The subject application generally relates to HVAC (heating, ventilation, and air conditioning) systems and in particular to ice maker systems used primarily in various types of land, air, and marine transportation vessels such as motor homes, boats, trucks, and airplanes that can be monitored and controlled in a remote manner.
Conventional ice making machines such as those primarily used on marine vessels, air transportation, or recreational land vehicles often require a user to manually interface with the unit. This can be rather difficult and cumbersome depending on where the machine is mounted. In addition, such conventional ice making machines employ electromechanical switches to control limited operations of the apparatus. Unfortunately, these switches are insufficient to reliably and safely control all functions or operations of the apparatus. For instance, when a traditional safety switch shuts down the apparatus, it must be manually reset by the user before the machine can be fully operational again. If the switch is tripped frequently when no real problem exists, the user is likely to disable the switch, which can have dire consequences on the reliability or safety of the machine in the event a true problem arises.
The following presents a simplified summary in order to provide a basic understanding of some aspects of the systems and/or methods discussed herein. This summary is not an extensive overview of the systems and/or methods discussed herein. It is not intended to identify key/critical elements or to delineate the scope of such systems and/or methods. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
According to one aspect of the subject application, a remote ice maker control system comprises a plurality of ice maker components that cooperatively function as an ice maker machine; a plurality of at least one of sensors and switches corresponding to at least one of the plurality of ice maker components; a central processor that monitors and controls operations of a plurality of ice maker components using, at least in part, input from at least one of: at least one sensor or at least one switch; and an output display remotely located from at least a portion of the ice-maker components that presents one or more visual indicators based on at least one of sensor input and switch input to facilitate maintaining user awareness of the operations of the ice maker components at a distance from the ice maker machine.
According to another aspect of the subject application, a method that facilitates remote control of an ice maker machine comprises monitoring a state of one or more ice maker components; detecting at least one state change; analyzing state change according to one or more set operational parameters to determine an occurrence of at least one failure mode; and remotely displaying at least one visual indicator corresponding to the at least one state change to facilitate maintaining user awareness of the ice maker machine at a distance from the machine.
According to a further aspect of the subject application, a method that facilitates remote control of an ice maker machine comprises monitoring ice maker component activity relative to corresponding operational parameters; receiving a change to at least one operational parameter; and determining effects to unchanged operational parameters. Still a further aspect involves using artificial intelligence to learn from other failure occurrences and use conditions present at the time of those failures to predict when another similar failure might occur; and displaying a warning of one or more imminent failures that are likely to occur to mitigate undesirable consequences resulting from an actual failure.
To the accomplishment of the foregoing and related ends, certain illustrative aspects of the invention are described herein in connection with the following description and the annexed drawings. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention may be employed and the subject invention is intended to include all such aspects and their equivalents. Other advantages and novel features of the invention may become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
A brief description of each drawing is as follows:
The subject systems and/or methods are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the systems and/or methods. It may be evident, however, that the subject systems and/or methods may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing them.
The subject application is directed to digital control systems and in particular to monitoring and controlling an ice-making apparatus in a remote manner in order to facilitate determining a failure state in any portion of the apparatus more efficiently. Unlike conventional ice making apparatuses, the subject systems and methods can present the status of various functions or operations of the ice making apparatus to a user at a distance or away from the actual ice making unit. Troubleshooting failure states can be performed more efficiently as well due to the improved ability to digitally set operating parameters and the inclusion of multiple sensors and/or switches based thereon. As a result, unnecessary resets of the unit can be mitigated. Security features can also be added to thwart the ability to override or disable safety mechanisms. Moreover, the unit can be controlled or managed from a distance, thus mitigating the constant need for direct user contact with the unit wherever it is mounted, such as below deck in an engine room of a boat.
Referring now to
An output display 130 can visually depict the current state of the machine. For instance, visual indicators can be used to notify the user of power on/off, ice clog, water level, pressure, and the like. In practice, for example, a green light can indicate “power on” whereas a red light can indicate power off. No light for “ice clog” can indicate “no clog” but a solid red or orange light can signal a clog exists. Other data can be also presented in the output display 130 such as in the form of alpha-numeric messages.
A plurality of sensors (SENSOR1, 140; SENSORM 150, where M is an integer greater than one) and/or switches can be employed to facilitate detecting failures or problems with one or more ice maker components 120. The central processor 110 can receive input from the sensors and then can make adjustments to the corresponding component in response to the sensor. In addition or alternatively, the central processor 110 can notify the user of the activated sensor as well as of the adjustment by way of the output display 130.
The central processor 110 can also predict imminent failures in one or more components 120 based in part on the current state of the particular component and then warn the user such as by activating a flashing indicator. For example, suppose that a clog does not exist yet in the ice delivery line but that the central processor 110 determines that the amount of ice being delivered to an ice receptacle (from which none has been dispensed yet) does not approximately equate to the amount of ice that was made. The central processor 110 can warn the user that a clog is imminent or likely to occur so that the user can investigate or take other remedial measures.
In addition, the central processor 110 can detect when the user attempts to override or disable a sensor or switch. When such is detected, the central processor 110 can trigger a fault in the component. In some cases, the central processor can require an authorized technician to clear the fault and reset the component and/or the ice maker machine.
Turning now to
A component controller 270 regulates the ice maker components 120 based in part on operation parameters 275 stored in a database or memory store. The parameters 275 can be set by the user. In addition, the component controller 270 can make adjustments to parameters based on the user's settings and as the user's needs for ice change. For example, when the user increases the timer parameter to a higher count, the component controller 270 can adjust the other parameter settings, sensors, and/or switches based on the increased timer count. An analysis component 280 can assist the component controller 270 in analyzing the sensor input and the user input. Moreover, the central processor 110 allows a user to monitor and control the operation of the ice maker from a location away from the actual ice maker machine. As a result, problems can be attended to and adjustments can be made more efficiently.
Turning now to
If Input 4 changes to “on” (open), then Output 1 changes to “off.” The timer is initiated and a counter is advanced to 1. After 2 minutes and if counter is less than 3, Output 1 changes to “on.” If counter reaches 3 within a 45 minute period, then Output 1 locks out “off” and Output 4 is changed to “on.” System must now be reset with input 2. When Input 2 is activated, the timer starts and counts to 2 minutes before changing Output 1 to “on.”
If Input 5 changes to “on” (open), then Output 1 changes to “off” and Output 2 changes to “on.” The system must now be reset with Input 2. When Input 2 is activated, the timer starts and counts to 2 minutes before changing Output 1 to “on.”
If Input 6 changes to “on” (open), then Output 1 changes to “off” and Output 3 changes to “on.” Again, the system must now be reset with Input 2. When Input 2 is activated, the timer starts and counts to 2 minutes before changing Output 1 to “on.”
If Input 7 changes to “on” (open), then Output 1 changes to “off.” The timer is initiated and a counter is advanced to 1. After 3 minutes and input 7 is closed and if the counter is less than 6, Output 1 changes to “on.” If the counter reached 6 within a 45 minute period, then Output 1 locks “off” and Output 4 is changed to “on.” Again, the system must now be reset with Input 2. When Input 2 is activated, the timer starts and counts to 2 minutes before changing Output 1 to “on.” The central processor can be programmed to prohibit a reset from occurring via Input 1. Similarly, if the machine loses power, then the compressor should not be able to immediately restart upon regaining power. This can be controlled by using a timer, for example, in conjunction with the power on/off switch.
Inputs can be entered and outputs can be displayed remotely from the actual ice maker machine unit, thereby affording the user more flexibility and efficiency when using the machine. For instance, on a marine vessel such as a fishing boat, the ice maker unit can be installed out of sight such as below deck in an engine room. Ice can be made and delivered from the engine room up to an ice receptacle on deck. The control display can be located on deck as well, thereby allowing the user to maintain an awareness of the current state of the ice maker machine and its various components without having to go below deck to check and look at the machine. In some ice makers, the ice can be made on deck—remotely from the compressor and auger components in order to mitigate ice clog problems during delivery. Here again, the remote control system and display can relay the status and readily identify problem areas or failures in particular components to the user and allow the user to assess the failure and in some instances repair the failure remotely from the failure source (e.g., compressor, auger, etc.).
Referring to
Various methodologies will now be described via a series of acts. It is to be understood and appreciated that the subject system and/or methodology is not limited by the order of acts, as some acts may, in accordance with the subject application, occur in different orders and/or concurrently with other acts from that shown and described herein. For example, those skilled in the art will understand and appreciate that a methodology could alternatively be represented as a series of interrelated states or events, such as in a state diagram. Moreover, not all illustrated acts may be required to implement a methodology in accordance with the subject application.
In
Though not depicted in the flow diagrams, the method 600 or 700 can also warn of imminent problems or failures that are likely to occur through the use of artificial intelligence. For example, the method can learn from other failure occurrences and use conditions present at the time of those failures to predict or project when another similar failure might occur. By doing so, failures can be somewhat prevented in order to mitigate undesirable consequences or the extent of damage as a result of such failures (e.g., food spoilage).
What has been described above includes examples of the subject system and/or method. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the subject system and/or method, but one of ordinary skill in the art may recognize that many further combinations and permutations of the subject system and/or method are possible. Accordingly, the subject system and/or method are intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
This application claims the benefit of U.S. Provisional Application No. 60/765,050 entitled Method of Digital Control of Ice Making Apparatus and Output of Operating Status and filed on Feb. 3, 2006, which is entirely incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4872317 | Reed | Oct 1989 | A |
5829257 | Newman et al. | Nov 1998 | A |
6574974 | Herzog et al. | Jun 2003 | B1 |
6895676 | Mendyk | May 2005 | B1 |
20050028539 | Singh et al. | Feb 2005 | A1 |
20060277928 | McDougal et al. | Dec 2006 | A1 |
20070130965 | Boarman et al. | Jun 2007 | A1 |
20070157636 | Billman et al. | Jul 2007 | A1 |
20070186570 | Kopf | Aug 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070180837 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60765050 | Feb 2006 | US |