1. Field of the Invention
The present invention generally concerns electronic power conversion circuits and, more particularly, concerns current mode control circuits for power converters.
2. Background of the Invention
Current mode control schemes for power converters provide numerous advantages over other control schemes. These advantages include good dynamic behavior with a simple compensation network, rejection of the disturbance caused by the input voltage, inherent pulse-by-pulse overcurrent protection, and ease of implementation of current sharing.
Technological progress on both the demand side and the supply side, however, creates significant incentive to implement increasing portions of the controller with digital circuitry. Digital circuitry provides the advantages of programmability, stability, noise immunity and ability to implement complex timing and signal processing operations. In that connection, economies of engineering naturally entice designers to replicate the analog structure and techniques that work well in analog technology with digital circuitry. The straightforward replication of the analog current mode control circuit 12 of
Accordingly, there exists a need for a digital current mode control circuit that can operate at low sampling frequencies without experiencing the drawbacks associated with limit cycle oscillation.
In one general aspect, the present invention is directed to a digital current mode controller for adjusting the duty ratio of a pulse width modulation control signal used to control a power switch of a switch mode power converter. According to various embodiments, the digital controller comprises a voltage feedback loop compensator module for generating a first signal (referred to herein as “Dvoltage”) representative of the duty ratio of the control signal based on a difference between an output voltage of the converter and a reference voltage. The controller also includes a current feedback loop compensator module for generating a second signal (referred to herein as “Dcorrection”) representative of a modification to the duty ratio of the control signal based on the current of the output inductor of the converter. A subtraction module subtracts the second signal (Dcorrection) from the first signal (Dvoltage) to thereby generate a third signal (D), which is used by a duty ratio PWM generator module to generate the pulse width modulation control signal with the appropriate duty ratio.
According to various implementations, the voltage compensator module may adjust a frequency characteristic of a signal (herein referred to as “Verror”) representative of the difference between the reference voltage and the output voltage of the converter. Additionally, the transfer function of the current compensator module may be a proportionality factor with no frequency or time dependence. Also, the current of the output inductor may be sampled at a relatively low frequency, such as once every switching cycle of the converter.
The controller, according to various embodiments, may provide dynamic properties similar to peak current mode control even though information about the instantaneous value of the current of the output inductor is not continuously available. Moreover, the frequency characteristic of the voltage compensator module may be designed with a method essentially similar to conventional current mode control. These and other benefits of the present invention will be apparent from the description below.
Various embodiments of the present invention are described herein by way of example with reference to the following figures, wherein:
The controller 44, according to various embodiments, may use a digital feedback loop to output one or more control signals (PWM) that are used to control the power switches 48, 49 of the power processing circuit 42. The controller 44 may vary the duty cycle of the control signal to thereby control the ratio of the on and off times of the power switch 48 to thereby regulate the output voltage to keep the output voltage as close as possible to a desired level. The controller 44 may vary the duty cycle of the control signal based on an error signal (Verror) indicative of the difference between the reference voltage (Vref) and the output voltage. The reference voltage may be constant (in which case the output voltage is kept constant) or may follow a desired reference that can be altered by supervisory circuitry (not shown) depending on the optimal operating point of the load. The controller 44 adjusts the duty cycle of the control signal PWM to reduce or null the error signal.
Due to the dynamic properties of energy storage components of the power processing circuit 42, like the inductor 50 and the output capacitor 51, modifying the duty cycle proportionally to the magnitude of the voltage error signal does not always provide satisfactory performance. Accordingly, the controller 44, as described in more detail below, may adjust the frequency characteristic of the error signal. In addition, the controller also uses information about the current of the output inductor 50 of the power processing circuit 42 to control the duty cycle. This allows, according to various embodiments, the use of the same compensation techniques as used in conventional analog current mode control, even though the information about the amplitude of the output current is available only at discrete points in time. This, in turn, allows the realization of the advantageous properties of current mode control, including good dynamic behavior, rejection of the disturbance caused by the input voltage, inherent pulse-by-pulse overcurrent protection and ease of implementation of current sharing.
Using a digital feedback loop, as shown in
The error signal (Verror) is input to a voltage feedback loop compensator module 58 (also referred to herein as the “voltage compensator module 58”). According to various embodiments, the voltage compensator 58 may adjust the frequency characteristic of the error signal to achieve the objectives of the converter as deemed appropriate for its given application, including, for example, maximum acceptable deviation of the output voltage under a specified disturbance, time needed to return to equilibrium after the disturbance, non-oscillatory response, etc. The transfer function of the voltage compensator 58 can be any transfer function pertaining to current mode control, such as described in Robert W. Erickson, Dragan Maksimovic, “Fundamentals of Power Electronics”, Kulver Academic Publishers, 2001, Chapter 12, 439-489, which is incorporated herein by reference. The output signal of the voltage compensator 58 is shown as Dvoltage in
The current signal sampling and A/D conversion module 52 samples the current of the output inductor 50 of the power processing circuit 42, and converts it to a digital signal Imon. The Imon signal is input to a current feedback loop compensator module 60 (also referred to herein as the “current compensator module 60”) to produce a signal, Dcorrection, representing the correct to the Dvoltage signal derived from the output current information. A subtraction module 62, therefore, subtracts the Dcorrection signal from the Dvoltage signal to thereby generate a signal D indicative of the appropriate duty ratio for the PWM control signal. The D signal is input to a duty ratio PWM generator 64 which generates the PWM signal for controlling the power switches 48, 49 of the power processing circuit 42 where the duty ratio of the pulses of the PWM signal are proportional to the D signal.
The transfer function of the current compensator 60 preferably is a proportionality factor, without any frequency or time dependence, which makes its optimization relatively simple. In another embodiment, the transfer function of the current compensator 60 may include a frequency dependent component to complement the transfer function of the voltage compensator 58.
By judicious selection of the gain of the current compensator 60, operation analogous to current mode can be achieved. This means that the current in the inductor 50 may follow the value commanded by the voltage compensator 58. The principle of operation and method of selecting the gain of the current compensator 60 according to various embodiments is explained with the aid of
Prior to Ton1 the converter 40 is assumed to be in equilibrium. Reduction of the second on-time (Ton2) in
The presence and magnitude of the disturbance is detected at the moment when the next (third) sample, Isample3, is taken. ΔIsample represents the difference between the last current sample and the immediately preceding sample. ΔIsample may be used to generate a change in the duty cycle, by the Dcorrection signal, to bring the inductor current back to the desired level in one switching cycle. That is, the current compensator 60 may attempt to adjust the duty cycle such that the inductor current at sample 4 (Isample4) is similar to sample 2 (Isample2) thus rejecting distortion detected in sample 3. According to various embodiments, the current compensator 60 need not compute the difference between Isample3 and Isample2. Rather, the correction signal Dcorrection may by an appropriately scaled version of Isample since the voltage compensator 58 may have the ability to reject fixed disturbances (assuming the transfer function of the voltage compensator 58 has an integrating property, which is common for current mode control). If the transfer function of the current compensator 60 contains only a fixed gain, the result resembles conventional peak current mode control. If an integrating function is added to the current compensator 60, an average current control can be achieved.
According to one embodiment, the gain of the current compensator 60 may be determined based on the design consideration that the change in the inductor current represented by ΔIsample must cause a change in the duty cycle D such that the original value of Isample is restored. The change in the duty cycle, Dcorrection, may be determined by:
Dcorrection=Ichoke×KIAD×KCC
where KIAD is the gain of the current sampling and A/D conversion module 52 and KCC is the gain of the current compensator 60. The original value of Isample is restored if:
Ichoke=Dcorrection×T×(Vin−Vout)×1/Lchoke
where T is the switching cycle period and Lchoke is the inductance of the output inductor 50. Hence, the gain of the current compensator 60 may be determined by:
The controller 44 may be implemented with fixed and/or programmable digital logic devices. For programmable modules of the controller 44, the modules may be implemented as software code to be executed by a processor (not shown) of the controller 44 using any type of suitable instruction type. The code may be stored as a series of instructions or commands on a computer readable medium (not shown), such as a random access memory (RAM) or a read only memory (ROM). Also, various modules of the controller may be implemented as programmable logic devices, such as, for example, field programmable gate arrays (FPGAs) and/or complex programmable logic devices (CPLDs). For fixed logic modules, the logic of the module(s) may be implemented in, for example, an application specific integrated circuit (ASIC).
According to various embodiments, the present invention is also directed to a method for modifying a duty cycle of a pulse width modulated control signal used to control a power switch of a switch mode converter. The method may include the steps of, as described above, (i) generating a first signal (Dvoltage) representative of a duty ratio of the control signal based on a difference between a reference voltage and a signal representative of the sampled output voltage of the converter and, (ii) generating a second signal (Dcorrection) representative of a modification to the duty ratio of the control signal based on a signal representative of the current of the output inductor of the converter, (iii) generating a third signal (D) representative of the second signal subtracted from the first signal, and (iv) generating the duty ratio of the control signal proportional to the third signal (D). As described above, the Dvoltage signal may be generated by adjusting a frequency characteristic of the Verror signal. Also, the Dcorrection signal may be generated by applying a gain factor, with no frequency or time dependence, to the signal representative of the sampled current of the output inductor of the converter.
Although the present invention has been described herein with respect to certain embodiments, those of ordinary skill in the art will recognize that many modifications and variations of the present invention may be implemented. For example, the power processing circuit 42 may employ a different topology than the single-phase synchronous buck converter shown in
Number | Name | Date | Kind |
---|---|---|---|
5523676 | Bach et al. | Jun 1996 | A |
5594631 | Katoozi et al. | Jan 1997 | A |
6005377 | Chen et al. | Dec 1999 | A |
6020729 | Stratakos et al. | Feb 2000 | A |
6100676 | Burstein et al. | Aug 2000 | A |
6115266 | Matsui et al. | Sep 2000 | A |
6169669 | Choudhury | Jan 2001 | B1 |
6181123 | Jou et al. | Jan 2001 | B1 |
6198261 | Schultz et al. | Mar 2001 | B1 |
6204650 | Shimamori | Mar 2001 | B1 |
6225795 | Stratakos et al. | May 2001 | B1 |
6268716 | Burstein et al. | Jul 2001 | B1 |
6351108 | Burstein et al. | Feb 2002 | B1 |
6445244 | Stratakos et al. | Sep 2002 | B1 |
6590369 | Burstein et al. | Jul 2003 | B2 |
6850046 | Chapuis | Feb 2005 | B2 |
6853169 | Burstein et al. | Feb 2005 | B2 |
6862198 | Muegge et al. | Mar 2005 | B2 |
6873140 | Saggini et al. | Mar 2005 | B2 |
20020001204 | Lentini et al. | Jan 2002 | A1 |
20020105307 | Groeneveld et al. | Aug 2002 | A1 |
20040052098 | Burstein et al. | Mar 2004 | A1 |
20040178776 | Hansen et al. | Sep 2004 | A1 |
20040189264 | Matsuura et al. | Sep 2004 | A1 |
20040189272 | Matsuura et al. | Sep 2004 | A1 |
20050012492 | Mihalka | Jan 2005 | A1 |
20060001408 | Southwell et al. | Jan 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060043954 A1 | Mar 2006 | US |