set of modulation symbols X[n, m], n=0, . . . , N−1, m=0, . . . , M−1 we wish to transmit over this burst
A transmit pulse gtr(t) with the property of being orthogonal to translations by T and modulations by Δƒ
Given the above components, the time-frequency modulator is a Heisenberg operator on the lattice Λ, that is, it maps the two-dimensional symbols X[n. m] to a transmitted waveform, via a superposition of delay-and-modulate operations on the pulse waveform gtr(t)
More formally
x=Πx(gtr):gtr(t)∈y(t)∈ (11)
where we denote by Πx(·) the “discrete” Heisenberg operator, parameterized by discrete values X[n, m].
Notice the similarity of above equation and with the channel equation above. This is not by coincidence, but rather because we apply a modulation effect that mimics the channel effect, so that the end effect of the cascade of modulation and channel is more tractable at the receiver. It is not uncommon practice; for example, linear modulation (aimed at time invariant channels) is in its simplest form a convolution of the transmit pulse g (t) with a delta train of QAM information symbols sampled at the Baud rate T.
s(t)=Σm=0N-1X[n]g(t-nT) (12)
In our case, aimed at the time varying channel, we convolve-and-modulate the transmit pulse (c.f. the channel Eq. (2)) with a two-dimensional delta train which samples the time frequency domain at a certain Baud rate and subcarrier spacing.
The sampling rate in the time-frequency domain is related to the bandwidth and time duration of the pulse gtr(t) namely its time-frequency localization. In order for the orthogonality condition to hold for a frequency spacing Δƒ, the time spacing must be T≥1/Δƒ. The critical sampling case of T=1/Δƒ is generally not practical and refers to limiting cases, for example to OFDM systems with cyclic prefix length equal to zero or to filter banks with gtr(t) equal to the ideal Nyquist pulse.
Some examples are as below:
Example 1: OFDM Modulation: Let us consider an OFDM system with M subcarriers, symbol length TOFDM, cyclic prefix length TCP and subcarrier spacing 1/TOFDM. If we substitute in Equation (10) symbol duration T=TOFDM+TCP, number of symbols N=1, subcarrier spacing Δƒ=1/TOFDM and gtr(t) a square window that limits the duration of the subcarriers to the symbol length T
then we obtain the OFDM formula. Technically, the pulse of Eq. 3 is not orthonormal but is orthogonal to the receive filter (where the CP samples are discarded) as we will see shortly.
Example 2: Single Carrier Modulation: Equation (3) reduces to single carrier modulation if we substitute M=1 subcarrier, T equal to the Baud period and gtr(t) equal to a square root raised cosine Nyquist pulse.
Example 3: Multicarrier Filter Banks (MCFB): Equation (3) describes a MCFB if gtr(t) is a square root raised cosine Nyquist pulse with excess bandwith α, T is equal to the Baud period and Δƒ=(1+α)/T.
Expressing the modulation operation as a Heisenberg transform as in Eq. (4) may be counterintuitive. We usually think of modulation as a transformation of the modulation symbols X[m, n] to a transmit waveform s(t). The Heisenberg transform instead, uses X[m, n] as weights/parameters of an operator that produces s(t) when applied to the prototype transmit filter response gtr(t)— c.f. Eq. (4). While counterintuitive, this formulation is useful in pursuing an abstraction of the modulation-channel-demodulation cascade effects in a two dimensional domain where the channel can be described as time invariant.
We next turn our attention to the processing on the receiver side needed to go back from the waveform domain to the time-frequency domain. Since the received signal has undergone the cascade of two Heisenberg transforms (one by the modulation effect and one by the channel effect), it is natural to inquire what the end-to-end effect of this cascade is. The answer to this question is given by the following result:
Proposition 1: Let two Heisenberg transforms be parametrized by impulse responses h1(τ, ν), h2 (τ, ν) and be applied in cascade to a waveform g(t)∈. Then
Πh2(Πh
where h(τ, ν)=h2 (τ, ν)⊙h1(τ, ν) is the “twisted” convolution of h1(τ, ν), h2 (τ, ν) defined by the following convolve-and-modulate operation
h(τ,ν)=∫∫h2(τ′,ν′)h1(τ-τ′,ν-ν′)ej2πν(t-τ)dτ′dν′ (16)
Applying the above result to the cascade of the modulation and channel Heisenberg transforms, we can show that the received signal is given by the Heisenberg transform
r(t)=Πƒ(gtr(t))+ν(t)=∫∫f(τ,ν)ej2πν(t-τ)gtr(t-τ)dνdτ+ν(t) (17)
where ν(t) is additive noise and ƒ(τ, ν), the impulse response of the combined transform, is given by the twisted convolution of X[n, m] and h(τ, ν)
This result can be considered an extension of the single carrier modulation case, where the received signal through a time invariant channel is given by the convolution of the QAM symbols with a composite pulse, that pulse being the convolution of the transmitter pulse and the channel impulse response.
With this result established we are ready to examine the receiver processing steps.
Typical communication system design dictates that the receiver performs a matched filtering operation, taking the inner product of the received waveform with the transmitter pulse, appropriately delayed or otherwise distorted by the channel. In our case, we have used a collection of delayed and modulated transmit pulses, and we need to perform a matched filter on each one of them.
While this approach will yield the sufficient statistics for data detection in the case of an ideal channel, a concern can be raised here for the case of non-ideal channel effects. In this case, the sufficient statistics for symbol detection are obtained by matched filtering with the channel-distorted, information-carrying pulses (assuming that the additive noise is white and Gaussian). In many well designed multicarrier systems however (e.g., OFDM and MCFB), the channel distorted version of each subcarrier signal is only a scalar version of the transmitted signal, allowing for a matched filter design that is independent of the channel and uses the original transmitted subcarrier pulse. We will make these statements more precise shortly and examine the required conditions for this to be true.
Let us define the inner product
Agr,r(τ,ν)=<gr(t-τ)ej2πν(t-τ),r(t)>=∫gr*(t-τ)ej2πν(t-τ)r(t)dt (19)
The function Agr,r(τ, ν) is known as the cross-ambiguity function in the radar and math communities and yields the matched filter output if sampled at τ=nT, ν=mΔƒ (on the lattice Λ), i.e.,
Y[n,m]=Agr,r(τ,ν)|τ=nT,ν=mΔƒ (20)
In the math community, the ambiguity function is related to the inverse of the Heisenberg transform, namely the Wigner transform.
The key question here is what the relationship is between the matched filter output Y[n, m] (or more generally Y(τ, ν)) and the transmitter input X[n, m]. We have already established that the input to the matched filter r(t) can be expressed as a Heisenberg representation with impulse response ƒ(τ, ν) (plus noise). The output of the matched filter then has two contributions
Y(τ,ν)=Agr,r(τ,ν)=Agr,[Πƒ(gtr)+ν](τ,ν)=Agr,Πƒ(gtr)(τ,ν)+Agr,ν(τ,ν) (21)
The last term is the contribution of noise, which we will denote V(τ, ν)=Agr,ν(τ, ν). The first term on the right hand side is the matched filter output to the (noiseless) input comprising of a superposition of delayed and modulated versions of the transmit pulse. We next establish that this term can be expressed as the twisted convolution of the two dimensional impulse response ƒ(τ, ν) with the cross-ambiguity function (or two dimensional cross correlation) of the transmit and receive pulses.
The following theorem summarizes the key result.
Theorem 1: (Fundamental time-frequency domain channel equation). If the received signal can be expressed as
Πƒ(gtr(t))=∫∫ƒ(τ,ν)ej2πν(t-τ)gtr(t-τ)dνdτ (22)
Then the cross-ambiguity of that signal with the receive pulse gtr(t) can be expressed as
Agr,Πƒ(gtr)(τ,ν)=ƒ(τ,ν)⊙Agr,gtr(τ,ν) (23)
Recall from (18) that ƒ(τ, ν)=h(τ, ν) ⊙X[n, m], that is, the composite impulse response is itself a twisted convolution of the channel response and the modulation symbols.
Substituting ƒ(τ, ν) from (18) into (21) we obtain the end-to-end channel description in the time frequency domain
where V(τ, ν) is the additive noise term. Eq. (24) provides an abstraction of the time varying channel on the time-frequency plane. It states that the matched filter output at any time and frequency point (τ, ν) is given by the delay-Doppler impulse response of the channel twist-convolved with the impulse response of the modulation operator twist-convolved with the cross-ambiguity (or two dimensional cross correlation) function of the transmit and receive pulses.
Evaluating Eq. (24) on the lattice A we obtain the matched filter output modulation symbol estimates
{circumflex over (X)}[m,n]=Y[n,m]=Y(τ,ν)|τ=nT,ν=mΔƒ (25)
In order to get more intuition on Equations (24), (25) let us first consider the case of an ideal channel, i.e., h(τ, ν)=δ(τ)δ(ν). In this case by direct substitution we get the convolution relationship
In order to simplify Eq. (26) we will use the orthogonality properties of the ambiguity function. Since we use a different transmit and receive pulses we will modify the orthogonality condition on the design of the transmit pulse we stated in (9) to a bi-orthogonality condition
Under this condition, only one term survives in (26) and we obtain
Y[n,m]=X[n,m]+V[n,m] (28)
where V[n, m] is the additive white noise. Eq. (28) shows that the matched filter output does recover the transmitted symbols (plus noise) under ideal channel conditions. Of more interest of course is the case of non-ideal time varying channel effects. We next show that even in this case, the channel orthogonalization is maintained (no intersymbol or intercarrier interference), while the channel complex gain distortion has a closed form expression.
The following theorem summarizes the result as a generalization of (28).
Theorem 2: (End-to-end time-frequency domain channel equation):
If h(τ, ν) has finite support bounded by (τmax, νmax) and if Agr,gtr (τ, ν)=0 for τ∈(nT-τmax, nT+τmax), ν∈(mΔƒ-νmax, mΔƒ+νmax), that is, the ambiguity function bi-orthogonality property of (27) is true in a neighborhood of each grid point (mΔƒ, nT) of the lattice Λ at least as large as the support of the channel response h(τ, ν), then the following equation holds
Y[n,m]=H[n,m]X[n,ml]
H[n,m]=∫∫h(τ,ν)ej2πνnTe−j2π(ν+mΔƒ)τdνdτ (29)
If the ambiguity function is only approximately bi-orthogonal in the neighborhood of Λ (by continuity), then (29) is only approximately true.
Eq. (29) is a fundamental equation that describes the channel behavior in the time-frequency domain. It is the basis for understanding the nature of the channel and its variations along the time and frequency dimensions.
Some observations are now in order on Eq. (29). As mentioned before, there is no interference across X[n, m] in either time n or frequency m.
The end-to-end channel distortion in the modulation domain is a (complex) scalar that needs to be equalized
If there is no Doppler, i.e. h(τ, ν)=h(τ, 0)δ(ν), then Eq. (23) becomes
which is the well-known multicarrier result, that each subcarrier symbol is multiplied by the frequency response of the time invariant channel evaluated at the frequency of that subcarrier.
If there is no multipath, i.e. h(τ, ν)=h(0, ν)δ(τ), then Eq. (23) becomes
Y[n,m]=X[n,m]∫h(ν,0)ej2πνnTdτ (31)
Notice that the fading each subcarrier experiences as a function of time nT has a complicated expression as a weighted superposition of exponentials. This is a major complication in the design of wireless systems with mobility like LTE; it necessitates the transmission of pilots and the continuous tracking of the channel, which becomes more difficult the higher the vehicle speed or Doppler bandwidth is.
Example 3: (OFDM modulation). In this case the fundamental transmit pulse is given by (13) and the fundamental receive
i.e., the receiver zeroes out the CP samples and applies a square window to the symbols comprising the OFDM symbol. It is worth noting that in this case, the bi-orthogonality property holds exactly along the time dimension.
Example 4: (MCFB modulation). In the case of multicarrier filter banks gtr(t)=gr(t)=g(t). There are several designs for the fundamental pulse g(t). A square root raised cosine pulse provides good localization along the frequency dimension at the expense of less localization along the time dimension. If T is much larger than the support of the channel in the time dimension, then each subchannel sees a flat channel and the bi-orthogonality property holds approximately.
In summary, in this section we described the one of the two transforms that define OTFS. We explained how the transmitter and receiver apply appropriate operators on the fundamental transmit and receive pulses and orthogonalize the channel according to Eq. (29). We further saw via examples how the choice of the fundamental pulse affect the time and frequency localization of the transmitted modulation symbols and the quality of the channel orthogonalization that is achieved. However, Eq. (29) shows that the channel in this domain, while free of intersymbol interference, suffers from fading across both the time and the frequency dimensions via a complicated superposition of linear phase factors.
In the next section we will start from Eq. (29) and describe the second transform that defines OTFS; we will show how that transform defines an information domain where the channel does not fade in either dimension.
Notice that the time-frequency response H[n, m] in (29) is related to the channel delay-Doppler response h(τ, ν) by an expression that resembles a Fourier transform. However, there are two important differences: (i) the transform is two dimensional (along delay and Doppler) and (ii) the exponentials defining the transforms for the two dimensions have opposing signs. Despite these difficulties, Eq. (29) points in the direction of using complex exponentials as basis functions on which to modulate the information symbols; and only transmit on the time-frequency domain the superposition of those modulated complex exponential bases. This is the approach we will pursue in this section.
This is akin to the SC-FDMA modulation scheme, where in the frequency domain we transmit a superposition of modulated exponentials (the output of the DFT preprocessing block). The reason we pursue this direction is to exploit Fourier transform properties and translate a multiplicative channel in one Fourier domain to a convolution channel in the other Fourier domain.
Given the difficulties of Eq. (29) mentioned above we need to develop a suitable version of Fourier transform and associated sampling theory results. Let us start with the following definitions:
Definition 1: Symplectic Discrete Fourier Transform: Given a square summable two dimensional sequence X[m, n]∈(Λ) we define
Notice that the above 2D Fourier transform (known as the Symplectic Discrete Fourier Transform in the math community) differs from the more well known Cartesian Fourier transform in that the exponential functions across each of the two dimensions have opposing signs. This is necessary in this case, as it matches the behavior of the channel equation.
Further notice that the resulting x(τ, ν) is periodic with periods (1/Δƒ, 1/T). This transform defines a new two dimensional plane, which we will call the delay-Doppler plane, and which can represent a max delay of 1/Δƒ and a max Doppler of 1/T. A one dimensional periodic function is also called a function on a circle, while a 2D periodic function is called a function on a torus (or donut). In this case x(τ, ν) is defined on a torus Z with circumferences (dimensions) (1/Δƒ,1l/T).
The periodicity of x(τ, ν) (or sampling rate of the time-frequency plane) also defines a lattice on the delay-Doppler plane, which we will call the reciprocal lattice
The points on the reciprocal lattice have the property of making the exponent in (33), an integer multiple of 2π.
The inverse transform is given by:
where c=Tă.
We next define a sampled version of x(τ, ν). In particular, we wish to take M samples on the delay dimension (spaced at 1/MΔƒ) and N samples on the Doppler dimension (spaced at 1/NT). More formally we define a denser version of the reciprocal lattice
So that ⊆. We define discrete periodic functions on this dense lattice with period (1/Δƒ, 1/T), or equivalently we define functions on a discrete torus with these dimensions
These functions are related via Fourier transform relationships to discrete periodic functions on the lattice Λ, or equivalently, functions on the discrete torus
Z0={(nT,mă),m=0, . . . ,M-1,n=0, . . . N-1,} (38)
We wish to develop an expression for sampling Eq. (33) on the lattice of (37). First, we start with the following definition.
Definition 2: Symplectic Finite Fourier Transform: If Xp[k, l] is periodic with period (N, M), then we define
Notice that xp[m, n] is also periodic with period [M, N] or equivalently, it is defined on the discrete torus . Formally, the SFFT (X[n, m]) is a linear transformation from (Z0)→().
Let us now consider generating xp[m, n] as a sampled version of (33), i.e.,
Then we can show that (39) still holds where Xp[m, n] is a periodization of X[n, m] with period (N, M)
This is similar to the well-known result that sampling in one Fourier domain creates aliasing in the other domain.
The inverse discrete (symplectic) Fourier transform is given by
where l=0, . . . , M−1, k=0, . . . , N−1. If the support of X[n, m] is time-frequency limited to Z0 (no aliasing in (40)), then Xp[n, m]=X[n, m] for n, m∈Z0, and the inverse transform (41) recovers the original signal.
In the math community, the SDFT is called “discrete” because it represents a signal using a discrete set of exponentials, while the SFFT is called “finite” because it represents a signal using a finite set of exponentials.
Arguably the most important property of the symplectic Fourier transform is that it transforms a multiplicative channel effect in one domain to a circular convolution effect in the transformed domain. This is summarized in the following proposition:
Proposition 2: Let X1[n, m]∈(Z0), X2[n, m]∈(Z0) be periodic 2D sequences. Then
SFFT(X1[n,m]*X2[n,m])=SFFT(X1[n,m])·SFFT(X2[n,m]) (42)
where * denotes two dimensional circular convolution.
With this framework established we are ready to define the OTFS modulation.
Discrete OTFS modulation: Consider a set of NM QAM information symbols arranged on a 2D grid x[l, k], k=0, . . . , N−1, l=0, . . . , M−1 we wish to transmit. We will consider x[l, k] to be two dimensional periodic with period [N, M]. Further, assume a multicarrier modulation system defined by
A lattice on the time frequency plane, that is a sampling of the time axis with sampling period T and the frequency axis with sampling period Δƒ (c.f. Eq. (8)).
A packet burst with total duration NT secs and total bandwidth Mă Hz.
Transmit and receive pulses gtr(t), gtr (t)∈L2() satisfying the bi-orthogonality property of (27).
A transmit windowing square summable function Wtr[n, m]∈(Λ) multiplying the modulation symbols in the time-frequency domain
A set of modulation symbols X[n, m], n=0, . . . , N−1, m=0, . . . , M−1 related to the information symbols x[k, l] by a set of basis functions bk,l[n, m]
where the basis functions bk,l[n, m] are related to the inverse symplectic Fourier transform (c.f., Eq. (41)).
Given the above components, we define the discrete OTFS modulation via the following two steps
X[n,m]=Wtr[n,m]SFFT−1(x[k,l])
s(t)=ΠX(gtr(t)) (44)
The first equation in (44) describes the OTFS transform, which combines an inverse symplectic transform with a widowing operation. The second equation describes the transmission of the modulation symbols X[n, m] via a Heisenberg transform of gtr(t) parameterized by X[n, m]. More explicit formulas for the modulation steps are given by Equations (41) and (10).
While the expression of the OTFS modulation via the symplectic Fourier transform reveals important properties, it is easier to understand the modulation via Eq. (43), that is, transmitting each information symbol x[k, l] by modulating a 2D basis function bk,l[n, m] on the time-frequency plane.
Discrete OTFS demodulation: Let us assume that the transmitted signal s(t) undergoes channel distortion according to (7), (2) yielding r(t) at the receiver. Further, let the receiver employ a receive windowing square summable function Wr[n, m]. Then, the demodulation operation consists of the following steps:
Matched filtering with the receive pulse, or more formally, evaluating the ambiguity function on Λ (Wigner transform) to obtain estimates of the time-frequency modulation symbols
Y[n,m]=Agr,y(τ,ν)|τ=nT,ν=mΔƒ (45)
windowing and periodization of Y[n, m]
Yw[n,m]=Wr[n,m]Y[n,m] (46)
and applying the symplectic Fourier transform on the periodic sequence Yp[n, m]
{circumflex over (x)}[l,k]=y[l,k]=SFFT(Yp[n,m]) (47)
The first step of the demodulation operation can be interpreted as a matched filtering operation on the time-frequency domain as we discussed earlier. The second step is there to ensure that the input to the SFFT is a periodic sequence. If the trivial window is used, this step can be skipped. The third step can also be interpreted as a projection of the time-frequency modulation symbols on the orthogonal basis functions
The discrete OTFS modulation defined above points to efficient implementation via discrete-and-periodic FFT type processing. However, it does not provide insight into the time and bandwidth resolution of these operations in the context of two dimensional Fourier sampling theory. We next introduce the continuous OTFS modulation and relate the more practical discrete OTFS as a sampled version of the continuous modulation.
Continuous OTFS modulation: Consider a two dimensional periodic function x(τ, ν) with period [1/Δƒ,1/T] we wish to transmit; the choice of the period may seem arbitrary at this point, but it will become clear after the discussion in the next section. Further, assume a multicarrier modulation system defined by
A lattice on the time frequency plane, that is a sampling of the time axis with sampling period T and the frequency axis with sampling period Δƒ (c.f. Eq. (8)).
Transmit and receive pulses gtr(t), gtr(t)∈L2() satisfying the bi-orthogonality property of (27).
A transmit windowing function Wtr[n, m]∈(Λ) multiplying the modulation symbols in the time-frequency domain
Given the above components, we define the continuous OTFS modulation via the following two steps
X[n,m]=Wtr[n,m]SDFT−1(x(τ,ν))
s(t)=Πx(gtr(t)) (49)
The first equation describes the inverse discrete time-frequency symplectic Fourier transform [c.f. Eq. (35)] and the windowing function, while the second equation describes the transmission of the modulation symbols via a Heisenberg transform [c.f Eq. (10)].
Continuous OTFS demodulation: Let us assume that the transmitted signal s(t) undergoes channel distortion according to (7), (2) yielding r(t) at the receiver. Further, let the receiver employ a receive windowing function Wr[n, m]∈(Λ). Then, the demodulation operation consists of two steps:
Evaluating the ambiguity function on Λ (Wigner transform) to obtain estimates of the time-frequency modulation symbols
Y[n,m]=Agr,y(τ,ν)|τ=nT,ν=mΔƒ (50)
Windowing and applying the symplectic Fourier transform on the modulation symbols
{circumflex over (x)}(τ,ν)=SDFT(Wr[n,m]Y[n,m]) (51)
Notice that in (50), (51) there is no periodization of Y [n, m], since the SDFT is defined on aperiodic square summable sequences. The periodization step needed in discrete OTFS can be understood as follows. Suppose we wish to recover the transmitted information symbols by performing a continuous OTFS demodulation and then sampling on the delay-Doppler grid
Since performing a continuous symplectic Fourier transform is not practical we consider whether the same result can be obtained using SFFT. The answer is that SFFT processing will produce exactly the samples we are looking for if the input sequence is first periodized (aliased)—see also (39) (40).
A 2-D equalizer may be used to extract data bits that are modulated on symbols received via OTFS modulation. The iterative equalization techniques described herein could be implemented with the dispersed OTFS receiver implementations described throughout the present document.
A system with N transmit antennas and M receives antennas, is used to pass information over a multipath channel. Information bits, b, are encoded into coded bits, c, using an Forward Error Correction (FEC) code (such as convolutional code, turbo code or LDPC code). These coded bits are grouped into groups of q bits, optionally interleaved and mapped to symbols x in a finite constellation Ω(such as 2q-QAM) multiplexed on a grid on the 2-D Delay Doppler grid. These symbols are transformed by a 2-D Inverse Symplectic Fourier transform to symbols X multiplexed on a reciprocal grid on the time frequency plane. These symbols are OFDM modulated and transmitted over the N antennas. The signal, received in M antennas, is OFDM demodulated and processed as a 2-D Time-Frequency grid in the receiver.
In the 2-D Time-Frequency grid, the channel equation can be written individually for each symbol (or time-frequency point) indexed by (i, j) as
YM×1(i,j)=HM×N(i,j)·XN×1(i,j)+WM×1(i,j) (53)
where WM×1(i,j) represent a vector of AWGN samples with expectation zero and variance RW. The 2-D equalizer computes estimations of the transmitted symbols {circumflex over (x)} from the received samples Y, the channel estimations H and the noise variance RW. In a non-iterative receiver, the estimated samples are transformed to the Delay-Doppler domain via a 2-D Symplectic Fourier transform and then converted to bit likelihoods, which are passed to FEC decoder to generate estimates, {circumflex over (b)}, on the information bits.
In some embodiments, the 2-D equalizer may be implemented as an affine MMSE equalizer, computing the Wiener estimator of X
{circumflex over (X)}=CY+(I-CH)
where C=RXYRY−1 and I is the identity matrix. Note that C is a function of RX and RW. For the first iteration there is no prior information on the symbols of X, therefore we set
The estimated symbols and error variances, {circumflex over (X)} and RE respectively, are transformed from the 2-D Time-Frequency grid to the 2-D Delay-Doppler grid via a 2-D Symplectic Fourier transform to {circumflex over (x)} and Re respectively.
Likelihoods for the coded bits LE({circumflex over (x)}), are computed from the symbols {circumflex over (x)}. Gaussian distribution may be assumed for {circumflex over (x)} and the likelihoods can be derived from it. The probabilities for this case are
where ω∈Ω is a constellation symbol and
A=1-ReRX−1
RZ=ARe
μ(ω,A)=ωA+(1-A)
Note that
where i,j=0, . . . , q−1, s(ω) is the constellation bits label that is associated with the constellation symbol ω and P(ω)j is defined in equation (58).
The deinterleaver permutes the likelihoods LE({circumflex over (x)}) to L(C). These likelihoods will be used as a priori information for the MAP decoder. In some implementations this deinterleaver might be optional.
The Maximum A Posteriori decoder computes the a posteriori probabilities (APP's) of the information bits and also the extrinsic probabilities for the coded bits, which when using LLRs, are the APP's minus the a priori inputs.
The interleaver permutes the likelihoods LD(C) to L({circumflex over (x)}). These likelihoods will be used as a priori information for the MAP decoder. Note that in some implementations this interleaver might be optional.
The symbol mapper estimates the probabilities of each constellation symbol ω∈Ω from the likelihoods values L(z):
These probabilities are used for computing the expectation of the constellation and the variance:
The 2-D Delay-Doppler domain symbols' expectation and variance
In some embodiments, the iterative 2-D Equalizer may be operated so that the receiver gets side information about some resource elements in the time-frequency grid that have been “erased” (e.g., not transmitted, or not useable) and the receiver can ignore them. The receiver may skip equalization for these resources and just uses directly the prior estimates as outputs for the equalizer. In this case, Eq (54) simply becomes for these resources: {circumflex over (X)}=
In the scheme 2300, shown in
As depicted in the flowchart of
In some embodiments the generating the estimate may include deinterleaving the likelihoods and performing error correction. As depicted in the example embodiment in
In some embodiments, the receiver that implements the method 2000 may get side information about some resource elements in the time-frequency grid that have been “erased” (not transmitted, or no t useable) and the receiver can ignore them. The receiver may then skip the equalization for them and just uses directly the prior estimates as outputs for the equalizer. In this case, Eq (2) simply becomes for these resources: {circumflex over (X)}=
A typical wireless signal transmission system (which may modulate signals using orthogonal time frequency space modulation, or OTFS) usually may include a transmit chain 2400, as shown in
In transmit chain 2400, all the source bits have (almost) equal protection by the FEC code, but the coded bits, which are mapped into different positions in the constellation symbol's label, do not typically have equal protection. Some of the bits in the constellation label may be more reliable than other bits (have lower probability of error). For example, in some standard constellation mappings, such as Gray mapping, the Most-Significant-Bits (MSBs) are typically more reliable than the Least-Significant-Bits (LSBs).
Described herein are alternative method for data segmentation and encoding along with its matching iterative receiver, which is advantageous in terms of error-rate performance.
In various embodiments, the number of levels may be smaller than log2 M and each FEC may be connected to more than one bit in the constellation label. For example, in constellation mappings (2508) where the real part of the complex constellation is independent of the imaginary part, pairs of constellation bits (one mapped to the real and one mapped to the imaginary) may be encoded together.
To achieve the best error-rate performance, the different FEC code rates may be optimally selected along with the choice of the constellation mapping.
In general, iterative receivers exchange extrinsic information between the equalizer and the FEC decoder to achieve close to optimal performance, as shown in
Compared to the technique described next, the error-rate performance of the scheme 2600 may be degraded. One reason for the degradation may be because of the mixture of bits with different level of reliability in every FEC codeword that is being decoded. The constellation bits with low reliability make it harder for the FEC decoder to converge to the correct codeword and therefore, the feedback to the equalizer has less information to improve the equalization.
When multi-level encoding is applied at the transmitter (e.g., as shown in
In some embodiments, the segmentation operation may comprise serial-to-parallel conversion of the information bits such that each segment has a size equal to the number of bits used to generateconstellations of a downstream modulation scheme. For example, 3 bits per segment may be used for 8 QAM modulation.
In some embodiments, the number of bits per segment may be equal to the block size for the downstream forward error correction scheme used. For example, 40 or 80 bit segments may be used for FEC block. In general, FECs with different error protection may be used and thus each FEC block may have a same number of bit size on the output (so that the outputs of each FEC can be combined to form symbols) but may have a different number of input bits. For example, the bit-expansion due to a stronger FEC code may mean fewer input bits will produce the same number of output FEC bits. However, in some embodiments, some FEC modules may have same input and output bit sizes but may offer different degrees of error correction coding due to algorithmic differences in the error correction code used for implementing the FEC.
In some embodiments, the transmission signal generation operation 606 may include application of a symplectic transform such as the OTFS transform to the signal to transform a corresponding delay-Doppler domain signal to a signal that is used for transmission.
It will be appreciated that techniques for performing digital communication by modulating data using dispersed OTFS are disclosed. In some embodiments, symbol placement may be performed in a spread domain and transformed into a transformed domain from which they are mapped to the time-frequency domain, such that the placement of user data and reference signal is not limited to a pre-defined regular grid in the time-frequency domain.
The disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them. The disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them. The term “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a standalone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
The processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
While this patent document contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
Only a few examples and implementations are disclosed. Variations, modifications, and enhancements to the described examples and implementations and other implementations can be made based on what is disclosed.
The present patent document is a 371 National Phase application of PCT Application No. PCT/US2018/026971 entitled “DIGITAL COMMUNICATION USING DISPERSED ORTHOGONAL TIME FREQUENCY SPACE MODULATED SIGNALS” filed on Apr. 10, 2018, which claims priority to U.S. Provisional Patent Application No. 62/484,303 entitled “DIGITAL COMMUNICATION USING DISPERSED ORTHOGONAL TIME FREQUENCY SPACE MODULATED SIGNALS” filed on Apr. 11, 2017. The entire contents of the aforementioned patent applications are incorporated by reference as part of the disclosure of this patent document.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/026971 | 4/10/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/191309 | 10/18/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4754493 | Coates | Jun 1988 | A |
5083135 | Nagy et al. | Jan 1992 | A |
5182642 | Gersdorff et al. | Jan 1993 | A |
5623511 | Bar-David et al. | Apr 1997 | A |
5831977 | Dent | Nov 1998 | A |
5872542 | Simons et al. | Feb 1999 | A |
5956624 | Hunsinger et al. | Sep 1999 | A |
6212246 | Hendrickson | Apr 2001 | B1 |
6289063 | Duxbury | Sep 2001 | B1 |
6356555 | Rakib et al. | Mar 2002 | B1 |
6388621 | Lynch | May 2002 | B1 |
6426983 | Rakib et al. | Jul 2002 | B1 |
6608864 | Strait | Aug 2003 | B1 |
6631168 | Izumi | Oct 2003 | B2 |
6704366 | Combes et al. | Mar 2004 | B1 |
6956814 | Campanella | Oct 2005 | B1 |
7010048 | Shattil | Mar 2006 | B1 |
7327812 | Auer | Feb 2008 | B2 |
7392018 | Ebert et al. | Jun 2008 | B1 |
7689049 | Monro | Mar 2010 | B2 |
7773685 | Tirkkonen et al. | Aug 2010 | B2 |
7864877 | Hottinen | Jan 2011 | B2 |
8229017 | Lee et al. | Jul 2012 | B1 |
8259845 | Dent | Sep 2012 | B2 |
8401131 | Fety et al. | Mar 2013 | B2 |
8547988 | Hadani et al. | Oct 2013 | B2 |
8619892 | Vetter et al. | Dec 2013 | B2 |
8717210 | Eldar et al. | May 2014 | B2 |
8879378 | Rakib et al. | Nov 2014 | B2 |
8892048 | Turner | Nov 2014 | B1 |
8976851 | Hadani et al. | Mar 2015 | B2 |
9031141 | Hadani et al. | May 2015 | B2 |
9071285 | Hadani et al. | Jun 2015 | B2 |
9071286 | Hadani et al. | Jun 2015 | B2 |
9083483 | Rakib et al. | Jul 2015 | B1 |
9083595 | Rakib et al. | Jul 2015 | B2 |
9130638 | Hadani et al. | Sep 2015 | B2 |
9282528 | Hashimoto | Mar 2016 | B2 |
9294315 | Hadani et al. | Mar 2016 | B2 |
9444514 | Hadani et al. | Sep 2016 | B2 |
9548840 | Hadani et al. | Jan 2017 | B2 |
9553984 | Krause et al. | Jan 2017 | B2 |
9590779 | Hadani et al. | Mar 2017 | B2 |
9634719 | Rakib et al. | Apr 2017 | B2 |
9660851 | Hadani et al. | May 2017 | B2 |
9668148 | Hadani et al. | May 2017 | B2 |
9712354 | Hadani et al. | Jul 2017 | B2 |
9729281 | Hadani et al. | Aug 2017 | B2 |
9929783 | Rakib | Mar 2018 | B2 |
10020854 | Hadani | Jul 2018 | B2 |
20010031022 | Petrus et al. | Oct 2001 | A1 |
20010033614 | Hudson | Oct 2001 | A1 |
20010046205 | Easton et al. | Nov 2001 | A1 |
20020001308 | Heuer | Jan 2002 | A1 |
20020034191 | Shattil | Mar 2002 | A1 |
20020181388 | Jain et al. | Dec 2002 | A1 |
20020181390 | Mody et al. | Dec 2002 | A1 |
20020181607 | Izumi | Dec 2002 | A1 |
20030073464 | Giannakis et al. | Apr 2003 | A1 |
20030185295 | Yousef | Oct 2003 | A1 |
20030235147 | Walton et al. | Dec 2003 | A1 |
20040044715 | Aldroubi et al. | Mar 2004 | A1 |
20040174812 | Murakami et al. | Sep 2004 | A1 |
20040189581 | Sako et al. | Sep 2004 | A1 |
20040218523 | Varshney et al. | Nov 2004 | A1 |
20050157778 | Trachewsky et al. | Jul 2005 | A1 |
20050157820 | Wongwirawat et al. | Jul 2005 | A1 |
20050180517 | Abe | Aug 2005 | A1 |
20050207334 | Hadad | Sep 2005 | A1 |
20050251844 | Martone et al. | Nov 2005 | A1 |
20060008021 | Bonnet | Jan 2006 | A1 |
20060039270 | Strohmer et al. | Feb 2006 | A1 |
20070014272 | Palanki et al. | Jan 2007 | A1 |
20070038691 | Candes et al. | Feb 2007 | A1 |
20070078661 | Sriram et al. | Apr 2007 | A1 |
20070104283 | Han et al. | May 2007 | A1 |
20070110131 | Guess et al. | May 2007 | A1 |
20070211952 | Faber et al. | Sep 2007 | A1 |
20070237181 | Cho et al. | Oct 2007 | A1 |
20070253465 | Muharemovic et al. | Nov 2007 | A1 |
20070253504 | Hasegawa | Nov 2007 | A1 |
20080043857 | Dias et al. | Feb 2008 | A1 |
20080117999 | Kadous et al. | May 2008 | A1 |
20080186843 | Ma et al. | Aug 2008 | A1 |
20080187062 | Pan et al. | Aug 2008 | A1 |
20080232504 | Ma et al. | Sep 2008 | A1 |
20080310383 | Kowalski | Dec 2008 | A1 |
20090080403 | Hamdi | Mar 2009 | A1 |
20090092259 | Jot et al. | Apr 2009 | A1 |
20090103593 | Bergamo | Apr 2009 | A1 |
20090122854 | Zhu et al. | May 2009 | A1 |
20090161804 | Chrabieh et al. | Jun 2009 | A1 |
20090204627 | Hadani | Aug 2009 | A1 |
20090222226 | Baraniuk et al. | Sep 2009 | A1 |
20090303961 | Popovic et al. | Dec 2009 | A1 |
20100001901 | Baraniuk et al. | Jan 2010 | A1 |
20100008432 | Kim et al. | Jan 2010 | A1 |
20100027608 | Priotti | Feb 2010 | A1 |
20100111138 | Hosur et al. | May 2010 | A1 |
20100142476 | Jiang et al. | Jun 2010 | A1 |
20100187914 | Rada et al. | Jul 2010 | A1 |
20100238787 | Guey | Sep 2010 | A1 |
20100277308 | Potkonjak | Nov 2010 | A1 |
20100303136 | Ashikhmin et al. | Dec 2010 | A1 |
20100322349 | Lee et al. | Dec 2010 | A1 |
20110007789 | Garmany | Jan 2011 | A1 |
20110110532 | Svendsen | May 2011 | A1 |
20110116489 | Grandhi | May 2011 | A1 |
20110116516 | Hwang et al. | May 2011 | A1 |
20110126071 | Han et al. | May 2011 | A1 |
20110131463 | Gunnam | Jun 2011 | A1 |
20110216808 | Tong et al. | Sep 2011 | A1 |
20110286502 | Adachi et al. | Nov 2011 | A1 |
20110287778 | Levin et al. | Nov 2011 | A1 |
20110292971 | Hadani et al. | Dec 2011 | A1 |
20110293030 | Rakib et al. | Dec 2011 | A1 |
20110299379 | Sesia et al. | Dec 2011 | A1 |
20110305267 | Riu et al. | Dec 2011 | A1 |
20120021769 | Lindoff et al. | Jan 2012 | A1 |
20120051457 | Ma et al. | Mar 2012 | A1 |
20120140716 | Baldemair et al. | Jun 2012 | A1 |
20120170684 | Yim et al. | Jul 2012 | A1 |
20120201322 | Rakib et al. | Aug 2012 | A1 |
20120213098 | Sun | Aug 2012 | A1 |
20120235795 | Liao et al. | Sep 2012 | A1 |
20120269201 | Atungsiri et al. | Oct 2012 | A1 |
20120272117 | Stadelmeier et al. | Oct 2012 | A1 |
20120320994 | Loghin et al. | Dec 2012 | A1 |
20130021977 | Yang et al. | Jan 2013 | A1 |
20130058390 | Haas et al. | Mar 2013 | A1 |
20130077579 | Cho et al. | Mar 2013 | A1 |
20130083661 | Gupta et al. | Apr 2013 | A1 |
20130121497 | Smaragdis et al. | May 2013 | A1 |
20130230010 | Kim et al. | Sep 2013 | A1 |
20130260787 | Hashimoto | Oct 2013 | A1 |
20130279627 | Wu et al. | Oct 2013 | A1 |
20130315133 | Wang et al. | Nov 2013 | A1 |
20140143639 | Loghin et al. | May 2014 | A1 |
20140161154 | Hadani et al. | Jun 2014 | A1 |
20140169385 | Hadani et al. | Jun 2014 | A1 |
20140169406 | Hadani et al. | Jun 2014 | A1 |
20140169433 | Hadani et al. | Jun 2014 | A1 |
20140169436 | Hadani et al. | Jun 2014 | A1 |
20140169437 | Hadani et al. | Jun 2014 | A1 |
20140169441 | Hadani et al. | Jun 2014 | A1 |
20140247803 | Arambepola et al. | Sep 2014 | A1 |
20140348252 | Siohan et al. | Nov 2014 | A1 |
20140364128 | Lee et al. | Dec 2014 | A1 |
20150117395 | Hadani et al. | Apr 2015 | A1 |
20150326273 | Rakib et al. | Nov 2015 | A1 |
20150327085 | Hadani et al. | Nov 2015 | A1 |
20150382231 | Jabbar et al. | Dec 2015 | A1 |
20160043835 | Hadani et al. | Feb 2016 | A1 |
20160135132 | Donepudi et al. | May 2016 | A1 |
20160182269 | Hadani et al. | Jun 2016 | A1 |
20160191217 | Hadani et al. | Jun 2016 | A1 |
20160191280 | Hadani et al. | Jun 2016 | A1 |
20160254889 | Shattil | Sep 2016 | A1 |
20160277225 | Frenne et al. | Sep 2016 | A1 |
20160309345 | Tehrani et al. | Oct 2016 | A1 |
20160380743 | Rakib | Dec 2016 | A1 |
20160381576 | Hadani et al. | Dec 2016 | A1 |
20170012749 | Rakib et al. | Jan 2017 | A1 |
20170012810 | Rakib et al. | Jan 2017 | A1 |
20170019297 | Rakib | Jan 2017 | A1 |
20170033899 | Rakib et al. | Feb 2017 | A1 |
20170040711 | Rakib et al. | Feb 2017 | A1 |
20170078054 | Hadani et al. | Mar 2017 | A1 |
20170099122 | Hadani et al. | Apr 2017 | A1 |
20170099607 | Hadani et al. | Apr 2017 | A1 |
20170149594 | Rakib et al. | May 2017 | A1 |
20170149595 | Rakib et al. | May 2017 | A1 |
20170201354 | Hadani et al. | Jul 2017 | A1 |
20170207817 | Hadani et al. | Jul 2017 | A1 |
20170222700 | Hadani et al. | Aug 2017 | A1 |
20170230215 | Rakib et al. | Aug 2017 | A1 |
20170244524 | Hadani et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
1235720 | Nov 1999 | CN |
101682316 | Mar 2010 | CN |
101939935 | Jan 2011 | CN |
1432168 | Jun 2004 | EP |
2011127910 | Jun 2011 | JP |
2007004297 | Jan 2007 | WO |
2011137699 | Nov 2011 | WO |
2011150315 | Dec 2011 | WO |
2013148546 | Oct 2013 | WO |
2014004585 | Jan 2014 | WO |
2016014596 | Jan 2016 | WO |
2016014598 | Jan 2016 | WO |
2016176642 | Nov 2016 | WO |
2016183230 | Nov 2016 | WO |
2016183240 | Nov 2016 | WO |
2016209848 | Dec 2016 | WO |
2017003952 | Jan 2017 | WO |
2017011455 | Jan 2017 | WO |
2017011478 | Jan 2017 | WO |
Entry |
---|
Office Action for U.S. Appl. No. 13/117,119, dated Aug. 5, 2013, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/117,119, dated Feb. 28, 2014, 13 pages. |
Banelli, P. et al., “Modulation Formats and Waveforms for 5G Networks: Who Will Be the Heir of OFDM?,” IEEE Signal Processing Magazine, vol. 81, pp. 80-93, Nov. 2014. |
El Hattachi, R. et al., “NGMN 5G Initiative White Paper,” NGMN Alliance, Feb. 17, 2015. [Online]. Available: https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf, 125 pages. |
Rusek, F. et al., “Scaling Up MIMO, Opportunities and Challenges with Very Large Arrays,” IEEE Signal Processing Magazine, pp. 40-60 (2013). |
Vodafone, “Cellular Internet of Things: Architectural Aspects,” RP-150869, 3GPP RAN#68, Malmo, Sweden (Jun. 9, 2015), 19 pages. |
Supplementary European Search Report for European Application No. 11787483.4, dated Sep. 9, 2014, 6 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2011/038302, dated Nov. 15, 2011, 8 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2011/038302, dated Dec. 4, 2012, 7 pages. |
Office Action for U.S. Appl. No. 13/117,124, dated Feb. 22, 2013, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/117,124, dated Aug. 8, 2013, 10 pages. |
Office Action for U.S. Appl. No. 14/605,957, dated Jun. 22, 2017, 6 pages. |
Supplementary European Search Report for European Application No. 13809004.8, dated Apr. 14, 2016, 8 pages. |
Communication Pursuant to Article 94(3) EPC for European Application No. 13809004.8, dated Feb. 17, 2017, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/927,087, dated Feb. 25, 2015, 9 pages. |
Office Action for U.S. Appl. No. 13/927,087, dated Nov. 12, 2014, 14 pages. |
Gurevich, S. et al. “Group Representation Design of Digital Signals and Sequences,” S.W. Golomb et al. (eds.), SETA 2008, LNCS 5203, pp. 153-166, Springer-Verlag Berlin Heidelberg (2008). |
International Search Report and Written Opinion for International Application No. PCT/US2013/047723, dated Oct. 29, 2013, 17 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2013/047723, dated Dec. 31, 2014, 15 pages. |
Notice of Allowance for U.S. Appl. No. 13/927,088, dated Feb. 18, 2015, 7 pages. |
Office Action for U.S. Appl. No. 13/927,088, dated Nov. 28, 2014, 13 pages. |
Notice of Allowance for U.S. Appl. No. 13/927,086, dated Dec. 26, 2014, 8 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 13/927,086, dated Mar. 19, 2015, 4 pages. |
Office Action for U.S. Appl. No. 13/927,086, dated Oct. 14, 2014, 10 pages. |
Office Action for U.S. Appl. No. 13/927,089, dated Dec. 24, 2014, 13 pages. |
Office Action for U.S. Appl. No. 13/927,089, dated Aug. 14, 2015, 7 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 13/927,091, dated Jun. 11, 2015, 4 pages. |
Notice of Allowance for U.S. Appl. No. 13/927,091, dated Apr. 24, 2015, 8 pages. |
Office Action for U.S. Appl. No. 13/927,091, dated Jan. 27, 2015, 15 pages. |
Office Action for U.S. Appl. No. 13/927,092, dated Oct. 8, 2014, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/927,092, dated Oct. 24, 2014, 7 pages. |
Office Action for U.S. Appl. No. 13/927,095, dated Apr. 30, 2015, 11 pages. |
Office Action for U.S. Appl. No. 13/927,095, dated Nov. 4, 2015, 9 pages. |
Office Action for U.S. Appl. No. 13/927,095, dated Jun. 1, 2016, 10 pages. |
Office Action for U.S. Appl. No. 14/717,886, dated Apr. 19, 2016, 10 pages. |
Office Action for U.S. Appl. No. 14/709,377, dated Dec. 11, 2015, 12 pages. |
Office Action for U.S. Appl. No. 14/709,377, dated Jul. 13, 2016, 17 pages. |
Examination Report No. 1 for Australian Application No. 2013239970, dated Dec. 8, 2015, 3 pages. |
“AT&T Annual Report 2014,” Opening Our Network [Online]. Retrieved from the Internet: Sep. 22, 2016. <URL: http://www.att.com/Investor/ATT_Annual/2014/att_introduces_new_concepts_for_telecom_network.html>, 5 pages. |
CATT, “UL ACK/NACK transmission methods for LTE-A,” 3GPP TSG RAN WG1 Meeting #60bis, R1-102453, Beijing, China, Apr. 12-16, 2010, 8 pages. |
Toskala, A. et al., “Physical Layer,” Chapter 5 In: “LTE for UMTS: OFDMA and SC-FDMA Based Radio Access,” Holma, H. et al. (eds.), John Wiley & Sons, Ltd., United Kingdom, 2009, pp. 83-135. |
Mecklenbrauker, W., “A Tutorial on Non-Parametric Bilinear Time-Frequency Signal Representations,” In: Time and Frequency Representation of Signals and Systems, Longo, G. et al. (eds.), Springer-Verlag Wien, vol. 309, pp. 11-68 (1989). |
Nehorai, A. et al., “MURI: Adaptive waveform design for full spectral dominance (2005-2010),” AFOSR FA9550-05-1-0443, Final Report, [online], Mar. 11, 2011 Retrieved on May 11, 2013, Retrieved from the Internet <URL: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA565420>, 103 pages. |
Office Action for Japanese Application No. 2015-518647, dated Jul. 7, 2015, 10 pages. |
Office Action for U.S. Appl. No. 14/754,596, dated Apr. 19, 2016, 18 pages. |
Office Action for U.S. Appl. No. 14/809,129, dated Jul. 19, 2016, 5 pages. |
Office Action for U.S. Appl. No. 15/617,962, dated Sep. 6, 2017, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/050825, dated Feb. 8, 2017, 12 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/052524, dated Dec. 20, 2016, 8 pages. |
Office Action for U.S. Appl. No. 15/374,995, dated Aug. 7, 2017, 6 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/025797, dated Jun. 21, 2017, 6 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/030259, dated Aug. 4, 2016, 13 pages. |
Office Action for U.S. Appl. No. 15/152,464, dated Apr. 6, 2017, 10 pages. |
Examination Report No. 1 for Australian Application No. 2013280487, dated May 2, 2016, 3 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/031928, dated Oct. 7, 2016, 10 pages. |
Office Action for U.S. Appl. No. 15/188,946, dated May 8, 2017, 14 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/038584, dated Sep. 26, 2016, 8 pages. |
Office Action for U.S. Appl. No. 15/187,668, dated Feb. 16, 2017, 6 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/031909, dated Aug. 11, 2016, 13 pages. |
Office Action for U.S. Appl. No. 15/194,494, dated May 5, 2017, 16 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/039662, dated Nov. 29, 2016, 14 pages. |
Office Action for U.S. Appl. No. 15/436,653, dated Jun. 2, 2017, 10 pages. |
Office Action for U.S. Appl. No. 15/208,545, dated Aug. 21, 2017, 15 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/041940, dated Oct. 20, 2016, 8 pages. |
Supplementary European Search Report for European Application No. 13768150.8, dated Oct. 30, 2015, 7 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2013/033652, dated Jun. 12, 2013, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2015/041417, dated Oct. 1, 2015, 7 pages. |
Office Action for U.S. Appl. No. 14/805,407, dated Dec. 14, 2016, 7 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2015/041420, dated Oct. 1, 2015, 6 pages. |
Extended European Search Report for Application No. 18785008.6 dated Dec. 9, 2020, 11 pages. |
Berrou: “Codes and Turbo Codes”, Jan. 1, 2010, pp. 359-412. |
Zhang et al.: “Hierarchical MMSE linear equalization for multilayer coded modulation”, Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference on, IEEE, Piscataway, NJ, USA, Jul. 23, 2009, pp. 164-168. |
Number | Date | Country | |
---|---|---|---|
20230164013 A1 | May 2023 | US |
Number | Date | Country | |
---|---|---|---|
62484303 | Apr 2017 | US |