The present invention relates to measuring the current through an inductor and more particularly to generating analog and digital measurements.
Digital Current Sense (DCS) is a method for measuring the current through an inductor. DCS derives a continuous steam of digital indicators, i.e., ones and zeros, in which the information about the current is embedded as the ratio of ones to zeros. A digital representation of an average current in the inductor can be achieved by simply counting the ones present within a specified averaging interval.
Several simple methods for generating an analog representation of the inductor current are known. The analog signal can be easily scaled to represent a power or current through an inductor.
Measuring the current in an inductor is a problem typically encountered in switching power supplies. Information about the inductor current may be used for a variety of functions including current limiting, load line regulation, current sharing, and power monitoring. These functions require accurate current monitoring with minimal added power dissipation. However, minimizing the power dissipation limits the available signal for current sensing.
Switching power supplies are popular in a variety of applications and are often chosen for their high efficiency, ability to create a wide variety of voltages, and compactness. As illustrated in
Equation 1 shows that in an ideal inductor the current changes in proportion to the voltage applied across it. However, as shown in Equation 1, the absolute current in an ideal inductor is independent of the voltage across it.
To have knowledge of the absolute current in the inductor, a system must accurately integrate the voltage applied across the inductor and know the initial conditions or measure the absolute current in the inductor with a separate sense element. Resistor current sensing is one popular method of creating a voltage signal, which is proportional to the current flowing in the inductor. As illustrated in
Disadvantages of the above approach include additional power being dissipated in the resistive sense element thereby reducing the overall efficiency of the switching converter and a need for a precision power resistor.
Another popular method of creating a voltage signal which is proportional to the current flowing in an inductor is DCR current sensing illustrated in
The time constant chosen for the RCS, CCS filter matches the time constant of the inductor L and the intrinsic resistance, or DC resistance (DCR). This allows the VCS−VOUT signal to be correct even during transients, i.e., the changes in the switching duty cycle. Since an average voltage drop across the inductor L is proportional to the voltage drop across the parasitic winding resistance, DCR:
Average(Vphase)−Vout=Iinductor*DCR Equation 4
and Average(Vphase)=Vcs then Vcs−Vout=Iinductor*DCR. The voltage VCS−VOUT can be viewed as proportional to the inductor current Iinductor. Finally leading to Equation 5:
However, DCR current sensing also include disadvantages, such that the winding resistance DCR typically has a strong temperature dependence (Copper is ˜3900 ppm/degC.) and the DCR absolute value is typically not well known (5%).
Presently, analog amplifiers are used to sense the DCS signal, a separate sensor is required to sense the temperature. Further, an analog multiplier must be used to correct for temperature coefficient of inductor DCR. For digital output, an analog to digital converter is used to convert the sensed DCS signal, a separate sensor is required to sense the temperature and an analog to digital converter to convert the sensed temperature, and a digital multiplication to correct for temperature of inductor DCR. Also, to correct for temperature of inductor DCR an analog amplifier incorporates a resistor with appropriate temperature coefficient into gain network followed by analog to digital converter.
What is needed is a low power circuit (minimal circuitry) with inherent noise immunity for using the analog output to measure the inductor current and the power delivered by the inductor. The circuit should have analog and digital output capability, i.e., both analog and digital outputs are easily generated and the power is delivered by the inductor. The circuit should be configured to cancel temperature variation of the intrinsic parasitic resistance of a copper inductor without requiring an analog multiplier. The bandwidth and stability of the circuit should be well controlled by a clock frequency without requiring an analog loop. The output should be inherently accurate (achieved by minimizing and simplifying the analog components that contribute inaccuracies.
It is an object of the present invention to provide a circuit for calculating the current through an inductor using DCR or resistor sensing, the circuit being configurable to cancel temperature variation of the intrinsic parasitic resistance of a copper inductor without requiring an analog multiplier.
It is another object of the present invention to provide a circuit for counting logical ones of the calculated current over a period of time to produce a digital word representing the average current flowing in the inductor over the specified period of time.
It is yet another object of the present invention to provide a circuit that can filter the calculated current with a simple filter to produce an analog voltage proportional to the current flowing in the inductor or the power delivered through the inductor.
A circuit for measuring a current in an output inductor of at least one switching power supply is provided. The circuit having high- and low-side switches connected at a switching node, the output inductor having input and output terminals, the input terminal being connected to the switching node. The circuit including a sensing circuit for detecting a direction of current through the inductor, the sensing circuit generating a sense voltage related to the direction of current; a comparator circuit having an output terminal and input terminals coupled to the sensing circuit and receiving the sense voltage, the comparator circuit providing a comparison output of the sense voltage and an output voltage of the output inductor; and a switched current source circuit controlled by the comparison output for providing a reference current to the sensing circuit, the comparison output turning the switched current source circuit ON and OFF depending on the comparison output and having a duty cycle, whereby the average current flowing through the switched current source circuit is substantially equal to the average current in the sensing circuit and proportional to the duty cycle, the duty cycle being proportional to the inductor current.
Other features and advantages of the present invention will become apparent from the following description of the invention that refers to the accompanying drawings.
One embodiment of the present invention is illustrated in
The value of the switched current can easily be made to be dependent on a resistor, which is chosen to have a temperature coefficient which matches the temperature coefficient of the intrinsic inductor winding resistance DCR. This will facilitate a measurement of the inductor current Iinductor, which is independent of the temperature.
The output of the DCS circuit 5 is a signal DI, which is a continuous stream of ones and zeros in which the ratio of ones to zero contains the information about the inductor current Iinductor. A digital representation of an average inductor current can be achieved by simply counting the ones present in the output signal DI over a specified averaging interval. An analog representation of the output signal DI can be achieved by applying the RC filter RCS CCS to the output signal DI to find an average value. This analog signal can easily be scaled to represent the power delivered through the inductor L.
The circuit 5 contains a high gain negative feedback loop made-up of the comparator 10, D Flip-Flop 14, and switched current source 12. In the feedback loop, the inputs of the comparator 10 are driven to be substantially equal. For positive inductor currents, the DCS circuit 5 regulates the average voltage across the capacitor CCS to near zero in the following way:
The current through the resistor RCS is proportional to the inductor current, the average current through the resistor RCS is substantially equal to the average current through the switched current source 10, and the average current through the switched current source 10 is proportional to the Duty Cycle DI. Therefore, the Duty Cycle DI is proportional to the inductor current.
The transfer function of the switched current source 10 is flexible and can be controlled by a variety of relatively simple analog circuits, the relationship between the inductor current and the duty cycle DI is flexible and can be scaled and referenced to a variety of useful voltages and resistors.
Once information about the inductor current is captured in the duty cycle DI by the DCS circuit 5, it can be used in a variety of ways to scale, invert, gain, sum, offset, and multiply by other voltage(s) and resistor(s).
Furthermore, because of the digital nature of the duty cycle DI, it can easily be converted to a digital word, which is proportional to the inductor current by means of a simple counter.
It is an inherent advantage that once the inductor current information is embedded in the duty cycle DI; it is relatively noise immune since the output signal DI is a digital signal. It can be transported and manipulated by the system in simple, low power, and easily implemented circuits due to the duty cycle's digital nature.
The system can be configured so that the time constant RCS*CCS is long compared to the sampling clock CLK. Since the feedback loop holds the inputs of the comparator 10 to be substantially equal, simple algebra can be used to analyze the steady state, i.e., average over many clock cycles, operation of the DCS system.
The current flowing through the resistor RCS is equal to the average current flowing through the switched current source 10. Summing currents at the VCS node, with the knowledge that Vcs=Vout because of the feedback loop,
Substituting Equation 4 into Equation 6,
Since the current Iswitched is defined as Vref/Rref,
and solving for DI,
This notable result shows that DI is only a function of the inductor current and constants. It also makes it obvious that if Rref has the inverse temperature coefficient of the DCR then, the answer becomes temperature independent. Solving for the current through the inductor Iinductor,
The above described invention is compatible with resistor current sensing and DCR current sensing methods. Because the resistor Rref can be made having any desired temperature coefficient, the present invention facilitates correcting for the temperature coefficient of the winding resistance in DCR current sensing applications or any other desired temperature coefficient, including zero temperature coefficient with resistor current sensing.
Similar functionality may be attained to facilitate measuring negative inductor current by changing the switched current source polarity and inverting the output signal DI going into the switch. Facilitating both positive and negative inductor current can be accommodated in at least the following ways:
For a DC input, the system will naturally reach a steady state operation in which the pattern of ones and zeros repeats as often as possible, i.e., highest pattern frequency. As an example, the system would naturally output 01010101 instead of 00110011, although both possess the same ratio of ones to zeros.
Another embodiment of the present invention illustrated in
Since the feedback loop, including the comparator 10, the D Flip-Flop 14 and the switched current source 22, holds the inputs of the comparator 10 to be substantially equal, simple algebra can be used to analyze the steady state operation, i.e., average over many clock cycles, of the DCS system that assumes Vcs=Vout.
Substituting Equation 4 into Equation 11 results in
Since, as shown in
This notable result shows that DI is only a function of the inductor current and constants. The results also clarify that if Rref has the opposite temperature coefficient of DCR, then the result becomes temperature independent. It is also notable that DI's duty ratio includes an “offset” of 1/K. In other words, at zero inductor current, DI will still give a positive duty ratio of 1/K. For example, if K is 2, then at zero current, the DI's duty ratio would be 50% (50% ones). Solving for Iinductor,
Similar functionality could be attained by switching the location of the DC and switched current sources (with an inverter required between the output of the DFF and the switched current source).
Another embodiment of the present invention illustrated in
The DI output can be easily converted to an analog voltage proportional to the inductor current. A circuit 30, illustrated in
VavgDI=average(Vdib) Equation 17
Because Vdib is simply Vmult modulated by DI,
Vdib=Vmult*DI Equation 18
Since it was shown that DCS can produce DI, which is proportional to inductor current,
DI=scalar*Iinductor Equation 19
Substituting Equation 19 into Equation 18,
Vdib=Vmult*scalar*Iinductor Equation 20
Applying the averaging function to both sides of the equation,
average(Vdib)=average(Vmult*scalar*Iinductor) Equation 21
Substituting Equation 17 into Equation 21 results in
VavgDI=average(Vmult*scalar*Iinductor) Equation 22
Rearranging shows that the output is dependent only on the average current in the inductor, a constant scalar, and Vmult. If Vmult is chosen to be a constant also, then VavgDI becomes a scaled representation of the inductor current, Iinductor.
VavgDI=average(Iinductor)*Vmult*scalar Equation 23
If Vmult is chosen to be the output voltage of the buck converter, then VavgDI becomes a scaled representation of the power being delivered through the inductor. Choosing Vmult=Vout and substituting that equation into Equation 23,
VavgDI=average(Iinductor)*Vout*scalar Equation 24
In an embodiment illustrated in
It is worth noting that this is essentially the same format as that which results from DCS when the circuit is configured for DCR sensing. Therefore, the same circuit may be designed for an IC and the choice of sense elements can be left to the user.
The clock signal CLK provided to the up/down counter circuit 32 is the same clock signal that is used to clock the D Flip Flop 14 (
The offset K having the value of 2 means that there will be a 50% DI offset, which means that zero inductor current results in a 50% ratio of ones to zero in the digital output DI. For negative inductor currents, the DI ratio will be less than 50%, i.e., fewer ones than zeros, and for positive inductor currents, the DI ratio will be greater than 50%, i.e., more ones than zeros.
Applications based on this embodiment may include:
In another embodiment, illustrated in
Average(Vphase)=Iinductor*(s*L+DCR) Equation 27
Using voltage division to find Vx:
Expanding on impedances in parallel:
Multiplying numerator and denominator by (1/(1+s*Rcs2*Ccs1)):
Choosing Rcs1, Rcs2, and Ccs1 such that:
Substituting Equation 33 into Equation 32:
Multiplying the middle term (the one in square brackets) by DCR:
Canceling terms:
Substituting Equation 37 into Equation 38:
Summing currents at the Vcs:
Ircs2=Idc+Iswtiched*DI Equation 41
Substituting Equation 40 into Equation 41:
Since Iswitched is defined as Vref/Rref, and Idc is defined as Vref/(Rref*K),
This result shows that DI is identical to Equation 14 except that the gain depends on the sum of the two resistors instead of the single. This result is valid for transients as well as DC operation. Solving for Iinductor,
Equation 46 is similar to Equation 15 except the gain term is dependent on the sum of the current sense resistors instead of the single resistor.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention not be limited by the specific disclosure herein.
This application is based on and claims priority to U.S. Provisional Patent Application Ser. No. 60/891,586, filed on Feb. 26, 2007 and entitled DIGITAL CURRENT SENSE, the entire contents of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60891586 | Feb 2007 | US |