Blockchain usage is growing. As cryptographic blockchain gains acceptance, improved techniques are needed for executing “smart” digital contracts.
The features, aspects, and advantages of the exemplary embodiments are understood when the following Detailed Description is read with reference to the accompanying drawings, wherein:
The exemplary embodiments will now be described more fully hereinafter with reference to the accompanying drawings. The exemplary embodiments may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. These embodiments are provided so that this disclosure will be thorough and complete and will fully convey the exemplary embodiments to those of ordinary skill in the art. Moreover, all statements herein reciting embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future (i.e., any elements developed that perform the same function, regardless of structure).
Thus, for example, it will be appreciated by those of ordinary skill in the art that the diagrams, schematics, illustrations, and the like represent conceptual views or processes illustrating the exemplary embodiments. The functions of the various elements shown in the figures may be provided through the use of dedicated hardware as well as hardware capable of executing associated software. Those of ordinary skill in the art further understand that the exemplary hardware, software, processes, methods, and/or operating systems described herein are for illustrative purposes and, thus, are not intended to be limited to any particular named manufacturer.
As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless expressly stated otherwise. It will be further understood that the terms “includes,” “comprises,” “including,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. Furthermore, “connected” or “coupled” as used herein may include wirelessly connected or coupled. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first device could be termed a second device, and, similarly, a second device could be termed a first device without departing from the teachings of the disclosure.
Here, though, the blockchain 24 need only reference the digital contract 20. That is, the actual programming language defining the digital contract 20 need not be included within or attached to the blockchain 24. Instead, the blockchain 24 need only include or specify a contract identifier 28 and perhaps one or more contractual parameters 30. The contract identifier 28 is any digital identifying information that uniquely identifies or references the digital contract 20. Similarly, the contractual parameters 30 may digitally identify the parties to the digital contract 20, their respective performance obligations and terms, and even consideration. So, instead of the blockchain 24 carrying or conveying the actual code representing the digital contract 20, exemplary embodiments need only specify the contract identifier 28 and perhaps the contractual parameters 30. The blocks 26 of data within the blockchain 24 are thus not burdened with the programming code that is required to execute the digital contract 20. The blockchain 24 need only include or specify the contract identifier 28 and/or the contractual parameters 30 (or their respective hash values), thus greatly simplifying the blockchain 24 and reducing its size (in bytes) and processing requirements.
Exemplary embodiments thus only need to identify the digital contract 20. The contract identifier 28 and the contractual parameters 30 need only be informational content in the private blockchain 24. The contract identifier 28 is any digital identifying information that uniquely identifies or references the digital contract 20. The contract identifier 28 may be an alphanumeric combination that uniquely identifies a vendor and/or version of the digital contract 20 and/or a processor or executioner of the digital contract 20. The contract identifier 28 may be expressed as a unique hash value that is included within, or specified by, the private blockchain 24. Similarly, the contractual parameters 30 may identify the parties to the digital contract 20, their respective performance obligations and terms, and consideration.
The entity-specific tokens 62 may thus be control mechanisms. While the entity-specific tokens 62 may have any functional scheme,
Exemplary embodiments may thus trade or exchange crypto-compensation. That is, when the digital contract 20 successfully executes, perhaps the parties exchange, trade, or transfer the credit token 64 and/or the tradeable token 66. When any party, or all the parties, perform their assigned role in the transaction, value is given via the credit token 64 and/or the tradeable token 66. Similarly, the contract server 42 and/or the network resource 50 may also be compensated via the credit token 64 and/or the tradeable token 66, perhaps as a “mining” fee for executing the digital contract 20.
The digital contract 20 is thus a computer program or code that verifies and/or enforces negotiation and/or performance of a contract between parties. One fundamental purpose of so-called smart contracts is to integrate the practice of contract law and related business practices with electronic commerce protocols between parties or devices via the Internet. Smart contracts may leverage a user interface that provides one or more parties or administrators access, which may be restricted at varying levels for different people, to the terms and logic of the contract. Smart contracts typically include logic that emulates contractual clauses that are partially or fully self-executing and/or self-enforcing. Examples of smart contracts are digital rights management (DRM) used for protecting copyrighted works, financial cryptography schemes for financial contracts, admission control schemes, token bucket algorithms, other quality of service mechanisms for assistance in facilitating network service level agreements, person-to-person network mechanisms for ensuring fair contributions of users, and others. Smart contract infrastructure can be implemented by replicated asset registries and contract execution using cryptographic hash chains and Byzantine fault tolerant replication. For example, each node in a peer-to-peer network or blockchain distributed network may act as a title registry and escrow, thereby executing changes of ownership and implementing sets of predetermined rules that govern transactions on the network. Each node may also check the work of other nodes and in some cases, as noted above, function as miners or validators.
The transaction records 100 may also document the digital contract 20. Whenever the digital contract 20 is specified, generated, processed, or even executed, the transaction record 100 may be generated. The transaction record 100 may then be documented in the blockchain environment 22. For example, the entity-specific tokens 62 may be earned as payment according to the executable terms of the digital contract 20. The entity-specific tokens 62 may additionally or alternatively be earned or awarded for processing or executing a portion of, or entirely, the digital contract 20. The entity-specific tokens 62 may thus be uniquely associated with a party to the digital contract 20 and/or with a service provider/processor of the digital contract 20. The transaction record 100 may document the parties to the digital contract 20, a transactional description describing a transaction governed by the digital contract 20, and any financial or performance terms. The transaction record 100 may thus document an offer, an acceptance, a consideration, and terms. For simplicity, then, the single cryptographic address 102 may represent a party to the digital contract 20 and/or with a service provider/processor of the digital contract 20. Regardless, when the entity-specific tokens 62 are created, generated, or assigned, the entity-specific tokens 62 may be received by, and propagated within, the blockchain data layer 72 to identify the corresponding data records 70. The blockchain data layer 72 may thus publish the proofs 80 of the digital contract 20 and any entity-specific tokens 62 paid or exchanged, according to the transaction records 100.
The filling station 110 may access both the transaction records 100 and the blockchain data layer 72. Because the blockchain data layer 72 may document the data records 70 using the single cryptographic address 102, the single cryptographic address 102 may serve as a common reference or query parameter with the entity's transaction records 100. The filling station 110, in other words, may use the single cryptographic address 102 to identify the transaction records 100 that correspond to the blockchain data layer 72. The filling station 110 may thus present a transaction summary of the account 112 and the balance 114. Because blockchain data layer 72 may track and/or prove the transaction records 100, exemplary embodiments may search the blockchain data layer 72 for the single cryptographic address 102. That is, the filling station 110 may query the blockchain data layer 72 for the single cryptographic address 102, and the blockchain data layer 72 may identify the transaction records 100 that match the single cryptographic address 102. Similarly, exemplary embodiments may query the blockchain data layer 72 for the contract identifier 28 and/or the contractual parameters 30, and the blockchain data layer 72 may identify the transaction records 100 that match the contract identifier 28 and/or the contractual parameters 30. The filling station 110 may then process the transaction records 100 to provide the transaction summary of the account 112, the balance 114, and any other transactional data. The filling station 110 may also allow the user to replenish an amount or value of the tokens 62, thus allowing the user to continue exchanging the tokens 62 for access to the private blockchain 24, the blockchain data layer 72, and/or the digital contract 20. The filling station 110 may thus be an access mechanism to the blockchain data layer 72.
Exemplary embodiments thus present an elegant solution. Any entity 32 may create its own private blockchain 24 and offer or present the digital contract 20 for self-execution. The entity 32 may then establish or create the tokens 62 for using, accessing, or processing the entity's private blockchain 24 and/or the digital contract 20. The tokens 62 may have the value 94, thus fostering a market for entity-specific tradeable assets in the blockchain environment 22. The tradable value 94 of the tokens 62 may thus drive demand to use the digital contracts 20. Exemplary embodiments may thus provide a two-token system that isolates any use of the entity's private blockchain 24 from the entity's tradeable token 66. Moreover, the credit token 64 may be associated with the third party 90 (perhaps via the single cryptographic address 102), thus allowing the third party 90 to retrieve the account balance 114 from the filling station 110 and sign entries or other transactions. Moreover, the third party 90 may also use the single cryptographic address 102 to access the blockchain data layer 72 via the filling station 110. The filling station 110 is a single resource or destination (such as a secure website) for managing a user's cryptographic coinage 60 and defining payments according to the digital contract 20.
As
As
As
Exemplary embodiments thus present another elegant solution. The filling station 110 is another service offered by the blockchain data layer 72. Because all the transaction records 100 in the blockchain data layer 72 are identifiable (perhaps via the single cryptographic address 102), the filling station 110 can present the summary of the user's credit tokens and tradeable tokens. The filling station 110 may thus provide a single or universal electronic wallet for all of a user's digital coinage and credits, regardless of the issuing entity 32a-d. The user may thus only perform a single authentication to the blockchain data layer 72 and access all her cryptofunds.
The digital contract 20 may also be identified. The entity's software application 40 may also instruct the entity server 140 to specify the digital contract 20 as informational content in the private blockchain 24. For example, the digital contract 20 may be identified by the contract identifier 28 and contractual parameters 30. The contract identifier 28 is any digital identifying information that uniquely identifies or references the digital contract 20. The contract identifier 28 may be an alphanumeric combination that uniquely identifies a vendor and/or version of the digital contract 20 and/or a processor or executioner of the digital contract 20. The contract identifier 28 may also be one of the unique hash values 150 (perhaps generated by the hashing algorithm 148) that is included within, or specified by, the private blockchain 24. Similarly, the contractual parameters 30 may identify the parties to the digital contract 20, their respective performance obligations and terms, and consideration.
Exemplary embodiments include still more publication mechanisms. For example, the cryptographic proof 80 and/or the public blockchain 76 may be sent (via the communications network 142 illustrated in
Exemplary embodiments may be applied regardless of networking environment. Exemplary embodiments may be easily adapted to stationary or mobile devices having cellular, wireless fidelity (WI-FI®), near field, and/or BLUETOOTH® capability. Exemplary embodiments may be applied to mobile devices utilizing any portion of the electromagnetic spectrum and any signaling standard (such as the IEEE 802 family of standards, GSM/CDMA/TDMA or any cellular standard, and/or the ISM band). Exemplary embodiments, however, may be applied to any processor-controlled device operating in the radio-frequency domain and/or the Internet Protocol (IP) domain. Exemplary embodiments may be applied to any processor-controlled device utilizing a distributed computing network, such as the Internet (sometimes alternatively known as the “World Wide Web”), an intranet, a local-area network (LAN), and/or a wide-area network (WAN). Exemplary embodiments may be applied to any processor-controlled device utilizing power line technologies, in which signals are communicated via electrical wiring. Indeed, exemplary embodiments may be applied regardless of physical componentry, physical configuration, or communications standard(s).
Exemplary embodiments may utilize any processing component, configuration, or system. Any processor could be multiple processors, which could include distributed processors or parallel processors in a single machine or multiple machines. The processor can be used in supporting a virtual processing environment. The processor could include a state machine, application specific integrated circuit (ASIC), programmable gate array (PGA) including a Field PGA, or state machine. When any of the processors execute instructions to perform “operations,” this could include the processor performing the operations directly and/or facilitating, directing, or cooperating with another device or component to perform the operations.
Exemplary embodiments may packetize. When the entity server 140 and the data layer server 74 communicate via the communications network 142, the entity server 140 and the data layer server 74 may collect, send, and retrieve information. The information may be formatted or generated as packets of data according to a packet protocol (such as the Internet Protocol). The packets of data contain bits or bytes of data describing the contents, or payload, of a message. A header of each packet of data may contain routing information identifying an origination address and/or a destination address.
As
Exemplary embodiments may use any hashing function. Many readers may be familiar with the SHA-256 hashing algorithm. The SHA-256 hashing algorithm acts on any electronic data or information to generate a 256-bit hash value as a cryptographic key. The key is thus a unique digital signature. There are many hashing algorithms, though, and exemplary embodiments may be adapted to any hashing algorithm.
The passphrase 192 may also authenticate to the cryptocoinage 120. If the user correctly supplies the passphrase 192, then the same user may conduct transactions involving the cryptocoinage 120 issued by the blockchain data layer 72 and/or involving the contract identifier 28 associated with the digital contract 20. Exemplary embodiments thus allow the user to order transactions and exchanges involving the entity's private cryptocoinage 60, the cryptocoinage 120 issued by the blockchain data layer 72, and/or the digital contract 20.
Exemplary embodiments may thus share the common authentication mechanism 190. If the entity's private software application 40 requires the same passphrase 192 to establish any terms of the digital contract 20, then the passphrase 192 may have been hashed and recorded within the blockchain data layer 72. The single cryptographic address 102, the contract identifier 28, and/or the passphrase 192 may be associated with the data records 70 representing the digital contract 20, the private cryptocoinage 60 (issued by the entity 32), and the cryptocoinage 120 (issued by the blockchain data layer 72). The filling station 110 may thus identify any of the data records 70 that are commonly associated with the contract identifier 28, the private cryptocoinage 60 (issued by the entity 32), and/or the cryptocoinage 120. The filling station 110 thus allows the user to exchange cryptocoinage 60 and 90 for access to the private blockchain 24 and/or the blockchain data layer 72.
Exemplary embodiments thus present the entity-specific cryptocoinage 60. Any entity 32 may create its own private blockchain 24, establish its entity-specific tokens 62, and define or offer digital contracts 20. The entity-specific tokens 62 may or may not have the value 94. The tradeable token 66, for example, may have a market value based on supply and/or demand, thus allowing or causing the value 94 of the tradeable token 66 to rise/fall or to increase/decrease, based on market forces. The credit token 64, however, may have a constant price or value, perhaps set by the entity 32. The entity-specific tokens 62 may be associated with the contract identifier 28, thus allowing a faster and simpler accounting scheme for machine executable contractual terms.
Exemplary embodiments may thus create coinage on top of coinage. The hierarchical scheme (explained with reference to
The data layer server 74 may generate the data records 70 in the blockchain data layer 72. For example, the data records 70 may document the date and time that the service request 266 was sent to the remote server 262. Moreover, as the remote server 262 provides the digital contract 20 as a service, the remote server 262 may send periodic or random service updates 270 as the service is provided along with timestamps toward completion. The data layer server 74 may thus generate the data records 70 describing the service updates 270 received from the remote server 262. The data layer server 74 may also generate the data records 70 describing the service response 268 sent from the remote server 262 describing an outcome of the digital contract 20.
Exemplary embodiments thus only need to identify the digital contract 20. The contract identifier 28 and the contractual parameters 30 need only be informational content in the private blockchain 24. The contract identifier 28 is any digital identifying information that uniquely identifies or references the digital contract 20. The contract identifier 28 may be an alphanumeric combination that uniquely identifies a vendor and/or version of the digital contract 20 and/or a processor or executioner of the digital contract 20. The contract identifier 28 may be expressed as a unique hash value that is included within, or specified by, the private blockchain 24. Similarly, the contractual parameters 30 may identify the parties to the digital contract 20, their respective performance obligations and terms, and consideration.
Exemplary embodiments may be applied to any signaling standard. Most readers are thought familiar with the Global System for Mobile (GSM) communications signaling standard. Those of ordinary skill in the art, however, also recognize that exemplary embodiments are equally applicable to any communications device utilizing the Time Division Multiple Access signaling standard, the Code Division Multiple Access signaling standard, the “dual-mode” GSM-ANSI Interoperability Team (GAIT) signaling standard, or any variant of the GSM/CDMA/TDMA signaling standard. Exemplary embodiments may also be applied to other standards, such as the I.E.E.E. 802 family of standards, the Industrial, Scientific, and Medical band of the electromagnetic spectrum, BLUETOOTH®, and any other.
Exemplary embodiments may be physically embodied on or in a computer-readable storage medium. This computer-readable medium, for example, may include CD-ROM, DVD, tape, cassette, floppy disk, optical disk, memory card, memory drive, and large-capacity disks. This computer-readable medium, or media, could be distributed to end-subscribers, licensees, and assignees. A computer program product comprises processor-executable instructions for execution of digital contracts, as the above paragraphs explain.
While the exemplary embodiments have been described with respect to various features, aspects, and embodiments, those skilled and unskilled in the art will recognize the exemplary embodiments are not so limited. Other variations, modifications, and alternative embodiments may be made without departing from the spirit and scope of the exemplary embodiments.
This patent application is a divisional filing of U.S. application Ser. No. 16/116,967 filed Aug. 30, 2018 and since issued as U.S. Patent X, which is incorporated herein by reference in its entirety. This application claims domestic benefit of U.S. Provisional Application No. 62/714,909 filed Aug. 6, 2018 and incorporated herein by reference in its entirety. This patent application relates to U.S. application Ser. No. 15/983,572 filed May 18, 2018 and incorporated herein by reference in its entirety. This application also relates to U.S. application Ser. No. 15/983,595 filed May 18, 2018 and incorporated herein by reference in its entirety. This application also relates to U.S. application Ser. No. 15/983,612 filed May 18, 2018 and incorporated herein by reference in its entirety. This application also relates to U.S. application Ser. No. 15/983,632 filed May 18, 2018 and incorporated herein by reference in its entirety. This application also relates to U.S. application Ser. No. 15/983,655 filed May 18, 2018 and incorporated herein by reference in its entirety. This application also relates to U.S. application Ser. No. 16/116,966, filed Aug. 30, 2018 and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4309569 | Merkel | Jun 1982 | A |
5499294 | Friedman | Mar 1996 | A |
5606609 | Houser | Feb 1997 | A |
5862218 | Steinberg | Jan 1999 | A |
5920629 | Rosen | Jul 1999 | A |
5966446 | Davis | Oct 1999 | A |
6363481 | Hardjono | Mar 2002 | B1 |
7028263 | MaGuire | Apr 2006 | B2 |
7212808 | Engstrom | May 2007 | B2 |
7272179 | Siemens et al. | Sep 2007 | B2 |
7572179 | Choi et al. | Aug 2009 | B2 |
7729950 | Mendizabal et al. | Jun 2010 | B2 |
7730113 | Payette | Jun 2010 | B1 |
8245038 | Golle et al. | Aug 2012 | B2 |
8266439 | Haber et al. | Sep 2012 | B2 |
8359361 | Thornton | Jan 2013 | B2 |
8442903 | Zadoorian et al. | May 2013 | B2 |
8560722 | Gates et al. | Oct 2013 | B2 |
8612477 | Becker | Dec 2013 | B2 |
8706616 | Flynn | Apr 2014 | B1 |
8712887 | DeGroeve et al. | Apr 2014 | B2 |
8867741 | McCorkindale et al. | Oct 2014 | B2 |
8943332 | Horne et al. | Jan 2015 | B2 |
8990322 | Cai | Mar 2015 | B2 |
9124423 | Jennas, II et al. | Sep 2015 | B2 |
9378343 | David | Jun 2016 | B1 |
9396006 | Kundu et al. | Jul 2016 | B2 |
9398018 | MacGregor | Jul 2016 | B2 |
9407431 | Bellare et al. | Aug 2016 | B2 |
9411524 | O'Hare et al. | Aug 2016 | B2 |
9411976 | Irvine | Aug 2016 | B2 |
9411982 | Dippenaar et al. | Aug 2016 | B1 |
9424576 | Vandervort | Aug 2016 | B2 |
9436923 | Sriram | Sep 2016 | B1 |
9436935 | Hudon | Sep 2016 | B2 |
9472069 | Roskowski | Oct 2016 | B2 |
9489827 | Quinn et al. | Nov 2016 | B2 |
9584493 | Leavy | Feb 2017 | B1 |
9588790 | Wagner | Mar 2017 | B1 |
9647977 | Levasseur | May 2017 | B2 |
9722790 | Ebrahimi | Aug 2017 | B2 |
9818109 | Loh | Nov 2017 | B2 |
9830580 | MacGregor | Nov 2017 | B2 |
9875510 | Kasper | Jan 2018 | B1 |
9876646 | Ebrahimi | Jan 2018 | B2 |
9882918 | Ford et al. | Jan 2018 | B1 |
10025941 | Griffin | Jul 2018 | B1 |
10046228 | Tran | Aug 2018 | B2 |
10102265 | Madisetti | Oct 2018 | B1 |
10102526 | Madisetti | Oct 2018 | B1 |
10108954 | Dunlevy | Oct 2018 | B2 |
10135607 | Roets | Nov 2018 | B1 |
10163080 | Chow | Dec 2018 | B2 |
10270599 | Nadeau | Apr 2019 | B2 |
10346815 | Glover | Jul 2019 | B2 |
10366204 | Tanner, Jr. | Jul 2019 | B2 |
10373129 | James | Aug 2019 | B1 |
10411897 | Paolini-Subramanya | Sep 2019 | B2 |
10419225 | Deery | Sep 2019 | B2 |
10476847 | Smith | Nov 2019 | B1 |
10532268 | Tran | Jan 2020 | B2 |
10586270 | Reddy | Mar 2020 | B2 |
10628268 | Baruch | Apr 2020 | B1 |
10685399 | Snow | Jun 2020 | B2 |
10693652 | Nadeau | Jun 2020 | B2 |
10749848 | Voell | Aug 2020 | B2 |
10764752 | Avetisov | Sep 2020 | B1 |
10783164 | Snow | Sep 2020 | B2 |
10817873 | Paolini-Subramanya | Oct 2020 | B2 |
10826685 | Campagna | Nov 2020 | B1 |
10855446 | Ow | Dec 2020 | B2 |
10873457 | Beaudoin | Dec 2020 | B1 |
10929842 | Arvanaghi | Feb 2021 | B1 |
10949926 | Call | Mar 2021 | B1 |
10958418 | Ajoy | Mar 2021 | B2 |
10997159 | Iwama | May 2021 | B2 |
11042871 | Snow | Jun 2021 | B2 |
11044095 | Lynde | Jun 2021 | B2 |
11044097 | Snow | Jun 2021 | B2 |
11044100 | Deery | Jun 2021 | B2 |
11063770 | Peng | Jul 2021 | B1 |
11093933 | Peng | Aug 2021 | B1 |
11134120 | Snow | Sep 2021 | B2 |
11164250 | Snow | Nov 2021 | B2 |
11170366 | Snow | Nov 2021 | B2 |
11205172 | Snow | Dec 2021 | B2 |
11276056 | Snow | Mar 2022 | B2 |
11295296 | Snow | Apr 2022 | B2 |
11296889 | Snow | Apr 2022 | B2 |
11328290 | Snow | May 2022 | B2 |
11334874 | Snow | May 2022 | B2 |
11347769 | Snow | May 2022 | B2 |
11348097 | Snow | May 2022 | B2 |
11348098 | Snow | May 2022 | B2 |
20010029482 | Tealdi | Oct 2001 | A1 |
20030018563 | Kilgour et al. | Jan 2003 | A1 |
20040085445 | Park | May 2004 | A1 |
20050206741 | Raber | Sep 2005 | A1 |
20060075228 | Black et al. | Apr 2006 | A1 |
20060184443 | Erez et al. | Aug 2006 | A1 |
20070027787 | Tripp | Feb 2007 | A1 |
20070094272 | Yeh | Apr 2007 | A1 |
20070174630 | Shannon | Jul 2007 | A1 |
20070296817 | Ebrahimi et al. | Dec 2007 | A1 |
20080010466 | Hopper | Jan 2008 | A1 |
20080028439 | Shevade | Jan 2008 | A1 |
20080059726 | Rozas | Mar 2008 | A1 |
20090025063 | Thomas | Jan 2009 | A1 |
20090287597 | Bahar | Nov 2009 | A1 |
20100049966 | Kato | Feb 2010 | A1 |
20100058476 | Isoda | Mar 2010 | A1 |
20100161459 | Kass et al. | Jun 2010 | A1 |
20100228798 | Kodama | Sep 2010 | A1 |
20100241537 | Kass et al. | Sep 2010 | A1 |
20110061092 | Bailloeul | Mar 2011 | A1 |
20110161674 | Ming | Jun 2011 | A1 |
20120203670 | Piersol | Aug 2012 | A1 |
20120264520 | Marsland | Oct 2012 | A1 |
20130142323 | Chiarella | Jun 2013 | A1 |
20130222587 | Roskowski | Aug 2013 | A1 |
20130275765 | Lay | Oct 2013 | A1 |
20130276058 | Buldas | Oct 2013 | A1 |
20140022973 | Kopikare | Jan 2014 | A1 |
20140201541 | Paul | Jul 2014 | A1 |
20140229738 | Sato | Aug 2014 | A1 |
20140282852 | Vestevich | Sep 2014 | A1 |
20140289802 | Lee | Sep 2014 | A1 |
20140297447 | O'Brien | Oct 2014 | A1 |
20140344015 | Puertolas-Montasnes et al. | Nov 2014 | A1 |
20150193633 | Chida | Jul 2015 | A1 |
20150206106 | Yago | Jul 2015 | A1 |
20150242835 | Vaughan | Aug 2015 | A1 |
20150244729 | Mao | Aug 2015 | A1 |
20150309831 | Powers | Oct 2015 | A1 |
20150332256 | Minor | Nov 2015 | A1 |
20150363769 | Ronca | Dec 2015 | A1 |
20150378627 | Kitazawa | Dec 2015 | A1 |
20150379484 | McCarthy | Dec 2015 | A1 |
20160002923 | Alobily | Jan 2016 | A1 |
20160012240 | Smith | Jan 2016 | A1 |
20160021743 | Pai | Jan 2016 | A1 |
20160071096 | Rosca | Mar 2016 | A1 |
20160098578 | Hincker | Apr 2016 | A1 |
20160119134 | Hakoda et al. | Apr 2016 | A1 |
20160148198 | Kelley | May 2016 | A1 |
20160162897 | Feeney | Jun 2016 | A1 |
20160217436 | Brama | Jul 2016 | A1 |
20160239653 | Loughlin-Mchugh | Aug 2016 | A1 |
20160253663 | Clark et al. | Sep 2016 | A1 |
20160260091 | Tobias | Sep 2016 | A1 |
20160267472 | Lingham et al. | Sep 2016 | A1 |
20160267558 | Bonnell et al. | Sep 2016 | A1 |
20160275294 | Irvine | Sep 2016 | A1 |
20160283920 | Fisher et al. | Sep 2016 | A1 |
20160292396 | Akerwall | Oct 2016 | A1 |
20160292672 | Fay et al. | Oct 2016 | A1 |
20160292680 | Wilson, Jr. et al. | Oct 2016 | A1 |
20160294783 | Piqueras Jover | Oct 2016 | A1 |
20160300200 | Brown et al. | Oct 2016 | A1 |
20160300234 | Moss-Pultz et al. | Oct 2016 | A1 |
20160321675 | McCoy et al. | Nov 2016 | A1 |
20160321751 | Creighton, IV et al. | Nov 2016 | A1 |
20160321769 | McCoy | Nov 2016 | A1 |
20160328791 | Parsells et al. | Nov 2016 | A1 |
20160330031 | Drego et al. | Nov 2016 | A1 |
20160330244 | Denton | Nov 2016 | A1 |
20160337119 | Hosaka et al. | Nov 2016 | A1 |
20160342977 | Lam | Nov 2016 | A1 |
20160342989 | Davis | Nov 2016 | A1 |
20160344737 | Anton et al. | Nov 2016 | A1 |
20160371771 | Serrano | Dec 2016 | A1 |
20170000613 | Lerf | Jan 2017 | A1 |
20170005797 | Lanc et al. | Jan 2017 | A1 |
20170005804 | Zinder | Jan 2017 | A1 |
20170033933 | Haber | Feb 2017 | A1 |
20170053249 | Tunnell et al. | Feb 2017 | A1 |
20170061396 | Melika et al. | Mar 2017 | A1 |
20170075938 | Black | Mar 2017 | A1 |
20170103167 | Shah | Apr 2017 | A1 |
20170124534 | Savolainen | May 2017 | A1 |
20170124535 | Juels et al. | May 2017 | A1 |
20170134162 | Code | May 2017 | A1 |
20170148016 | Davis | May 2017 | A1 |
20170161439 | Raduchel | Jun 2017 | A1 |
20170177898 | Dillenberger | Jun 2017 | A1 |
20170178237 | Wong | Jun 2017 | A1 |
20170213287 | Bruno | Jul 2017 | A1 |
20170221052 | Sheng | Aug 2017 | A1 |
20170228731 | Sheng | Aug 2017 | A1 |
20170236123 | Ali | Aug 2017 | A1 |
20170243208 | Kurian et al. | Aug 2017 | A1 |
20170243289 | Rufo | Aug 2017 | A1 |
20170244757 | Castinado et al. | Aug 2017 | A1 |
20170330279 | Ponzone | Nov 2017 | A1 |
20170344983 | Muftic | Nov 2017 | A1 |
20170346693 | Dix | Nov 2017 | A1 |
20170352031 | Collin | Dec 2017 | A1 |
20170353309 | Gray | Dec 2017 | A1 |
20170359374 | Smith | Dec 2017 | A1 |
20170364642 | Bogdanowicz | Dec 2017 | A1 |
20170373859 | Shors et al. | Dec 2017 | A1 |
20180005186 | Lerato | Jan 2018 | A1 |
20180075239 | Boutnaru | Mar 2018 | A1 |
20180075527 | Nagla | Mar 2018 | A1 |
20180082043 | Witchey | Mar 2018 | A1 |
20180088928 | Smith | Mar 2018 | A1 |
20180091524 | Setty | Mar 2018 | A1 |
20180097779 | Karame et al. | Apr 2018 | A1 |
20180101701 | Barinov | Apr 2018 | A1 |
20180101842 | Ventura | Apr 2018 | A1 |
20180108024 | Greco | Apr 2018 | A1 |
20180117446 | Tran | May 2018 | A1 |
20180123779 | Zhang | May 2018 | A1 |
20180139042 | Binning | May 2018 | A1 |
20180144292 | Mattingly | May 2018 | A1 |
20180157700 | Roberts | Jun 2018 | A1 |
20180158034 | Hunt | Jun 2018 | A1 |
20180167201 | Naqvi | Jun 2018 | A1 |
20180173906 | Rodriguez | Jun 2018 | A1 |
20180176017 | Rodriguez | Jun 2018 | A1 |
20180181768 | Leporini | Jun 2018 | A1 |
20180182042 | Vinay | Jun 2018 | A1 |
20180189333 | Childress | Jul 2018 | A1 |
20180189781 | McCann | Jul 2018 | A1 |
20180204213 | Zappier | Jul 2018 | A1 |
20180219683 | Deery | Aug 2018 | A1 |
20180219685 | Deery | Aug 2018 | A1 |
20180225640 | Chapman | Aug 2018 | A1 |
20180225649 | Babar | Aug 2018 | A1 |
20180241565 | Paolini-Subramanya | Aug 2018 | A1 |
20180260888 | Paolini-Subramanya | Sep 2018 | A1 |
20180260889 | Paolini-Subramanya | Sep 2018 | A1 |
20180268162 | Dillenberger | Sep 2018 | A1 |
20180268382 | Wasserman | Sep 2018 | A1 |
20180268504 | Paolini-Subramanya | Sep 2018 | A1 |
20180276270 | Bisbee | Sep 2018 | A1 |
20180276668 | Li | Sep 2018 | A1 |
20180276745 | Paolini-Subramanya | Sep 2018 | A1 |
20180285879 | Gadnis | Oct 2018 | A1 |
20180285970 | Snow | Oct 2018 | A1 |
20180285971 | Rosenoer | Oct 2018 | A1 |
20180288022 | Madisetti | Oct 2018 | A1 |
20180315051 | Hurley | Nov 2018 | A1 |
20180316502 | Nadeau | Nov 2018 | A1 |
20180356236 | Lawrenson | Dec 2018 | A1 |
20180365201 | Hunn | Dec 2018 | A1 |
20180365686 | Kondo | Dec 2018 | A1 |
20180365764 | Nelson | Dec 2018 | A1 |
20180367298 | Wright | Dec 2018 | A1 |
20190012637 | Gillen | Jan 2019 | A1 |
20190013948 | Mercuri | Jan 2019 | A1 |
20190018947 | Li | Jan 2019 | A1 |
20190034459 | Honglin | Jan 2019 | A1 |
20190036887 | Miller | Jan 2019 | A1 |
20190036957 | Smith | Jan 2019 | A1 |
20190043048 | Wright | Feb 2019 | A1 |
20190044727 | Scott | Feb 2019 | A1 |
20190050855 | Martino | Feb 2019 | A1 |
20190057382 | Wright | Feb 2019 | A1 |
20190065709 | Salomon | Feb 2019 | A1 |
20190073666 | Ortiz | Mar 2019 | A1 |
20190080284 | Kim | Mar 2019 | A1 |
20190081793 | Martino | Mar 2019 | A1 |
20190087446 | Sharma | Mar 2019 | A1 |
20190123889 | Schmidt-Karaca | Apr 2019 | A1 |
20190132350 | Smith | May 2019 | A1 |
20190188699 | Thibodeau | Jun 2019 | A1 |
20190197532 | Jayachandran | Jun 2019 | A1 |
20190205563 | Gonzales, Jr. | Jul 2019 | A1 |
20190236286 | Scriber | Aug 2019 | A1 |
20190251557 | Jin | Aug 2019 | A1 |
20190253240 | Treat | Aug 2019 | A1 |
20190253258 | Thekadath | Aug 2019 | A1 |
20190268141 | Pandurangan | Aug 2019 | A1 |
20190268163 | Nadeau | Aug 2019 | A1 |
20190281259 | Palazzolo | Sep 2019 | A1 |
20190287107 | Gaur | Sep 2019 | A1 |
20190287199 | Messerges | Sep 2019 | A1 |
20190287200 | Schuler | Sep 2019 | A1 |
20190288832 | Dang | Sep 2019 | A1 |
20190296915 | Lancashire | Sep 2019 | A1 |
20190303623 | Reddy | Oct 2019 | A1 |
20190303887 | Wright | Oct 2019 | A1 |
20190306150 | Letz | Oct 2019 | A1 |
20190311357 | Madisetti | Oct 2019 | A1 |
20190324867 | Tang | Oct 2019 | A1 |
20190332691 | Beadles | Oct 2019 | A1 |
20190333054 | Cona | Oct 2019 | A1 |
20190334715 | Gray | Oct 2019 | A1 |
20190334912 | Sloane | Oct 2019 | A1 |
20190340607 | Lynn | Nov 2019 | A1 |
20190342422 | Li | Nov 2019 | A1 |
20190347444 | Lowagie | Nov 2019 | A1 |
20190347628 | Al-Naji | Nov 2019 | A1 |
20190349190 | Smith | Nov 2019 | A1 |
20190349426 | Smith | Nov 2019 | A1 |
20190354606 | Snow | Nov 2019 | A1 |
20190354607 | Snow | Nov 2019 | A1 |
20190354611 | Snow | Nov 2019 | A1 |
20190354724 | Lowagie | Nov 2019 | A1 |
20190354725 | Lowagie | Nov 2019 | A1 |
20190354964 | Snow | Nov 2019 | A1 |
20190356733 | Snow | Nov 2019 | A1 |
20190361917 | Tran | Nov 2019 | A1 |
20190372770 | Huiyue | Dec 2019 | A1 |
20190378128 | Moore | Dec 2019 | A1 |
20190385165 | Castinado | Dec 2019 | A1 |
20190386940 | Hong | Dec 2019 | A1 |
20190391540 | Westervelt | Dec 2019 | A1 |
20190391858 | Studnicka | Dec 2019 | A1 |
20190394044 | Snow | Dec 2019 | A1 |
20190394048 | Deery | Dec 2019 | A1 |
20200004263 | Dalla Libera | Jan 2020 | A1 |
20200004946 | Gilpin | Jan 2020 | A1 |
20200005290 | Madisetti | Jan 2020 | A1 |
20200034571 | Fett | Jan 2020 | A1 |
20200034813 | Calinog | Jan 2020 | A1 |
20200042635 | Douglass | Feb 2020 | A1 |
20200042960 | Cook | Feb 2020 | A1 |
20200042982 | Snow | Feb 2020 | A1 |
20200042983 | Snow | Feb 2020 | A1 |
20200042984 | Snow | Feb 2020 | A1 |
20200042985 | Snow | Feb 2020 | A1 |
20200042986 | Snow | Feb 2020 | A1 |
20200042987 | Snow | Feb 2020 | A1 |
20200042988 | Snow | Feb 2020 | A1 |
20200042990 | Snow | Feb 2020 | A1 |
20200042995 | Snow et al. | Feb 2020 | A1 |
20200044827 | Snow | Feb 2020 | A1 |
20200044856 | Lynde | Feb 2020 | A1 |
20200044857 | Snow | Feb 2020 | A1 |
20200065761 | Tatchell | Feb 2020 | A1 |
20200067907 | Avetisov | Feb 2020 | A1 |
20200075056 | Yang | Mar 2020 | A1 |
20200089690 | Qiu | Mar 2020 | A1 |
20200099524 | Schiatti | Mar 2020 | A1 |
20200099534 | Lowagie | Mar 2020 | A1 |
20200104712 | Katz | Apr 2020 | A1 |
20200118068 | Turetsky | Apr 2020 | A1 |
20200127812 | Schuler | Apr 2020 | A1 |
20200134760 | Messerges | Apr 2020 | A1 |
20200145219 | Sebastian | May 2020 | A1 |
20200167870 | Isaacson | May 2020 | A1 |
20200175506 | Snow | Jun 2020 | A1 |
20200195441 | Suen | Jun 2020 | A1 |
20200211011 | Anderson | Jul 2020 | A1 |
20200234386 | Blackman | Jul 2020 | A1 |
20200258061 | Beadles | Aug 2020 | A1 |
20200279324 | Snow | Sep 2020 | A1 |
20200279325 | Snow | Sep 2020 | A1 |
20200279326 | Snow | Sep 2020 | A1 |
20200280447 | Snow | Sep 2020 | A1 |
20200302433 | Green | Sep 2020 | A1 |
20200320097 | Snow | Oct 2020 | A1 |
20200320521 | Snow | Oct 2020 | A1 |
20200320522 | Snow | Oct 2020 | A1 |
20200320620 | Snow | Oct 2020 | A1 |
20200382480 | Isaacson | Dec 2020 | A1 |
20200389294 | Soundararajan | Dec 2020 | A1 |
20210044976 | Avetisov | Feb 2021 | A1 |
20210073212 | Conley | Mar 2021 | A1 |
20210090076 | Wright | Mar 2021 | A1 |
20210097602 | Eichel | Apr 2021 | A1 |
20210119785 | Ben-Reuven | Apr 2021 | A1 |
20210174353 | Snow | Jun 2021 | A1 |
20210200653 | Jetzfellner | Jul 2021 | A1 |
20210226769 | Snow | Jul 2021 | A1 |
20210226773 | Snow | Jul 2021 | A1 |
20210266174 | Snow | Aug 2021 | A1 |
20210272103 | Snow | Sep 2021 | A1 |
20210273810 | Lynde | Sep 2021 | A1 |
20210273816 | Deery | Sep 2021 | A1 |
20210326815 | Brody | Oct 2021 | A1 |
20210328804 | Snow | Oct 2021 | A1 |
20210342836 | Cella | Nov 2021 | A1 |
20210366586 | Ryan | Nov 2021 | A1 |
20220006641 | Snow | Jan 2022 | A1 |
20220012731 | DeRosa-Grund | Jan 2022 | A1 |
20220019559 | Snow | Jan 2022 | A1 |
20220020001 | Snow | Jan 2022 | A1 |
20220027893 | Snow | Jan 2022 | A1 |
20220027897 | Snow | Jan 2022 | A1 |
20220027994 | Snow | Jan 2022 | A1 |
20220027995 | Snow | Jan 2022 | A1 |
20220027996 | Snow | Jan 2022 | A1 |
20220029805 | Snow | Jan 2022 | A1 |
20220030054 | Snow | Jan 2022 | A1 |
20220034004 | Snow | Feb 2022 | A1 |
20220043831 | Douglass | Feb 2022 | A1 |
20220058622 | Snow | Feb 2022 | A1 |
20220058623 | Snow | Feb 2022 | A1 |
20220103341 | Snow | Mar 2022 | A1 |
20220103343 | Snow | Mar 2022 | A1 |
20220103344 | Snow | Mar 2022 | A1 |
20220103364 | Snow | Mar 2022 | A1 |
20220198554 | Filter | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
110392052 | Oct 2019 | CN |
110599147 | Dec 2019 | CN |
112329041 | Feb 2021 | CN |
10128728 | Jan 2003 | DE |
3726438 | Oct 2020 | EP |
3862947 | Aug 2021 | EP |
5383297 | Jan 2014 | JP |
2021152931 | Sep 2021 | JP |
100653512 | Nov 2006 | KR |
1747221 | May 2017 | KR |
101747221 | Jun 2017 | KR |
WO 0049797 | Aug 2000 | WO |
WO 2007069176 | Jun 2007 | WO |
WO 2015077378 | May 2015 | WO |
2017190795 | Nov 2017 | WO |
WO 2018013898 | Jan 2018 | WO |
WO 2018109010 | Jun 2018 | WO |
2018127923 | Jul 2018 | WO |
2018127923072018 | Jul 2018 | WO |
2019180702 | Sep 2019 | WO |
2019207504 | Oct 2019 | WO |
WO-2020125839 | Jun 2020 | WO |
Entry |
---|
On blockchain and its integration with IoT. Challenges and opportunities. file:///C:/Users/eoussir/Downloads/1-s2.0-S0167739X17329205-main%20(1).pdf (Year: 2018). |
MOF-BC: A Memory Optimized and Flexible BlockChain for Large Scale Networks. file:///C:/Users/eoussir/Documents/e-Red%20Folder/16905961/NPL_MOF_BC_A%20Memory%20Optimized%20and%20Flexible%20Blockchain.pdf (Year: 2018). |
“Money in programmable applications: Cross-sector perspectives from the German economy”, Deutsche Bundesbank Eurosystem, https://www.bundesbank.de, 18 pages, 2020. |
Ana Reyna et al.; On blockchain and its integration with IoT. Challenges and opportunities. Future generation computer systems. vol. 88, Nov. 2018, pp. 173-190. https://www.sciencedirect.com/science/article/pii/S0167739X17329205 (Year: 2018). |
Dai et al. TrialChain: A Blockchain-Based Platform to Validate Data Integrity in Large, Biomedical Research Studies arXiv: 1807.03662 Jul. 10, 2018 (Year: 2018). |
Eberhardt et al., “ZoKrates—Scalable Privacy-Preserving Off-Chain Computations,” https://ieeeexplore.ieee.org/stamp/JSP?tp:::&armumber:::8726497. (Year: 2018). |
Feng and Luo, “Evaluating Memory-Hard Proof-of-Work Algorithms on Three Processors,” PVLDB, 13(6): 898-911, 2020. |
Fernandez-Carames et al.; A Review on the Use of Blockchain for the Internet of Things, https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8370027 (Year: 2018). 23 pages. |
Iddo Bentov, Bitcoin and Secure Computation with Money, May 2016 (Year: 2016). |
Kroeger, T. et al., The Case for Distributed Data Archival Using Secret Splitting with Percival, 6th International Symposium on Resilient Control Systems (available at IEEE Xplore), p. 204-209 (Year: 2013). |
Krol, Michal et al., “SPOC: Secure Payments for Outsourced Computations” https://arxiv.org/pdf/1807.06462.pdf. (Year: 2018). |
Luther, “Do We Need A “Fedcoin” Cryptocurrency?,” ValueWalk, Newstex Global Business Blogs, Dec. 30, 2015 (Year: 2015). |
Luu et al., Making Smart Contracts Smarter, 2016. |
Muhamed et al. EduCTX: A Blockchain-Based Higher Education Credit Platform, https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8247166. (Year: 2017) 16 pages. |
Sokolowski, R. (2011). Signed, sealed, delivered: EMortgages are protected from unauthorized alteration by something called a tamper seal. Mortgage Banking, 71(6), 108(4). Retrieved from https://dialog.proquest.com/professional/docview/1068158815?accountid=131444 (Year: 2011). |
United States: New Generation cryptocurrency, USDX Protocol, Offers Crypto Advantages and Fiat Pegging, Apr. 2, 2018 (Year: 2018). |
Why offchain storage is needed for blockchain_V4_1 FINAL (Year: 2018), by IBM, 13 pages. |
Written Opinion in PCT/US2021/040207, Inventor Snow, dated Oct. 7, 2021, 14 pages. |
ZoKrates—Scalable Privacy-Preserving Off-Chain Computations, by Jacob Eberhardt, Stefan Tai, 8 pages, Nov. 3, 2011 (Year: 2011). |
Watanabe, Hiroki, et al. “Blockchain contract: Securing a blockchain applied to smart contracts.” 2016 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2016. |
Crosby, Michael et al., “BlockChain Technology, Beyond Bitcoin”, Sutardja Center for Entrepreneurship & Technology, Berkeley Engineering, Oct. 16, 2015, 35 pages. |
Alsolami, Fahad, and Terrance E. Boult. “CloudStash: using secret-sharing scheme to secure data, not keys, in multi-clouds.” Information Technology: New Generations (ITNG), 2014 11th International Conference on. IEEE, 2014. |
Unknown, “Midex”, https://promo.midex.com/Midex_EN.pdf, 25 pages. |
Unknown, Xtrade White Paper, https://xtrade1-9649.kxcdn.com/wp-content/uploads/2017/09/xtrade-whitepaper.pdf Feb. 7, 2018, 37 pages. |
Haarmann, et al., “DMN Decision Execution on the Ethereum Blockchain,” Hasso Plattner Institute, University of Potsdam, 15 pages. |
Kim et al., “A Perspective on Blockchain Smart Contracts,” Schulich School of Business, York University, Toronto, Canada, 6 pages. |
Chakravorty, Antorweep, and Chunming Rong, “Ushare: user controlled social media based on blockchain.” Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication. ACM, 2017. |
Chen, Zhixong, and Yixuan Zhu. “Personal Archive Service System using Blockchain Technology: Case Study, Promising and Challenging.” AI & Mobile Services (AIMS), 2017 IEEE International Conference on. IEEE, 2017. |
Al-Naji, Nader et al., “Basis: A Price-Stable Cryptocurrency with an Algorithmic Central Bank” www.basis.io Jun. 20, 2017, 27 pages. |
Unkown, “Federated Learning: Collaborative Machine Learning without Centralized Training Data” Apr. 6, 2017, 11 pages. |
Casey, “BitBeat: Factom Touts Blockchain Tool for Keeping Record Keepers Honest”, Wall Street Journal, Nov. 5, 2014. |
Menezes, Alfred. J., et al. “Handbook of Applied Cryptography,” 1997, CRC Press, p. 527-28. |
White, Ron, “How Computers Work,” Oct. 2003, QUE, Seventh Edition (Year: 2003). |
Number | Date | Country | |
---|---|---|---|
20200320514 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62714909 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16116967 | Aug 2018 | US |
Child | 16905961 | US |