Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods

Information

  • Patent Grant
  • 9525488
  • Patent Number
    9,525,488
  • Date Filed
    Friday, February 11, 2011
    13 years ago
  • Date Issued
    Tuesday, December 20, 2016
    7 years ago
Abstract
Embodiments include distribution in optical fiber-based distributed communications systems configured to provide digital data services and radio frequency (RF) communications services, and related components and methods. Embodiments disclosed include units that can be provided in optical fiber-based distributed communications systems that are configured to support RF communication services and digital data services. The units may also be configured to support providing distribution of power.
Description
BACKGROUND

1. Field of the Disclosure


The technology of the disclosure relates to providing power to components in optical fiber-based distributed communications systems distributing radio frequency (RF) signals over optical fiber.


2. Technical Background


Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication. As an example, so-called “wireless fidelity” or “WiFi” systems and wireless local area networks (WLANs) are being deployed in many different types of areas (e.g., coffee shops, airports, libraries, etc.). Distributed communications systems communicate with wireless devices called “clients,” which must reside within the wireless range or “cell coverage area” in order to communicate with an access point device.


One approach to deploying a distributed communications system involves the use of radio frequency (RF) antenna coverage areas, also referred to as “antenna coverage areas.” Antenna coverage areas can have a radius in the range from a few meters up to twenty meters as an example. Combining a number of access point devices creates an array of antenna coverage areas. Because the antenna coverage areas each cover small areas, there are typically only a few users (clients) per antenna coverage area. This allows for minimizing the amount of RF bandwidth shared among the wireless system users. It may be desirable to provide antenna coverage areas in a building or other facility to provide distributed communications system access to clients within the building or facility. However, it may be desirable to employ optical fiber to distribute communication signals. Benefits of optical fiber include increased bandwidth.


One type of distributed communications system for creating antenna coverage areas, called “Radio-over-Fiber” or “RoF,” utilizes RF signals sent over optical fibers. Such systems can include a head-end station optically coupled to a plurality of remote antenna units that each provides antenna coverage areas. The remote antenna units can each include RF transceivers coupled to an antenna to transmit RF signals wirelessly, wherein the remote antenna units are coupled to the head-end station via optical fiber links. The RF transceivers in the remote antenna units are transparent to the RF signals. The remote antenna units convert incoming optical RF signals from an optical fiber downlink to electrical RF signals via optical-to-electrical (O/E) converters, which are then passed to the RF transceiver. The RF transceiver converts the electrical RF signals to electromagnetic signals via antennas coupled to the RF transceiver provided in the remote antenna units. The antennas also receive electromagnetic signals (i.e., electromagnetic radiation) from clients in the antenna coverage area and convert them to electrical RF signals (i.e., electrical RF signals in wire). The remote antenna units then convert the electrical RF signals to optical RF signals via electrical-to-optical (E/O) converters. The optical RF signals are then sent over an optical fiber uplink to the head-end station.


SUMMARY OF THE DETAILED DESCRIPTION

Embodiments disclosed in the detailed description can include power distribution in optical fiber-based distributed communications systems configured to provide digital data services and radio frequency (RF) communications services. Related components and methods are also disclosed. In this regard, embodiments disclosed in the detailed description include units that can be provided in optical fiber-based distributed communications systems that are configured to support RF communication services and digital data services. The units may also be configured to support providing distribution of power. The units may be interconnect units (ICUs). Further, embodiments disclosed in the detailed description also include optical fiber-based distributed communications systems that provide and support both RF communication services and digital data services. The RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example. Digital data services can be distributed over optical fiber separate from optical fiber distributing RF communication services. Alternatively, digital data services can be distributed over a common optical fiber with RF communication services.


The embodiments disclosed herein do not have to include power distribution. Any combination of RF communication services, digital data services, and power distribution can be provide, including in the ICU examples described herein. For example, the ICU could be equipped to distribute RF communication services and digital data services. The ICU could also be equipped to distribute digital data services and power as another example.


In this regard, in one embodiment, a distribution unit for an optical-fiber based distributed communications system is provided. The distribution unit comprises at least one digital data services input configured to receive electrical digital data signals. The distribution unit also comprises at least one digital data services output configured to distribute digital data signals representing the electrical digital data signals over at least one digital data services line to at least one remote antenna unit (RAU). The distribution unit also comprises at least one RF communications services input configured to receive optical RF communications signals. The distribution unit also comprises at least one RF communications services output configured to distribute the optical RF communications signals over at least one RF communications services optical fiber to the at least one RAU.


In another embodiment, an optical-fiber based distributed communications system is provided. The system includes head-end equipment. The head-end equipment is configured to receive downlink electrical RF communications services signals. The head-end equipment is also configured to convert the downlink electrical RF communications services signals into downlink optical RF communications services signals to be communicated over at least one optical RF communications services downlink. The system also includes a controller. The controller is configured to receive downlink digital data services signals containing at least one digital data service. The controller is also configured to provide the downlink digital data services signals over at least one digital data services downlink. The system also comprises a distribution unit. The distribution unit comprises at least one RF communications services input configured to receive the downlink optical RF communications services signals from the at least one optical RF communication services downlink. The distribution unit also comprises at least one RF communications services output configured to distribute the downlink optical RF communications signals over at least one RF communications services optical fiber to at least one RAU. The distribution unit also comprises at least one digital data services input configured to receive the downlink digital data signals from the at least one digital data services downlink. The distribution unit also comprises at least one digital data services output configured to distribute the digital data signals over at least one digital data services line to the at least one RAU.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description that follows, the claims, as well as the appended drawings.


The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic diagram of an exemplary optical fiber-based distributed communications system;



FIG. 2 is a more detailed schematic diagram of exemplary head-end equipment in the form of a head-end unit (HEU) and a remote antenna unit (RAU) that can be deployed in the optical fiber-based distributed communications system of FIG. 1;



FIG. 3 is a partially schematic cut-away diagram of an exemplary building infrastructure in which the optical fiber-based distributed communications system in FIG. 1 can be employed;



FIG. 4 is a schematic diagram of an exemplary embodiment of providing digital data services over downlink and uplink optical fibers separate from optical fibers providing radio frequency (RF) communication services to RAUs in an optical fiber-based distributed communications system;



FIG. 5 is a diagram of an exemplary head-end media converter (HMC) employed in the optical fiber-based distributed communications system of FIG. 4 containing digital media converters (DMCs) configured to convert electrical digital signals to optical digital signals and vice versa;



FIG. 6 is a diagram of an exemplary DMCs employed in the HMC of FIG. 5;



FIG. 7 is a schematic diagram of an exemplary building infrastructure in which digital data services and RF communication services are provided in an optical fiber-based distributed communications system;



FIG. 8 is a schematic diagram of an exemplary RAU that can be employed in an optical fiber-based distributed communications system providing exemplary digital data services and RF communication services;



FIG. 9 is a schematic diagram of another exemplary embodiment of providing digital data services over separate downlink and uplink optical fibers from RF communication services to RAUs in an optical fiber-based distributed communications system;



FIGS. 10A-10E illustrate front perspective, rear perspective, front, rear, and side views of an exemplary ICU comprised of an ICU housing containing distribution modules each supporting the distribution of RF communication services, digital data services, and power to a plurality of RAUs connected to an array cable in an optical fiber-based distributed communications system;



FIGS. 11A-11E illustrate front perspective, rear perspective, front, top, and side views of the distribution modules contained in the ICU housing of FIGS. 10A-10E;



FIGS. 12A-12E illustrate front perspective, rear perspective, front, rear, and side views of another exemplary ICU comprised of an ICU housing containing distribution modules supporting the distribution of RF communication services, digital data services, and power to an individual RAU in an optical fiber-based distributed communications system;



FIGS. 13A-13D illustrate front perspective, front, side, and top views of the distribution modules contained in the ICU housing of FIGS. 12A-12E;



FIGS. 14A-14E illustrate front perspective, rear perspective, front, rear, and side views of another exemplary ICU comprised of an ICU housing containing a single power source for distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs in an optical fiber-based distributed communications system;



FIGS. 15A-15D illustrate front perspective, top, front, and side views of the distribution modules contained in the ICU housing of FIGS. 14A-14E;



FIGS. 16A-16E illustrate front perspective, rear perspective, front, rear, and side views of another exemplary ICU comprised of an ICU housing containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs in an optical fiber-based distributed communications system;



FIGS. 17A-17E illustrate front perspective, front, side, rear, and top views, respectively, of the distribution modules contained in the ICU housing of FIGS. 16A-16E;



FIGS. 18A and 18B illustrate front perspective and rear perspective views of another exemplary ICU comprised of an ICU housing containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs in an optical fiber-based distributed communications system;



FIGS. 19A and 19B illustrate front perspective and side perspective views of the distribution modules contained in the ICU housing of FIGS. 18A and 18B;



FIGS. 20A and 20B illustrate perspective views of an exemplary wall mount ICU comprised of an ICU housing containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs in an optical fiber-based distributed communications system;



FIG. 21 illustrates a perspective view of another exemplary wall mount ICU comprised of an ICU housing containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs in an optical fiber-based distributed communications system;



FIG. 22 illustrates a perspective view of another exemplary wall mount ICU comprised of an ICU housing containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs in an optical fiber-based distributed communications system;



FIG. 23 illustrates a perspective view of another exemplary wall mount ICU comprised of an ICU housing containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs in an optical fiber-based distributed communications system;



FIG. 24 illustrates a perspective view of another exemplary wall mount ICU comprised of an ICU housing containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs in an optical fiber-based distributed communications system;



FIG. 25 shows a schematic representation (not to scale) of a refractive index profile of a cross-section of a glass portion of an exemplary embodiment of multimode optical fiber disclosed herein wherein a depressed-index annular portion is offset from a core and is surrounded by an outer annular portion;



FIG. 26 is a schematic representation (not to scale) of a cross-sectional view of an optical waveguide fiber of FIG. 25;



FIG. 27 is a schematic diagram of providing RF communication services to RAUs in an alternative optical fiber-based distributed communications system;



FIG. 28 is a schematic diagram of providing digital data services and RF communication services to RAUs and/or other remote units in the optical fiber-based distributed communications system of FIG. 27;



FIG. 29 is a schematic diagram of exemplary inter-module communication and management in the optical fiber-based distributed communications system of FIG. 27; and



FIG. 30 is a schematic diagram of a generalized representation of an exemplary computer system that can be included in any of the modules provided in the exemplary distributed communications systems and/or their components described herein, wherein the exemplary computer system is adapted to execute instructions from an exemplary computer-readable medium.





DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.


Embodiments disclosed in the detailed description can include power distribution in optical fiber-based distributed communications systems configured to provide digital data services and radio Frequency (RF) communications services. Related components and method are also disclosed. In this regard, embodiments disclosed in the detailed description include units that can be provided in optical fiber-based distributed communication systems that are configured to support RF communication services and digital data services. The units may also be configured to support providing distribution of power. The units may be interconnect units (ICUs). Further, embodiments disclosed in the detailed description also include optical fiber-based distributed communications systems that provide and support both RF communication services and digital data services. The RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example. Digital data services can be distributed over separate optical fiber from optical fiber distributing RF communication services. Alternatively, digital data services can be distributed over common optical fiber with RF communication services.


The embodiments disclosed herein do not have to include power distribution. Any combination of RF communication services, digital data services, and power distribution can be provide, including in the ICU examples described herein. For example, the ICU could be equipped to distribute RF communication services and digital data services. The ICU could also be equipped to distribute digital data services and power as another example.


In this regard, FIG. 1 is a schematic diagram of an embodiment of an optical fiber-based distributed communications system. In this embodiment, the system is an optical fiber-based distributed communications system 10 that is configured to create one or more antenna coverage areas for establishing communications with wireless client devices located in the radio frequency (RF) range of the antenna coverage areas. The optical-fiber based distributed communications system 10 provides RF communications service (e.g., cellular services). In this embodiment, the optical fiber-based distributed communications system 10 includes head-end equipment in the form of a head-end unit (HEU) 12, one or more remote antenna units (RAUs) 14, and an optical fiber 16 that optically couples the HEU 12 to the RAU 14 in this example. The HEU 12 is configured to receive communications over downlink electrical RF signals 18D from a source or sources, such as a network or carrier as examples, and provide such communications to the RAU 14. The HEU 12 is also configured to return communications received from the RAU 14, via uplink electrical RF signals 18U, back to the source or sources. In this regard in this embodiment, the optical fiber 16 includes at least one downlink optical fiber 16D to carry signals communicated from the HEU 12 to the RAU 14 and at least one uplink optical fiber 16U to carry signals communicated from the RAU 14 back to the HEU 12. One downlink optical fiber 16D and one uplink optical fiber 16U could be provided to support multiple channels each using wave-division multiplexing (WDM), as discussed in U.S. patent application Ser. No. 12/892,424 entitled “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communications Systems, And Related Components and Methods,” incorporated herein by reference in its entirety. Other options for WDM and frequency-division multiplexing (FDM) are disclosed in U.S. patent application Ser. No. 12/892,424 any of which can be employed in any of the embodiments disclosed herein.


The optical fiber-based distributed communications system 10 has an antenna coverage area 20 that can be substantially centered about the RAU 14. The antenna coverage area 20 of the RAU 14 forms an RF coverage area 21. The HEU 12 is adapted to perform or to facilitate any one of a number of wireless applications, including but not limited to Radio-over-Fiber (RoF), radio frequency (RF) identification (RFID), wireless local-area network (WLAN) communication, or cellular phone service. Shown within the antenna coverage area 20 is a client device 24 in the form of a mobile device as an example, which may be a cellular telephone as an example. The client device 24 can be any device that is capable of receiving RF communication signals. The client device 24 includes an antenna 26 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF signals.


With continuing reference to FIG. 1, to communicate the electrical RF signals over the downlink optical fiber 16D to the RAU 14, to in turn be communicated to the client device 24 in the antenna coverage area 20 formed by the RAU 14, the HEU 12 includes an electrical-to-optical (E/O) converter 28. The E/O converter 28 converts the downlink electrical RF signals 18D to downlink optical RF signals 22D to be communicated over the downlink optical fiber 16D. The RAU 14 includes an optical-to-electrical (O/E) converter 30 to convert received downlink optical RF signals 22D back to electrical RF signals to be communicated wirelessly through an antenna 32 of the RAU 14 to client devices 24 located in the antenna coverage area 20.


Similarly, the antenna 32 is also configured to receive wireless RF communications from client devices 24 in the antenna coverage area 20. In this regard, the antenna 32 receives wireless RF communications from client devices 24 and communicates electrical RF signals representing the wireless RF communications to an E/O converter 34 in the RAU 14. The E/O converter 34 converts the electrical RF signals into uplink optical RF signals 22U to be communicated over the uplink optical fiber 16U. An O/E converter 36 provided in the HEU 12 converts the uplink optical RF signals 22U into uplink electrical RF signals, which can then be communicated as uplink electrical RF signals 18U back to a network or other source. The HEU 12 in this embodiment is not able to distinguish the location of the client devices 24 in this embodiment. The client device 24 could be in the range of any antenna coverage area 20 formed by an RAU 14.



FIG. 2 is a more detailed schematic diagram of the exemplary optical fiber-based distributed communications system of FIG. 1 that provides electrical RF service signals for a particular RF service or application. In an exemplary embodiment, the HEU 12 includes a service unit 37 that provides electrical RF service signals by passing (or conditioning and then passing) such signals from one or more outside networks 38 via a network link 39. In a particular example embodiment, this includes providing WLAN signal distribution as specified in the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, i.e., in the frequency range from 2.4 to 2.5 GigaHertz (GHz) and from 5.0 to 6.0 GHz. Any other electrical RF signal frequencies are possible. In another exemplary embodiment, the service unit 37 provides electrical RF service signals by generating the signals directly. In another exemplary embodiment, the service unit 37 coordinates the delivery of the electrical RF service signals between client devices 24 within the antenna coverage area 20.


With continuing reference to FIG. 2, the service unit 37 is electrically coupled to the E/O converter 28 that receives the downlink electrical RF signals 18D from the service unit 37 and converts them to corresponding downlink optical RF signals 22D. In an exemplary embodiment, the E/O converter 28 includes a laser suitable for delivering sufficient dynamic range for the RoF applications described herein, and optionally includes a laser driver/amplifier electrically coupled to the laser. Examples of suitable lasers for the E/O converter 28 include, but are not limited to, laser diodes, distributed feedback (DFB) lasers, Fabry-Perot (FP) lasers, and vertical cavity surface emitting lasers (VCSELs).


With continuing reference to FIG. 2, the HEU 12 also includes the O/E converter 36, which is electrically coupled to the service unit 37. The O/E converter 36 receives the uplink optical RF signals 22U and converts them to corresponding uplink electrical RF signals 18U. In an example embodiment, the O/E converter 36 is a photodetector, or a photodetector electrically coupled to a linear amplifier. The E/O converter 28 and the O/E converter 36 constitute a “converter pair” 35, as illustrated in FIG. 2.


In accordance with an exemplary embodiment, the service unit 37 in the HEU 12 can include an RF signal conditioning unit 40 for conditioning the downlink electrical RF signals 18D and the uplink electrical RF signals 18U, respectively. The service unit 37 can include a digital signal processing unit (“digital signal processor”) 42 for providing to the RF signal conditioning unit 40 an electrical signal that is modulated onto an RF carrier to generate a desired downlink electrical RF signal 18D. The digital signal processor 42 is also configured to process a demodulation signal provided by the demodulation of the uplink electrical RF signal 18U by the RF signal conditioning unit 40. The HEU 12 can also include an optional central processing unit (CPU) 44 for processing data and otherwise performing logic and computing operations, and a memory unit 46 for storing data, such as data to be transmitted over a WLAN or other network for example.


With continuing reference to FIG. 2, the RAU 14 also includes a converter pair 48 comprising the O/E converter 30 and the E/O converter 34. The O/E converter 30 converts the received downlink optical RF signals 22D from the HEU 12 back into downlink electrical RF signals 50D. The E/O converter 34 converts uplink electrical RF signals 50U received from the client device 24 into the uplink optical RF signals 22U to be communicated to the HEU 12. The O/E converter 30 and the E/O converter 34 are electrically coupled to the antenna 32 via an RF signal-directing element 52, such as a circulator for example. The RF signal-directing element 52 serves to direct the downlink electrical RF signals 50D and the uplink electrical RF signals 50U, as discussed below. In accordance with an exemplary embodiment, the antenna 32 can include any type of antenna, including but not limited to one or more patch antennas, such as disclosed in U.S. patent application Ser. No. 11/504,999, filed Aug. 16, 2006 entitled “Radio-over-Fiber Transponder With A Dual-Band Patch Antenna System,” and U.S. patent application Ser. No. 11/451,553, filed Jun. 12, 2006 entitled “Centralized Optical Fiber-based Wireless Picocellular Systems and Methods,” both of which are incorporated herein by reference in their entireties.


With continuing reference to FIG. 2, the optical fiber-based distributed communications system 10 also includes a power supply 54 that provides an electrical power signal 56. The power supply 54 is electrically coupled to the HEU 12 for powering the power-consuming elements therein. In an exemplary embodiment, an electrical power line 58 runs through the HEU 12 and over to the RAU 14 to power the O/E converter 30 and the E/O converter 34 in the converter pair 48, the optional RF signal-directing element 52 (unless the RF signal-directing element 52 is a passive device such as a circulator for example), and any other power-consuming elements provided. In an exemplary embodiment, the electrical power line 58 includes two wires 60 and 62 that carry a single voltage and that are electrically coupled to a DC power converter 64 at the RAU 14. The DC power converter 64 is electrically coupled to the O/E converter 30 and the E/O converter 34 in the converter pair 48, and changes the voltage or levels of the electrical power signal 56 to the power level(s) required by the power-consuming components in the RAU 14. In an exemplary embodiment, the DC power converter 64 is either a DC/DC power converter or an AC/DC power converter, depending on the type of electrical power signal 56 carried by the electrical power line 58. In another example embodiment, the electrical power line 58 (dashed line) runs directly from the power supply 54 to the RAU 14 rather than from or through the HEU 12. In another example embodiment, the electrical power line 58 includes more than two wires and may carry multiple voltages.


To provide further exemplary illustration of how an optical fiber-based distributed communications system can be deployed indoors, FIG. 3 is provided. FIG. 3 is a partially schematic cut-away diagram of a building infrastructure 70 employing an optical fiber-based distributed communications system. The system may be the optical fiber-based distributed communications system 10 of FIGS. 1 and 2. The building infrastructure 70 generally represents any type of building in which the optical fiber-based distributed communications system 10 can be deployed. As previously discussed with regard to FIGS. 1 and 2, the optical fiber-based distributed communications system 10 incorporates the HEU 12 to provide various types of communication services to coverage areas within the building infrastructure 70, as an example. For example, as discussed in more detail below, the optical fiber-based distributed communications system 10 in this embodiment is configured to receive wireless RF signals and convert the RF signals into RoF signals to be communicated over the optical fiber 16 to multiple RAUs 14. The optical fiber-based distributed communications system 10 in this embodiment can be, for example, an indoor distributed antenna system (IDAS) to provide wireless service inside the building infrastructure 70. These wireless signals can include, but are not limited to, cellular service, wireless services such as RFID tracking, Wireless Fidelity (WiFi), local area network (LAN), WLAN, and combinations thereof, as examples.


With continuing reference to FIG. 3, the building infrastructure 70 in this embodiment includes a first (ground) floor 72, a second floor 74, and a third floor 76. The floors 72, 74, 76 are serviced by the HEU 12 through a main distribution frame 78 to provide antenna coverage areas 80 in the building infrastructure 70. Only the ceilings of the floors 72, 74, 76 are shown in FIG. 3 for simplicity of illustration. In the example embodiment, a main cable 82 has a number of different sections that facilitate the placement of a large number of RAUs 14 in the building infrastructure 70. Each RAU 14 in turn services its own coverage area in the antenna coverage areas 80. The main cable 82 can include, for example, a riser cable 84 that carries all of the downlink and uplink optical fibers 16D, 16U to and from the HEU 12. The riser cable 84 may be routed through an interconnect unit (ICU) 85. The ICU 85 may be provided as part of or separate from the power supply 54 in FIG. 2. The ICU 85 may also be configured to provide power to the RAUs 14 via the electrical power line 58, as illustrated in FIG. 2 and discussed above, provided inside an array cable 87, or tail cable or home-run tether cable as other examples, and distributed with the downlink and uplink optical fibers 16D, 16U to the RAUs 14. The main cable 82 can include one or more multi-cable (MC) connectors adapted to connect select downlink and uplink optical fibers 16D, 16U, along with an electrical power line, to a number of optical fiber cables 86.


The main cable 82 enables multiple optical fiber cables 86 to be distributed throughout the building infrastructure 70 (e.g., fixed to the ceilings or other support surfaces of each floor 72, 74, 76) to provide the antenna coverage areas 80 for the first, second and third floors 72, 74 and 76. In an example embodiment, the HEU 12 is located within the building infrastructure 70 (e.g., in a closet or control room), while in another example embodiment the HEU 12 may be located outside of the building infrastructure 70 at a remote location. A base transceiver station (BTS) 88, which may be provided by a second party such as a cellular service provider, is connected to the HEU 12, and can be co-located or located remotely from the HEU 12. A BTS is any station or source that provides an input signal to the HEU 12 and can receive a return signal from the HEU 12. In a typical cellular system, for example, a plurality of BTSs are deployed at a plurality of remote locations to provide wireless telephone coverage. Each BTS serves a corresponding cell and when a mobile client device enters the cell, the BTS communicates with the mobile client device. Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell. As another example, wireless repeaters or bi-directional amplifiers could also be used to serve a corresponding cell in lieu of a BTS. Alternatively, radio input could be provided by a repeater or picocell as other examples.


The optical fiber-based distributed communications system 10 in FIGS. 1-3 and described above provides point-to-point communications between the HEU 12 and the RAU 14. Each RAU 14 communicates with the HEU 12 over a distinct downlink and uplink optical fiber pair to provide the point-to-point communications. Whenever an RAU 14 is installed in the optical fiber-based distributed communications system 10, the RAU 14 is connected to a distinct downlink and uplink optical fiber pair connected to the HEU 12. The downlink and uplink optical fibers 16D, 16U may be provided in a fiber optic cable. Multiple downlink and uplink optical fiber pairs can be provided in a fiber optic cable to service multiple RAUs 14 from a common fiber optic cable. For example, with reference to FIG. 3, RAUs 14 installed on a given floor 72, 74, or 76 may be serviced from the same optical fiber 16. In this regard, the optical fiber 16 may have multiple nodes where distinct downlink and uplink optical fiber pairs can be connected to a given RAU 14. One downlink optical fiber 16D could be provided to support multiple channels each using wavelength-division multiplexing (WDM), as discussed in U.S. patent application Ser. No. 12/892,424 entitled “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communications Systems, And Related Components and Methods,” incorporated herein by reference in its entirety. Other options for WDM and frequency-division multiplexing (FDM) are also disclosed in U.S. patent application Ser. No. 12/892,424, any of which can be employed in any of the embodiments disclosed herein.


The HEU 12 may be configured to support any frequencies desired, including but not limited to US FCC and Industry Canada frequencies (824-849 MHz on uplink and 869-894 MHz on downlink), US FCC and Industry Canada frequencies (1850-1915 MHz on uplink and 1930-1995 MHz on downlink), US FCC and Industry Canada frequencies (1710-1755 MHz on uplink and 2110-2155 MHz on downlink), US FCC frequencies (698-716 MHz and 776-787 MHz on uplink and 728-746 MHz on downlink), EU R & TTE frequencies (880-915 MHz on uplink and 925-960 MHz on downlink), EU R & TTE frequencies (1710-1785 MHz on uplink and 1805-1880 MHz on downlink), EU R & TTE frequencies (1920-1980 MHz on uplink and 2110-2170 MHz on downlink), US FCC frequencies (806-824 MHz on uplink and 851-869 MHz on downlink), US FCC frequencies (896-901 MHz on uplink and 929-941 MHz on downlink), US FCC frequencies (793-805 MHz on uplink and 763-775 MHz on downlink), and US FCC frequencies (2495-2690 MHz on uplink and downlink).


It may be desirable to provide both digital data services and RF communication services for client devices. For example, it may be desirable to provide digital data services and RF communication services in the building infrastructure 70 to client devices located therein. Wired and wireless devices may be located in the building infrastructure 70 that are configured to access digital data services. Examples of digital data services include, but are not limited to WLAN, WiMax, WiFi, Digital Subscriber Line (DSL), and LTE, etc. For example, Ethernet standards could be supported, including but not limited to 100 Megabits per second (Mbs) (i.e., fast Ethernet) or Gigabit (Gb) Ethernet, or ten Gigabit (10G) Ethernet. Example of digital data devices include, but are not limited to wired and wireless servers, wireless access points (WAPs), gateways, desktop computers, hubs, switches, remote radio heads (RRHs), battery backup units (BBUs), and femtocells. A separate digital data services network can be provided to provide digital data services to digital data devices.


In this regard, embodiments disclosed herein provide optical fiber-based distributed communications systems that support both RF communication services and digital data services. The RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example. Digital data services can be distributed over separate optical fiber from the optical fiber distributing RF communication services. Alternatively, digital data services can be both distributed over common optical fiber with RF communication services in an optical fiber-based distributed communications system. For example, digital data services can be distributed over common optical fiber with RF communication services at different wavelengths through wavelength-division multiplexing (WDM) and/or at different frequencies through frequency division multiplexing (FDM).



FIG. 4 is a schematic diagram of an exemplary embodiment of providing digital data services over separate downlink and uplink optical fibers from radio-frequency (RF) communication services to RAUs in an optical fiber-based distributed communications system 90. The optical fiber-based distributed communications system 90 includes some optical communication components provided in the optical fiber-based distributed communications system 10 of FIGS. 1-3. These common components are illustrated in FIG. 4 with common element numbers with FIGS. 1-3. As illustrated in FIG. 4, the HEU 12 provided. The HEU 12 receives the downlink electrical RF signals 18D from the BTS 88. As previously discussed, the HEU 12 converts the downlink electrical RF signals 18D to downlink optical RF signals 22D to be distributed to the RAUs 14. The HEU 12 is also configured to convert the uplink optical RF signals 22U received from the RAUs 14 into uplink electrical RF signals 18U to be provided to the BTS 88 and on to a network 93 connected to the BTS 88. A patch panel 92 may be provided to receive the downlink and uplink optical fibers 16D, 16U configured to carry the downlink and uplink optical RF signals 22D, 22U. The downlink and uplink optical fibers 16D, 16U may be bundled together in one or more riser cables 84 and provided to one or more ICU 85, as previously discussed and illustrated in FIG. 3.


To provide digital data services in the optical fiber-based distributed communications system 90 in this embodiment, a head-end media converter (HMC) 94 is provided. FIG. 5 illustrates an example of the HMC 94. The HMC 94 includes a housing 95 configured house digital media converters (DMCs) 97 to interface to a digital data services switch 96 to support and provide digital data services. For example, the digital data services switch 96 could be an Ethernet switch. The digital data services switch 96 may be configured to provide Gigabit (Gb) Ethernet digital data service as an example. The DMCs 97 are configured to convert electrical digital signals to optical digital signals, and vice versa. The DMCs 97 may be configured for plug and play installation into the HMC 94. FIG. 6 illustrates an exemplary DMC 97 that can be disposed in the housing 95 of the HMC 94. For example, the DMC 97 may include Ethernet input connectors or adapters (e.g., RJ-45) and optical fiber output connectors or adapters (e.g., SC, MTP, LC, FC, ST, etc).


With reference to FIG. 4, the HMC 94 (via the DMCs 97) in this embodiment is configured to convert downlink electrical digital signals 98D over digital line cables 99 from the digital data services switch 96 into downlink optical digital signals 100D that can be communicated over downlink optical fiber 102D to RAUs 14. The HMC 94 via the DMCs 97) is also configured to receive uplink optical digital signals 100U from the RAUs 14 via the uplink optical fiber 102U and convert the uplink optical digital signals 100U into uplink electrical digital signals 98U to be communicated to the digital data services switch 96. In this manner, the digital data services can be provided over optical fiber as part of the optical fiber-based distributed communications system 90 to provide digital data services in addition to RF communication services. Client devices located at the RAUs 14 can access these digital data services and/or RF communication services depending on their configuration. For example, FIG. 7 illustrates the building infrastructure 70 of FIG. 3, but with illustrative examples of digital data services and digital client devices that can be provided to client devices in addition to RF communication services in the optical fiber-based distributed communications system 90. As illustrated in FIG. 7, exemplary digital data services include WLAN 106, femtocells 108, gateways 110, battery backup units (BBU) 112, remote radio heads (RRH) 114, and servers 116.


With reference back to FIG. 4, in this embodiment, the downlink and uplink optical fibers 102D, 102U are provided in a fiber optic cable 104 that is interfaced to the ICU 85. The ICU 85 provides a common point in which the downlink and uplink optical fibers 102D, 102U carrying digital optical signals can be bundled with the downlink and uplink optical fibers 16U, 16D carrying RF optical signals. One or more array cables 105 can be provided containing the downlink and uplink optical fibers 16D, 16U for RF communication services and downlink and uplink optical fibers 102D, 102U for digital data services to be routed and provided to the RAUs 14. Any combination of services or types of optical fibers can be provided in the fiber optic cable 104. For example, the fiber optic cable 104 may include single mode and/or multi-mode optical fibers for RF communication services and/or digital data services.


Examples of ICUs that may be provided in the optical fiber-based distributed communications system 90 to distribute both downlink and uplink optical fibers 16D, 16U for RF communication services and downlink and uplink optical fibers 102D, 102U for digital data services are described in U.S. patent application Ser. No. 12/466,514 filed on May 15, 2009 and entitled “Power Distribution Devices, Systems, and Methods For Radio-Over-Fiber (RoF) Distributed Communication,” incorporated herein by reference in its entirety, and U.S. Provisional Patent Application Ser. No. 61/330,385 filed on May 2, 2010 and entitled “Power Distribution in Optical Fiber-based Distributed Communication Systems Providing Digital Data and Radio-Frequency (RF) Communication Services, and Related Components and Methods,” both of which are incorporated herein by reference in their entireties.


With continuing reference to FIG. 4, some RAUs 14 can be connected to access units (AUs) 118 which may be access points (APs) or other devices supporting digital data services. The AUs 118 can also be connected directly to the HEU 12. AUs 118 are illustrated, but the AUs 118 could be any other device supporting digital data services. In the example of AUs, the AUs 118 provide access to the digital data services provided by the digital data services switch 96. This is because the downlink and uplink optical fibers 102D, 102U carrying downlink and uplink optical digital signals 100D, 100U converted from downlink and uplink electrical digital signal 98D, 98U from the digital data services switch 96 are provided to the AUs 118, via the fiber optic cables 104 and RAUs 14. Digital data client devices can access the AUs 118 to access digital data services provided by the digital data services switch 96.


Digital data service clients, such as AUs, require power to operate and to receive digital data services. By providing digital data services as part of an optical fiber-based distributed communications system, power distributed to the RAUs in the optical fiber-based distributed communications system can also be used to provide access to power for digital data service clients. This may be a convenient method of providing power to digital data service clients as opposed to providing separate power sources for digital data service clients. For example, power distributed to the RAUs 14 in FIG. 4 by or through the ICU 85 can also be used to provide power to the AUs 118 located at RAUs 14 in the optical fiber-based distributed communications system 90. In this regard, the ICUs 85 may be configured to provide power for both RAUs 14 and the AUs 118. A power supply may be located within the ICU 85, but could also be located outside of the ICU 85 and provided over an electrical power line 120, as illustrated in FIG. 4. The ICU 85 may receive either alternating current (AC) or direct current (DC) power. The ICU 85 may receive 110 Volts (V) to 240V AC or DC power. The ICU 85 can be configured to produce any voltage and power level desired. The power level is based on the number of RAUs 14 and the expected loads to be supported by AUs 118 in FIG. 4. It may further be desired to provide additional power management features in the ICU 85. For example, one or more voltage protection circuits may be provided.



FIG. 8 is a schematic diagram of exemplary internal components in the RAU 14 of FIG. 4 to further illustrate how the downlink and uplink optical fibers 16D, 16D for RF communications, the downlink and uplink optical fibers 102D, 102U for digital data services, and electrical power are provided to the RAU 14 can be distributed therein. As illustrated in FIG. 8, the fiber optic cable 104 is illustrated that contains the downlink and uplink optical fibers 16D, 16D for RF communications, the downlink and uplink optical fibers 102D, 102U for digital data services, and the electrical power line 58 (see also, FIG. 2) carrying power from the ICU 85. As previously discussed in regard to FIG. 2, the electrical power line 58 may comprise two wires 60, 62, which may be copper lines for example.


The downlink and uplink optical fibers 16D, 16U for RF communications, the downlink and uplink optical fibers 102D, 102U for digital data services, and the electrical power line 58 come into a housing 124 of the RAU 14. The downlink and uplink optical fibers 16D, 16U for RF communications are routed to the O/E converter 30 and E/O converter 34, respectively, and to the antenna 32, as also illustrated in FIG. 2 and previously discussed. The downlink and uplink optical fibers 102D, 102U for digital data services are routed to a digital data services interface 126 provided as part of the AU 118 to provide access to digital data services via port 128 in this embodiment, which will be described in more detail below. The electrical power line 58 carries power that is configured to provide power to the O/E converter 30 and E/O converter 34 and to the digital data services interface 126. In this regard, the electrical power line 58 is coupled to a voltage controller 130 to that regulates and provides the correct voltage to the O/E converter 30 and E/O converter 34 and the to the digital data services interface 126.


In this embodiment, the digital data services interface 126 is configured to convert downlink optical digital signals 100D on the downlink optical fiber 102D into downlink electrical digital signals 132D that can be accessed via port 128. The digital data services interface 126 is also configured to convert uplink electrical digital signals 132U received through port 128 into uplink optical digital signals 100U to be provided back to the HMC 94 (see FIG. 4). In this regard, a media converter 134 is provided in the digital data services interface 126 to provide these conversions. The media converter 134 contains an O/E digital converter 136 to convert downlink optical digital signals 100D on downlink optical fiber 102D into downlink electrical digital signals 132D. The media converter 134 also contains an E/O digital converter 138 to convert uplink electrical digital signals 132U received through port 128 into uplink optical digital signals 100U to be provided back to the HMC 94. In this regard, power from the electrical power line 58 is provided to the digital data services interface 126 to provide power to the O/E digital converter 136 and E/O digital converter 138.


Because electrical power is provided to the RAU 14 and the digital data services interface 126, this also provides an opportunity to provide power for client devices connected to the AU 118 via port 128. In this regard, a power interface 140 is also provided in the digital data services interface 126, as illustrated in FIG. 8. The power interface 140 is configured to receiver power from the electrical power line 58 via the voltage controller 130 and to also make power accessible through port 128. In this manner, if a client device contains a compatible connector to connect to port 128, not only will digital data services be accessible, but power from the electrical power line 58 can also be accessed through the same port 128. Alternatively, the power interface 140 could be coupled to a separate port from the port 128 for digital data services.


For example, if the digital data services are Ethernet services, the power interface 140 could be provided as a Power-over-Ethernet (PoE) interface. The port 128 could be configured to receive a RJ45 Ethernet connector compatible with PoE as an example. In this manner, an Ethernet connector connected into the port 128 would be able to access both Ethernet digital data services to and from the downlink and uplink optical fibers 102D, 102U to the HMC 94 as well as access power distributed by the ICU 85 over the fiber optic cable 104 provided by the electrical power line 58.


Further, the HEU 12 could include low level control and management of the media converter 134 using RF communication supported by the HEU 12. For example, the media converter 134 could report functionality data (e.g., electrical power on, reception of optical digital data, etc.) to the HEU 12 over the uplink optical fiber 16U that carries RF communication services. The RAU 14 can include a microprocessor that communicates with the media converter 134 to receive this data and communicate this data over the uplink optical fiber 16U to the HEU 12.


Other configurations are possible to provide digital data services in an optical fiber-based distributed communications system. For example. FIG. 9 is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system configured to provide RF communication services. In this regard, FIG. 9 provides an optical fiber-based distributed communications system 150. The optical fiber-based distributed communications system 150 may be similar and include common components provided in the optical fiber-based distributed communications system 90 in FIG. 4. In this embodiment, instead of the HMC 94 being provided separated from the HEU 12, the HMC 94 is co-located with the HEU 12. The downlink and uplink optical fibers 102D, 102U for providing digital data services from the digital data services switch 96 are also connected to the patch panel 92. The downlink and uplink optical fibers 16D, 16U for RF communications and the downlink and uplink optical fibers 102D, 102U for digital data services are then routed to the ICU 85, similar to FIG. 2.


The downlink and uplink optical fibers 16D, 16U for RF communications, and the downlink and uplink optical fibers 102D, 102U for digital data services, may be provided in a common fiber optic cable or provided in separate fiber optic cables. Further, as illustrated in FIG. 9, stand alone media converters (MC) 141 may be provided separately from the RAUs 14 in lieu of being integrated with RAUs 14, as illustrated in FIG. 4. The stand alone MCs 141 can be configured to contain the digital data services module 103, including the media converter 134 in FIG. 8, if desired. The AU 118 may also each include antennas 152 to provide wireless digital data services in lieu of or in addition to wired services through port 128.


Digital data services are described above as being provided in the optical fiber-based distributed communications systems through external media converters. The media converters can be connected at the ICU as an example if desired. If connected at the ICU, the ICU must support receipt of downlink digital data signals via cabling to provide such downlink digital data signals to RAUs. Further, the ICU must support receipt of uplink digital data signals via cabling to provide uplink digital data signals to digital data service switches.


In this regard, embodiments disclosed herein provide power distribution in optical fiber-based distributed communications systems configured to provide digital data services and radio frequency (RF) communications services. Related components and methods are also disclosed. In this regard, embodiments disclosed herein include units that can be provided in optical fiber-based distributed communications systems that are configured to support RF communication services and digital data services. The units may also be configured to support providing distribution of power. The units may be interconnect units (ICUs). Further, embodiments disclosed herein also include optical fiber-based distributed communications systems that provide and support both RF communication services and digital data services. The RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example. Digital data services can be distributed over optical fiber separate from optical fiber distributing RF communication services. Alternatively, digital data services can be distributed over a common optical fiber with RF communication services.


In this regard, FIGS. 10A-10E illustrate front perspective, rear perspective, front, rear, and side views, respectively, of an exemplary ICU 151 that may be provided to support both RF communication services and digital data services and power distribution. As illustrated in FIGS. 10A-10E, the ICU 151 comprises an ICU housing 152. The ICU housing 152 allows up to four (4) distribution modules 154 to be provided in the ICU housing 152. FIGS. 11A-11E illustrate front perspective, rear perspective, front, top, and side views, respectively, of the distribution modules 154 contained in the ICU housing 152 of FIGS. 10A-10E. As discussed in more detail below, the distribution modules 154 provide media conversion for digital data services provided to RAUs 14.


In this regard, the ICU housing 152 is configured to allow the distribution modules 154 to be installed and removed in a modular fashion to provide flexibility in configuring the ICU 151. Only the needed number of distribution modules 154 need be installed to support the number of RAUs 14 supported by the ICU 151. Each distribution module 154 in this embodiment is configured to support one fiber optic cable 104 (see FIGS. 4, 8, and 9). The fiber optic cable 104 may be provided as an array cable to bundle optical fibers with electrical power lines 58 and digital data lines. Thus, the fiber optic cable 104 will be described hereinafter as an array cable 104. The digital data lines may be optical fibers 102D, 102U as illustrated in FIG. 8, or may be electrical signal lines.


In this example, each distribution module 154 includes six (6) fiber optic connectors 156, three (3) digital data services outputs of which are downlink fiber optic connectors 156D and three (3) of which are uplink fiber optic connectors 156U. In this embodiment, the fiber optic connectors 156 provide digital data services outputs to support digital data services for up to six (6) RAUs 14 (two (2) fiber optic connectors 156D, 156U support up to two (2) RAUs 14). The optical fibers 102D, 102U are connected to the fiber optic connectors 156D, 156U, respectively, to distribute digital data services to the RAUs 14 via the array cable 104. For example, the fiber optic connectors 156D, 156U may be any type of fiber optic connector, including but not limited to SC, MTP, LC, FC, ST, etc. To interface a digital data services network to the ICU 151 and the fiber optic connectors 156D, 156U, the distribution module 154 also contains three (3) digital data services inputs in the form of digital data services input connectors 158 that receive downlink and provide uplink electrical digital signals. For example, the digital data services input connectors 158 may be RJ-45 connectors. The downlink electrical digital signals are converted into downlink optical digital signals using E/O converters provided in the distribution module 154 to be communicated over the optical fibers 102D, 102U to the RAUs 14. The distribution modules 154 also contain O/E converters to convert uplink optical digital signals from the RAU 14 over the uplink optical fibers 102U to fiber optic connectors 156U to uplink electrical digital signals to be communicated through the digital data services input connectors 158.


Further, the ICU 151 includes an RF communications services input and output in the form of an RF communication services connector 160 that is configured to provide RF communication signals over optical fibers 16D, 16U (see FIGS. 4, 8 and 9) to and from the HEU 12 and the RAUs 14, as previously described. In this embodiment, the RF communication services connector 160 is an MTP connector that supports twelve (12) optical fibers in this embodiment, two optical fibers per supported RAU 14. The distribution module 154 also contains power taps 162 that are configured to connect to the electrical power lines 58 (see FIG. 8) to provide power to the RAUs 14. Power provided on the power outputs or power taps 162 is provided from a power source connected to an input power connector 164. The input power connector 164 is configured to be coupled to an electrical connector 166 provided in the rear of the ICU housing 152. The electrical connector 166 may be configured to plug into a backplane provided in the ICU housing 152 when the distribution module 154 is installed in the ICU housing 152. Each distribution module 154 contains its own power supply and/or transformer to provide any power conversions and voltage changes to provide power desired or needed for the RAUs 14 on the power taps 162. The power supply in each distribution module 154 may be configured to provide up any power level desired (e.g., 25 Watts (W)-1200 W).



FIGS. 12A-12E illustrate front perspective, rear perspective, front, rear, and side views, respectively, of another exemplary ICU 170 that can be provided in an optical fiber-based distributed communications system to support distribution of RF communication services, digital data services, and power distribution. As illustrated in FIGS. 12A-12E, the ICU 170 comprises an ICU housing 172. The ICU housing 172 allows up to twelve (12) distribution modules 174 to be provided in the ICU housing 172. FIGS. 13A-13D illustrate front perspective, front, side, and top views, respectively, of the distribution modules 174 that can be inserted in the ICU housing 172 of FIGS. 12A-12E in a vertical arrangement. As discussed in more detail below, the distribution modules 174 provide media conversion for digital data services provided to RAUs 14.


In this regard, the ICU housing 172 is configured to allow the distribution modules 174 to be installed and removed in a modular fashion to provide flexibility in configuring the ICU 170. Only the needed number of distribution modules 174 need be installed to support the number of RAUs 14 supported by the ICU 170. Three (3) distribution modules 174 in this embodiment are configured to support one (1) array cable 104 (see FIGS. 4, 8, and 9). Thus, in this embodiment, the data services and power provided by each distribution module 174 is one-third of that provided by the distribution modules 154 in FIGS. 11A-11E; however, this embodiment of the ICU 170 provides greater modularity.


In this example, each distribution module 174 includes two (2) fiber optic digital data services outputs in the form of two (2) digital data services output connectors 176, one (1) of which is a downlink fiber optic connector 176D and one (1) of which is an uplink fiber optic connector 176U. In this embodiment, the fiber optic connectors 176 support digital data services for up to two (2) RAUs 14 (two (2) fiber optic connectors 176D, 176U support up to two (2) RAUs 14). The optical fibers 102D, 102U are connected to the fiber optic connectors 176D, 176U, respectively, to distribute digital data services to the RAUs 14 via the array cable 104. For example, the fiber optic connectors 176D, 176U may be any type of fiber optic connector, including but not limited to SC, MTP, LC, FC, ST, etc. To interface a digital data services network to the ICU 170 and the fiber optic connectors 176D, 176U, the distribution module 174 also contains one (1) digital data services input connector 178 that receives downlink and provides uplink electrical digital signals. For example, the digital data services input connectors 178 may be RJ-45 connectors. The downlink electrical digital signals are converted into downlink optical digital signals using E/O converters provided in the distribution module 174 to be communicated over the optical fibers 102D, 102U to the RAUs 14. The distribution modules 174 also contain O/E converters to convert uplink optical digital signals from the RAU 14 over the uplink optical fibers 102U to fiber optic connectors 176U to uplink electrical digital signals to be communicated through the digital data services input connectors 178.


Further, the ICU 170 includes an RF communication services input and output connector 180 that is configured to provide RF communication signals over optical fibers 16D, 16U (see FIGS. 4, 8 and 9) to and from the HEU 12 and the RAUs 14, as previously described. In this embodiment, the RF communication services connector 180 is an MTP connector that supports twelve (12) optical fibers in this embodiment, two (2) optical fibers per supported RAU 14. The distribution module 174 also contains a power output or power tap 182 that is configured to connect to the electrical power lines 58 (see FIG. 8) to provide power to the RAUs 14. Power provided on the power taps 182 is provided from a power source connected to the rear of the distribution modules 174 via a power pigtail 184. Each distribution module 174 contains its own power supply and/or transformer to provide any power conversions and voltage changes to provide power desired or needed for the RAUs 14 on the power taps 162.



FIGS. 14A-14E illustrate front perspective, rear perspective, front, rear, and side views, respectively, of another exemplary ICU 190 that can be provided in an optical fiber-based distributed communications system to support distribution of RF communication services, digital data services, and power distribution. As illustrated in FIGS. 14A-14E, the ICU 190 comprises an ICU housing 192. The ICU housing 192 allows up to twelve (12) distribution modules 194 to be provided in the ICU housing 192 in a horizontal arrangement, as opposed to the vertical arrangement in FIGS. 12A-12E. FIGS. 15A-15D illustrate front perspective, top, side, and front views, respectively, of the distribution modules 194 that can be inserted in the ICU housing 192 of FIGS. 14A-14E. As discussed in more detail below, the distribution modules 194 provide media conversion for digital data services provided to RAUs 14.


In this regard, the ICU housing 192 is configured to allow the distribution modules 194 to be installed and removed in a modular fashion to provide flexibility in configuring the ICU 190. Only the needed number of distribution modules 194 need be installed to support the number of RAUs 14 supported by the ICU 190. Three (3) distribution modules 194 in this embodiment are configured to support one (1) array cable 104 (see FIGS. 4, 8, and 9). Thus, in this embodiment, the data services and power provided by each distribution module 194 is one-third of that provided by the distribution modules 154 in FIGS. 11A-11E; however, this embodiment of the ICU 190 provides greater modularity.


In this example, each distribution module 194 includes two (2) fiber optic output connectors 196, one (1) of which is a downlink fiber optic connector 196D and one (1) of which is an uplink fiber optic connector 196U. In this embodiment, the fiber optic connectors 196 support digital data services for up to two (2) RAUs 14 (two (2) fiber optic connectors 196D, 196U support up to two (2) RAUs 14). The optical fibers 102D, 102U are connected to the fiber optic connectors 196D, 196U, respectively, to distribute digital data services to the RAUs 14 via the array cable 104. For example, the fiber optic connectors 196D, 196U may be any type of fiber optic connector, including but not limited to SC, MTP, LC, FC, ST, etc. To interface a digital data services network to the ICU 190 and the fiber optic connectors 196D, 196U, the distribution module 194 also contains one (1) digital data services input connector 198 that receives downlink and provides uplink electrical digital signals. For example, the digital data services input connectors 198 may be RJ-45 connectors. The downlink electrical digital signals are converted into downlink optical digital signals using E/O converters provided in the distribution module 194 to be communicated over the optical fibers 102D, 102U to the RAUs 14. The distribution modules 194 also contain O/E converters to convert uplink optical digital signals from the RAU 14 over the uplink optical fibers 102U to fiber optic connectors 196U to uplink electrical digital signals to be communicated through digital data services input connectors 198.


Further, the ICU 190 includes an RF communication services input and output connector 200 that is configured to provide RF communication signals over optical fibers 16D, 16U (see FIGS. 4, 8 and 9) to and from the HEU 12 and the RAUs 14, as previously described. In this embodiment, the RF communication services connector 200 is an MTP connector that supports twelve (12) optical fibers in this embodiment, two (2) optical fibers per supported RAU 14. The ICU 190 in this embodiment (as opposed to the distribution modules 194) also contains a power output or power tap 202 that is configured to be connected to the electrical power lines 58 (see FIG. 8) to provide power to the RAUs 14. Power provided on the power taps 202 is provided from a power supply 204 provided in the ICU housing 192, as opposed to the distribution modules 194. The power supply 204 sources power from a power connector 206 connected to the rear of the ICU housing 192.


Thus, by providing the power supply 204 in the ICU housing 192, the power supply 204 can be shared by all distribution modules 194 to save costs. Providing the power supply 204 in the ICU housing 192 allows the power taps 202 to be provided as part of the ICU 190 instead of the distribution modules 194. The distribution modules 194 contain an electrical connector to connect to the power supply 204 to receive power for media conversion. However, the power supply 204 must be rated to supply power to the maximum number of distribution modules 194 installed in the ICU housing 192, which may increase costs if less distribution modules 194 are installed in the ICU housing 192.



FIGS. 16A-16E illustrate front perspective, rear perspective, front, rear, and side views, respectively, of another exemplary ICU 210 that can be provided in an optical fiber-based distributed communications system to support distribution of RF communication services, digital data services, and power distribution. As illustrated in FIGS. 16A-16E, the ICU 210 comprises an ICU housing 212. The ICU housing 212 allows up to three (3) distribution modules 214 to be provided in the ICU housing 212. In this manner, the ICU housing 212 can be provided of less height than, for example, the ICU housing 170 in FIGS. 12A-12E. FIGS. 17A-17E illustrate front perspective, front, side, rear, and top views, respectively, of the distribution module 214 that can be inserted in the ICU housing 212 of FIGS. 16A-16E in a horizontal arrangement. As discussed in more detail below, the distribution modules 214 provide media conversion for digital data services provided to RAUs 14.


In this regard, the ICU housing 212 is configured to allow the distribution modules 214 to be installed and removed in a modular fashion to provide flexibility in configuring the ICU 210. Only the needed number of distribution modules 214 need be installed to support the number of RAUs 14 supported by the ICU 210. Three (3) distribution modules 214 in this embodiment are configured to support one (1) array cable 104 (see FIGS. 4, 8, and 9), thus the ICU 210 in this embodiment is configured to support one (1) array cable 104. Thus, in this embodiment, the data services and power provided by each distribution module 214 is one-third of that provided by the distribution modules 154 in FIGS. 11A-11E; however, this embodiment of the ICU 210 provides greater modularity.


In this example, each distribution module 214 includes two (2) output fiber optic connectors 216, one (1) of which is a downlink fiber optic connector 216D and one (1) of which is an uplink fiber optic connector 216U. In this embodiment, the fiber optic connectors 216 support digital data services for up to two (2) RAUs 14 (two (2) fiber optic connectors 216D, 216U support up to two (2) RAUs 14). The optical fibers 102D, 102U are connected to the fiber optic connectors 216D, 216U, respectively, to distribute digital data services to the RAUs 14 via the array cable 104. For example, the fiber optic connectors 216D, 216U may be any type of fiber optic connector, including but not limited to SC, MTP, LC, FC, ST, etc. To interface a digital data services network to the ICU 210 and the fiber optic connectors 216D, 216U, the ICU 210 also contains one (1) digital data services input connector 217 that receives downlink and provides uplink electrical digital signals. For example, the digital data services input connector 217 may be a RJ-45 connector. The downlink electrical digital signals are converted into downlink optical digital signals using E/O converters provided in the distribution module 214 to be communicated over the optical fibers 102D, 102U to the RAUs 14. The distribution modules 214 also contain O/E converters to convert uplink optical digital signals from the RAU 14 over the uplink optical fibers 102U to fiber optic connectors 216U to uplink electrical digital signals to be communicated through digital data services input connectors 217.


Further, the ICU 210 includes an RF communication services input and output connector 218 that is configured to provide RF communication signals over optical fibers 16D, 16U (see FIGS. 4, 8 and 9) to and from the HEU 12 and the RAUs 14, as previously described. In this embodiment, the RF communication services connector 218 is an MTP connector that supports twelve (12) optical fibers in this embodiment, two (2) optical fibers per supported RAU 14. Each distribution module 214 also contains a power output or power tap 222 that is configured to connect to the electrical power lines 58 (see FIG. 8) to provide power to the RAUs 14. Power provided on the power taps 222 is provided from a power source connected to an input power connector 224 on the rear of the ICU housing 212. Each distribution module 214 contains its own power supply and/or transformer to provide any power conversions and voltage changes to provide power desired or needed for the RAUs 14 on the power taps 222.



FIGS. 18A and 18B illustrate front perspective and rear perspective views of another exemplary ICU comprised of an ICU housing containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs in an optical fiber-based distributed communications system. As illustrated in FIGS. 18A and 18B, an ICU 230 comprises an ICU housing 232. The ICU housing 232 allows up to three (3) distribution modules 234 to be provided in the ICU housing 232. FIGS. 19A and 19B illustrate front perspective and rear perspective views, respectively, of the distribution module 234 that can be inserted in the ICU housing 232 of FIGS. 18A and 18B. As discussed in more detail below, the distribution modules 234 provide media conversion for digital data services provided to RAUs 14.


In this regard, the ICU housing 232 is configured to allow the distribution modules 234 to be installed and removed in a modular fashion to provide flexibility in configuring the ICU 230. Only the needed number of distribution modules 234 need be installed to support the number of RAUs 14 supported by the ICU 230. Three (3) distribution modules 314 in this embodiment are configured to support one (1) array cable 104 (see FIGS. 4, 8, and 9), thus the ICU 230 in this embodiment is configured to support one (1) array cable 104.


In this example, each distribution module 234 includes four (4) output fiber optic connectors 236, two (2) of which are downlink fiber optic connectors 236D and two (2) of which are uplink fiber optic connectors 236U. In this embodiment, the fiber optic connectors 236 support digital data services for up to four (4) RAUs 14 (four (4) fiber optic connectors 236D, 236U support up to four (4) RAUs 14). The optical fibers 102D, 102U are connected to the fiber optic connectors 236D, 236U, respectively, to distribute digital data services to the RAUs 14 via the array cable 104. For example, the fiber optic connectors 236D, 236U may be any type of fiber optic connector, including but not limited to SC, MTP, LC, FC, ST, etc. To interface a digital data services network to the ICU 230 and the fiber optic connectors 236D, 236U, the ICU 230 also contains two (2) digital data services input connectors 238 that receive downlink and provide uplink electrical digital signals. For example, the digital data services input connectors 238 may be RJ-45 connectors. The downlink electrical digital signals are converted into downlink optical digital signals using E/O converters provided in the distribution module 234 to be communicated over the optical fibers 102D, 102U to the RAUs 14. The distribution modules 234 also contain O/E converters to convert uplink optical digital signals from the RAU 14 over the uplink optical fibers 102U to fiber optic connectors 236U to uplink electrical digital signals to be communicated through digital data services input connectors 238.


Further, the ICU 230 includes an RF communication services input and output connector 240 that is configured to provide RF communication signals over optical fibers 16D, 16U (see FIGS. 4, 8 and 9) to and from the HEU 12 and the RAUs 14, as previously described. In this embodiment, the RF communication services connector 240 is an MTP connector that supports twelve (12) optical fibers in this embodiment, two (2) optical fibers per supported RAU 14. Each distribution module 234 also contains a power output or power tap 242 that is configured to connect to the electrical power lines 58 (see FIG. 8) to provide power to the RAUs 14. Power provided on the power taps 242 is provided from a power source connected to an input power connector 244 on the rear of the ICU housing 232. The distribution modules 234 contain electrical connectors 246 to couple the input power connector 244 to a power supply, which supplies power to the power taps 242. The electrical connector 246 may be configured to plug into a backplane provided in the ICU housing 232 when the distribution module 234 is installed in the ICU housing 232. Each distribution module 234 contains its own power supply and/or transformer to provide any power conversions and voltage changes to provide power desired or needed for the RAUs 14 on the power taps 242.



FIGS. 20A and 20B illustrate perspective views of an exemplary wall mount ICU 250 comprised of an ICU housing 252 containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs 14 in an optical fiber-based distributed communications system. Three (3) array cables 104 come into the ICU housing 252 and are furcated. Downlink and uplink optical fibers 102D, 102U are routed to a digital data services module 254 that provides media conversion via O/E and E/O converters. The electrical power line 58 is routed to a power supply 256 that provides power to the RAUs 14 connected to the array cable 104. Downlink and uplink optical fibers 257D, 257U are connected to a splice tray 258 which connects these optical fibers with downlink and uplink optical fibers 16D, 16U provided in a riser cable 84 (see FIG. 3) connected to the HEU 12. Slack storage 260 is provided in the ICU housing 252 to provide for slack storage of the riser cable 84.



FIG. 21 illustrates a perspective view of another exemplary wall mount ICU 280 comprised of an ICU housing 282 containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs 14 in an optical fiber-based distributed communications system. The components and their functions are similar to those in FIGS. 20A and 20B and thus will not be re-described. Digital data services modules 284 provide media conversion via O/E and E/O converters. Power supplies 286 to provide power via electrical power lines 58 over the array cable 104 are included. Splice trays 288 to splice RF communication optical fibers with optical fibers 16D, 16U are provided. Furcation mounts for holding furcations provided inside the ICU housing 282 are provided. Slack storage 292 for the riser cable 84 is also provided as illustrated in FIG. 21.



FIG. 22 illustrates a perspective view of another exemplary wall mount ICU 290 comprised of an ICU housing 292 containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs 14 in an optical fiber-based distributed communications system. Three (3) array cables 104 come into the ICU housing 292 and are furcated. Downlink and uplink optical fibers 102D, 102U are routed to a digital data services module 294 that provides media conversion via O/E and E/O converters. The electrical power line 58 is routed to a power supply 296 that provides power to the RAUs 14 connected to the array cable 104. Downlink and uplink optical fibers 298D, 298U are connected to a splice tray 300 which connects these optical fibers with downlink and uplink optical fibers 16D, 16U provided in a riser cable 84 (see FIG. 3) connected to the HEU 12. Slack storage 302 is provided in the ICU housing 292 to provide for slack storage of the riser cable 84.



FIG. 23 illustrates a perspective view of another exemplary wall mount ICU 310 comprised of an ICU housing 312 containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs 14 in an optical fiber-based distributed communications system. Three (3) array cables 104 come into the ICU housing 312 and are furcated. Downlink and uplink optical fibers 102D, 102U are routed to a digital data services module 314 that provides media conversion via O/E and E/O converters. The electrical power line 58 is routed to a power supply 316 that provides power to the RAUs 14 connected to the array cable 104. Downlink and uplink optical fibers 318D, 318U are connected to a splice tray 320 which connects these optical fibers with downlink and uplink optical fibers 16D, 16U provided in a riser cable 84 (see FIG. 3) connected to the HEU 12.



FIG. 24 illustrates a perspective view of another exemplary wall mount ICU 330 comprised of an ICU housing 332 containing distribution modules supporting the distribution of RF communication services, digital data services, and power to RAUs 14 in an optical fiber-based distributed communications system. Three (3) array cables 104 come into the ICU housing 332 and are furcated. Downlink and uplink optical fibers 102D, 102U are routed to a digital data services module 334 that provides media conversion via O/E and E/O converters. The electrical power line 58 is routed to a power supply 316 that provides power to the RAUs 14 connected to the array cable 104. Downlink and uplink optical fibers 338D, 338U are connected to a splice tray 340 which connects these optical fibers with downlink and uplink optical fibers 16D, 16U provided in a riser cable 84 (see FIG. 3) connected to the HEU 12.


Further, as used herein, it is intended that terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets or the like. The optical fibers disclosed herein can be single mode or multi-mode optical fibers. Likewise, other types of suitable optical fibers include bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve® Multimode fiber commercially available from Corning Incorporated. Suitable fibers of this type are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163, the disclosures of which are incorporated herein by reference in their entireties.


Bend resistant multimode optical fibers may comprise a graded-index core region and a cladding region surrounding and directly adjacent to the core region, the cladding region comprising a depressed-index annular portion comprising a depressed relative refractive index relative to another portion of the cladding. The depressed-index annular portion of the cladding is preferably spaced apart from the core. Preferably, the refractive index profile of the core has a parabolic or substantially curved shape. The depressed-index annular portion may, for example, comprise a) glass comprising a plurality of voids, or b) glass doped with one or more downdopants such as fluorine, boron, individually or mixtures thereof. The depressed-index annular portion may have a refractive index delta less than about −0.2% and a width of at least about 1 micron, said depressed-index annular portion being spaced from said core by at least about 0.5 microns.


In some embodiments that comprise a cladding with voids, the voids in some preferred embodiments are non-periodically located within the depressed-index annular portion. By “non-periodically located” we mean that when one takes a cross section (such as a cross section perpendicular to the longitudinal axis) of the optical fiber, the non-periodically disposed voids are randomly or non-periodically distributed across a portion of the fiber (e.g. within the depressed-index annular region). Similar cross sections taken at different points along the length of the fiber will reveal different randomly distributed cross-sectional hole patterns, i.e., various cross sections will have different hole patterns, wherein the distributions of voids and sizes of voids do not exactly match for each such cross section. That is, the voids are non-periodic, i.e., they are not periodically disposed within the fiber structure. These voids are stretched (elongated) along the length (i.e. generally parallel to the longitudinal axis) of the optical fiber, but do not extend the entire length of the entire fiber for typical lengths of transmission fiber. It is believed that the voids extend along the length of the fiber a distance less than about 20 meters, more preferably less than about 10 meters, even more preferably less than about 5 meters, and in some embodiments less than 1 meter.


The multimode optical fiber disclosed herein exhibits very low bend induced attenuation, in particular very low macrobending induced attenuation. In some embodiments, high bandwidth is provided by low maximum relative refractive index in the core, and low bend losses are also provided. Consequently, the multimode optical fiber may comprise a graded index glass core; and an inner cladding surrounding and in contact with the core, and a second cladding comprising a depressed-index annular portion surrounding the inner cladding, said depressed-index annular portion having a refractive index delta less than about −0.2% and a width of at least 1 micron, wherein the width of said inner cladding is at least about 0.5 microns and the fiber further exhibits a 1 turn, 10 mm diameter mandrel wrap attenuation increase of less than or equal to about 0.4 dB/turn at 850 nm, a numerical aperture of greater than 0.14, more preferably greater than 0.17, even more preferably greater than 0.18, and most preferably greater than 0.185, and an overfilled bandwidth greater than 1.5 GHz-km at 850 nm.


50 micron diameter core multimode fibers can be made which provide (a) an overfilled (OFL) bandwidth of greater than 1.5 GHz-km, more preferably greater than 2.0 GHz-km, even more preferably greater than 3.0 GHz-km, and most preferably greater than 4.0 GHz-km at an 850 nm wavelength. These high bandwidths can be achieved while still maintaining a 1 turn, 10 mm diameter mandrel wrap attenuation increase at an 850 nm wavelength of less than 0.5 dB, more preferably less than 0.3 dB, even more preferably less than 0.2 dB, and most preferably less than 0.15 dB. These high bandwidths can also be achieved while also maintaining a 1 turn, 20 mm diameter mandrel wrap attenuation increase at an 850 nm wavelength of less than 0.2 dB, more preferably less than 0.1 dB, and most preferably less than 0.05 dB, and a 1 turn, 15 mm diameter mandrel wrap attenuation increase at an 850 nm wavelength, of less than 0.2 dB, preferably less than 0.1 dB, and more preferably less than 0.05 dB. Such fibers are further capable of providing a numerical aperture (NA) greater than 0.17, more preferably greater than 0.18, and most preferably greater than 0.185. Such fibers are further simultaneously capable of exhibiting an OFL bandwidth at 1300 nm which is greater than about 500 MHz-km, more preferably greater than about 600 MHz-km, even more preferably greater than about 700 MHz-km. Such fibers are further simultaneously capable of exhibiting minimum calculated effective modal bandwidth (Min EMBc) bandwidth of greater than about 1.5 MHz-km, more preferably greater than about 1.8 MHz-km and most preferably greater than about 2.0 MHz-km at 850 nm.


Preferably, the multimode optical fiber disclosed herein exhibits a spectral attenuation of less than 3 dB/km at 850 nm, preferably less than 2.5 dB/km at 850 nm, even more preferably less than 2.4 dB/km at 850 nm and still more preferably less than 2.3 dB/km at 850 nm. Preferably, the multimode optical fiber disclosed herein exhibits a spectral attenuation of less than 1.0 dB/km at 1300 nm, preferably less than 0.8 dB/km at 1300 nm, even more preferably less than 0.6 dB/km at 1300 nm.


In some embodiments, the numerical aperture (“NA”) of the optical fiber is preferably less than 0.23 and greater than 0.17, more preferably greater than 0.18, and most preferably less than 0.215 and greater than 0.185.


In some embodiments, the core extends radially outwardly from the centerline to a radius R1, wherein 10≦R1≦40 microns, more preferably 20≦R1≦40 microns. In some embodiments, 22≦R1≦34 microns. In some preferred embodiments, the outer radius of the core is between about 22 to 28 microns. In some other preferred embodiments, the outer radius of the core is between about 28 to 34 microns.


In some embodiments, the core has a maximum relative refractive index, less than or equal to 1.2% and greater than 0.5%, more preferably greater than 0.8%. In other embodiments, the core has a maximum relative refractive index, less than or equal to 1.1% and greater than 0.9%.


In some embodiments, the optical fiber exhibits a 1 turn, 10 mm diameter mandrel attenuation increase of no more than 1.0 dB, preferably no more than 0.6 dB, more preferably no more than 0.4 dB, even more preferably no more than 0.2 dB, and still more preferably no more than 0.1 dB, at all wavelengths between 800 and 1400 nm.



FIG. 25 shows a schematic representation of the refractive index profile of a cross-section of the glass portion of an embodiment of a multimode optical fiber 400 comprising a glass core 402 and a glass cladding 404, the cladding comprising an inner annular portion 406, a depressed-index annular portion 408, and an outer annular portion 410. FIG. 26 is a schematic representation (not to scale) of a cross-sectional view of the optical waveguide fiber of FIG. 25. The core 402 has outer radius R1 and maximum refractive index delta Δ1MAX. The inner annular portion 406 has width W2 and outer radius R2. Depressed-index annular portion 408 has minimum refractive index delta percent Δ3MIN, width W3 and outer radius R3. The depressed-index annular portion 408 is shown offset, or spaced away, from the core 402 by the inner annular portion 406. The depressed-index annular portion 408 surrounds and contacts the inner annular portion 406. The outer annular portion 410 surrounds and contacts the depressed-indexed annular portion 408. The clad layer 404 is surrounded by at least one coating 412, which may in some embodiments comprise a low modulus primary coating and a high modulus secondary coating.


The inner annular portion 406 has a refractive index profile Δ2(r) with a maximum relative refractive index Δ2MAX, and a minimum relative refractive index Δ2MIN, where in some embodiments Δ2MAX=Δ2MIN. The depressed-index annular portion 408 has a refractive index profile Δ3(r) with a minimum relative refractive index Δ3MIN. The outer annular portion 410 has a refractive index profile Δ4(r) with a maximum relative refractive index Δ4MAX, and a minimum relative refractive index Δ4MIN, where in some embodiments Δ4MAX=Δ4MIN. Preferably, Δ1MAX>Δ2MAX>Δ3MIN. In some embodiments, the inner annular portion 406 has a substantially constant refractive index profile, as shown in FIG. 25 with a constant Δ2(r); in some of these embodiments, Δ2(r)=0%. In some embodiments, the outer annular portion 410 has a substantially constant refractive index profile, as shown in FIG. 25 with a constant Δ4(r); in some of these embodiments, Δ4(r)=0%. The core 402 has an entirely positive refractive index profile, where Δ1(r)>0%. R1 is defined as the radius at which the refractive index delta of the core first reaches value of 0.05%, going radially outwardly from the centerline. Preferably, the core 402 contains substantially no fluorine, and more preferably the core 402 contains no fluorine. In some embodiments, the inner annular portion 406 preferably has a relative refractive index profile Δ2(r) having a maximum absolute magnitude less than 0.05%, and Δ2MAX<0.05% and Δ2MIN>−0.05%, and the depressed-index annular portion 408 begins where the relative refractive index of the cladding first reaches a value of less than −0.05%, going radially outwardly from the centerline. In some embodiments, the outer annular portion 410 has a relative refractive index profile Δ4(r) having a maximum absolute magnitude less than 0.05%, and Δ4MAX<0.05% and Δ4MIN>−0.05%, and the depressed-index annular portion 408 ends where the relative refractive index of the cladding first reaches a value of greater than −0.05%, going radially outwardly from the radius where Δ3MIN is found.



FIG. 27 is a schematic diagram of another exemplary distributed antenna system 420 that may be employed according to the embodiments disclosed herein to provide RF communication services and digital data services to RAUs. In this embodiment, the distributed antenna system 420 is an optical fiber-based distributed antenna system comprised of three (3) main components. One or more radio interfaces provided in the form of radio interface modules (RIMs) 422(1)-422(M) in this embodiment are provided in an HEU 424 to receive and process downlink electrical RF communications signals 426(1)-426(R) prior to optical conversion into downlink optical RF communications signals. The processing of the downlink electrical RF communications signals 426(1)-426(R) can include any of the processing previously described above in the HEU 12 in FIGS. 1-3. The notations “1-R” and “1-M” indicate that any number of the referenced component, 1-R and 1-M, respectively, may be provided. As will be described in more detail below, the HEU 424 is configured to accept a plurality of RIMs 422(1)-422(M) as modular components that can easily be installed and removed or replaced in the HEU 424. In one embodiment, the HEU 424 is configured to support up to four (4) RIMs 422(1)-422(M) as an example.


Each RIM 422(1)-422(M) can be designed to support a particular type of radio source or range of radio sources (i.e., frequencies) to provide flexibility in configuring the HEU 424 and the optical fiber-based distributed antenna system 420 to support the desired radio sources. For example, one RIM 422 may be configured to support the Personal Communication Services (PCS) radio band. Another RIM 422 may be configured to support the 700 MHz radio band. In this example, by inclusion of these RIMs 422, the HEU 424 would be configured to support and distribute RF communications signals on both PCS and LTE 700 radio bands. RIMs 422 may be provided in the HEU 424 that support any frequency bands desired, including but not limited to the US Cellular band, Personal Communication Services (PCS) band, Advanced Wireless Services (AWS) band, 700 MHz band, Global System for Mobile communications (GSM) 900, GSM 1800, and Universal Mobile Telecommunication System (UMTS). RIMs 422 may be provided in the HEU 424 that support any wireless technologies desired, including but not limited to Code Division Multiple Access (CDMA), CDMA200, 1×RTT, Evolution—Data Only (EV-DO), UMTS, High-speed Packet Access (HSPA), GSM, General Packet Radio Services (GPRS), Enhanced Data GSM Environment (EDGE), Time Division Multiple Access (TDMA), Long Term Evolution (LTE), iDEN, and Cellular Digital Packet Data (CDPD).


RIMs 422 may be provided in the HEU 424 that support any frequencies desired, including but not limited to US FCC and Industry Canada frequencies (824-849 MHz on uplink and 869-894 MHz on downlink), US FCC and Industry Canada frequencies (1850-1915 MHz on uplink and 1930-1995 MHz on downlink), US FCC and Industry Canada frequencies (1710-1755 MHz on uplink and 2110-2155 MHz on downlink), US FCC frequencies (698-716 MHz and 776-787 MHz on uplink and 728-746 MHz on downlink) EU R & TTE frequencies (880-915 MHz on uplink and 925-960 MHz on downlink), EU R & TTE frequencies (1710-1785 MHz on uplink and 1805-1880 MHz on downlink), EU R & TTE frequencies (1920-1980 MHz on uplink and 2110-2170 MHz on downlink), US FCC frequencies (806-824 MHz on uplink and 851-869 MHz on downlink), US FCC frequencies (896-901 MHz on uplink and 929-941 MHz on downlink), US FCC frequencies (793-805 MHz on uplink and 763-775 MHz on downlink), and US FCC frequencies (2495-2690 MHz on uplink and downlink).


The downlink electrical RF communications signals 426(1)-426(R) are provided to a plurality of optical interfaces provided in the form of optical interface modules (OIMs) 428(1)-428(N) in this embodiment to convert the downlink electrical RF communications signals 426(1)-426(N) into downlink optical signals 430(1)-430(R). The notation “1-N” indicates that any number of the referenced component 1-N may be provided. The OIMs 428 may be configured to provide one or more optical interface components (OICs) that contain O/E and E/O converters, as will be described in more detail below. The OIMs 428 support the radio bands that can be provided by the RIMs 422, including the examples previously described above. Thus, in this embodiment, the OIMs 428 may support a radio band range from 400 MHz to 2700 MHz, as an example, so providing different types or models of OIMs 428 for narrower radio bands to support possibilities for different radio band-supported RIMs 422 provided in the HEU 424 is not required. Further, as an example, the OIMs 428s may be optimized for sub-bands within the 400 MHz to 2700 MHz frequency range, such as 400-700 MHz, 700 MHz-1 GHz, 1 GHz-1.6 GHz, and 1.6 GHz-2.7 GHz, as examples.


The OIMs 428(1)-428(N) each include E/O converters to convert the downlink electrical RF communications signals 426(1)-426(R) to downlink optical signals 430(1)-430(R). The downlink optical signals 430(1)-430(R) are communicated over downlink optical fiber(s) 433D to a plurality of RAUs 432(1)-432(P). The notation “1-P” indicates that any number of the referenced component 1-P may be provided. O/E converters provided in the RAUs 432(1)-432(P) convert the downlink optical signals 430(1)-430(R) back into downlink electrical RF communications signals 426(1)-426(R), which are provided over links 434(1)-434(P) coupled to antennas 436(1)-436(P) in the RAUs 232(1)-232(P) to client devices in the reception range of the antennas 436(1)-436(P).


E/O converters are also provided in the RAUs 432(1)-432(P) to convert uplink electrical RF communications signals received from client devices through the antennas 436(1)-436(P) into uplink optical signals 438(1)-438(R) to be communicated over uplink optical fibers 433U to the OIMs 428(1)-428(N). The OIMs 428(1)-428(N) include O/E converters that convert the uplink optical signals 438(1)-438(R) into uplink electrical RF communications signals 440(1)-440(R) that are processed by the RIMs 422(1)-422(M) and provided as uplink electrical RF communications signals 442(1)-442(R).


It may be desirable to provide both digital data services and RF communication services for client devices. For example, it may be desirable to provide digital data services and RF communication services in the building infrastructure 70 (FIG. 3) to client devices located therein. Wired and wireless devices may be located in the building infrastructure 70 that are configured to access digital data services. Examples of digital data services include, but are not limited to, Ethernet, WLAN, WiMax, WiFi, Digital Subscriber Line (DSL), and LTE, etc. Ethernet standards could be supported, including but not limited to 100 Megabits per second (Mbs) (i.e., fast Ethernet) or Gigabit (Gb) Ethernet, or ten Gigabit (10 G) Ethernet. Examples of digital data devices include, but are not limited to, wired and wireless servers, wireless access points (WAPs), gateways, desktop computers, hubs, switches, remote radio heads (RRHs), baseband units (BBUs), and femtocells. A separate digital data services network can be provided to provide digital data services to digital data devices.



FIG. 28 is a schematic diagram of providing digital data services and RF communication services to RAUs and/or other remote units in the optical fiber-based distributed communications system 420 of FIG. 15. The digital data services can be provided to digital data services devices 305 connected to the RAUs 14, as illustrated in FIG. 15, such as Ethernet devices as examples. Common components between FIGS. 27 and 28 and other figures provided have the same element numbers and thus will not be re-described. As illustrated in FIG. 28, a power supply module (PSM) 450 may be provided to provide power to the RIMs 422(1)-422(M) and radio distribution cards (RDCs) 452 that distribute the RF communications from the RIMs 422(1)-422(M) to the OIMs 428(1)-428(N) through RDCs 454. A PSM 456 may be provided to provide power to the OIMs 428(1)-428(N). An interface, which may include web and network management system (NMC) interfaces, may also be provided to allow configuration and communication to the RIMs 422(1)-422(M) and other components of the optical fiber-based distributed communications system 220.



FIG. 29 is a schematic diagram of exemplary inter-module communication and management that may be provided in the optical fiber-based distributed communications system 420 of FIG. 28. For example, the HEU 12 and digital data services switch 96 may each be configured with interfaces that allow these devices to communicate over a network 460, such as an Internet protocol (IP) network as an example, to provide inter-module communications. Further, digital data services modules 301 provided in the HMC 94 and digital data services modules 303 provided in the RAUs 14 and standalone MCs 141 to provide Ails 118 (FIGS. 4 and 9) may also be equipped with interfaces that allow these modules to communicate to each other and to the HEU 12 and DDS switch 96 via the network 460. Various management functions can be provided by such inter-module communication, such as providing and distributing power, determining power budgets for modules, determining status of the modules and configuring modules, determining environment condition, such as temperature, determining signal status, such as signal strength, and PoE management at the RAUs 14 as examples. Examples of power management are discussed U.S. Patent Application Ser. Nos. 61/392,660 and 61/392,687 previously referenced and incorporated herein by reference in their entireties. The modules, such as the HEU 12 as illustrated in FIG. 29, may include a user interface (UI) 462 to allow a UI device 464, such as a web graphical UI (GUI), to access the HEU 12 and/or the other modules in the distributed communication system 420 to support user access to management features via inter-module communications.



FIG. 30 is a schematic diagram representation of an exemplary electronic device 480 in the exemplary form of an exemplary computer system 482 adapted to execute instructions from an exemplary computer-readable medium to perform power management functions. The electronic device 480 may be the digital data services modules 301 and/or 303, but could be any other module or device provided in the distributed communication systems described herein. In this regard, the electronic device 480 may comprise the computer system 482 within which a set of instructions for causing the electronic device 480 to perform any one or more of the methodologies discussed herein may be executed. The electronic device 480 may be connected (e.g., networked) to other machines in a LAN, an intranet, an extranet, or the Internet. The electronic device 480 may operate in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. While only a single device is illustrated, the term “device” shall also be taken to include any collection of devices that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. The electronic device 480 may be a circuit or circuits included in an electronic board card, such as a printed circuit board (PCB) as an example, a server, a personal computer, a desktop computer, a laptop computer, a personal digital assistant (PDA), a computing pad, a mobile device, or any other device, and may represent, for example, a server or a user's computer.


The exemplary computer system 482 includes a processing device or processor 484, a main memory 486 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM), etc.), and a static memory 488 (e.g., flash memory, static random access memory (SRAM), etc.), which may communicate with each other via a bus 490. Alternatively, the processing device 484 may be connected to the main memory 486 and/or static memory 488 directly or via some other connectivity means. The processing device 484 may be a controller, and the main memory 486 or static memory 488 may be any type of memory, each of which can be included in the HEU 112, HMC 94, digital data services modules 301, 303, RAU 114, and/or AUs 118.


The processing device 484 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processing device 484 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device 484 is configured to execute processing logic in instructions 491 for performing the operations and steps discussed herein.


The computer system 482 may further include a network interface device 492. The computer system 482 also may or may not include an input 494 to receive input and selections to be communicated to the computer system 482 when executing instructions. The computer system 482 also may or may not include an output 496, including but not limited to a display, a video display unit (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device (e.g., a keyboard), and/or a cursor control device (e.g., a mouse).


The computer system 482 may or may not include a data storage device that includes instructions 498 stored in a computer-readable medium 500 embodying any one or more of the RAU power management methodologies or functions described herein. The instructions 498 may also reside, completely or at least partially, within the main memory 486 and/or within the processing device 484 during execution thereof by the computer system 482, the main memory 486 and the processing device 484 also constituting computer-readable media. The instructions 488 may further be transmitted or received over a network 502 via the network interface device 492.


While the computer-readable medium 500 is shown in an exemplary embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the processing device and that cause the processing device to perform any one or more of the methodologies of the embodiments disclosed herein. The term “computer-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic media, and carrier wave signals.


The embodiments disclosed herein include various steps. The steps of the embodiments disclosed herein may be performed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware and software.


The embodiments disclosed herein may be provided as a computer program product, or software, that may include a machine-readable medium (or computer-readable medium) having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the embodiments disclosed herein. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes a machine-readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices, etc.), a machine-readable transmission medium (electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.), etc.


Unless specifically stated otherwise as apparent from the previous discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing,” “computing,” “determining,” “displaying,” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission, or display devices.


The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description above. In addition, the embodiments described herein are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the embodiments as described herein.


Those of skill in the art would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithms described in connection with the embodiments disclosed herein may be implemented as electronic hardware, instructions stored in memory or in another computer-readable medium and executed by a processor or other processing device, or combinations of both. The components of the distributed antenna systems described herein may be employed in any circuit, hardware component, integrated circuit (IC), or IC chip, as examples. Memory disclosed herein may be any type and size of memory and may be configured to store any type of information desired. To clearly illustrate this interchangeability, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. How such functionality is implemented depends upon the particular application, design choices, and/or design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.


The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A controller may be a processor. A processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.


The embodiments disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside, for example, in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of computer-readable medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a remote station. In the alternative, the processor and the storage medium may reside as discrete components in a remote station, base station, or server.


It is also noted that the operational steps described in any of the exemplary embodiments herein are described to provide examples and discussion. The operations described may be performed in numerous different sequences other than the illustrated sequences. Furthermore, operations described in a single operational step may actually be performed in a number of different steps. Additionally, one or more operational steps discussed in the exemplary embodiments may be combined. It is to be understood that the operational steps illustrated in the flow chart diagrams may be subject to numerous different modifications as will be readily apparent to one of skill in the art. Those of skill in the art would also understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.


Many modifications and other embodiments of the embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. The embodiments disclosed herein do not have to include power distribution. Any combination of RF communication services, digital data services, and power distribution can be provide, including in the ICU examples described herein. For example, the ICU could be equipped to distribute RF communication services and digital data services. The ICU could also be equipped to distribute digital data services and power as another example. Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of the embodiments provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims
  • 1. A distribution unit for an optical-fiber based distributed communications system, comprising: at least one digital data services input configured to receive electrical digital data signals;at least one downlink digital data services output configured to distribute downlink digital data signals representing the electrical digital data signals over at least one downlink digital data services line to at least one remote antenna unit (RAU);at least one uplink digital data services output configured to distribute uplink digital data signals representing the electrical digital data signals over at least one uplink digital data services line from the at least one RAU;at least one radio frequency (RF) communications services input configured to receive optical RF communications signals;at least one RF communications services output configured to distribute the optical RF communications signals over at least one RF communications services optical fiber to the at least one RAU; andat least one power output configured to distribute power over at least one power line to the at least one RAU.
  • 2. The distribution unit of claim 1 provided as an interconnect unit (ICU).
  • 3. The distribution unit of claim 1, wherein: the at least one downlink digital data services line is comprised of at least one downlink digital data services optical fiber; andthe at least one uplink digital data services line is comprised of at least one uplink digital data services optical fiber.
  • 4. The distribution unit of claim 1, wherein the at least one downlink digital data services output is configured to distribute downlink optical digital data signals over at least one downlink digital data services optical fiber to at least one RAU.
  • 5. The distribution unit of claim 1, wherein the at least one uplink digital data services output is configured to distribute uplink optical digital data signals over at least one uplink digital data services optical fiber to at least one RAU.
  • 6. The distribution unit of claim 1, wherein the at least one RF communications services output is comprised of at least one downlink RF communications services output configured to distribute downlink optical digital signals over at least one RF communications services downlink optical fiber to at least one RAU.
  • 7. The distribution unit of claim 1, wherein the at least one RF communications services output is comprised of at least one uplink RF communications services output configured to distribute uplink optical digital signals over at least one uplink RF communications services optical fiber from the at least RAU.
  • 8. The distribution unit of claim 1, wherein the at least downlink one digital data services line, the at least one uplink digital data services line, and the at least one RF communications services optical fiber are disposed in an array cable connected to the least one RAU.
  • 9. The distribution unit of claim 1 disposed in a housing.
  • 10. The distribution unit of claim 9, wherein the housing is comprised of a wall-mount housing.
  • 11. The distribution unit of claim 1, further comprising at least one media controller configured to convert the electrical digital data signals from the at least one digital data services input into optical digital data signals.
  • 12. The distribution unit of claim 11, wherein the at least one downlink digital data services output is configured to distribute the optical digital data signals over the at least one downlink digital data services line to at least one RAU.
  • 13. The distribution unit of claim 11, wherein the at least one uplink digital data services output is configured to distribute the optical digital data signals over the at least one digital data services line to at least one RAU.
  • 14. The distribution unit of claim 1, wherein the at least one downlink digital data services line, the at least one uplink digital data services line, the at least one RF communications services optical fiber, and the at least one power line are disposed in an array cable connected to the least one RAU.
  • 15. The distribution unit of claim 1, wherein the at least one digital data services input, the at least one downlink digital data services output, the at least one uplink digital data services output, the at least one RF communications services input, and the at least one RF communications services output are provided in at least one distribution module.
  • 16. The distribution unit of claim 15, wherein the at least one distribution module is configured to be installed in a housing.
  • 17. The distribution unit of claim 15, further comprising at least one power supply configured to provide power to the at least one power output.
  • 18. The distribution unit of claim 17, wherein the at least one power output is not co-located with the at least one distribution module.
  • 19. The distribution unit of claim 15, further comprising a power supply not co-located with the at least one distribution module configured to provide power to the at least one power output in of the at least one distribution module.
  • 20. The distribution unit of claim 15, wherein the at least one RF communications services input is not co-located with the at least one distribution module.
  • 21. The distribution unit of claim 15, wherein the at least one digital data services input is not co-located with the at least one distribution module.
  • 22. The distribution unit of claim 15, wherein the at least one distribution module is comprised of a plurality of distribution modules, each of the plurality of distribution modules including at least one digital data services input, at least one downlink digital data services output, at least one uplink digital data services output, at least one RF communications services input, and at least one RF communications services output.
  • 23. The distribution unit of claim 22, further comprising a power supply in each of the plurality of distribution modules configured to provide power to the at least one power output in each of the plurality of distribution modules.
  • 24. The distribution unit of claim 16, wherein the at least one distribution module is configured to be modularly installed in the housing.
  • 25. The distribution unit of claim 1, wherein the at least one downlink digital data services line, the at least one uplink digital data services line, and the at least one RF communications services optical fiber are separate physical lines.
  • 26. An optical-fiber based distributed communications system, comprising: head-end equipment configured to: receive downlink electrical radio frequency (RF) communications services signals; andconvert the downlink electrical RF communications services signals into downlink optical RF communications services signals to be communicated over at least one optical RF communications services downlink; a controller configured to:receive downlink digital data services signals containing at least one digital data service; andprovide the downlink digital data services signals over at least one digital data services downlink; anda distribution unit, comprising: at least one RF communications services input configured to receive the downlink optical RF communications services signals from the at least one downlink RF communications services downlink; andat least one RF communications services output configured to distribute the downlink optical RF communications services signals over at least one RF communications services optical fiber to at least one remote antenna unit (RAU);at least one digital data services input configured to receive the downlink digital data services signals from the at least one digital data services downlink;at least one digital data services output configured to distribute the downlink digital data services signals over at least one digital data services line to the at least one RAU; andat least one power output configured to distribute power over at least one power line to the at least one RAU.
  • 27. The system of claim 26, wherein the at least one RF communications services input is further configured to distribute uplink optical RF communications services signals from the at least one RAU over at least one uplink RF communication services uplink to head-end equipment; andthe at least one digital data services input is further configured to distribute uplink digital data services signals from the at least one RAU over at least one digital data services uplink to the controller.
  • 28. The system of claim 27, further comprising: head-end equipment configured to: receive the uplink optical RF communications services signals from the at least one RF communications services input;convert the uplink optical RF communications services signals into uplink electrical RF communications services signals; andwherein the controller is further configured to: receive the uplink digital data services signals from the at least one digital data services input; andprovide the uplink digital data services signals over a digital data services network.
  • 29. The system of claim 26, wherein the at least one digital data services downlink is comprised of at least one digital data services downlink optical fiber.
  • 30. The system of claim 26, wherein the downlink digital data services signals are comprised of downlink electrical digital data services signals, and further comprising at least one media controller configured to convert the downlink electrical digital data services signals from the digital data services input into downlink optical digital data services signals.
  • 31. The system of claim 26, wherein the at least one digital data services input, the at least one digital data services output, the at least one RF communications services input, and the at least one RF communications services output are provided in at least one distribution module.
  • 32. The system of claim 31, further comprising at least one power supply configured to provide power to the at least one power output.
  • 33. The system of claim 32, wherein the at least one power output is not co-located with the at least one distribution module.
  • 34. The system of claim 31, further comprising a power supply not co-located with the at least one distribution module configured to provide power to the at least one power output in of the at least one distribution module.
  • 35. The system of claim 31, wherein the at least one RF communications services input is not co-located with the at least one distribution module.
  • 36. The system of claim 31, wherein the at least one digital data services input is not co-located with the at least one distribution module.
  • 37. The system of claim 31, wherein the at least one distribution module is comprised of a plurality of distribution modules, each of the plurality of distribution modules including at least one digital data services input, at least one digital data services output, at least one RF communications services input, and at least one RF communications services output.
  • 38. The system of claim 37, further comprising a power supply in each of the plurality of distribution modules configured to provide power to the at least one power output in each of the plurality of distribution modules.
  • 39. The system of claim 26, wherein the at least one RF communications services optical fiber and the at least one digital data services line are separate physical lines.
RELATED APPLICATIONS

The present application claims the benefit of U.S. Prov. App. No. 61/330,385 filed on May 2, 2010 and entitled, “Power Distribution in Optical Fiber-Based Distributed Communications Systems Providing Digital Data and Radio Frequency (RF) Communications Services, and Related Components and Methods,” which is incorporated herein by reference in its entirety. The present application is related to the following applications: U.S. Prov. App. No. 61/330,383 filed on May 2, 2010 and entitled, “Optical Fiber-based Distributed Communications Systems, And Related Components and Methods”; U.S. Prov. App. No. 61/330,386 filed on May 2, 2010 and entitled, “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communication Services, and Related Components and Methods”; U.S. patent application Ser. No. 12/892,424 filed on Sep. 28, 2010 entitled, “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communications Systems, and Related Components and Methods”; U.S. Prov. App. No. 61/393,177 filed on Oct. 14, 2010 entitled, “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communications Systems, and Related Components and Methods”; U.S. Prov. App. No. 61/392,660 filed on Oct. 13, 2010 entitled, “Local Power Management For Remote Antenna Units In Distributed Antenna Systems”; U.S. App. No. 61/392,687 filed on Oct. 13, 2010 entitled, “Remote Power Management For Remote Antenna Units In Distributed Antenna Systems.” These applications are incorporated herein by reference in their entireties.

US Referenced Citations (744)
Number Name Date Kind
4365865 Stiles Dec 1982 A
4867527 Dotti et al. Sep 1989 A
4889977 Haydon Dec 1989 A
4896939 O'Brien Jan 1990 A
4916460 Powell Apr 1990 A
4972505 Isberg Nov 1990 A
5039195 Jenkins et al. Aug 1991 A
5042086 Cole et al. Aug 1991 A
5125060 Edmundson Jun 1992 A
5189718 Barrett et al. Feb 1993 A
5189719 Coleman et al. Feb 1993 A
5206655 Caille et al. Apr 1993 A
5210812 Nilsson et al. May 1993 A
5260957 Hakimi et al. Nov 1993 A
5263108 Kurokawa et al. Nov 1993 A
5267122 Glover et al. Nov 1993 A
5268971 Nilsson et al. Dec 1993 A
5280472 Gilhousen et al. Jan 1994 A
5295154 Meier et al. Mar 1994 A
5299947 Barnard Apr 1994 A
5301056 O'Neill Apr 1994 A
5339058 Lique Aug 1994 A
5339184 Tang Aug 1994 A
5377035 Wang et al. Dec 1994 A
5379455 Koschek Jan 1995 A
5400391 Emura et al. Mar 1995 A
5404570 Charas et al. Apr 1995 A
5424864 Emura Jun 1995 A
5428636 Meier Jun 1995 A
5444564 Newberg Aug 1995 A
5457557 Zarem et al. Oct 1995 A
5459727 Vannucci Oct 1995 A
5469523 Blew et al. Nov 1995 A
5499241 Thompson et al. Mar 1996 A
5504746 Meier Apr 1996 A
5519691 Darcie et al. May 1996 A
5543000 Lique Aug 1996 A
5544161 Bigham et al. Aug 1996 A
5546443 Raith Aug 1996 A
5553064 Paff et al. Sep 1996 A
5557698 Gareis et al. Sep 1996 A
5574815 Kneeland Nov 1996 A
5598288 Collar Jan 1997 A
5603080 Kallander et al. Feb 1997 A
5615034 Hori Mar 1997 A
5621786 Fischer et al. Apr 1997 A
5627879 Russell et al. May 1997 A
5640678 Ishikawa et al. Jun 1997 A
5642405 Fischer et al. Jun 1997 A
5644622 Russell et al. Jul 1997 A
5648961 Ebihara Jul 1997 A
5651081 Blew et al. Jul 1997 A
5657374 Russell et al. Aug 1997 A
5668562 Cutrer et al. Sep 1997 A
5677974 Elms et al. Oct 1997 A
5682256 Motley et al. Oct 1997 A
5684799 Bigham et al. Nov 1997 A
5689355 Okubo et al. Nov 1997 A
5703602 Casebolt Dec 1997 A
5726984 Kubler et al. Mar 1998 A
5774789 van der Kaay et al. Jun 1998 A
5790536 Mahany et al. Aug 1998 A
5790606 Dent Aug 1998 A
5802173 Hamilton-Piercy et al. Sep 1998 A
5802473 Rutledge et al. Sep 1998 A
5805983 Naidu et al. Sep 1998 A
5809422 Raleigh et al. Sep 1998 A
5812296 Tarusawa et al. Sep 1998 A
5818619 Medved et al. Oct 1998 A
5821510 Cohen et al. Oct 1998 A
5825651 Gupta et al. Oct 1998 A
5825829 Borazjani et al. Oct 1998 A
5832364 Gustafson Nov 1998 A
5838474 Stilling Nov 1998 A
5852651 Fischer et al. Dec 1998 A
5854986 Dorren et al. Dec 1998 A
5867485 Chambers et al. Feb 1999 A
5880863 Rideout et al. Mar 1999 A
5881200 Burt Mar 1999 A
5883882 Schwartz Mar 1999 A
5890055 Chu et al. Mar 1999 A
5896568 Tseng et al. Apr 1999 A
5903834 Wallstedt et al. May 1999 A
5910776 Black Jun 1999 A
5913003 Arroyo et al. Jun 1999 A
5917636 Wake et al. Jun 1999 A
5930682 Schwartz et al. Jul 1999 A
5936754 Ariyavisitakul et al. Aug 1999 A
5943372 Gans et al. Aug 1999 A
5946622 Bojeryd Aug 1999 A
5949564 Wake Sep 1999 A
5959531 Gallagher, III et al. Sep 1999 A
5960344 Mahany Sep 1999 A
5969837 Farber et al. Oct 1999 A
5982413 Irie et al. Nov 1999 A
5983070 Georges et al. Nov 1999 A
5987303 Dutta et al. Nov 1999 A
6005884 Cook et al. Dec 1999 A
6006105 Rostoker et al. Dec 1999 A
6014546 Georges et al. Jan 2000 A
6016426 Bodell Jan 2000 A
6023625 Myers, Jr. Feb 2000 A
6046992 Meier et al. Apr 2000 A
6078622 Boytim et al. Jun 2000 A
6088381 Myers, Jr. Jul 2000 A
6112086 Wala Aug 2000 A
6124957 Goel et al. Sep 2000 A
6127917 Tuttle Oct 2000 A
6128470 Naidu et al. Oct 2000 A
6148041 Dent Nov 2000 A
6150921 Werb et al. Nov 2000 A
6157810 Georges et al. Dec 2000 A
6219553 Panasik Apr 2001 B1
6222503 Gietema et al. Apr 2001 B1
6232870 Garber et al. May 2001 B1
6236789 Fitz May 2001 B1
6240274 Izadpanah May 2001 B1
6268946 Larkin et al. Jul 2001 B1
6292673 Maeda et al. Sep 2001 B1
6301240 Slabinski et al. Oct 2001 B1
6314163 Acampora Nov 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6323980 Bloom Nov 2001 B1
6324391 Bodell Nov 2001 B1
6330244 Swartz et al. Dec 2001 B1
6334219 Hill et al. Dec 2001 B1
6337754 Imajo Jan 2002 B1
6353406 Lanzl et al. Mar 2002 B1
6353600 Schwartz et al. Mar 2002 B1
6356374 Farhan Mar 2002 B1
6359714 Imajo Mar 2002 B1
6373611 Farhan et al. Apr 2002 B1
6374078 Williams et al. Apr 2002 B1
6374124 Slabinski Apr 2002 B1
6374311 Mahany et al. Apr 2002 B1
6389010 Kubler et al. May 2002 B1
6392770 Sasai et al. May 2002 B1
6405018 Reudink et al. Jun 2002 B1
6405058 Bobier Jun 2002 B2
6405308 Gupta et al. Jun 2002 B1
6438301 Johnson et al. Aug 2002 B1
6438371 Fujise et al. Aug 2002 B1
6452915 Jorgensen Sep 2002 B1
6477154 Cheong et al. Nov 2002 B1
6480702 Sabat, Jr. Nov 2002 B1
6486907 Farber et al. Nov 2002 B1
6496290 Lee Dec 2002 B1
6501768 Marin et al. Dec 2002 B2
6501942 Weissman et al. Dec 2002 B1
6501965 Lucidarme Dec 2002 B1
6504636 Seto et al. Jan 2003 B1
6512478 Chien Jan 2003 B1
6519395 Bevan et al. Feb 2003 B1
6523177 Brown Feb 2003 B1
6525855 Westbrook et al. Feb 2003 B1
6526264 Sugar et al. Feb 2003 B2
6549772 Chavez et al. Apr 2003 B1
6556551 Schwartz Apr 2003 B1
6560441 Sabat, Jr. et al. May 2003 B1
6577794 Currie et al. Jun 2003 B1
6577801 Broderick et al. Jun 2003 B2
6580402 Navarro et al. Jun 2003 B2
6580905 Naidu et al. Jun 2003 B1
6580918 Leickel et al. Jun 2003 B1
6583763 Judd Jun 2003 B2
6594496 Schwartz Jul 2003 B2
6597325 Judd et al. Jul 2003 B2
6606430 Bartur et al. Aug 2003 B2
6615074 Mickle et al. Sep 2003 B2
6634811 Gertel et al. Oct 2003 B1
6636747 Harada et al. Oct 2003 B2
6640103 Inman et al. Oct 2003 B1
6643437 Park Nov 2003 B1
6652158 Bartur et al. Nov 2003 B2
6654616 Pope, Jr. et al. Nov 2003 B1
6657535 Magbie et al. Dec 2003 B1
6658269 Golemon et al. Dec 2003 B1
6670930 Navarro Dec 2003 B2
6675294 Gupta et al. Jan 2004 B1
6687437 Starnes et al. Feb 2004 B1
6690328 Judd Feb 2004 B2
6697603 Lovinggood et al. Feb 2004 B1
6704298 Matsumiya et al. Mar 2004 B1
6704545 Wala Mar 2004 B1
6704579 Woodhead et al. Mar 2004 B2
6710366 Lee et al. Mar 2004 B1
6731880 Westbrook et al. May 2004 B2
6758913 Tunney et al. Jul 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6771862 Karnik et al. Aug 2004 B2
6771933 Eng et al. Aug 2004 B1
6784802 Stanescu Aug 2004 B1
6785558 Stratford et al. Aug 2004 B1
6788666 Linebarger et al. Sep 2004 B1
6801767 Schwartz et al. Oct 2004 B1
6807374 Imajo et al. Oct 2004 B1
6812824 Goldinger et al. Nov 2004 B1
6812905 Thomas et al. Nov 2004 B2
6826164 Mani et al. Nov 2004 B2
6826165 Meier et al. Nov 2004 B1
6826337 Linnell Nov 2004 B2
6831901 Millar Dec 2004 B2
6842433 West et al. Jan 2005 B2
6842459 Binder Jan 2005 B1
6847856 Bohannon Jan 2005 B1
6850510 Kubler et al. Feb 2005 B2
6865390 Goss et al. Mar 2005 B2
6873823 Hasarchi et al. Mar 2005 B2
6876056 Tilmans et al. Apr 2005 B2
6876852 Li et al. Apr 2005 B1
6879290 Toutain et al. Apr 2005 B1
6882833 Nguyen Apr 2005 B2
6883710 Chung Apr 2005 B2
6885846 Panasik et al. Apr 2005 B1
6889060 Fernando et al. May 2005 B2
6895253 Carloni et al. May 2005 B1
6909399 Zegelin et al. Jun 2005 B1
6915058 Pons Jul 2005 B2
6919858 Rofougaran Jul 2005 B2
6920330 Caronni et al. Jul 2005 B2
6924997 Chen et al. Aug 2005 B2
6930987 Fukuda et al. Aug 2005 B1
6931183 Panak et al. Aug 2005 B2
6933849 Sawyer Aug 2005 B2
6961312 Kubler et al. Nov 2005 B2
6963289 Aljadeff et al. Nov 2005 B2
6963552 Sabat, Jr. et al. Nov 2005 B2
6965718 Koertel Nov 2005 B2
6968107 Belardi et al. Nov 2005 B2
6970652 Zhang et al. Nov 2005 B2
6973243 Koyasu et al. Dec 2005 B2
6974262 Rickenbach Dec 2005 B1
7006465 Toshimitsu et al. Feb 2006 B2
7013087 Suzuki et al. Mar 2006 B2
7015826 Chan et al. Mar 2006 B1
7016308 Gallagher Mar 2006 B1
7020451 Sugar et al. Mar 2006 B2
7020473 Splett Mar 2006 B2
7024166 Wallace et al. Apr 2006 B2
7035512 Van Bijsterveld Apr 2006 B2
7035671 Solum Apr 2006 B2
7039399 Fischer May 2006 B2
7047028 Cagenius May 2006 B2
7050017 King et al. May 2006 B2
7053838 Judd May 2006 B2
7054513 Herz et al. May 2006 B2
7072586 Aburakawa et al. Jul 2006 B2
7082320 Kattukaran et al. Jul 2006 B2
7084769 Bauer et al. Aug 2006 B2
7092710 Stoter et al. Aug 2006 B1
7093985 Lord et al. Aug 2006 B2
7103312 Judd et al. Sep 2006 B2
7103377 Bauman et al. Sep 2006 B2
7106931 Sutehall et al. Sep 2006 B2
7110381 O'Sullivan et al. Sep 2006 B1
7114859 Tuohimaa et al. Oct 2006 B1
7127175 Mani et al. Oct 2006 B2
7127176 Sasaki Oct 2006 B2
7133697 Judd et al. Nov 2006 B2
7142503 Grant et al. Nov 2006 B1
7142535 Kubler et al. Nov 2006 B2
7160032 Nagashima et al. Jan 2007 B2
7181206 Pedersen Feb 2007 B2
7199443 Elsharawy Apr 2007 B2
7200305 Dion et al. Apr 2007 B2
7200391 Chung et al. Apr 2007 B2
7228072 Mickelsson et al. Jun 2007 B2
7245603 Lucidarme et al. Jul 2007 B1
7257328 Levinson et al. Aug 2007 B2
7263293 Ommodt et al. Aug 2007 B2
7269311 Kim et al. Sep 2007 B2
7286843 Scheck Oct 2007 B2
7286854 Ferrato et al. Oct 2007 B2
7295119 Rappaport et al. Nov 2007 B2
7310430 Mallya et al. Dec 2007 B1
7313415 Wake et al. Dec 2007 B2
7315735 Graham Jan 2008 B2
7324730 Varkey et al. Jan 2008 B2
7343164 Kallstenius Mar 2008 B2
7349633 Lee et al. Mar 2008 B2
7359408 Kim Apr 2008 B2
7359674 Markki et al. Apr 2008 B2
7366150 Lee et al. Apr 2008 B2
7366151 Kubler et al. Apr 2008 B2
7369526 Lechleider et al. May 2008 B2
7379669 Kim May 2008 B2
7392029 Pronkine Jun 2008 B2
7394883 Funakubo et al. Jul 2008 B2
7403156 Coppi et al. Jul 2008 B2
7409159 Izadpanah Aug 2008 B2
7412224 Kotola et al. Aug 2008 B2
7424228 Williams et al. Sep 2008 B1
7442679 Stolte et al. Oct 2008 B2
7444051 Tatat et al. Oct 2008 B2
7450853 Kim et al. Nov 2008 B2
7450854 Lee et al. Nov 2008 B2
7451365 Wang et al. Nov 2008 B2
7457646 Mahany et al. Nov 2008 B2
7460507 Kubler et al. Dec 2008 B2
7460829 Utsumi et al. Dec 2008 B2
7460831 Hasarchi Dec 2008 B2
7466925 Iannelli Dec 2008 B2
7469105 Wake et al. Dec 2008 B2
7477597 Segel Jan 2009 B2
7483504 Shapira et al. Jan 2009 B2
7493129 Mostafa Feb 2009 B1
7496070 Vesuna Feb 2009 B2
7496384 Seto et al. Feb 2009 B2
7522552 Fein et al. Apr 2009 B2
7542452 Penumetsa Jun 2009 B2
7548695 Wake Jun 2009 B2
7551641 Pirzada et al. Jun 2009 B2
7552246 Mahany et al. Jun 2009 B2
7557758 Rofougaran Jul 2009 B2
7580384 Kubler et al. Aug 2009 B2
7586861 Kubler et al. Sep 2009 B2
7590354 Sauer et al. Sep 2009 B2
7599420 Forenza et al. Oct 2009 B2
7606594 Jesse et al. Oct 2009 B2
7627250 George et al. Dec 2009 B2
7630690 Kaewell, Jr. et al. Dec 2009 B2
7633934 Kubler et al. Dec 2009 B2
7646743 Kubler et al. Jan 2010 B2
7646777 Hicks, III et al. Jan 2010 B2
7653397 Pernu et al. Jan 2010 B2
7668153 Zavadsky Feb 2010 B2
7668565 Ylänen et al. Feb 2010 B2
7684709 Ray et al. Mar 2010 B2
7688811 Kubler et al. Mar 2010 B2
7693486 Kasslin et al. Apr 2010 B2
7697467 Kubler et al. Apr 2010 B2
7715375 Kubler et al. May 2010 B2
7715466 Oh et al. May 2010 B1
7751374 Donovan Jul 2010 B2
7751838 Ramesh et al. Jul 2010 B2
7760703 Kubler et al. Jul 2010 B2
7761093 Sabat, Jr. et al. Jul 2010 B2
7764978 West Jul 2010 B1
7768951 Kubler et al. Aug 2010 B2
7773573 Chung et al. Aug 2010 B2
7778603 Palin et al. Aug 2010 B2
7783263 Sperlich et al. Aug 2010 B2
7787854 Conyers et al. Aug 2010 B2
7805073 Sabat, Jr. et al. Sep 2010 B2
7809012 Ruuska et al. Oct 2010 B2
7817958 Scheinert et al. Oct 2010 B2
7817969 Castaneda et al. Oct 2010 B2
7835328 Stephens et al. Nov 2010 B2
7844273 Scheinert Nov 2010 B2
7848316 Kubler et al. Dec 2010 B2
7848731 Dianda et al. Dec 2010 B1
7853234 Afsahi Dec 2010 B2
7870321 Rofougaran Jan 2011 B2
7881755 Mishra et al. Feb 2011 B1
7894423 Kubler et al. Feb 2011 B2
7899007 Kubler et al. Mar 2011 B2
7907972 Walton et al. Mar 2011 B2
7912043 Kubler et al. Mar 2011 B2
7916706 Kubler et al. Mar 2011 B2
7917145 Mahany et al. Mar 2011 B2
7920553 Kubler et al. Apr 2011 B2
7920858 Sabat, Jr. et al. Apr 2011 B2
7924783 Mahany et al. Apr 2011 B1
7929940 Dianda et al. Apr 2011 B1
7936713 Kubler et al. May 2011 B2
7948897 Stuart et al. May 2011 B2
7949364 Kasslin et al. May 2011 B2
7957777 Vu et al. Jun 2011 B1
7962042 Deas Jun 2011 B2
7962176 Li et al. Jun 2011 B2
7969009 Chandrasekaran Jun 2011 B2
7969911 Mahany et al. Jun 2011 B2
7990925 Tinnakornsrisuphap et al. Aug 2011 B2
7996020 Chhabra Aug 2011 B1
8005152 Wegener Aug 2011 B2
8010116 Scheinert Aug 2011 B2
8018907 Kubler et al. Sep 2011 B2
8036308 Rofougaran Oct 2011 B2
8082353 Huber et al. Dec 2011 B2
8086192 Rofougaran et al. Dec 2011 B2
8107464 Schmidt et al. Jan 2012 B2
8135102 Wiwel et al. Mar 2012 B2
8155525 Cox Apr 2012 B2
8174428 Wegener May 2012 B2
8213401 Fischer et al. Jul 2012 B2
8270387 Cannon et al. Sep 2012 B2
8274929 Schmidt et al. Sep 2012 B2
8279800 Schmidt et al. Oct 2012 B2
8290483 Sabat, Jr. et al. Oct 2012 B2
8306563 Zavadsky et al. Nov 2012 B2
8346091 Kummetz et al. Jan 2013 B2
8346278 Wala et al. Jan 2013 B2
8422884 Mao Apr 2013 B2
8428510 Stratford et al. Apr 2013 B2
8457562 Zavadsky et al. Jun 2013 B2
8462683 Uyehara et al. Jun 2013 B2
8467823 Seki et al. Jun 2013 B2
8472579 Uyehara et al. Jun 2013 B2
8509215 Stuart Aug 2013 B2
8509850 Zavadsky et al. Aug 2013 B2
8526970 Wala et al. Sep 2013 B2
8532242 Fischer et al. Sep 2013 B2
8548526 Schmidt et al. Oct 2013 B2
8583100 Koziy et al. Nov 2013 B2
8626245 Zavadsky et al. Jan 2014 B2
8634766 Hobbs et al. Jan 2014 B2
8681917 McAllister et al. Mar 2014 B2
8682338 Lemson et al. Mar 2014 B2
8693342 Uyehara et al. Apr 2014 B2
8694034 Notargiacomo Apr 2014 B2
8699982 Singh Apr 2014 B2
8737300 Stapleton et al. May 2014 B2
8737454 Wala et al. May 2014 B2
8743718 Grenier et al. Jun 2014 B2
8743756 Uyehara et al. Jun 2014 B2
8792933 Chen Jul 2014 B2
8837659 Uyehara et al. Sep 2014 B2
8837940 Smith et al. Sep 2014 B2
8908607 Kummetz et al. Dec 2014 B2
8929288 Stewart et al. Jan 2015 B2
8948816 Fischer et al. Feb 2015 B2
8958789 Bauman et al. Feb 2015 B2
8976067 Fischer Mar 2015 B2
9001811 Wala et al. Apr 2015 B2
9042732 Cune et al. May 2015 B2
20010000621 Mitsuda et al. May 2001 A1
20010036163 Sabat, Jr. et al. Nov 2001 A1
20010053011 Imajo Dec 2001 A1
20020003645 Kim et al. Jan 2002 A1
20020012336 Hughes et al. Jan 2002 A1
20020012495 Sasai et al. Jan 2002 A1
20020031113 Dodds et al. Mar 2002 A1
20020048071 Suzuki et al. Apr 2002 A1
20020055371 Arnon et al. May 2002 A1
20020075906 Cole et al. Jun 2002 A1
20020090915 Komara et al. Jul 2002 A1
20020092347 Niekerk et al. Jul 2002 A1
20020111149 Shoki Aug 2002 A1
20020111192 Thomas et al. Aug 2002 A1
20020114038 Arnon et al. Aug 2002 A1
20020123365 Thorson et al. Sep 2002 A1
20020126967 Panak et al. Sep 2002 A1
20020130778 Nicholson Sep 2002 A1
20020181668 Masoian et al. Dec 2002 A1
20020190845 Moore Dec 2002 A1
20030007214 Aburakawa et al. Jan 2003 A1
20030016418 Westbrook et al. Jan 2003 A1
20030045284 Copley et al. Mar 2003 A1
20030078052 Atias et al. Apr 2003 A1
20030078074 Sesay et al. Apr 2003 A1
20030141962 Barink Jul 2003 A1
20030161637 Yamamoto et al. Aug 2003 A1
20030165287 Krill et al. Sep 2003 A1
20030174099 Bauer et al. Sep 2003 A1
20030209601 Chung Nov 2003 A1
20040001719 Sasaki Jan 2004 A1
20040008114 Sawyer Jan 2004 A1
20040017785 Zelst Jan 2004 A1
20040037300 Lehr et al. Feb 2004 A1
20040041714 Forster Mar 2004 A1
20040043764 Bigham et al. Mar 2004 A1
20040047313 Rumpf et al. Mar 2004 A1
20040078151 Aljadeff et al. Apr 2004 A1
20040100930 Shapira et al. May 2004 A1
20040105435 Morioka Jun 2004 A1
20040106435 Bauman et al. Jun 2004 A1
20040110469 Judd et al. Jun 2004 A1
20040126068 Van Bijsterveld Jul 2004 A1
20040146020 Kubler et al. Jul 2004 A1
20040149736 Clothier Aug 2004 A1
20040151164 Kubler et al. Aug 2004 A1
20040151503 Kashima et al. Aug 2004 A1
20040157623 Splett Aug 2004 A1
20040160912 Kubler et al. Aug 2004 A1
20040160913 Kubler et al. Aug 2004 A1
20040162115 Smith et al. Aug 2004 A1
20040162116 Han et al. Aug 2004 A1
20040165573 Kubler et al. Aug 2004 A1
20040175173 Deas Sep 2004 A1
20040198451 Varghese Oct 2004 A1
20040202257 Mehta et al. Oct 2004 A1
20040203704 Ommodt et al. Oct 2004 A1
20040203846 Caronni et al. Oct 2004 A1
20040204109 Hoppenstein Oct 2004 A1
20040208526 Mibu Oct 2004 A1
20040218873 Nagashima et al. Nov 2004 A1
20040230846 Mancey et al. Nov 2004 A1
20040233877 Lee et al. Nov 2004 A1
20040258105 Spathas et al. Dec 2004 A1
20050052287 Whitesmith et al. Mar 2005 A1
20050058451 Ross Mar 2005 A1
20050068179 Roesner Mar 2005 A1
20050076982 Metcalf et al. Apr 2005 A1
20050078006 Hutchins et al. Apr 2005 A1
20050093679 Zai et al. May 2005 A1
20050099343 Asrani et al. May 2005 A1
20050116821 Wilsey et al. Jun 2005 A1
20050141545 Fein et al. Jun 2005 A1
20050143077 Charbonneau Jun 2005 A1
20050147071 Karaoguz et al. Jul 2005 A1
20050148306 Hiddink Jul 2005 A1
20050159108 Fletcher et al. Jul 2005 A1
20050174236 Brookner Aug 2005 A1
20050201761 Bartur et al. Sep 2005 A1
20050219050 Martin Oct 2005 A1
20050220458 Kupershmidt Oct 2005 A1
20050224585 Durrant et al. Oct 2005 A1
20050226625 Wake et al. Oct 2005 A1
20050232636 Durrant et al. Oct 2005 A1
20050242188 Vesuna Nov 2005 A1
20050252971 Howarth et al. Nov 2005 A1
20050266797 Utsumi et al. Dec 2005 A1
20050266854 Niiho et al. Dec 2005 A1
20050269930 Shimizu et al. Dec 2005 A1
20050271396 Iannelli Dec 2005 A1
20060002326 Vesuna Jan 2006 A1
20060014548 Bolin et al. Jan 2006 A1
20060017633 Pronkine Jan 2006 A1
20060019604 Hasarchi Jan 2006 A1
20060045054 Utsumi et al. Mar 2006 A1
20060053324 Giat et al. Mar 2006 A1
20060062579 Kim et al. Mar 2006 A1
20060079290 Seto et al. Apr 2006 A1
20060094470 Wake et al. May 2006 A1
20060104643 Lee et al. May 2006 A1
20060159388 Kawase et al. Jul 2006 A1
20060182446 Kim et al. Aug 2006 A1
20060182449 Iannelli et al. Aug 2006 A1
20060189354 Lee et al. Aug 2006 A1
20060233506 Noonan et al. Oct 2006 A1
20060239630 Hase et al. Oct 2006 A1
20060274704 Desai et al. Dec 2006 A1
20070008939 Fischer Jan 2007 A1
20070009266 Bothwell et al. Jan 2007 A1
20070058978 Lee et al. Mar 2007 A1
20070060045 Prautzsch Mar 2007 A1
20070060055 Desai et al. Mar 2007 A1
20070071128 Meir et al. Mar 2007 A1
20070076649 Lin et al. Apr 2007 A1
20070093273 Cai Apr 2007 A1
20070149250 Crozzoli et al. Jun 2007 A1
20070157251 Shrivastava Jul 2007 A1
20070166042 Seeds et al. Jul 2007 A1
20070208961 Ghoshal et al. Sep 2007 A1
20070224954 Gopi Sep 2007 A1
20070248358 Sauer Oct 2007 A1
20070253714 Seeds et al. Nov 2007 A1
20070257796 Easton et al. Nov 2007 A1
20070264009 Sabat, Jr. et al. Nov 2007 A1
20070274279 Wood Nov 2007 A1
20070285239 Easton Dec 2007 A1
20070286599 Sauer Dec 2007 A1
20070297005 Montierth et al. Dec 2007 A1
20080007453 Vassilakis Jan 2008 A1
20080013909 Kostet et al. Jan 2008 A1
20080013956 Ware et al. Jan 2008 A1
20080013957 Akers et al. Jan 2008 A1
20080014948 Scheinert Jan 2008 A1
20080026765 Charbonneau Jan 2008 A1
20080031628 Dragas et al. Feb 2008 A1
20080043714 Pernu Feb 2008 A1
20080043784 Wilcox Feb 2008 A1
20080056167 Kim et al. Mar 2008 A1
20080058018 Scheinert Mar 2008 A1
20080063387 Yahata et al. Mar 2008 A1
20080080863 Sauer et al. Apr 2008 A1
20080098203 Master et al. Apr 2008 A1
20080118014 Reunamaki et al. May 2008 A1
20080119198 Hettstedt et al. May 2008 A1
20080124086 Matthews May 2008 A1
20080124087 Hartmann et al. May 2008 A1
20080129634 Pera et al. Jun 2008 A1
20080134194 Liu Jun 2008 A1
20080145061 Lee et al. Jun 2008 A1
20080150514 Codreanu et al. Jun 2008 A1
20080159226 He et al. Jul 2008 A1
20080159744 Soto et al. Jul 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080168283 Penning Jul 2008 A1
20080181282 Wala et al. Jul 2008 A1
20080194226 Rivas et al. Aug 2008 A1
20080207253 Jaakkola et al. Aug 2008 A1
20080212969 Fasshauer et al. Sep 2008 A1
20080219670 Kim et al. Sep 2008 A1
20080232799 Kim Sep 2008 A1
20080247716 Thomas et al. Oct 2008 A1
20080253351 Pernu et al. Oct 2008 A1
20080253773 Zheng Oct 2008 A1
20080260388 Kim et al. Oct 2008 A1
20080261656 Bella et al. Oct 2008 A1
20080268833 Huang et al. Oct 2008 A1
20080273844 Kewitsch Nov 2008 A1
20080279137 Pernu et al. Nov 2008 A1
20080280569 Hazani et al. Nov 2008 A1
20080291830 Pernu et al. Nov 2008 A1
20080292322 Daghighian et al. Nov 2008 A1
20080298813 Song et al. Dec 2008 A1
20080304831 Miller, II et al. Dec 2008 A1
20080310848 Yasuda et al. Dec 2008 A1
20080311944 Hansen et al. Dec 2008 A1
20090022304 Kubler et al. Jan 2009 A1
20090028087 Nguyen et al. Jan 2009 A1
20090028317 Ling et al. Jan 2009 A1
20090041413 Hurley Feb 2009 A1
20090047023 Pescod et al. Feb 2009 A1
20090059903 Kubler et al. Mar 2009 A1
20090061796 Arkko et al. Mar 2009 A1
20090061939 Andersson et al. Mar 2009 A1
20090073916 Zhang et al. Mar 2009 A1
20090081985 Rofougaran et al. Mar 2009 A1
20090086693 Kennedy Apr 2009 A1
20090087181 Gray Apr 2009 A1
20090088072 Rofougaran et al. Apr 2009 A1
20090092394 Wei et al. Apr 2009 A1
20090097855 Thelen et al. Apr 2009 A1
20090135078 Lindmark et al. May 2009 A1
20090149221 Liu et al. Jun 2009 A1
20090154621 Shapira et al. Jun 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175214 Sfar et al. Jul 2009 A1
20090180407 Sabat Jul 2009 A1
20090180426 Sabat Jul 2009 A1
20090218407 Rofougaran Sep 2009 A1
20090218657 Rofougaran Sep 2009 A1
20090245084 Moffatt et al. Oct 2009 A1
20090245153 Li et al. Oct 2009 A1
20090245221 Piipponen Oct 2009 A1
20090252136 Mahany et al. Oct 2009 A1
20090252204 Shatara et al. Oct 2009 A1
20090252205 Rheinfelder et al. Oct 2009 A1
20090258652 Lambert Oct 2009 A1
20090285147 Subasic et al. Nov 2009 A1
20090290632 Wegener Nov 2009 A1
20100002626 Schmidt et al. Jan 2010 A1
20100002661 Schmidt et al. Jan 2010 A1
20100009394 Guo Jan 2010 A1
20100027443 LoGalbo et al. Feb 2010 A1
20100054227 Hettstedt et al. Mar 2010 A1
20100056200 Tolonen Mar 2010 A1
20100067426 Voschina Mar 2010 A1
20100067906 Adhikari Mar 2010 A1
20100080154 Noh et al. Apr 2010 A1
20100080182 Kubler et al. Apr 2010 A1
20100083330 Bernstein Apr 2010 A1
20100087227 Francos et al. Apr 2010 A1
20100091475 Toms et al. Apr 2010 A1
20100118864 Kubler et al. May 2010 A1
20100127937 Chandrasekaran et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100144337 Dean Jun 2010 A1
20100148373 Chandrasekaran Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100177759 Fischer et al. Jul 2010 A1
20100177760 Cannon et al. Jul 2010 A1
20100188998 Pernu et al. Jul 2010 A1
20100189439 Novak et al. Jul 2010 A1
20100190509 Davis Jul 2010 A1
20100196013 Franklin Aug 2010 A1
20100202326 Rofougaran et al. Aug 2010 A1
20100202356 Fischer et al. Aug 2010 A1
20100208777 Ogaz Aug 2010 A1
20100215028 Fischer Aug 2010 A1
20100225413 Rofougaran et al. Sep 2010 A1
20100225556 Rofougaran et al. Sep 2010 A1
20100225557 Rofougaran et al. Sep 2010 A1
20100232323 Kubler et al. Sep 2010 A1
20100246558 Harel Sep 2010 A1
20100255774 Kenington Oct 2010 A1
20100258949 Henderson et al. Oct 2010 A1
20100260063 Kubler et al. Oct 2010 A1
20100278530 Kummetz et al. Nov 2010 A1
20100290355 Roy et al. Nov 2010 A1
20100290787 Cox Nov 2010 A1
20100291949 Shapira et al. Nov 2010 A1
20100296458 Wala et al. Nov 2010 A1
20100296816 Larsen Nov 2010 A1
20100309049 Reunamäki et al. Dec 2010 A1
20100311472 Rofougaran et al. Dec 2010 A1
20100311480 Raines et al. Dec 2010 A1
20100329161 Ylanen et al. Dec 2010 A1
20100329166 Mahany et al. Dec 2010 A1
20110007724 Mahany et al. Jan 2011 A1
20110007733 Kubler et al. Jan 2011 A1
20110008042 Stewart Jan 2011 A1
20110021146 Pernu Jan 2011 A1
20110021224 Koskinen et al. Jan 2011 A1
20110045767 Rofougaran et al. Feb 2011 A1
20110055875 Zussman Mar 2011 A1
20110065450 Kazmi Mar 2011 A1
20110069668 Chion et al. Mar 2011 A1
20110071734 Van Wiemeersch et al. Mar 2011 A1
20110086614 Brisebois et al. Apr 2011 A1
20110116393 Hong et al. May 2011 A1
20110116572 Lee et al. May 2011 A1
20110126071 Han et al. May 2011 A1
20110141895 Zhang Jun 2011 A1
20110149879 Noriega et al. Jun 2011 A1
20110158298 Djadi et al. Jun 2011 A1
20110170577 Anvari Jul 2011 A1
20110170619 Anvari Jul 2011 A1
20110182230 Ohm et al. Jul 2011 A1
20110182255 Kim et al. Jul 2011 A1
20110194475 Kim et al. Aug 2011 A1
20110201368 Faccin et al. Aug 2011 A1
20110204504 Henderson et al. Aug 2011 A1
20110211439 Manpuria et al. Sep 2011 A1
20110215901 Van Wiemeersch et al. Sep 2011 A1
20110222415 Ramamurthi et al. Sep 2011 A1
20110222434 Chen Sep 2011 A1
20110222619 Ramamurthi et al. Sep 2011 A1
20110223958 Chen et al. Sep 2011 A1
20110223959 Chen Sep 2011 A1
20110223960 Chen et al. Sep 2011 A1
20110223961 Chen et al. Sep 2011 A1
20110227795 Lopez et al. Sep 2011 A1
20110236024 Mao Sep 2011 A1
20110237178 Seki et al. Sep 2011 A1
20110241881 Badinelli Oct 2011 A1
20110243201 Phillips et al. Oct 2011 A1
20110244887 Dupray et al. Oct 2011 A1
20110256878 Zhu et al. Oct 2011 A1
20110268033 Boldi et al. Nov 2011 A1
20110268452 Beamon et al. Nov 2011 A1
20110274021 He et al. Nov 2011 A1
20110281536 Lee et al. Nov 2011 A1
20120314797 Kummetz et al. Dec 2012 A1
20130012195 Sabat, Jr. et al. Jan 2013 A1
20130017863 Kummetz et al. Jan 2013 A1
20130150063 Berlin et al. Jun 2013 A1
20130188959 Cune et al. Jul 2013 A1
20130210490 Fischer et al. Aug 2013 A1
20130330086 Berlin et al. Dec 2013 A1
20140016583 Smith Jan 2014 A1
20140057627 Hejazi et al. Feb 2014 A1
20140140225 Wala May 2014 A1
20140146797 Zavadsky et al. May 2014 A1
20140146905 Zavadsky et al. May 2014 A1
20140146906 Zavadsky et al. May 2014 A1
20140219140 Uyehara et al. Aug 2014 A1
20140269859 Hanson et al. Sep 2014 A1
20140314061 Trajkovic et al. Oct 2014 A1
20150098351 Zavadsky et al. Apr 2015 A1
20150098372 Zavadsky et al. Apr 2015 A1
20150098419 Zavadsky et al. Apr 2015 A1
Foreign Referenced Citations (147)
Number Date Country
645192 Jan 1994 AU
731180 Mar 2001 AU
2065090 Feb 1998 CA
2242707 Sep 2002 CA
1745560 Mar 2006 CN
101151811 Mar 2008 CN
101496306 Jul 2009 CN
101542928 Sep 2009 CN
19705253 Aug 1998 DE
20104862 Sep 2001 DE
10249414 May 2004 DE
0391597 Oct 1990 EP
0461583 Dec 1991 EP
0477952 Apr 1992 EP
0477952 Apr 1992 EP
0714218 May 1996 EP
0687400 Nov 1998 EP
0993124 Apr 2000 EP
1056226 Nov 2000 EP
1173034 Jan 2002 EP
1202475 May 2002 EP
1227605 Jul 2002 EP
1267447 Dec 2002 EP
1347584 Sep 2003 EP
1356783 Oct 2003 EP
1363352 Nov 2003 EP
1391897 Feb 2004 EP
1443687 Aug 2004 EP
1455550 Sep 2004 EP
1501206 Jan 2005 EP
1503451 Feb 2005 EP
1511203 Mar 2005 EP
1530316 May 2005 EP
1267447 Aug 2006 EP
1693974 Aug 2006 EP
1742388 Jan 2007 EP
1173034 Jul 2007 EP
1954019 Aug 2008 EP
1968250 Sep 2008 EP
2110955 Oct 2009 EP
2253980 Nov 2010 EP
1570626 Nov 2013 EP
2323252 Sep 1998 GB
2366131 Feb 2002 GB
2370170 Jun 2002 GB
2399963 Sep 2004 GB
2428149 Jan 2007 GB
05260018 Oct 1993 JP
08181661 Jul 1996 JP
09083450 Mar 1997 JP
09162810 Jun 1997 JP
09200840 Jul 1997 JP
11068675 Mar 1999 JP
11088265 Mar 1999 JP
2000152300 May 2000 JP
2000341744 Dec 2000 JP
2002264617 Sep 2002 JP
2003148653 May 2003 JP
2003172827 Jun 2003 JP
2004172734 Jun 2004 JP
2004245963 Sep 2004 JP
2004247090 Sep 2004 JP
2004264901 Sep 2004 JP
2004265624 Sep 2004 JP
2004317737 Nov 2004 JP
2004349184 Dec 2004 JP
2005018175 Jan 2005 JP
2005087135 Apr 2005 JP
2005134125 May 2005 JP
2007228603 Sep 2007 JP
2008172597 Jul 2008 JP
20040053467 Jun 2004 KR
20110087949 Aug 2011 KR
9603823 Feb 1996 WO
9748197 Dec 1997 WO
9935788 Jul 1999 WO
0042721 Jul 2000 WO
0178434 Oct 2001 WO
0184760 Nov 2001 WO
0221183 Mar 2002 WO
0230141 Apr 2002 WO
02102102 Dec 2002 WO
03024027 Mar 2003 WO
03098175 Nov 2003 WO
2004030154 Apr 2004 WO
2004047472 Jun 2004 WO
2004056019 Jul 2004 WO
2004059934 Jul 2004 WO
2004086795 Oct 2004 WO
2004093471 Oct 2004 WO
2005062505 Jul 2005 WO
2005069203 Jul 2005 WO
2005069203 Jul 2005 WO
2005073897 Aug 2005 WO
2005079386 Sep 2005 WO
2005101701 Oct 2005 WO
2005111959 Nov 2005 WO
2005117337 Dec 2005 WO
2006011778 Feb 2006 WO
2006018592 Feb 2006 WO
2006019392 Feb 2006 WO
2006039941 Apr 2006 WO
2006046088 May 2006 WO
2006051262 May 2006 WO
2006077569 Jul 2006 WO
2006094441 Sep 2006 WO
2006133609 Dec 2006 WO
2006136811 Dec 2006 WO
2007048427 May 2007 WO
2007075579 Jul 2007 WO
2007077451 Jul 2007 WO
2007088561 Aug 2007 WO
2007091026 Aug 2007 WO
2008008249 Jan 2008 WO
2008027213 Mar 2008 WO
2008033298 Mar 2008 WO
2008039830 Apr 2008 WO
2009014710 Jan 2009 WO
2009100395 Aug 2009 WO
2009100396 Aug 2009 WO
2009100397 Aug 2009 WO
2009100398 Aug 2009 WO
2009145789 Dec 2009 WO
2010087919 Aug 2010 WO
2010090999 Aug 2010 WO
2011043172 Apr 2011 WO
2011112373 Sep 2011 WO
2011139937 Nov 2011 WO
2011139939 Nov 2011 WO
2011139942 Nov 2011 WO
2011160117 Dec 2011 WO
2012024345 Feb 2012 WO
2012051227 Apr 2012 WO
2012051230 Apr 2012 WO
2012054553 Apr 2012 WO
2012170865 Dec 2012 WO
2013009835 Jan 2013 WO
2013122915 Aug 2013 WO
2014022211 Feb 2014 WO
2014070236 May 2014 WO
2014082070 May 2014 WO
2014082072 May 2014 WO
2014082075 May 2014 WO
2014144314 Sep 2014 WO
2015054162 Apr 2015 WO
2015054164 Apr 2015 WO
2015054165 Apr 2015 WO
Non-Patent Literature Citations (69)
Entry
Cooper, A.J., “Fibre/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26, No. 24.
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12.
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168.
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710.
International Search Report for PCT/US07/21041 mailed Mar. 7, 2008, 3 pages.
No Author, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 20 pages.
No Author, “ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cable for the Access Network,” ITU-T Recommendation G.657, International Telecommunication Union, 19 pages.
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transactions on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985.
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, No. 4, pp. 206-208.
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011.
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System Based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58.
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages.
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2002, pp. 271-282.
No Author, RFID Technology Overview, 11 pages.
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709.
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56.
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific Conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118.
Wake, D. et al., “Passive Picocell: A New Concept in Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406.
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communication Systems,” IEEE Transactions on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751.
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages.
Author Unknown, “ADC Has 3rd Generation Services Covered at CeBIT 2001,” Business Wire, Mar. 20, 2001, 3 pages.
Author Unknown, “Andrew Unveils the InCell Fiber Optic Antenna System for In-Building Wireless Communications,” Fiber Optics Weekly Update, Dec. 1, 2000, Information Gatekeepers Inc., pp. 3-4.
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3.
Fitzmaurice, M. et al., “Distributed Antenna System for Mass Transit Communications,” Vehicular Technology Conference, Boston, Massachusetts, Sep. 2000, IEEE, pp. 2011-2018.
Ghafouri-Shiraz, et al., “Radio on Fibre Communication Systems Based on Integrated Circuit-Antenna Modules,” Microwave and Millimeter Wave Technology Proceedings, Beijing, China, Aug. 1998, IEEE, pp. 159-169.
Griffin, R.A. et al., “Radio-Over-Fiber Distribution Using an Optical Millimeter-Wave/DWDM Overlay,” Optical Fiber Communication Conference, San Diego, California, Feb. 1999, IEEE, pp. 70-72.
Juntunen, J. et al., “Antenna Diversity Array Design for Mobile Communication Systems,” Proceedings of the 2000 IEEE International Conference on Phased Array Systems and Technology, Dana Point, California, May 2000, IEEE, pp. 65-67.
Lee, D. et al., “Ricocheting Bluetooth,” 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings, Beijing, China, Sep. 2000, IEEE, pp. 432-435.
Lee, T., “A Digital Multiplexed Fiber Optic Transmission System for Analog Audio Signals,” IEEE Western Canada Conference on Computer, Power, and Communications Systems in a Rural Environment, Regina, Saskatchewan, May 1991, pp. 146-149.
Schuh et al., “Hybrid Fibre Radio Access: A Network Operators Approach and Requirements,” Proceedings of the 10th Microcoll Conference, Mar. 21-24, 1999, Budapest, Hungary, pp. 211-214.
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design.
Margotte, B. et al., “Fibre Optic Distributed Antenna System for Cellular and PCN/PCS Indoor Coverage,” Microwave Engineering Europe, Jun. 1998, 6 pages.
Matsunaka et al., “Point-to-multipoint Digital Local Distribution Radio System in the 21 GHz Band,” KDD Technical Journal, Mar. 1991, No. 145, p. 43-54.
Parker et al., “Radio-over-fibre technologies arising from the Building the future Optical Network in Europe (BONE) project,” IET Optoelectron., 2010, vol. 4, Issue 6, pp. 247-259.
Singh et al., “Distributed coordination with deaf neighbors: efficient medium access for 60 GHz mesh networks,” IEEE INFOCOM 2010 proceedings, 9 pages.
Notification of Grant for Chinese patent application 201190000473.1 issued Aug. 28, 2013, 4 pages.
International Search Report for PCT/US2011/034725 mailed Aug. 5, 2011, 4 pages.
Non-final Office Action for U.S. Appl. No. 12/892,424 mailed Nov. 5, 2012, 22 pages.
International Search Report and Written Opinion for PCT/US2011/034738 mailed Jul. 27, 2011, 13 pages.
International Search Report for PCT/US2011/047821 mailed Oct. 25, 2011, 4 pages.
International Preliminary Report on Patentability for PCT/US2011/047821 mailed Feb. 19, 2013, 10 pages.
Advisory Action for U.S. Appl. No. 13/785,603 mailed Jun. 30, 2014, 3 pages.
Non-final Office Action for U.S. Appl. No. 13/785,603 mailed Sep. 9, 2014, 10 pages.
Non-final Office Action for U.S. Appl. No. 13/762,432 mailed Aug. 20, 2014, 4 pages.
Final Office Action for U.S. Appl. No. 13/785,603 mailed Apr. 14, 2014, 17 pages.
Translation of the Second Office Action for Chinese patent application 201180024499.4 issued Aug. 17, 2015, 3 pages.
Advisory Action for U.S. Appl. No. 14/711,306 mailed Oct. 8, 2015, 3 pages.
Chowdhury et al., “Multi-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Wireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3.
Translation of the First Office Action for Chinese patent application 201180039569.3 issued Jan. 16, 2015, 7 pages.
Examination Report for European patent application 11754570.7 mailed Jan. 13, 2015, 5 pages.
International Search Report for PCT/US2012/025337 mailed May 16, 2012, 4 pages.
International Search Report for PCT/US2011/055861 mailed Feb. 7, 2012, 4 pages.
International Preliminary Report on Patentability for PCT/US2011/055861 mailed Apr. 25, 2013, 9 pages.
International Search Report for PCT/US2011/055858 mailed Feb. 7, 2012, 4 pages.
International Preliminary Report on Patentability for PCT/US2011/055858 mailed Apr. 25, 2013, 8 pages.
International Search Report for PCT/US2011/034733 mailed Aug. 1, 2011, 5 pages.
International Preliminary Report on Patentability for PCT/US2011/034733 mailed Nov. 15, 2012, 8 pages.
Final Office Action for U.S. Appl. No. 13/785,603 mailed Dec. 4, 2014, 8 pages.
First Office Action for Chinese patent application 201180024499.4 mailed Dec. 1, 2014, 13 pages.
Notice of Allowance for U.S. Appl. No. 13/762,432 mailed Dec. 24, 2014, 7 pages.
Non-final Office Action for U.S. Appl. No. 13/967,426 mailed Dec. 26, 2014, 15 pages.
Patent Cooperation Treaty, International Preliminary Report on Patentability for PCT/US2011/034725, Mail date Nov. 15, 2012.
Final Office Action for U.S. Appl. No. 14/711,306 mailed Jul. 9, 2015, 16 pages.
Advisory Action for U.S. Appl. No. 13/967,426 mailed Jul. 6, 2015, 3 pages.
Final Office Action for U.S. Appl. No. 13/967,426 mailed Apr. 29, 2015, 22 pages.
Non-final Office Action for U.S. Appl. No. 13/967,426 mailed Sep. 17, 2015, 27 pages.
Examination Report for European patent application 11721160.7 mailed Oct. 21, 2015, 7 pages.
Non-final Office Action for U.S. Appl. No. 14/664,305 mailed Jul. 7, 2016, 45 pages.
Non-final Office Action for U.S. Appl. No. 15/049,913 mailed Jun. 16, 2016, 20 pages.
Related Publications (1)
Number Date Country
20110268452 A1 Nov 2011 US
Provisional Applications (6)
Number Date Country
61330385 May 2010 US
61330383 May 2010 US
61330386 May 2010 US
61393177 Oct 2010 US
61392660 Oct 2010 US
61392687 Oct 2010 US